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a b s t r a c t

Recent low-rank quaternion matrix completion (LRQMC) approaches have been
extensively studied to recover missing data of color images. However, these
methods need to frequently compute the quaternion singular value decompositions
(QSVD) of the quaternion matrix, making them unsuitable for large-scale data.
In this paper, we suggest an efficient LRQMC model based on the learnable
transforms for color image recovery. The key idea is to project the large-scale
quaternion matrix to a small-scale quaternion matrix via the semi-orthogonal
transforms along each mode, which significantly reduces the computational cost of
QSVD. We then apply a nonconvex approximation of rank (i.e., weighted Schatten
p-norm) onto the small-scale quaternion matrix to achieve a better quaternion rank
estimation. The alternating direction method of multipliers scheme is developed
to solve the proposed model, and the weak convergence property of the algorithm
is discussed. Experimental results on color images demonstrate that our method
is considerably faster than state-of-art approaches while achieving comparative
recovery performance.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Color image recovery, which recovers missing values from the observed image, is a fundamental problem
in color image processing [1,2]. The color image consists of three highly correlated channels, which enriches
faithful representation of real scenes. Unfortunately, color images in different areas are often incomplete due
to limitations in acquisition and transmission. Hence, recovering missing data is of great importance for
real-world applications.

Recently, the quaternion has emerged as an elegant mathematical tool in color image processing, primarily
due to its capability of well preserving the color structure of images [3,4]. A quaternion comprises one real
part and three imaginary components [5], leading to a natural way to represent and process color images.
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Using quaternion representation (QR), a color image with the size of I1 × I2 × 3 can be encoded as a pure
quaternion matrix Ẋ with the red, green and blue channel pixel values on the three imaginary components,
respectively, i.e., Ẋij = Riji + Gijj + Bijk, 1 ≤ i ≤ I1, 1 ≤ j ≤ I2, where Rij , Gij , and Bij are the red,
reen, and blue pixel values, respectively, and i, j, k are the three imaginary units of a quaternion. This means
hat all color channels are processed holistically in the quaternion domain [6,7], which can well integrate the
nformation of three channels and capture the correlation among three channels. Utilizing the benefits of
R, numerous QR-based works have emerged, yielding promising results in color image tasks, such as color

mage inpainting [8,9], color image classification [10,11], and color face recognition [12,13].
Quaternion matrix completion is a common approach for recovering missing data in color images. It aims

o recover the underlying quaternion matrix from its incomplete observations under the low-rank assumption,
nd its mathematical model is formulated as

min
Ẋ

rank(Ẋ), s.t. PΩ (Ẋ) = PΩ (Ẏ), (1)

here rank(·) denotes the rank function, Ẋ ∈ QI1×I2 and Ẏ ∈ QI1×I2 represent the recovered and observed
uaternion matrices, respectively, Ω is the observed elements set, and PΩ (Ẋ) is a projection operator where
Ω (Ẋ)ij = Ẋij if (i, j) ∈ Ω and 0 otherwise. Recently, Chen et al. [14] proposed a general low-rank
uaternion matrix approximation (LRQA) model based on the quaternion nuclear norm (QNN) and several
onconvex functions. However, the computation of quaternion singular value decomposition (QSVD) [5] in
ach iteration step results in high time consumption. To reduce the time consumption, Miao et al. [15]
uggested three low-rank quaternion matrix completion (LRQMC) models that only require handling two
maller factor quaternion matrices via the quaternion bilinear factorization. Yang et al. [16] introduced
he truncated nuclear norm-based QMC method for color image recovery. Furthermore, Yang et al. [17]
ntroduced the nonconvex quaternion matrix logarithmic norm to achieve a more precise approximation of
he rank. While the complexity of nonconvex functions also results in high computational cost, especially
hen dealing with large-scale data.
In this paper, we propose the learnable transforms-based nonconvex LRQMC model (TN-LRQMC) for

olor image recovery, which can achieve substantial speedup while maintaining accuracy compared to state-
f-the-art approaches. To begin, we project the large-scale quaternion matrix into a small-scale quaternion
atrix with the learnable semi-orthogonal transforms along each mode. Subsequently, we introduce the
eighted Schatten p-norm as a nonconvex approximation of rank to better explore the low-rank structure
f the small-scale quaternion matrix. In summary, the highlights are as follows:

• The low-rank quaternion matrix completion via weighted Schatten p-norm minimization under the
earnable transforms is suggested for color image recovery, which provides a satisfactory trade-off between
fficiency and quality, especially for large-scale data.

• We develop an efficient alternating direction method of multipliers (ADMM) algorithm to address
he resulting model and provide a weak convergence guarantee for the proposed algorithm, which is also
alidated by the numerical results. Experimental results on color images verify that the proposed method is
onsiderably faster than state-of-art approaches while maintaining accuracy.

. Notations and preliminaries

.1. Notations

In this paper, R, C, and Q respectively denote the real space, complex space, and quaternion space. A
calar, a vector, and a matrix are written as x, x, and X, respectively. For quaternion algebra, a dot above
he variables (e.g., ẋ, ẋ, and Ẋ) is used to denote quaternion variables, and R(·) denotes the real part of

uaternion variables.

2



P. Wu, K.I. Kou and J. Miao Applied Mathematics Letters 148 (2024) 108880

v

2

s

3

3

w
i
o

Fig. 1. One dimensional illustrations referring to different rank surrogates. x denotes the singular value, and f(x) is the objective
alue.

.2. Preliminaries

Preliminaries of quaternions (including quaternion numbers and quaternion matrices) can be seen in
upplementary material (See Appendix A).

. Proposed model and solving algorithm

.1. Proposed model

The existing QNN-based matrix completion methods involve the QSVD based low-rank approximation,
hich suffers from high computational cost when dealing with large-scale tensor data. To overcome this

ssue, we introduce the data-driven semi-orthogonal transforms to project the large-scale quaternion matrix
nto the small-scale quaternion matrix. For a target quaternion matrix Ẋ, the learnable semi-orthogonal

transforms can be formulated as follows:

Ẋ = ḊH
1 ŻḊ2, (2)

where Ẋ ∈ QI1×I2 is the large-scale target quaternion matrix, Ż ∈ Qr1×r2 is the small-scale essential
quaternion matrix, and Ḋi ∈ Qri×Ii(i = 1, 2) are the semi-orthogonal transforms satisfying ḊiḊH

i =
I ∈ Rri×ri . Here, the semi-orthogonal transforms ḊiḊH

i = I are crucial. Under this transform, the size
of the transformed quaternion matrix Ż is smaller than the target quaternion matrix Ẋ, enjoying cheaper
computational cost.

Non-convex relaxation techniques for accurate approximation of the rank function have shown promising
performance in matrix completion or similar models [14,18,19]. Inspired by this, we pick out the weighted
Schatten p-norm as the nonconvex surrogate of the quaternion rank to depict the low-rankness of Ż more
accurately and efficiently. The weighted Schatten p-norm of Ż is defined as ∥Ż∥w,Sp =

∑min{r1,r2}
i=1 wσp

i (Ż),
where w > 0, 0 < p < 1, and σi (i = 1, 2, . . . , min{r1, r2}) is the ith singular value of Ż. The reason for
taking the non-convex weighted Schatten p-norm into LRQMC is that it approximates the rank(Ż) more
precisely than the nuclear norm (see Fig. 1).

Therefore, based on the proposed semi-orthogonal transforms and quaternion-based weighted Schatten
p-norm, the following TN-LRQMC model for color image recovery is suggested:

min ∥Ż∥w,Sp s.t. Ẋ = ḊH
1 ŻḊ2, ḊiḊH

i = Iri×ri
, PΩ (Ẋ) = PΩ (Ẏ). (3)
Ż,Ẋ,Ḋi
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3.2. Solving algorithm for the proposed model

To solve the proposed model, we first introduce the indicator function Ψ(Ḋi) =
{

0, ḊiḊH
i = Iri×ri

,

∞, otherwise.
hen, the problem (3) can be rewritten as

min
Ż,Ẋ,Ḋi

∥Ż∥w,Sp +
2∑

i=1
Ψ(Ḋi) s.t. Ẋ = ḊH

1 ŻḊ2, PΩ (Ẋ) = PΩ (Ẏ). (4)

e design an ADMM-based algorithm to solve the model (4). By introducing the Lagrangian multiplier
˙ ∈ QI1×I2 , the augmented Lagrangian function of (4) is given by

f(Ż, Ẋ, Ḋi, Λ̇) =∥Ż∥w,Sp +
2∑

i=1
Ψ(Ḋi) + β

2 ∥Ẋ − ḊH
1 ŻḊ2∥2

F

+ R
⟨
Ẋ − ḊH

1 ŻḊ2, Λ̇
⟩

+ 1
2∥PΩ (Ẋ − Ẏ)∥2

F ,

(5)

here β is the penalty parameter. Within the scheme of the ADMM, we can update these variables in Eq. (5)
y solving the following iterative subproblems.

1) Update Ż. Ż subproblem is

Żt+1 = arg min
Ż

∥Ż∥w,Sp + βt

2 ∥Ẋt − (Ḋt
1)HŻḊt

2 + Λ̇t

βt
∥2

F . (6)

o solve the above problem, we introduce the following lemma.

emma 1. Let Ḋ1 ∈ Qr1×I1 and Ḋ2 ∈ Qr2×I2 be the semi-orthogonal quaternion matrix, i.e., ḊiḊH
i =

Iri×ri
(i = 1, 2), where I is the identity matrix. Then we have

arg min
Ż

∥Ẋ − ḊH
1 ŻḊ2∥2

F = arg min
Ż

∥Ḋ1ẊḊH
2 − Ż∥2

F , (7)

here Ẋ ∈ QI1×I2 and Ż ∈ Qr1×r2 .

The proof of Lemma 1 can be found in supplementary material (See Appendix B). Using Lemma 1, Ż
ubproblem can be equivalently formulated as follows:

Żt+1 = arg min
Ż

∥Ż∥w,Sp + βt

2 ∥Ḋt
1

(
Ẋt + Λ̇t/βt

)
(Ḋt

2)H − Ż∥2
F . (8)

ccording to Theorem 3 in [14], (8) can be solved by

Żt+1 = U̇Σ▽ϕ/βt
V̇H , (9)

here U̇ΣV̇H is the QSVD of Ḋt
1

(
Ẋt + Λ̇t/βt

)
(Ḋt

2)H ∈ Qr1×r2 , Σ▽ϕ/βt = max{Σ − ▽ϕ(σt)/βt, 0},
ϕ(σt) = wp(σt)p−1 is the gradient of weighted Schatten p-norm at σt, and σt is the singular value of

˙ at the tth (previous) iteration.
2) Update Ẋ. Ẋ subproblem is

Ẋt+1 = arg min
Ẋ

βt

2 ∥Ẋ − (Ḋt
1)HŻt+1Ḋt

2 + Λ̇t

βt
∥2

F + 1
2∥PΩ (Ẋ − Ẏ)∥2

F , (10)
4



P. Wu, K.I. Kou and J. Miao Applied Mathematics Letters 148 (2024) 108880

w

N

S

w

o
w
O

i

which has the following closed-form solution

Ẋt+1 = PΩc

(
(Ḋt

1)HŻt+1Ḋt
2 − Λ̇t/βt

)
+ PΩ

(
(βt(Ḋt

1)HŻt+1Ḋt
2 − Λ̇t + Ẏ)/(1 + βt)

)
, (11)

here Ωc denotes the complementary set of Ω .
3) Update Ḋi{i = 1, 2}. For Ḋ1 subproblem, we have

Ḋt+1
1 = arg min

Ḋ1

βt

2 ∥Ẋt+1 − ḊH
1 Żt+1Ḋt

2 + Λ̇t

βt
∥2

F + Ψ(Ḋ1). (12)

ote that the problem (12) can be equivalently transformed into the following problem:

arg min
Ḋ1

βt

2 ∥(Ẋt+1 + Λ̇t

βt
)(Ḋt

2)H − ḊH
1 Żt+1∥2

F + Ψ(Ḋ1)

= arg max
Ḋ1

R(Tr(βtȦt+1(Żt+1)HḊ1)) − Ψ(Ḋ1),
(13)

where Ȧt+1 = (Ẋt+1 + Λ̇t

βt )(Ḋt
2)H . Supposing the QSVD of βȦt+1(Żt+1)H is U̇SV̇H , we have R(Tr(U̇S

V̇HḊ1)) = R(Tr(SV̇HḊ1U̇)). Since S is the diagonal matrix, the problem (13) can be maximized when the
diagonal elements of V̇HḊ1U̇ are positive and maximum. Under the orthogonal procrustes problem [20], this
is achieved when Ḋ1 = V̇U̇(:, 1 : r1)H in which case the diagonal elements are all 1. Thus, the closed-form
solution of (12) is

Ḋt+1
1 = V̇U̇(:, 1 : r1)H . (14)

imilarly, the solution of Ḋ2 subproblem is

Ḋt+1
2 = ṄṀ(:, 1 : r1)H , (15)

here ṀΣṄH is the QSVD of βt(Ẋt+1 + Λ̇t

βt )H(Ḋt+1
1 )HŻt+1.

We summarize the ADMM for the proposed method in Algorithm 1.

Algorithm 1 The ADMM algorithm for solving (3)

Input: The incomplete quaternion matrix Ẏ ∈ QI1×I2 , Ω , ri(i = 1, 2), β0, βmax, and ρ = 1.1.
1: Initialize: Ẋ0 = Ẏ, [U̇1, S1, V̇1] = QSVD(Ẋ0), Ḋ0

1 = U̇1(:, 1 : r)H , [U̇2, S2, V̇2] =
QSVD((Ẋ0)H), Ḋ0

2 = U̇2(:, 1 : r)H .
2: while not converged and t < 500 do
3: Update Żt+1 via (9).
4: Update Ẋt+1 via (11).
5: Update Ḋt+1

1 and Ḋt+1
2 via (14) and (15).

6: Update Λ̇t+1 via Λ̇t+1 = Λ̇t + βt(Ẋt+1 − (Ḋt+1
1 )HŻt+1Ḋt+1

2 ).
7: Update βt+1 via βt+1 = min(ρβt, βmax).
8: Check the convergence condition: ∥Ẋt+1 − Ẋt∥F /∥Ẋt∥F ≤ 10−4.
9: end while

Output: The recovered quaternion matrix Ẋ.

3.3. Computational complexity

In this part, we discuss the computational complexity of the proposed TN-LRQMC model. As shown in
Algorithm 1, for the input quaternion matrix Ẋ ∈ RI1×I2 , the computational complexity at each iteration
f the developed algorithm can be concluded by updating Ż, updating Ẋ, updating Ḋ1, and updating Ḋ2,
hich cost O(I1I2r1 + I2r1r2 + 2min(r2

1r2, r1r2
2)), O(I1r1r2 + I1I2r2), O(I1I2r2 + I1r1r2 + I1r2

1 + I2
1 r1), and

(I1I2r1+I2r1r2+I2r2
2 +I2

2 r2), respectively. Thus, the total cost at each iteration of the developed algorithm
s O(I2r + I2r + 2I I (r + r ) + 2r r (I + I )).
1 1 2 2 1 2 1 2 1 2 1 2
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3.4. Convergence analysis

Here, we prove the weak convergence of Algorithm 2 in Theorem 2, which is essential to guarantee that
the iterative sequence can attain a stable solution.

Theorem 2 (Convergence). Let {Żt, Ẋt, Ḋt
i, Λ̇

t}∞
t=1 be the sequences generated by Algorithm 1, assuming

˙ t+1 − Λ̇t → 0, and {Λ̇t} is bounded. Then
(a) The sequence {Żt, Ẋt, Ḋt

i}∞
t=1 is bounded;

(b) The sequence {Ẋt, (Ḋt
1)HŻtḊt

2}∞
t=1 is Cauchy sequence;

(c) Any accumulation point of {Żt, Ẋt, Ḋt
i, Λ̇

t}∞
t=1 is a stationary Karush-Kuhn–Tucker point of Eq. (5).

The proof of Theorem 2 can be found in supplementary material (See Appendix B).

. Numerical experiments

This section conducts color images recovery experiments on Berkeley Segmentation Dataset1 and Kodak
hotoCD Dataset2 to demonstrate the superiority and effectiveness of our TN-LRQMC method. The
ompared approaches are LRQA-1 [14], LRQA-4 [14], QLNF [17], and TQLNA [17]. In all experiments,
arameters corresponding to compared methods are carefully adjusted according to the reference papers’
uggestions. The peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) [21] are adopted
o evaluate the recovered results. Larger PSNR and SSIM indicate the result is better. In all experiments,
ncomplete data are generated by sampling elements of images randomly for different sample ratios (SRs)
rom {0.1, 0.2, 0.3}.

.1. Experimental results

Table 1 reports the quantitative results of competitive methods on test images with different SRs. The
est and second best values are, respectively, highlighted in boldface and underlined. The PSNR results
re also shown for a more clear visual comparison (See Appendix C, available in supplementary material).
he following conclusions can be drawn from the above experimental results. (1) The recovered results by
N-LRQMC are quantitatively (see Table 1) and visually close to the recovered results by LRQA-4 and
QLNA. (2) Note that in terms of computation time among all methods, the proposed TN-LRQMC is the

astest on the test data sets (see Table 1). Particularly, when the size of the color image is 512 × 768 × 3, it is
early seven times faster than TQLNA, and at least nine times faster than LRQA-4. The reason is that our
ethod projects the large-scale target quaternion matrix into the small-scale quaternion matrix, reducing the

omputation burden of large quaternion matrices. In summary, TN-LRQMC achieves substantial speedup
hile maintaining accuracy compared with other methods.

.2. Numerical convergence

In this subsection, we show the numerical convergence of the proposed algorithm. In Fig. 2, we display the
elative error (∥Ẋt+1 −Ẋt∥F /∥Ẋt∥F ) curves of the ADMM algorithm (in the logarithmic scale) with respect
o iterations on all color images. We observe that although there have fluctuations at the beginning of the
onvergence curves, the overall trend is decreasing steadily, which demonstrates the numerical stability and
he convergence of the proposed method.

1 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2 http://r0k.us/graphics/kodak/
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Table 1
PSNR, SSIM, and running time (in second) of results by different methods with different SRs on color images.

Data Method SR = 0.1 SR = 0.2 SR = 0.3

PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time

Image01 321 × 481 × 3

Observed 7.41 0.039 – 7.92 0.091 – 8.50 0.154 –
LRQA-1 17.13 0.735 381 19.93 0.820 373 21.98 0.872 393
LRQA-4 18.05 0.730 881 20.90 0.822 1051 22.95 0.876 1168
QLNF 17.70 0.705 1779 20.45 0.802 1888 22.23 0.854 1808
TQLNA 17.85 0.721 771 20.72 0.809 832 22.97 0.868 768
TN-LRQMC 17.97 0.726 219 20.88 0.819 227 22.93 0.872 242

Image02 321 × 481 × 3

Observed 10.14 0.077 – 10.64 0.143 – 11.23 0.219 –
LRQA-1 18.57 0.601 397 21.41 0.727 382 23.49 0.810 368
LRQA-4 19.58 0.610 921 22.52 0.743 962 24.85 0.831 981
QLNF 19.33 0.594 1139 21.99 0.716 1695 23.78 0.789 1536
TQLNA 19.31 0.589 782 22.42 0.735 776 24.92 0.830 715
TN-LRQMC 19.62 0.613 226 22.52 0.742 221 24.86 0.829 221

Image03 512 × 768 × 3

Observed 9.17 0.038 – 9.68 0.103 – 10.26 0.184 –
LRQA-1 24.56 0.954 1272 26.66 0.967 1169 28.11 0.975 1126
LRQA-4 25.16 0.955 4518 27.32 0.969 4797 28.73 0.977 4797
QLNF 24.00 0.943 2960 26.38 0.962 3214 27.94 0.972 3269
TQLNA 25.05 0.952 3316 27.34 0.968 3256 28.98 0.978 4849
TN-LRQMC 25.20 0.954 485 27.24 0.969 485 28.55 0.976 486

Image04 512 × 768 × 3

Observed 8.00 0.024 – 8.50 0.051 – 9.09 0.081 –
LRQA-1 22.63 0.773 1377 25.46 0.865 1398 27.24 0.904 1352
LRQA-4 23.67 0.794 4395 26.48 0.870 4366 28.15 0.908 4511
QLNF 23.61 0.764 2527 25.90 0.850 1956 27.19 0.886 1692
TQLNA 23.57 0.763 3499 26.54 0.852 3329 28.48 0.897 3002
TN-LRQMC 23.99 0.793 442 26.41 0.865 467 27.98 0.900 489

Fig. 2. Curves of relative errors versus iterations on all images with different SRs.

5. Conclusion

In this letter, we proposed a low-rank quaternion matrix completion via nonconvex function approx-
imation under the learnable transforms for color image recovery. More specifically, we first projected
the large-scale quaternion matrix to the small-scale quaternion matrix by the learnable semi-orthogonal
transforms along each mode. Then, we adopted the weighted Schatten p-norm to achieve a more precise rank
stimation of the small-scale quaternion matrix. The alternating direction method of multipliers algorithm
ith convergence guarantee is given to solve the proposed model. Experimental results on color images
emonstrate that the proposed method achieved a satisfactory trade-off between efficiency and quality for
arge-scale quaternion matrix processing.

ata availability

Data will be made available on request.
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