
33

HYPERCOMPLEX SIGNAL AND IMAGE PROCESSING

IEEE SIGNAL PROCESSING MAGAZINE   |   May 2024   |1053-5888/24©2024IEEE

Zhaoyuan Yu , Dongshuang Li, Pei Du , Wen Luo ,  
Kit Ian Kou , Uzair Aslam Bhatti , Werner Benger ,  
Guonian Lv, and Linwang Yuan

The digital twin of the ocean (DTO) is a groundbreaking 
concept that uses interactive simulations to improve deci-
sion-making and promote sustainability in earth science. 

The DTO effectively combines ocean observations, artificial 
intelligence (AI), advanced modeling, and high-performance 
computing to unite digital replicas, forecasting, and what-if sce-
nario simulations of the ocean systems. However, there are sev-
eral challenges to overcome in achieving the DTO’s objectives, 
including the integration of heterogeneous data with multiple 
coordinate systems, multidimensional data analysis, feature 
extraction, high-fidelity scene modeling, and interactive vir-
tual–real feedback. Hypercomplex signal processing offers a 
promising solution to these challenges, and this study provides 
a comprehensive overview of its application in DTO develop-
ment. We investigate a range of techniques, including geometric 
algebra, quaternion signal processing, Clifford signal process-
ing, and hypercomplex machine learning, as the theoretical 
foundation for hypercomplex signal processing in the DTO. 
We also review the various application aspects of the DTO 
that can benefit from hypercomplex signal processing, such as 
data representation and information fusion, feature extraction 
and pattern recognition, and intelligent process simulation and 
forecasting, as well as visualization and interactive virtual–real 
feedback. Our research demonstrates that hypercomplex signal 
processing provides innovative solutions for DTO advancement 
and resolving scientific challenges in oceanography and broad-
er earth science.

Introduction
The digital twin, originally envisioned as an “informa-
tion mirroring model,” involves the use of physical mod-
els, sensors, historical operational data, and knowledge to 
simulate complex, interdisciplinary, and multiscale pro-
cesses [1]. This approach aims to unite digital replicas to 
assess the corresponding physical entity’s entire lifecycle. 
Digital twins have found applications in diverse domains, 
including smart cities, security surveillance [2], mari-
time transportation [3], and digital earth. As digital twin 
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technology advances, its scope of applications continues to 
expand, notably including marine environments, driving 
the development of the DTO [4].

The DTO fundamentally utilizes modern information 
technology within the marine domain to create a comprehen-
sive and interdisciplinary simulation platform for continuous 
and detailed monitoring and virtual–real interactions of the 
ocean. The main goal of the DTO is to create a comprehen-
sive and interdisciplinary simulation platform that unites digi-
tal replicas, forecasting, and what-if scenario simulations for 
assessment of the ocean conditions under 
different scenarios. This enables the study 
of intricate phenomena, precise predic-
tions, virtual reconstruction of historical 
and current ocean states, and the evaluation 
of socioeconomic impacts arising from fac-
tors like climate change, natural disasters, 
coastal development, and human activities.

The initial idea behind the DTO is to 
translate complex ocean systems digitally into real-time 
data signals and analyze these data intelligently to under-
stand, simulate, and forecast ocean situations. As the ocean 
is a complex system, analyzing data related to interactions 
among land, ocean, and human activities involves various 
data. It encompasses scalar fields like temperature, salin-
ity, and dissolved oxygen concentration; vector fields such 
as ocean currents, winds, and waves; and tensor fields like 
sediment deformation flow. These marine environmental 
factors are captured by diverse data types and character-
ized as spatiotemporal (ST) coupling, high dimensionality, 
multisource heterogeneity, and dynamic evolution [5]. This 
brings challenges in integrating analyses for understanding 
fundamental mechanisms, enhancing prediction trends, and 
simulating and controlling the behavior of the overall ocean 
system. However, the distinct signal characteristics impose 
notable challenges upon signal processing techniques, espe-
cially for high-dimensional, multisource, and massive ocean 
data. This obscures the key signals in ocean changes in 
response to more complex coupling influences from atmo-
spheres, land, and human activities [6]. Advanced method-
ologies are demanded to integrate, process, and represent 
ocean data to extract crucial insights.

In the domain of signal processing, the hypercomplex 
signal, an extension of the analytic signal to multidimen-
sional cases, finds applications in fields such as digital 
imagery, hyperspectral imaging, and geophysics [7]. The 
mathematical basis of hypercomplex numbers, encompass-
ing quaternions, octonions, and multivectors [8], along with 
techniques such as geometric calculus, Fourier transform 
[9], and filtering, offers powerful tools for multidimensional 
signal representation, information integration, model con-
struction, visual expression, and feedback control mecha-
nisms [10]. In particular, within the context of the DTO, the 
utilization of hypercomplex signal processing techniques 
offers substantial benefits in terms of improved accuracy, 
reliability, and efficiency.

Despite the growing importance of hypercomplex signal 
processing in DTO-related domains, a comprehensive review 
of its accomplishments is currently lacking.

This article seeks to offer an overview of this field, 
covering both theories and applications. For the theoreti-
cal part, we hope to describe signal processing methods 
using geometric algebra, quaternions, and hypercomplex 
machine learning. For the application part, we provide prac-
tical applications of hypercomplex signal processing meth-
ods in data representation and information fusion, feature 

extraction and pattern recognition, and 
intelligent process simulation and fore-
casting, as well as visualization and inter-
active virtual–real feedback in the DTO 
construction. By combining both theory 
and applications, we aim to showcase the 
flourishing development of hypercomplex 
signal processing in the emerging field 
of the DTO. This article contributes by 

being the first to explore the feasibility of using hypercom-
plex signal processing methods for the DTO, accompanied 
by a comprehensive review to offer innovative solutions to 
the demands and challenges faced by oceanography in the 
context of digital twin advancements.

The article is organized as follows: The section “DTO” pro-
vides a brief introduction of the DTO and its bottlenecks. The 
section “Hypercomplex Signal Analysis in the DTO” describes 
the inherent relationships between the DTO and hypercomplex 
signal processing. The section “Theories of Hypercomplex Sig-
nal Processing in the DTO” introduces the theory of hypercom-
plex signal processing in the DTO. The section “Application of 
Hypercomplex Processing in the DTO” presents the application 
of hypercomplex signal processing in the DTO. Discussions and 
conclusions are provided in the section “Conclusions.”

DTO

Major components
The development of the DTO system should encompass four 
key components; the desired effect of each part is illustrated 
in Figure 1.

Data representation and information fusion
The DTO framework includes the representation of data from 
diverse data sources, including remote sensing and in situ obser-
vations, deep ocean sensing and photogrammetry, ocean buoys, 
and shipboard observations, as well as the model simulation of 
marine environment factors. The vast volume and variety of 
ocean data necessitate a unified approach to ensure real-time 
accessibility, reliability, and standardization [11]. By integrat-
ing data from multiple sources, the DTO can leverage the full 
potential of its assorted data streams. This not only addresses 
technical needs but is also a foundational element for enhancing 
the DTO’s capacity for detailed analysis and effective predic-
tion. The adept integration of diverse information significantly 
augments the DTO’s functionality and applicability in various 

As the ocean is a complex 
system, analyzing data 
related to interactions 
among land, ocean, and 
human activities involves 
various data.
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oceanic and environmental scenarios, standing as a crucial as-
pect of the evolution of the DTO paradigm.

Feature extraction and pattern recognition
The marine system is a complex entity characterized 
by a mixture of scales and factors. The feature extraction and 
pattern recognition component of the DTO extracts diverse 
spatial–temporal features and evolutionary patterns from mas-
sive ocean data. It employs advanced signal processing, AI, 
and geophysical modeling techniques to identify and analyze 
key elements and patterns amid sparse observations. This com-
ponent processes raw data, highlighting essential features, and 
utilizes advanced algorithms to detect crucial patterns and 
anomalies, driving informed decision-making and forecasting. 
These powerful functionalities support marine environmental 
monitoring, resource management, and disaster prevention.

Intelligent processing simulation and forecast
A fundamental aim of the DTO initiative is to significantly en-
hance the utility of extensive oceanic datasets and develop under-
standing of the oceanic mechanisms behind the data. To realize 
this objective, the DTO methodically integrates the model simu-
lation and intelligent analysis to convert comprehensive datasets 
into practical, actionable knowledge. This innovative approach 
lays the foundation for detailed simulations of complex ocean 
systems effectively interlinking terrestrial, marine, atmospheric, 
and socioeconomic elements. The comprehensiveness of this 
strategy not only augments our understanding of oceanic systems 
and its dynamic behaviors, a pivotal aspect in achieving accurate 
ocean forecasting, but also arms stakeholders with sophisticated 
tools to analyze and react to various hypothetical scenarios. For 
instance, it could allow users to simulate the consequences of 
reclamation projects [12] or extensive ship route extension in the 
Arctic seas [13] for the ocean.

Visualization and interactive virtual–real feedback
The core of the DTO lies in the reciprocal relationship be-
tween a virtual model (ocean simulations) and its real-world 
equivalent (the ocean), enabling mutual impacts. Interaction 
occurs through coupling of observations and measurements 
within their respective virtual and physical domains. Both 
virtual and physical entities develop 
independently and dynamically within 
their environments, interconnected by 
real-time information exchange. Users 
interact with the DTO in a realistic, im-
mersive setting, where the virtual model 
is refined with real-world observations 
and, in turn, identifies areas in the real 
ocean requiring targeted observations. 
This interactive framework incorpo-
rates advanced technologies like geovi-
sualization, immersive visualization, 
holographic displays, and virtual/aug-
mented reality [14]. These technologies 
enhance data exploration, synthesis, 

presentation, and analysis, offering immersive services and 
fostering collaborative interactions, thereby transforming user 
engagement with ocean environments.

Characteristics of the DTO
Within the DTO, the data collection and integration component 
cumulatively gathers data from various sources like satellite 
observations, buoys, automated stations, and sensor networks. 
Advanced techniques like AI, physical modeling, high-per-
formance computing, and simulation capabilities then process 
these data, extracting features and patterns of the ocean envi-
ronmental factors. It provides scenario-based simulations and 
forecasts to promote marine information creation, manipula-
tion, and analysis to deepen understanding of the ocean. In this 
context, the DTO transcends conventional information systems, 
presenting a more intricate landscape for data collection and pro-
cessing when compared with traditional geographic information 
systems (GISs) and simulation models. The virtual reality inter-
active system involves the presentation and communication of 
simulation results to various stakeholders and the general public 
through advanced visualization techniques, including 3D ren-
dering, animations, and augmented reality [15]. Its integration 
with other systems, such as globe climate models [16], land use 
planning systems [17], and disaster management systems [18], 
facilitates a comprehensive approach aimed at enhancing our 
understanding of the potential consequences of actions and deci-
sions [19]. This approach plays a pivotal role in addressing criti-
cal environmental challenges, including those resulting from 
climate change, biodiversity loss, and related issues.

While the DTO is poised to advance scientific compre-
hension of oceanic phenomena, its overarching goal is to 
create an open and accessible platform that unifies various 
data sources, models, and tools. This collaborative platform 
is intended to cater not only to the scientific community but 
also to a broader audience, including policymakers and stake-
holders in the blue economy sector. A typical DTO system 
encompasses the collection and integration of diverse data 
sources, the development of a real-time virtual model utilizing 
advanced modeling techniques, the simulation and analysis 
of diverse scenarios, and the effective visualization and 
communication of results to form the virtual–real feedback. 
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FIGURE 1. The concept model and major components of the DTO.
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These integrated components collectively contribute to pro-
vide science-based decision support systems for global and 
regional marine management in many cross-cutting issues 
such as climate change, marine spatial planning, and ecosys-
tem resilience.

Current bottleneck of the DTO
Although the DTO has made significant progress in recent 
years, it still faces the following bottlenecks.

Integration of data with different coordinate systems
The integration of diverse observation data in the DTO from 
different spatial and temporal scales is the first step to con-
struct the DTO. Due to variations in data collection range 
and sensor types, the data obtained by different sensors have 
different coordinate systems. For example, the DTO needs to 
integrate global satellite imagery and various terrain observa-
tions, including fixed hydrological stations and mobile buoys 
or ship-based systems. Achieving accurate ocean replication 
means integrating data from different co-
ordinate systems simultaneously. However, 
converting different coordinate systems 
leads to precision loss and computational 
complexity. The DTO needs a unified co-
ordinate framework capable of accommo-
dating and transforming various coordinate 
types for accurate analyses and predictions 
in oceanic and environmental contexts.

Integrating multisource heterogeneous data
Integrating heterogeneous data, which encompass various 
data types such as vector, raster, trajectory, and ST fields, 
is a significant challenge in the DTO [4]. Accurately rep-
resenting the real ocean in the DTO requires integrating 
and analyzing ocean factor data, evolution processes, and 
interaction mechanisms across multidimensions. Although 
traditional GIS processing has a relatively fixed workflow 
for these data types, the DTO’s data need be dynamically 
updated and analyzed based on different analytical tasks. 
The fusion of different data types is a significant bottle-
neck in the DTO. In summary, the successful integration 
of multisource heterogeneous data in the DTO relies on 
the establishment of a unified storage system and elastic 
data types. Building a unified data model with elastic data 
types and content enables the establishment of a unified 
storage system, maximizing the DTO’s potential for de-
tailed analysis and effective prediction in oceanic and 
environmental scenarios.

Modeling and analysis lie in fidelity scenes
The ocean’s complex nature, characterized by multiscale, 
multiinterface, and multiprocess attributes, presents chal-
lenges such as data sparsity, variable indexing, and partial 
observations. This necessitates a departure from traditional 
marine modeling methods. The DTO framework, encom-
passing both dynamic and static ocean scenes, demands 

accurate representation of features like currents and for-
mal expression of parameters like gradients and vortices. 
This requires a sophisticated integration of statistical, dy-
namic, and AI models to address data sparsity, undefined 
mechanisms, and irregular shapes within a high-dimen-
sional framework, all while adhering to scene constraints. 
Frequent queries on variable correlations and data seg-
mentation into different zones are needed, but the lack of 
integrated data hinders integrated analysis. Current ocean 
status simulations, primarily based on differential equa-
tions or dynamic models, have limitations that also affect 
the DTO’s performance.

Unified data and interfacing flow for  
virtual–real interaction
The DTO, characterized by its ability to simulate “what-if” 
scenarios in a realistic marine environment, offers accurate 
feedback within a universal platform. Unlike traditional soft-
ware systems, the DTO’s visualization and virtual–real feed-

back should be closely integrated with the 
analysis process, continually operating in a 
dynamic loop. This leads to the continues 
update of various data types across differ-
ent stages of information flow, leading to 
frequent data transformations. To mini-
mize performance loss from this transfor-
mation, it is crucial to have adaptable data 
models and structures supporting the uni-
fied flow of data–computation–analysis. 

Furthermore, the DTO’s visual analysis and interactions are 
tightly linked with hardware, necessitating an interfacing con-
trol flow in addition to the data flow. One of the DTO’s cur-
rent challenges is the effective unification of these flows and 
the implementation of straightforward, integrated intelligent 
interaction control.

Hypercomplex signal analysis in the DTO

The relationship between the DTO and signal processing
The DTO and signal processing share significant parallels. 
The DTO has advantages in high dimensionality by sur-
passing conventional 2D or 3D constraints and seamlessly 
integrating diverse and multiscale ocean data. It could of-
fer comprehensive scene modeling across scales and utilize 
intelligent models for intricate analyses to uncover hidden 
correlations in vast datasets, boosting predictive and deci-
sion-making abilities in a unified system. Hypercomplex 
signal processing extends traditional methodologies into 
higher-dimensional spaces through the utilization of hyper-
complex numbers. This framework provides a unified struc-
ture for high-dimensional signals and structured multisource 
information, rendering it an ideal mathematical foundation 
for the integration of multidimensional ocean environmental 
factors. The signal analysis and AI methods developed within 
this framework confer distinct advantages for the intricate 
handling of high-dimensional signals.

The DTO, characterized 
by its ability to simulate 
“what-if” scenarios 
in a realistic marine 
environment, offers 
accurate feedback within 
a universal platform.
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Hypercomplex signal processing
Hypercomplex signal processing is an emerging and signifi-
cant technology within the field of signal processing, pre-
senting distinct advantages for managing intricate signals 
characterized by high dimensions. Hypercomplex signal pro-
cessing encompasses crucial methods, such as correlation, 
Fourier transform, convolution, adaptive filtering, wavelet 
transform, and linear canonical transform, operating within 
the hypercomplex domain. These methods provide a new set of 
robust tools that facilitate a more profound understanding and 
analysis of complex signal attributes. The profound insights 
derived from these tools are crucial in the understanding and 
management of complex signals [20].

Hypercomplex signal processing extends traditional sig-
nal processing into higher-dimensional spaces by employing 
hypercomplex numbers. This includes the use of geometric 
algebra, quaternions, octonions, and other forms of hypercom-
plex numbers. This extension enhances the ability to capture 
multidimensional signal characteristics. For example, a quater-
nion hypercomplex number system that extends 2D complex 
numbers into four dimensions can naturally represent color 
images and rotations in 3D space [4]. This allows for the cap-
ture of multiple, superposed attributes. Another rising trend 
is the use of geometric algebra in signal processing. Within 
the geometric algebra framework, the dot product and cross 
product among vectors can be generalized to multidimensions 
with a geometric product that possesses unique reversibility. 
Moreover, the structured algebraic computations in hyper-
complex signal processing offer a unified framework for high-
dimensional signals and structured multisource information, 
which enhances the accuracy, reliability, and efficiency for 
the processing of complex signals [21]. The unique aspects of 

hypercomplex signal processing, such as unified high-dimen-
sional signal representation, meaningful feature description, 
and structured algebraic computation in high-dimensional 
spaces, make it a valuable asset for numerous scientific and 
engineering domains, including earth science.

Considering the current limitations in the DTO, the integra-
tion of hypercomplex signals could significantly boost its mod-
eling capabilities, especially for complex tasks like multisource 
data integration, complex feature extraction, coupled ocean 
dynamics simulation, and interactive virtual–real feedback. For 
example, in fidelity modeling, the multidimensionality nature 
of hypercomplex signals facilitates a more direct integrated 
modeling of complex ocean phenomena like wave propagation, 
wind dynamics [22], etc. It offers a high-dimensional space for 
integrating multisource data. State-of-the-art hypercomplex 
machine learning algorithms can also be leveraged to provide 
more accurate simulations. By capitalizing on its inherent mul-
tidimensional properties, hypercomplex signal processing can 
enhance the DTO’s predictive capacity by revealing latent corre-
lations and patterns within extensive, high-dimensional datasets.

Framework of hypercomplex signal processing for the DTO
In addressing the fundamental challenges of the DTO and ex-
ploiting the capabilities of hypercomplex signal processing in 
the realm of high-dimensional data, we propose a hypercom-
plex signal processing framework for the DTO, as illustrated 
in Figure 2.

Initially, we focus on the multisource heterogeneous oceanic 
big data inherent to the DTO, comprising in situ observation data, 
model simulation data, and sensor/satellite data. These datas-
ets inherently involve vectors, scalars, and trajectory networks 
as mathematical representations. By leveraging the strengths 
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FIGURE 2. The hypercomplex signal processing framework for the DTO.
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of geometric algebra in the unified expression and analysis of 
multidimensional data, we establish a geometric algebra-based 
approach for unified data representation and information fusion. 
This model enables the cohesive expression and management 
of diverse coordinate systems and data types. Subsequently, we 
introduce hypercomplex signal processing techniques, such as 
quaternion signal processing, Clifford Fourier transform, and 
Clifford correlation. These techniques are employed for feature 
extraction and pattern recognition from the aforementioned 
multisource heterogeneous oceanic big data.

Further, we introduce approaches like Clifford/complex/qua-
ternion neural networks and the recently proposed Clifford neu-
ral layers for intelligent process simulation and forecasting. 
This application of hypercomplex-based AI analysis effec-
tively utilizes the coupling relationships among multidimensional 
variables. While ensuring the accuracy of process simulation and 
forecasting, it also significantly reduces the model’s parameters, 
thus enhancing model stability. Finally, we explore the applica-
tions of hypercomplex signal processing in the DTO’s interactive 
virtual–real feedback aspects, including reality expression, holo-
graphic display, and collaborative interaction.

Our review of hypercomplex signal processing applications 
within the DTO framework, including data models, analytical 
models, and interactive expressions, offers insights for devel-
oping innovative DTOs. These DTOs are distinguished by a 
unified mathematical foundation, enhanced adaptability, and 
user-specific customization.

Theories of hypercomplex signal  
processing in the DTO
In this section, we will discuss some theories of hypercomplex 
signal processing that are helpful for the DTO.

Hypercomplex algebra
The hypercomplex algebra A  is typically defined in the fol-
lowing manner:

	 ... , , ...,a i ia a a a aA Kn n n1 2 2 1! != + + +  � (1)

as an n-dimensional K-vector space over the field ,K R C=  
with an associated multiplication rule, comprising the unit el-
ement 1 · ·a a a1 1= =^ h. The multiplication rule delineates 
each connection among the imaginary units ,i in2 f  and im-
plies the specific properties inherent to the algebra.

The concept of hypercomplex numbers encompasses vari-
ous algebraic systems, such as geometric algebra and quater-
nions, which can be represented by different mathematical 
spaces. Quaternions, for instance, can be represented by a 4D 
vector space, where each quaternion can be expressed as a lin-
ear combination of a real number and three imaginary units 
i, j, k, with i j k ijk 12 2 2= = = =- . Geometric algebra G , ,p q r  
is also known as the Clifford algebra of a n-dimensional vec-
tor space with a metric of signature ( , , )p q r , where p, q, and r 
represent the number of positive, negative, and null basis vec-
tors, respectively, with p q r n+ + = , formed by combining 
the vector spaces like real numbers R  and complex numbers 

.C  All of these structures can be viewed as special forms of 
a hypercomplex algebra, which provides a unified framework 
for studying and representing different algebraic systems.

Geometric algebra
Geometric algebra offers a unified and consistent language 
for integrating constructs like complex numbers and qua-
ternions into a single framework. This approach aids in 
developing new geometric methods that clarify physical in-
terpretations without relying on specific coordinate systems 
[23]. Such a unified language is especially beneficial in DTO 
modeling for accurate prediction and representation of oce-
anic phenomena.

The fundamental principle of geometric algebra is to uni-
formly represent scalar, vector, plane, and other geometric 
objects as multidimensional “elements” or “multivectors.” 
By using operators such as outer products and inner prod-
ucts, geometry transformations, projections, reflections, 
rotations, and other operations can be performed. The ele-
ments at different dimensions, named scalar A0 , vector ,A1  
bivector A2 , trivector , ,A3 f  n-vector An , can be combined 
to form a new kind of entity called a multivector M, i.e., 

...M A A A An0 1 2= + + + + . Each element of a multivector 
has an associated grade.

Geometric algebra is a comprehensive framework that 
seamlessly integrates geometric representations with alge-
braic operations. The geometric product, a foundational 
operation in geometric algebra, unifies inner and outer 
product operations, embodying the characteristic of invert-
ibility. This methodology is particularly beneficial in man-
aging high-dimensional and multichannel signals, offering 
enhanced precision in delineating signal structures and 
properties. Additionally, it simplifies the implementation 
of geometric transformations, making processes like signal 
rotations, translations, and other spatial manipulations more 
intuitive and efficient [24].

In this context, we will first discuss how geometric algebra 
can integrate complex numbers and quaternions. Then, we will 
demonstrate the utility of geometric algebra in facilitating a 
coordinate-free representation in data acquisition, highlighting 
its effectiveness in streamlining and improving the data gath-
ering process in the DTO.

Complex numbers and quaternions are commonly used to 
present ocean wave dynamics, attitudes, and trajectories of 
buoys or unmanned underwater vehicles [25], [26]. However, 
the mathematical backgrounds of the real numbers, complex 
numbers, and quaternions are not directly compatible. Geo-
metric algebra, which embeds real numbers, complex num-
bers, and quaternions in a unified framework, may provide a 
simple and clear mathematical foundation for the DTO.

A complex number can be represented in the form of ,ia b+  
where ,a b R!  and i  is the imaginary unit, satisfying .i 12 =-  
The quaternion system extends the complex numbers with 
three imaginary units. A quaternions are generally represented 
in the form ,i j ka b c d+ + +  where ,i j k ijk 12 2 2= = = =-  
and , , , .a b c d R!
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Noteworthily, any unit bivector from Gn  has similar alge-
braic properties to those of the imaginary unit of complex 
numbers, i.e., ( ) .iv v v v v v 1i j i i j j

2 2=- =- =  The basic ele-
ments i, j, k of the quaternions can be identified with the unit 
bivectors in a three-grade multivector space G3 , i.e.,

	
, ,

.

i j k

ijk

v v v v v v

v v v v v v v v v v 1

1 2 2 3 1 3

1 2 2 3 1 3 1 3 1 3

= = =

= =- =
�

(2)

Thus, the complex numbers can be embedded into a sub-
algebra of G2 , which is formed with scalars and bivectors. A 
quaternion can be identified as a multivector consisting of a 
scalar and three bivectors from G3 .

In the development of the DTO, the aggregation of high-
dimensional ST data is an essential task. During this pro-
cess, data frequently undergo operations such as translation, 
rotation, and scaling. In traditional methodologies grounded 
in real-number systems, these fundamental operations each 
exhibit distinct constitutive forms. This diversity contributes to 
the complexity and instability of combined operations, posing 
challenges in maintaining consistency and accuracy in geo-
metric processing [27]. To address these issues, theories such 
as quaternions have been introduced to unify various math-
ematical constructs and solve the problems in 3D space. How-
ever, further development is needed to address the limitations 
of these theories in high-dimensional analysis.

In geometric algebra, translation, rotation, and scaling can 
be unified with the versor [28], as the following sandwich form:

	

p
line

plane

into

V V 1

h

-

Z

[

\

]]

]]

_

`

a

bb

bb
 � (3)

where V is the k-versor, which is an element of the geometric 
algebra that can be obtained by multiplying k vectors using the 
geometric product:

	 versor: .v v vV k 2 1= g  � (4)

The inverse of V is of course simply obtained by the inverse 
vector factors in opposite order: .v v vV k

1
1

1
2

1 1f=- - - -

Within the context of the DTO, the application of the versor 
in geometric algebra serves as an efficacious means for repre-
senting dynamic sensor positions and coordinating disparate sys-
tems. This extends to intricate endeavors such as the analysis of 
high-dimensional data and the simulation of dynamic processes. 
The versor’s capacity to accurately depict and update relational 
dynamics within the DTO framework is noteworthy, particularly 
its distinctive reversibility feature. This aspect of versors furnish-
es invaluable tools for the resolution of directional parameters 
associated with the motion of objects, thereby enhancing the pre-
cision and efficacy of the DTO’s analytical capabilities.

A typical example on how geometric algebra can benefit 
the DTO is the integration of multiple coordinates. Employing 
drones for terrain mapping of coastal–landward boundaries 
constitutes a fundamental aspect of DTO scene modeling. This 

data acquisition task requires the utilization of diverse coor-
dinate systems, encompassing terrestrial, marine, and aircraft 
attitudes, to accurately measure both land and ocean terrains. 
Conventional GISs mandate the conversion of all coordinate 
types, inclusive of both absolute and relative systems, into a 
unified coordinate framework. However, this method has 
practical difficulties in the DTO, owing to complexities, time 
constraints, and the occasional impracticality of frequent 
coordinate transformations. For instance, in unmanned aerial 
vehicle (UAV) surveying, it is common to capture only relative 
relationships, posing a significant challenge in dynamically 
reconstructing actual flight trajectories.

As illustrated in Figure 3, for precise terrain mapping of 
coastal–landward boundaries, the terrestrial part typically 
employs a coordinate reference system (X, Y, Z), while the 
ocean part uses a relative coordinate system ., ,X Y ZD D D^ h  
UAVs collect a series of maritime data at different times 
( , , ,t t tn1 2 g ), which necessitates conversion based on the 
marine local reference system, followed by transformation to 
the terrestrial reference system. Conventionally, this process 
involves a series of matrix operations, including rotation and 
translation, which have inherent limitations in terms of param-
eter complexity, computational efficiency, and stability.

Within the framework of geometric algebra, terrestrial 
reference systems can expressed using geometric algebraic 
notations as , , ,e e ei i i

1 2 3^ h  and marine reference systems can 
expressed using geometric algebraic notations as , , .e e eg g g

1 2 3^ h  
The use of rotor operators enables the transformation of 
marine references to terrestrial references as Rg

i . Additionally, 
data obtained by UAVs can be transformed from their local 
references to marine references as , , ,R R Rt

g
t
g

t
g
n1 2 f  and then to 

terrestrial references using rotor operators as ,R Rg
i

t
g
m , where 

, , ,m n1 2 f= . In this geometric algebra framework, which 
unifies rotations and translations within a single mathematical 
operator, the geometric algebra further extends the usual 
vector-space operations by defining an invertible product of 
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FIGURE 3. Multiple-coordinate sensoring of the ocean with geometric 
algebra.
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vectors, the geometric product. This introduction of an invert-
ible vector product allows for the definition of vector divi-
sion and, consequently, directional derivation [29]. Such an 
advanced mathematical framework leads to more robust solu-
tions in ocean data processing and analysis.

Quaternion signal processing
In contrast to conventional complex numbers, which comprise a 
real part and an imaginary part, quaternions exhibit supplemen-
tary degrees of freedom, rendering them particularly suitable for 
the representation and processing of multidimensional data. A 
quaternion is a number in a 4D space with one real part and three 
imaginary parts. The quaternion q can be expressed as

	 · ·q i j ka a a a0 1 2 3= + + +  � (5)

where a0, a1, a2, a3 are real numbers, and i, j, and k are imagi-
nary units. Quaternions are effectively utilized in color im-
age representation, particularly for RGB images, where each 
pixel is represented as a quaternion with its scalar part as 
zero, and red, green, and blue components correspond to the 
pixel colors [30]. This representation extends to other color 
spaces like luminance–chrominance, expressible in pure 
quaternion form [31]. Traditionally, color image processing 
involved handling 2D RGB matrices and a similarity relation 
matrix to normalize the gray color space for pixel smooth-
ness, but this approach often led to information loss and 
failed to capture the intrinsic relationship among color image 
pixels. Quaternion color image processing, on the other hand, 
treats color pixels as vectors in a multidimensional space, 
better reflecting the image’s color correlations and allowing 
complex numbers to be depicted as quaternion four-tuples 
[32]. With the signal represented by a quaternion, an adaptive 
filtering algorithm can be established using the minimum 
mean-square error method [22] or the minimum mean kurto-
sis method [34]. These filtering algorithms are more accurate 
and stable for the representation of non-Gaussian data, which 
is a common situation in marine science. A more detailed 
overview can be found in [35].

Clifford signal processing
In this section we will mainly discuss two typical Clifford sig-
nal processing theories, the Clifford Fourier transform and cor-
relation analysis, and their possible applications in the DTO.

In the DTO, a significant challenge was the integration of 
scalar x vector, tensor, multitensor, and nontensor fields. Cur-
rent research commonly employs the orthogonal decomposi-
tion of longitude and latitude components to represent vector 
fields as separate scalar fields [36]. While this approach is 
clearly related to the separation rules of longitude and latitude, 
it is inadequate for representing the self-characteristics of the 
factor and interaction across different factors.

In the geometric algebra framework, a more comprehensive 
approach is achievable by processing multivector signals as a 
whole using unified operators. This could eliminate the need 
for signal separation and simplifies the processing of complex 
signal structures. For instance, the Clifford Fourier transform 
can be used for template matching and vector field segmenta-
tion, as demonstrated in Yuan et al. [37]. This method high-
lights its effectiveness in integrating patterns influenced by 
diverse geophysical phenomena, leading to improved latent 
information extraction. The unified processing approach 
offered by geometric algebra improves the robustness of fea-
ture extraction and analysis in DTO constructions, providing a 
more efficient framework for handling complex signals.

Another typical application of Clifford analysis is the 
Clifford correlation analysis. Extracting correlation relations 
among various Earth observation fields stands as a fundamen-
tal task for the DTO. Clifford convolution efficiently captures 
the interconnections among diverse field data by concurrently 
quantifying their similarity and dissimilarity through the utili-
zation of the geometric product [38].

Hypercomplex machine learning
Hypercomplex machine learning is an advanced form of AI 
that uses hypercomplex structures to analyze intricate data 
[39]. Here we will provide a review on several commonly used 
hypercomplex machine learning models as follows.

Clifford neural networks
Neural networks in the Clifford domain empower the execution 
of operations such as enhancement, rotation, and expansion, 
effectively transcending the limitations associated with the 
Euclidean metric in real-valued neural networks. Researchers 
have made significant advancements in extending the tradition-
al models of recurrent neural networks in the real-valued do-
main to the Clifford domain, which involves the transformation 
of conventional multilayer perceptrons into Clifford multilayer 

perceptrons, support vector machine 
in Clifford algebra, geometric Clifford 
algebra networks, and recurrent neu-
ral networks based on Clifford algebra 
[40]. Here we exemplify with geomet-
ric algebra convolution, as illustrated in 
Figure 4. Unlike traditional convolution 
operations conducted in the domain of 
real numbers, the inputs and kernels in 
geometric algebra convolution are mul-
tivector, and the operations among them 
are substituted with geometric products.

f(x)

Multivector Input Fields Multivector Kernels Multivector Output Fields

f (x)

Geometric
Product

f (x)

FIGURE 4. The architecture of Clifford convolution.
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Complex and quaternion neural networks
Complex-valued and quaternion neural networks signifi-
cantly advance the analysis of multidimensional data. The 
complex-valued networks incorporate elements such as 
convolutional feed-forward, advanced complex batch 
normalization, and complex weight initialization strate-
gies [41]. They adeptly encode multidimensional data us-
ing complex number-based structures, thereby expanding 
the capabilities of complex neural networks. Quaternion-
based deep learning architectures are a natural extension 
of complex neural networks [42]. When applied to oceano-
graphic data, these neural network methodologies hold the 
potential to provide promising avenues for the process-
ing and analysis of extensive, multidimensional marine 
environmental data. This includes data such as color and 
high-dimensional satellite or underwater imagery and is 
particularly effective in enhancing data analysis and visu-
alization for the DTO.

Clifford neural layers
Traditionally, neural networks have been restricted to finite-
dimensional Euclidean spaces or finite sets, but recent 
advancements have broadened their range to include opera-
tors within infinite-dimensional function spaces. The Fourier 
neural operator (FNO) model enhances this by replacing the 
kernel integral operator with a convolution operator defined 
in Fourier space, simplifying it into a multiplication opera-
tion through a discrete fast Fourier transform. This model has 
shown its effectiveness for the DTO and highlights the poten-
tial of physics-inspired deep neural operators [43]. This model 
emerges as a cost-effective alternative to high-resolution nu-
merical ocean models, demonstrating its practical applicability 
and efficiency in the field.

The FNO model outperforms traditional convolutional 
neural networks in computational efficiency and in capturing 
the multiscale structure. Additionally, its extension within the 
geometric algebra framework has been documented by Brand-
stetter et al. [44]. The work presented in this article highlights 
that existing methods frequently overlook the interconnec-
tions among distinct fields and their internal constituents, 
even though these connections often exhibit correlations. By 
examining the temporal evolution of these correlated fields 
from the perspective of multivector fields, we can effectively 
address these limitations.

The resultant Clifford neural layers, with their universal 
applicability, are particularly valuable for DTO applications, 
such as fluid dynamics, weather forecasting, and the compre-
hensive modeling of oceanic systems. Moreover, the imple-
mentation of Clifford neural layers significantly enhances 
the generalization capabilities of neural surrogate models for 
partial differential equations [44], crucial for accurately sim-
ulating and predicting oceanic phenomena [45]. Thus, these 
advancements in the FNO model and Clifford neural layers 
can significantly contribute to the development and refinement 
of DTO models, enhancing our understanding and prediction 
of oceanic systems.

Application of hypercomplex processing in the DTO

Multidimensional representation and information fusion
The development of the DTO requires a dynamic, multidi-
mensional data platform that integrates diverse data sources 
into a comprehensive, real-time observation system. The rapid 
evolution of ocean data observation systems has led to a pro-
liferation of data sources, formats, and protocols, presenting 
substantial challenges in data integration and fusion. Oceanic 
variables in coastal regions, represented through ST field data 
encompassing phenomena like sediment transport, nutrient cy-
cling, and fluid dynamics, typically include scalar, vector, and 
tensor field data types. Other data formats, such as buoy data, 
create 3D space-time trajectories as they follow the currents. 
The comprehensive representation of ocean data necessitates 
the efficient integration of these multimodal data types. How-
ever, challenges are exacerbated by the irregular sampling ar-
eas of ocean observation data, which require diverse geometric 
structures for data representation.

A significant proportion of traditional data models pre-
dominantly rely on geometric representations, employing basic 
geometric entities like points, lines, surfaces, and volumes to 
represent complex data. This approach leads to intricate data 
transformations and the exclusion of essential high-dimen-
sional information, including ST correlations and interactions. 
This highlights the need to overcome challenges in implement-
ing digitalization, intelligence, and automation in the DTO, 
particularly in dealing with the increasing amount of mul-
timodal marine data. This highlights the need for innovative 
methods to overcome these challenges and enable more effec-
tive DTO implementation.

Geometric algebra offers significant advantages in the uni-
fied expression and analysis of multidimensional data. The 
multivector structure allows for a more intuitive representation 
of complex geometric relationships and transformations. A key 
strength of geometric algebra is its ability to directly represent 
and compute with subspaces (like lines, planes, and volumes) 
as first-class entities. This capability facilitates a more natural 
description of multidimensional phenomena encountered in 
engineering, physics, and computer vision.

Notable research in this area includes the development of 
a multivector-based hierarchical construction pattern and rep-
resentation method for vector/ST field/network data, utilizing 
the mathematical structure of geometric algebra for consistency 
by Yuan et al. [46]. This approach supports a multidimensional 
GIS scene data model with unified storage, representation, and 
computation structures. The multivector tree (MVTree) data 
structure was designed for the expression, organization, storage, 
retrieval, and computation of these multimodal data, facilitating 
the integration of complex geographic scenes [47]. The use of 
the HDF5 format allowed efficient representation and storage of 
large amounts of data [48]. The introduction of the BRNO-ST 
index, a hierarchical tensor-based framework for ST data, and 
an integrated storage structure for geographic networks contrib-
ute to the development of a comprehensive DTO data model, 
effectively unifying diverse data representation and fusion.
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For the effective integration of vector, ST field, and trajec-
tory data within the DTO framework and to maintain consistency 
with the current ocean information system, a geometric algebra-
based DTO data model is employed, as illustrated in Figure 5. 
This model encodes original observed point data using an oper-
ator-based approach, allowing for the algebraic construction of 
various data types. These diverse data types are stored within 
unified multivector data structures. Within this framework, geo-
metric algebra operators are utilized for data manipulation. The 
vector data within this model capitalize on the Grassmann struc-
ture inherent in geometric algebra [47]. This structure facilitates 
the effective representation and manipulation of vector data. 
Conversely, ST field data are represented through tensors. These 
tensors, along with associated tensor operators and analytical 
methods, are employed for data manipulation and visualization, 
enhancing the interpretability and utility of the data [49].

In terms of networks and trajectories, both nodes and 
k-walk routes are represented within the ( , )Cl n n  space. This 
representation allows for the computation of topological rela-
tionships using the Clifford adjacency matrix. Additionally, 
network routes are expanded and traversed using the oriented 
meet product, a method that further refines the analysis and 
representation of network data [50]. This harmonization of 
expression, storage, and computation within the multivector 
structure significantly streamlines the organization, represen-
tation, and analysis of complex geographical scenes. By unify-
ing these diverse data types within a singular structure, the 
geometric algebra-based DTO model offers an efficient and 
coherent framework for managing and analyzing the multifac-
eted data inherent in oceanographic studies.

Feature extraction and pattern recognition
The DTO framework fundamentally requires an effective de-
scription and simulation of the ocean system. This involves 
extracting features and identifying patterns from various da-
tasets, such as time series and remote sensing images. For 

time series data, commonly utilized techniques encompass 
time series decomposition, spectral analysis, autoregres-
sive integrated moving average, cross correlation analysis, 
and singular value decomposition. These methodologies are 
instrumental in identifying periodic patterns, dominant fre-
quencies, trends, and seasonality [38], offering vital insights 
into the ocean’s influence on climate, ecosystems, and ex-
treme events [52]. Multispectrum remote sensing imagery is 
distinguished by its high dimensionality and extensive inter-
dimensional coupling, challenged by noise from overlapping 
geographical regions and variable ocean conditions. These 
complexities hinder the effectiveness of traditional algo-
rithms in recognizing, classifying, and extracting features 
from small objects.

In response, the field of hypercomplex signal process-
ing is garnering increasing attention for its aptitude in 
handling multicomponent data. The adoption of hypercom-
plex algebraic structures, such as quaternions and Clifford 
algebras, has marked a significant advancement in the field 
of time series and image processing. Techniques like qua-
ternion singular spectrum analysis, quaternion frequency-
space deconvolution, and hypercomplex Fourier transform 
have been effectively employed in both synthetic and real-
world scenarios. Recurrent correlation neural networks are 
extended for processing hypercomplex-valued data, provid-
ing high-capacity associative memories for grayscale image 
storage and analysis [53]. Extreme learning machines on 
general hypercomplex algebras provide superiority in pro-
cessing multidimensional data compared with their real-
valued counterparts on time series prediction and color 
image autoencoding [39]. In the field of remote sensing data 
processing and analysis, Clifford algebras have emerged as 
a powerful tool, offering a natural and efficient approach 
to extract spatial-spectral features in multidimensional 
images. This hypercomplex signal processing technique 
integrates information from hyperspectral remote sensing 

ST Field Data Vector Data Networks and Trajectories

Hierarchical Tensor MVTree Hierarchical Network

Multisource Heterogeneous Data Integration Model

FIGURE 5. The geometric algebra-based unified data model in the DTO.
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images into multivector components, demonstrating superi-
or performance in multidimensional image analysis, includ-
ing segmentation and spectral analysis [55].

Hypercomplex methodologies have been effectively utilized 
within the DTO framework, yielding significant advantages. A 
prime application is in marine monitoring systems, particularly 
for ship detection in optical satellite imagery against complex 
ocean backdrops. Research has highlighted the robustness of 
hypercomplex techniques against rotational, scaling, and trans-
lational transformations in ship imagery [56]. These methods 
maintain accuracy across a variety of ship sizes and are resil-
ient in diverse maritime environments, including ship wakes, 
and varying ship dimensions [56]. In other 
applications, such as kinematic attitude 
estimation for floating offshore wind tur-
bines, quaternion-based formulas have been 
developed. These formulas offer a singular-
ity-free approach for computing large-angle 
rigid body rotations. Furthermore, quaterni-
on algebra-based direction-of-arrival algo-
rithms have demonstrated high resolution 
and enhanced performance in estimation accuracy and angular 
resolution. This is particularly evident in scenarios involving 
coherent underwater sources in low signal-to-noise ratio condi-
tions. Additionally, the use of biquaternion-based models for 
vector hydrophone output data has proven effective in manag-
ing multicomponent information [57]. This approach has led to 
significant improvements in memory space utilization, show-
casing the practicality and efficiency of hypercomplex methods 
in diverse marine and oceanographic applications.

Intelligent process simulation and forecasting
The DTO differs from traditional virtual or augmented reality 
by offering intelligent functionalities that go beyond basic digi-
tal imitation. This advanced capability is largely driven by the 
integration of AI-based methodologies. The DTO is notably 
characterized by its use of big data and AI to significantly en-
hance the scope of knowledge discovery in AI oceanography. 
This integration allows for more accurate predictions and de-
tailed virtual reconstructions of both the historical and present 
states of oceanic environments.

In the field of AI, machine learning models have emerged 
as crucial tools, particularly in their ability to autonomously 
process and interpret nonlinear relationships within large, 
high-dimensional datasets. In the DTO, using ocean mod-
els to simulate dynamics is essential. Accurately estimat-
ing model parameters is crucial for accurately representing 
ocean processes. Machine learning, employed for extracting 
patterns and predicting optimal parameters from comprehen-
sive observational datasets, has proven more effective than 
traditional methods based on physical–empirical relation-
ships [58]. Such capabilities make them indispensable for 
the development and refinement of DTO models. Significant 
advancements in machine learning, such as computer vision, 
neural language processing, and scientific applications, have 
considerably enhanced the capabilities of the DTO system. 

These developments have markedly improved the accuracy 
and comprehensiveness of simulations and predictions of oce-
anic environments.

In the pursuit of enhancing the fidelity and dependability of 
DTOs as reflections of real-world ocean systems, the integra-
tion of domain-specific expertise into machine learning archi-
tectures is paramount. Machine learning provides a flexible 
analytical framework that can be effectively augmented with 
specialized knowledge or adherence to fundamental physical 
laws, such as conservation of mass and energy. This integra-
tion will make DTO models that are not only data-driven but 
also firmly grounded in established scientific principles [59].

In the DTO, accurately simulating oce-
anic dynamics is essential for maintaining 
the system’s accuracy and trustworthiness. 
Advances in AI for science have introduced 
various machine learning methods, such 
as nonlinear dynamics sparse identifica-
tion, which are crucial in this field. These 
techniques have an advantage at revealing 
underlying dynamic processes from obser-

vational data by developing interpretable control equations.  
This is particularly relevant in areas like fluid dynamics, non-
linear systems, and stochastic processes. Within the DTO, 
these methods, notably sparse identification of nonlinear 
dynamics, are employed to precisely model complex ocean 
behaviors, including fluid stretching and rotation, based 
on oceanic data. Control equations for sea ice evolution, 
derived from satellite remote sensing imagery, have signifi-
cantly improved the understanding and prediction of Arctic 
ice growth, melting, and movement processes [60]. Notably,  
predictions from these AI-based control equations have 
been shown to be more accurate than those from conven-
tional models [61]. These methods effectively capture the 
dynamic processes of ST systems, even with limited observa-
tional data, and exhibit good interpretability and generaliza-
tion capabilities.

Within the DTO framework, data often exhibit high 
dimensionality, accompanied by complex interdependen-
cies among their various dimensions. Traditional machine 
learning models, typically confined to the real number 
domain, struggle to adequately address the interdependen-
cies among different fields and their internal components. 
In response, complex-domain machine learning methods 
have gained traction in DTOs due to their proficiency in 
handling high-dimensional data and capturing interrelated 
data relationships. For example, in the processing of syn-
thetic aperture radar (SAR) imagery, it is noted that most 
conventional machine learning models, designed for real-
valued inputs, fail to exploit the phase information intrin-
sic to the complex-valued data of polarimetric SAR images. 
Employing complex-valued convolutional neural networks 
for classifying marine oil spills in polarimetric SAR images 
has improved performance [62]. Additionally, a neural net-
work operating in a 5D geometric algebra space effectively 
captures algebraic–geometric dependencies in time series 

In response, the field 
of hypercomplex signal 
processing is garnering 
increasing attention for 
its aptitude in handling 
multicomponent data.
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data, outperforming traditional vector algebra-based models 
in generalization and prediction accuracy [63].

Furthermore, the hypercomplex number-based machine 
learning models require fewer parameters compared with their 
real-valued counterparts, enabling the training of equivalently 
capable models on smaller hardware with reduced operational 
complexity. This leads to a significant reduction in the num-
ber of operations required to achieve similar levels of accu-
racy. Consequently, such lightweight models substantially 
enhance computational efficiency without sacrificing accura-
cy, thereby facilitating more efficient processing and analysis 
of the DTO. A notable example of this progress is the recent 
integration of geometric algebra into machine learning algo-
rithms. This is exemplified in the development of neural 
partial differential equation surrogates designed for solving 
partial differential equations [64]. By embedding multidi-
mensional objects as multivector structures, these methods 
significantly improve both the accuracy and computational 
efficiency of model solutions. Additionally, the adoption of 
multivector representations in conjunction with Clifford con-
volutions and Fourier transform within deep learning frame-
works has proven to be highly effective. As demonstrated in 
Brandstetter et al.’s research [44], Clifford neural layers show 
broad applicability and are well suited for various domains, 
including fluid dynamics, ocean state forecasting, and physi-
cal system modeling. This advancement signifies a major leap 
in the application of geometric algebra in machine learning, 
contributing to the enhanced modeling capabilities within the 
DTO framework.

Visualization and interactive virtual–real feedback
The DTO’s unique challenges lie in its dynamic virtual–
real feedback for the visualization and interaction compo-
nents. Continues iterations existing in the DTO make the 
efficient management of large datasets, creating accurate 
visual representations, and designing specific interaction 
methods critical.

Geometric algebra has been proven to have better perfor-
mance in handling complex geometric entities and real-time 
visualization tasks. One of the major strengths of geometric 
algebra is its ability to represent a wide range of geometric 
entities, from points, lines, planes, and higher-dimensional 
objects, within a unified algebraic framework. This simpli-
fies computations and manipulations, making it particularly 
suitable for complex visualization tasks [65]. Geometric alge-
bra’s versatility enables efficient representation and manipu-
lation of complex oceanic environments. For instance, it can 
be used to accurately extract rotations and streamlines from 
vector fields [66] and model and visualize oceanic phenom-
ena, such as currents, wave patterns, and underwater topog-
raphy. A detailed review of the application of geometric 
algebra in vector field analysis and visualization is provided 
by Ausoni and Frey [67]. Geometric algebra can distinguish 
between inner and outer rotations, which is crucial for ana-
lyzing oceanic vortices [9]. Moreover, geometric algebra can 
be used to visualize differential equations in a geometric 

manner, providing a clear physical interpretation for each 
computational component. Klausen’s [68] work on visualiz-
ing Stokes’ theorem with geometric algebra provides a prime 
example of such an approach. Extending this method to visu-
alize equations like the shallow water wave equations or even 
more intricate oceanic equations is a promising direction for 
future research.

Large-scale dataset management is critical for successful 
visualization in the DTO. Hypercomplex representations for 
signal processing are beneficial due to their hierarchy. Yuan 
et al. [69] employed conformal geometric algebra in a novel 
method for feature extraction, utilizing k-means clustering 
on extensive point cloud data. This approach can effectively 
extract geometric features from extensive point cloud data 
leading to high accuracy and compression ratio. Additionally, 
several studies have developed efficient algorithms for render-
ing large-scale datasets that can adapt to significant changes in 
scale and perspective. Benger developed an efficient algorithm 
for rendering large-scale datasets that can adapt to significant 
changes in scale and perspective [48]. This algorithm employs 
an adaptive hierarchical structure composed of data blocks, 
which are arranged based on their visibility.

Hypercomplex signals also play a significant role in stream-
lining the computationally intensive operations. Rendering 
tasks, such as shadow generation and ray tracing for extensive 
light sources, require complex intersection calculations that 
are challenging due to the complexity of marine environments 
and the need for accurate representation of light and shadow 
effects. Belon and Hildenbrand [70] developed a GPU-based 
method for smoothly interpolating the normal information of 
the conformal geometric model, represented by its vertices 
and faces. This method has proven its capability in process-
ing models with millions of vertices efficiently using confor-
mal geometric algebra, achieving practical processing speeds. 
Moreover, the application of geometric algebra and the Plücker 
space further enhances the DTO’s capability in rendering. Uti-
lizing these mathematical frameworks allows for the accurate 
computation of n-dimensional shadows, which is beneficial in 
creating realistic and detailed visualizations within the DTO 
environment, where accurate shadow rendering can signifi-
cantly impact the overall visual quality and the user’s percep-
tion of the modeled oceanic space.

According to the virtual–real feedback problem, Aris-
tidou and Lasenby [71] have made strides in this area by 
applying a geometric algebra-based inverse kinematics 
solver to control hand postures, monitored through minimal 
optical motion capture. This solver incorporates physiologi-
cal constraints to limit movements to feasible and natural 
ranges, demonstrating an advanced approach to human 
interaction. Such methods introduce innovative interaction 
techniques that enable human correct movements with mini-
mal processing time, making them particularly effective for 
real-time hand motion tracking and reconstruction. Thus, 
they ensure smooth and accurate interactive experiences. 
Other advancements in high-dimensional visualization and 
interaction, underpinned by motion capture and dynamic 
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interactive methods, may also significantly enhance the 
interactive capabilities of DTO systems.

Figure 6 shows an example of visualization and interactive 
data analysis in a DTO. Observation and simulation data are 
collected and integrated into the system for unified manage-
ment. Data management is related to data services, and the 
two collaborate to respond to the data demands through data 
analysis tasks. The core computing module compares and ana-
lyzes multisource observation and simulation data through 
the hypercomplex mathematical architecture and submits the 
results to the unified data model. The unified data model inte-
grates the management of different types of original and fea-
ture data (such as raster, vector, and tensor) to eliminate the 
additional pressure on the rendering engine caused by different 
organization forms. The rendering engine and interactive sys-
tem visualize the data according to user needs and feedback on 
user operations to the data model to update the data visualiza-
tion. The same geometric algebraic-based architecture is used 
to organize the inputs, computational processes, and outputs 
between the computational model and the data model to reduce 
the extra cost of data reorganization across the visualization. 
Consequently, a more mechanically unified data rendering and 

interaction architecture can be applied to the development of 
the DTO, thus achieving parallel processes between computa-
tion and rendering for user interaction.

Conclusions
This article provides demonstrations of hypercomplex signal 
processing in the context of the DTO, covering various aspects 
including the representation and integration of heterogeneous 
data from multiple sources, feature extraction and pattern rec-
ognition, and intelligent process simulation and forecasting, as 
well as interactive virtual–real feedback.

A thorough analysis reveals that hypercomplex numbers, 
especially geometric algebra, are highly effective in providing 
a unified representation and spatial analysis for multidimen-
sional objects. This feature is pivotal in handling the varied 
data sources within the DTO, establishing it as a robust math-
ematical framework for data representation and information 
fusion. Hypercomplex signal processing techniques demon-
strate proficiency in processing multicomponent data, thereby 
offering valuable tools for feature extraction and pattern recog-
nition within the DTO’s framework of analyzing multisource 
heterogeneous data. Furthermore, machine learning methods 
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within the hypercomplex domain are adept at capturing com-
plex interrelationships among data elements. These methods 
are proven to outperform traditional models in several aspects, 
such as the learning of multilevel structures, resistance to sen-
sitivity, the model’s robustness, and the operation’s simplicity. 
In the context of the DTO, such methods exhibit substantial 
potential for applications in fluid dynamics, ocean state fore-
casting, and modeling of physical ocean systems. Additionally, 
the use of hypercomplex numbers, particu-
larly through the lens of geometric algebra, 
significantly enhances data visualization 
and interactive analysis within the DTO. 
This enhancement is achieved by unifying 
the representation and computation of both 
scalar and vector field data, thus offering a 
more comprehensive approach to data han-
dling and analysis in the DTO environment.

The potential applications and benefits 
of hypercomplex signal processing signify 
a groundbreaking and innovative field for 
resolving complex issues in earth science and enriching our 
understanding of the planet. Its ability to skillfully manipu-
late high-dimensional, nonlinear, and noisy data opens up new 
possibilities for advanced simulations, accurate predictions, 
and intelligent decision-making across diverse geoscience 
domains. Moving forward, research endeavors should focus 
on advancing and refining hypercomplex signal processing 
techniques. This involves integrating them with other earth 
science methodologies and fully harnessing the potential of 
big data analysis to generate more intricate and comprehen-
sive digital twin models. Furthermore, investigations into 
unexplored areas such as hypercomplex time-frequency 
analysis and hypercomplex machine learning could not 
only offer new insights into the DTO but also potentially 
contribute to a broader range of earth science and natural 
science disciplines.

In the future, our focus lies in integrating hypercomplex 
signal analysis for the DTO across three key domains: con-
structing the unified ocean data management model for mul-
tisource data fusion, developing ocean AI for enhancing the 
accuracy of marine mechanism simulation, and stablishing 
ocean visualization and intelligent interaction systems for con-
venient and efficient applications.
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