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Abstract
For three specific singular perturbed three-component reaction–diffusion systems that
admit N -spike solutions in one of the components on a finite domain, we present
a detailed analysis for the dynamics of temporal oscillations in the spike positions.
The onset of these oscillations is induced by N Hopf bifurcations with respect to the
translation modes that are excited nearly simultaneously. To understand the dynamics
of N spikes in the vicinity of Hopf bifurcations, we combine the center manifold
reduction and the matched asymptotic method to derive a set of ordinary differential
equations (ODEs) of dimension 2N describing the spikes’ locations and velocities,
which can be recognized as normal forms of multiple Hopf bifurcations. The reduced
ODE system then is represented in the form of linear oscillators with weakly nonlinear
damping. By applying the multiple-time method, the leading order of the oscillation
amplitudes is further characterized by an N -dimensional ODE system of the Stuart–
Landau type. Although the leading order dynamics of these three systems are different,
they have the same form after a suitable transformation. On the basis of the reduced
systems for the oscillation amplitudes, we prove that there are at most �N/2�+1 stable
equilibria, corresponding to �N/2� + 1 types of different oscillations. This resolves
an open problem proposed by Xie et al. (Nonlinearity 34(8):5708–5743, 2021) for a
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three-component Schnakenberg system and generalizes the results to two other classic
systems. Numerical simulations are presented to verify the analytic results.

Keywords Multiple Hopf bifurcations · Coexistence of multiple oscillatory moving
spikes · Matched asymptotic methods · Reduction methods · Three-component
reaction–diffusion systems

Mathematics Subject Classification 37L10 · 35K57 · 35B25 · 35B36

1 Introduction

Spatially localized patterns have been observed in diverse physical and chemical exper-
iments (see the survey Vanag and Epstein (2007)). The modeling of these experiments
often generates nonlinear reaction–diffusion (RD) systems that admit spatial inho-
mogeneous solutions localized in small regions. As prototyping models to produce
well-localized solutions, several well-known two-component RD systems, such as the
Gierer–Meinhardt model (Gierer and Meinhardt 1972), the Gray–Scott model (Pear-
son 1993) and the Schnakenberg model (Schnakenberg 1979) have been extensively
studied. In the large diffusivity ratio limit, these systems can exhibit multiple-spike
solutions in the component with a slow diffusion rate. Such spiky patterns have been
shown to exhibit various types of instabilities and dynamic behaviors such as spike
splitting, temporal oscillations in the spike heights, spike annihilation, and slowly
moving spike, see Doelman et al. (2001a, b); Iron et al. (2001); Iron and Ward (2002);
Gomez et al. (2021); Ward and Wei (2003a, b) and the book (Wei and Winter 2013)
for the Gierer–Meinhardt system, Doelman et al. (2002, 1997); Kolokolnikov et al.
(2005a, b); Gomez et al. (2020); Kolokolnikov et al. (2006) for the Gray–Scott system,
Iron et al. (2004); Ward and Wei (2002); Gomez et al. (2020) for the Schnakenberg
system.

An intriguing phenomenon is the emergence of oscillatory patterns due to the Hopf
bifurcation (HB). Typically, increasing the reaction ratio constant of the inhibitor or
substrate can lead to a destabilization of the stationary spike solution through the
HB. Two distinct types of HB have been examined in the literature: One is asso-
ciated with “small eigenvalues" that approach zero when the diffusion rate of the
activator vanishes; the other is associated with “large eigenvalues" that remain to be
constant as the diffusion rate of the activator diminishes. As a reaction-time param-
eter is increased, either a large eigenvalue or a small eigenvalue will be the first to
have a positive real part. If a large eigenvalue crosses the imaginary axis first, oscil-
lations in the spike height occur first. Alternatively, oscillations in the spike position
take precedence. For the classic activator-inhibitor Gierer–Meinhardt model, the HB
is subcritical and generates unstable time-periodic patterns with spikes oscillating in
their heights (Ward and Wei 2003a; Gomez et al. 2021; Kolokolnikov et al. 2021;
Veerman 2015). For the activator-substrate systems such as the Gray–Scott model
and the Schnakenberg model, the HB for temporal spike height oscillations occurs
first and is subcritical at a low feeding rate (Gomez et al. 2020; Kolokolnikov et al.
2021). At a high feeding rate, the HB for temporal spike position oscillations occurs
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first and is supercritical (Chen and Ward 2009; Xie and Kolokolnikov 2017; Kolokol-
nikov et al. 2005a; Chen and Ward 2011). It is worth noting that the oscillation in the
spike position typically requires both components in the system to be strongly cou-
pled near the spike centers, namely, both the activator and the substrate are localized.
One may ask whether it is possible to find stable oscillatory spikes in the positions
with the substrate (inhibitor) weakly coupled with the activator. As far as the authors
are aware, this appears to be unrealistic for two-component systems. On the other
hand, theoretical results obtained for a class of three-component reaction–diffusion
equations in Or-Guil et al. (1998) suggest that it is always feasible to find parame-
ters that lead to the propagation of any stationary structure that can be found in the
corresponding two-component system. Further studies on three-component systems
(Bastiaansen and Doelman 2019; Chirilus-Bruckner et al. 2019) have revealed that
localized solutions can exhibit remarkably richer dynamics. This motivates us to con-
sider three-component extensions of some classic two-component models. Recently,
a three-component extension of the Schnakenberg model was analyzed in Xie et al.
(2021), exhibiting new, previously unobserved behavior: numerical simulations reveal
the coexistence of both in-phase and out-of-phase oscillations in the spike positions
for a two-spike solution. An open problem proposed there is:How many stable small-
amplitude oscillatory moving patterns can we find for an N -spike solution when N
translation modes are excited? One goal of this paper is to address this problem.

In this paper, we consider three-component extensions of three singularly perturbed
two-component systems

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = ε2uxx + f (u, v) − κw,

0 = Dvxx + g(u, v),

τwt = u − w,

x ∈ (−1, 1), t ≥ 0,

Neumann boundary conditions for at x = ±1.

(1.1)

in the limit
ε � 1. (1.2)

The first system is the nondimensional Gierer–Meinhardt model with reaction terms
as

f (u, v) = −(1 − κ)u + u2/v, g(u, v) = −v + ε−1u2. (1.3)

The second system is the nondimensional Gray–Scott model at a low feeding rate with

f (u, v) = −(1 − κ)u + Au2v, g(u, v) = 1 − v − ε−1u2v. (1.4)

The third system is the nondimensional Schnakenberg model at a low feeding rate
with

f (u, v) = −(1 − κ)u + u2v, g(u, v) = 1

2
− ε−1u2v. (1.5)

The coupling coefficient κ is independent of ε and assumed to be 0 < κ < 1.
The nondimensionalization details of the Gierer–Meinhardt system are provided in
Appendix B. The third component w acts as an inhibitor to the first one, whose
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kinetic is motivated by the FitzHugh-Nagumo system. In the chemical system, it could
symbolize a substance produced as a byproduct of the activator’s production, which
in turn has a negative effect on the activator, representing a depletion of resources or
accumulation of waste that inhibits the reaction. These three RD systems degenerate
to their corresponding standard two-component systems when τ = 0, which have the
following two properties when ε � 1:

• When D satisfies some explicit constraints, there exists a stable solution consisting
of N evenly distributed spikes with equal height.

• For a stable N -spike solution, the first N leading eigenvalues are negative real and
O(ε2), whose associated eigenmodes are translation modes in the leading order.

See Iron et al. (2001); Kolokolnikov et al. (2006); Iron et al. (2004) for related results
on each model. Setting τ > 0 does not change the equilibrium state but has an impact
on the stability. Hence the existence of symmetric N -spike steady-state solutions
centered at xk = −1+ 2 j−1

N , j = 1, . . . , N to the system (1.1) is readily established.
In Or-Guil et al. (1998), the authors have shown that the eigenvalues that determine
the stability of an equilibrium state in the extended systems (1.1) for general f and g
can be explicitly determined by the eigenvalues of their two-component counterparts,
suggesting that we can obtain some analytic results if we know the solution explicitly.
For the systems under consideration, the first N leading eigenvalues are negative real
and of the order ε2, allowing us to find N thresholds located within a region of width
O(ε2). These thresholds are identical in the limit ε → 0, and N pairs of complex-
conjugated eigenvalues pass through the imaginary axis as τ exceeds the critical value
τc, which then excite the corresponding translation modes and initiate the multiple
types of oscillations in the spike positions. We aim to understand the stable small-
amplitude oscillatory patterns we can finally observe.

Figure 1 illustrates the aforementioned phenomenon in the Schnakenberg model.
For five spikes, there are five eigenvalues that cross the imaginary axis for τ slightly
exceeding 1

κ
, which causes the spike center to oscillate periodically. The long-time

dynamics settle into one of three possible stable oscillatory patterns, corresponding
to the three stable equilibria in the amplitude equations. Which pattern is chosen
depends on the initial conditions. For six spikes, there are six eigenvalues that cross
the imaginary axis for values of τ well beyond 1/κ . The long-time dynamics settle
into one of four possible oscillatory stable patterns, corresponding to the four stable
equilibria in the amplitude equations. Four types of oscillations coexist for the same
parameter values, and the pattern selection mechanism depends only on the initial
conditions.

With the goal to delineate the manifestation of periodically moving patterns, we
perform a detailed study of temporal oscillations in the spike positions near Hopf
bifurcations for N -spike solutions in three singular perturbed RD systems. In partic-
ular, we demonstrate that N Hopf modes become unstable when τ passes 1

κ
in the

limit ε → 0, leading to multiple types of oscillations at the onset of instability, which
then saturate into a particular stable periodic orbit. Next, we perform a multiple-scale
perturbation expansion in the vicinity of the bifurcation point and derive a set of ODE
equations, explicitly describing the dynamics of multiple spikes. Finally, based on the
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Fig. 1 Space-time plots of the activator distribution u for different initial N -spike configurations obtained
from numerically solving the system (1.1) using FlexPDE7 (Inc 2020) with Schnakenberg type of non-
linearities in Eq. (1.5). The horizontal axis is space, and the vertical axis is time. The parameters are
ε = 0.005, κ = 0.8, D = 1

24N3 for N = 5, 6. (a-c) three different final states of oscillatory five spikes at
τ = 1.01/κ . The only difference between them is the initial perturbation we select. (d-g) four different final
states of oscillatory five spikes at τ = 1.015/κ . The only difference between them is the initial perturbation
we select

reduced description, we prove that the leading order oscillations settle into one of the
�N/2� + 1 possible stable states.

The contribution of this paper is twofold. First, we extend the results in Xie et al.
(2021) to another two classic RD systems, showing that the coexistence of multiple
oscillation patterns is a universal phenomenon. Second, we resolve the open problem
raised in Xie et al. (2021), giving a complete classification of the stable oscillation
pattern slightly beyond multiple Hopf bifurcations.

The outline of this paper is as follows. In §2, we derive the relation between the
eigenvalues of three-component systems and their associated two-component systems.
We show that an N -spike solution undergoes a transition from a stationary state to an
oscillatory state as the parameter τ is increased past some threshold τc; this instability
is triggered via a Hopf bifurcation of drift type. Moreover, N small eigenvalues (con-
trolling the motion of N spikes) undergo Hopf bifurcations nearly simultaneously.
Consequently, a complex interaction between the different modes can occur, leading
to the coexistence of multiple possible oscillating patterns. A key open problem then
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is determining whether these time-periodic solutions bifurcating from the N -spike
stationary solution are stable.

In §3, we formally derive a reduced description of spike positions and velocities
to unfold the dynamics near the bifurcation point for the Gierer–Meinhardt model,
which is essentially the Hopf normal form. In general, this can be done by following
the weakly nonlinear analysis developed in Veerman (2015) or similar approaches
used in Gurevich et al. (2006). However, the leading eigenmode in these references is
associated with an O(1) eigenvalue, in contrast with O(ε2) eigenvalue in this article.
Moreover, only one Hopf mode is assumed to be excited in Veerman (2015) and Gure-
vich et al. (2006), while we study the scenario when multiple Hopf modes are excited.
These differences make our problem more delicate and require intricate analysis in a
hierarchy of problems in each order of ε. We will use a combination of the matched
asymptotic methods and the center manifold reduction to reduce the PDE system to a
set of ODE systems up to O(ε2). We then apply the multiple-scale method to obtain
a leading order approximation of the solution to the reduced system, revealing that
the spikes oscillations consist of different oscillating modes in the leading order of ε,
whose amplitudes are subject to a system of ordinary differential equations that can
be seen as the Landau equations. Each equilibrium point of the amplitude equations
corresponds to an oscillatory state, the stability of which determines the final state we
can observe numerically.

In §4, we classify the equilibria of the amplitude equations with respect to τ and
rigorously prove that the Landau equations have at most 2N non-negative equilibria,
among which �N/2� + 1 are stable, suggesting that at most �N/2� + 1 stable small-
amplitude oscillatory pattern can be observed in the leading order. Finally, in §5 we
summarize our results and highlight some open problems for future research.

2 Hopf Bifurcations

In this section, we investigate the bifurcations induced by increasing the reaction ratio
τ for general three-component systems (1.1). The analysis for the extended Schnaken-
berg model has been carried out in Xie et al. (2021). Here we sketch the analysis for
a general system. We consider the dynamics linearized around the stationary solution
(us, vs, us) and compare it with the dynamics in the special case τ = 0.

We define the linear operator L0 as follows:

L0 :=
(

ε2� + fu(us, vs) − κ fv(us, vs)
gu(us, vs) D� + gv(us, vs)

)

. (2.1)

For a perturbation [φτ , ψτ , ητ ] � 1 to the steady state [us, vs, us], we obtain the
following eigenvalue problem for τ = 0:

γφ0 = ε2�φ0 + fu(us, vs)φ0 + fv(us, vs)ψ0 − κη0, (2.2a)

0 = D�ψ0 + gu(us, vs)φ0 + gv(us, vs)ψ0, (2.2b)

0 = φ0 − η0; (2.2c)
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and for τ �= 0:

λφτ = ε2�φτ + fu(us, vs)φτ + fv(us, vs)ψτ − κητ , (2.3a)

0 = D�ψτ + gu(us, vs)φτ + gv(us, vs)ψτ , (2.3b)

τλητ = φτ − ητ , (2.3c)

where we denote the eigenvalues of the three-component system at τ = 0 as γ and
the eigenvalues at τ �= 0 as λ. The system Eq. (2.2) can be rewritten as

γ

(
φ0
0

)

= L0

(
φ0
ψ0

)

, (2.4)

Note that the third row of system Eq. (2.3) is a linear algebraic equation. We solve ητ

w.r.t φτ to obtain

ητ = 1

1 + τλ
φτ . (2.5)

Using this to remove ητ in other two rows, we obtain

λ

(

1 − κτ

1 + τλ

)(
φτ

0

)

= L0

(
φτ

ψτ

)

. (2.6)

Comparing Eq. (2.4) and Eq. (2.6), we compute λ and [φτ , ψτ , ητ ] based on γ and
[φ0, ψ0] as follows:

λ = τ(κ + γ ) − 1

2τ
±

√

γ

τ
+

(
τ(κ + γ ) − 1

2τ

)2

, (2.7a)

[φτ , ψτ , ητ ] = [φ0, ψ0,
1

1 + τλ
φ0]. (2.7b)

Equation (2.7) implies that the eigenvalue and eigenvector at τ �= 0 can be directly
obtained from those at τ = 0. When τ is increased, the bifurcations detected are
ranked according to the value of the related γ . Thus, if an N -spike solution is stable
for τ = 0, this solution will stay stable until τ is increased up to 1

κ+γmax
.

We are interested in the stability of an N -spike solution and the dynamics of N
spikes in the vicinity of the bifurcation. Denote the u component of an N -spike quasi-
equilibrium solution as

us ∼
N∑

k=1

uc

(
x − xk

ε

)

, (2.8)

where xk is the equilibrium position, {xk = −1 + 2k−1
N , k = 1, . . . , N }. For the sys-

tems we consider in this paper, the first N leading eigenvalues {γk, k = 1, . . . , N } are
negative real and of the order ε2 (see the computations in Iron et al. (2001); Kolokol-
nikov et al. (2006); Iron et al. (2004)). Hence, increasing the bifurcation parameter τ

to pass τk := 1
κ+γk

pushes the k-th eigenvalue to cross the imaginary axis with pure
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imaginary numbers. Since the eigenvector corresponding to γk is a translation mode
that can be written as a linear combination of

{
u′
c

( x−xk
ε

)
, k = 1, . . . N

}
, N transla-

tion modes are destabilized when τ > τN , leading to complex motions in the spike
positions. In the limit ε � 1, we have τk ∼ 1

κ
for k = 1, · · · , N , then N Hopf modes

become excited almost simultaneously when τ is above τc := 1
κ
.

Now we give a rough description of the dynamics near the bifurcation point. We
denote the φ component of corresponding first N eigenvectors as

φ0,k ∼
N∑

j=1

Q j,ku
′
c

(
x − x j

ε

)

, k = 1, . . . , N , (2.9)

where Q j,k are constants determining the moving direction of j-th spike under the
influence of k-th mode φ0,k . We define Q as the matrix with Q j,k as its entries,

Q := {Q j,k} = (
q1, · · · ,qN

)
. (2.10)

For the Schnakenberg model, the Gierer–Meinhardt model and the Gray–Scot model,
they have the same Q (see Iron et al. (2001); Kolokolnikov et al. (2006); Iron et al.
(2004)) that can be computed as

qN =
√

1

N
[1,−1, 1, · · · , (−1)N+1]ᵀ, (2.11a)

qk = [Q1,k, · · · , QN ,k]T , k = 1, · · · , N − 1, (2.11b)

Q j,k =
√

2

N
sin

(
πk

N
( j − 1

2
)

)

. (2.11c)

Here [ · ]ᵀ denotes the transpose. If we increase the control parameter τ slightly
beyond τc as τ = τc + ε2τ̂ , these N translation modes dominate the dynamics. Then
the dynamics can be approximated by

u ∼
N∑

k=1

uc

(
x − xk

ε

)

+
N∑

k=1

(
Ake

λk tφ0,k + c.c.
)
, (2.12)

where Ak are constant oscillation amplitudes and c.c. is referred to as the complex
conjugate. Substituting τ = τc + ε2τ̂ into Eq. (2.7), we obtain

λk = τ̂ (κ + γk)ε
2 + γk/κ

2(1/κ + ε2τ̂ )
+

√

γk

(1/κ + ε2τ̂ )
+

(
τ̂ (κ + γk)ε2 + γk/κ

2(1/κ + ε2τ̂ )

)2

,

k = 1, . . . , N . (2.13)

Note that γk ∼ O(ε2), k = 1, . . . , N . Let μk = τ̂ κ2+γkε
−2

2 and ωk = √−κγkε−2, we
can rewrite λk as

λk = ε2μk + O(ε3) + i
(
εωk + O(ε2)

)
, (2.14)
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then the corresponding factor eλk t in Eq. (2.12) can be decomposed into the oscillatory
factor eiεωk t and the growth factor eε2μk t . This suggests that the amplitudes and phases
change at different time scales. Using (2.9) and taking the leading order part of λk ,
we rewrite Eq. (2.12) as

u ∼
N∑

k=1

uc

(
x − xk

ε

)

+
N∑

k=1

(
Ake

iεωk tφ0,k + c.c
)

∼
N∑

k=1

uc

(
x − xk

ε

)

+
N∑

k=1

(
Ake

iεωk t + c.c
) N∑

j=1

Q j,ku
′
c

(
x − x j

ε

)

∼
N∑

k=1

⎛

⎝uc

(
x − xk

ε

)

− u′
c

(
x − xk

ε

) N∑

j=1

Qk, j B j cos (εω j t + θ j )

⎞

⎠

∼
N∑

k=1

uc

(
x − xk − εpk

ε

)

,

(2.15)

where A j = − 1
2 Bjeiθ j , pk = ∑N

j=1 Qk, j B j cos (εω j t + θ j ). We point out that

Bj = 2|A j | and θ j evolves at a much slower time scale, namely ε2t , and requires a
higher order analysis.

It is worth noting that there is a correction term to w we must include in the higher
order analysis according to (2.7b). Expanding (2.7b), we obtain

⎛

⎝
φ0,k
ψ0,k
1

1+τλk
φ0,k

⎞

⎠ ∼
⎛

⎝
φ0,k
ψ0,k
φ0,k

⎞

⎠ − iτcεωk

⎛

⎝
0
0

φ0,k

⎞

⎠ , k = 1, . . . , N . (2.16)

The term [0, 0, φ0,k]T is extracted separately in the expansion (3.5).
The ODE system describing the dynamics of Bj for the Schnakenberg model has

been derived in Xie et al. (2021), where the method of matched asymptotic analysis
and the method of multiple scales are utilized. Our goal in the next section is to write
down the ordinary differential equation of the amplitude Bj for the other two systems.

3 Slow Dynamics Close to the Hopf Bifurcation

In this section, we investigate the dynamics in the vicinity of N-fold Hopf bifurcations
by projecting the dynamics into the space expanded by N excited translation modes.
As the eigenvalues have a different scaling in real and imaginary part when τ =
1
κ

+ τ̂ ε2, the analysis involves different orders of ε. We will derive the dynamics by a
combination of the matched asymptotic methods and the center manifold reduction.
The derivation has been done for the Schnakenberg model in Xie et al. (2021), we take
the same strategy to derive the reduced dynamics for the Gierer–Meinhardt model. As
to the Gray–Scott model, we omit the derivation and only present the results.
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3.1 Reduced ODE System for the Gierer–Meinhardt Model

We consider the extended Gierer–Meinhardt system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = ε2uxx − (1 − κ)u + u2/v − κw,

0 = Dvxx − v + u2/ε,

τwt = u − w,

Neumann boundary conditions at x = ±1.

(3.1)

For a initial condition with N spikes located at positions close to their equilibrium
positions, the spikes will start to oscillate with a small amplitude when τ slightly
exceeds 1

κ
; thus we assume the k-th spike to be located at x̂k = xk + εpk according

to Eq. (2.15). Then, we calculate the solution in the inner region near the k-th spike
where |x − x̂k | ∼ O(ε), and in the outer region away from the k-th spike where
|x − x̂k | ∼ O(1). The equations for the position of each spike are determined by
matching the outer and inner solutions.

Inner region: Near the k-th spike, we introduce variable y = x−xk−εpk (t)
ε

, and
rewrite u, v and w as

u(x, t) = U (y, t), v(x, t) = V (y, t), w(x, t) = W (y, t). (3.2)

Then, the system (3.1) becomes

−Uy ṗk + ∂U

∂t
= Uyy − (1 − κ)U +U 2/V − κW , (3.3a)

0 = DVyy − ε2V + εU 2, (3.3b)

(
1

κ
+ ε2τ̂ )

(

−Wy ṗk + ∂W

∂t

)

= U − W . (3.3c)

The far-field conditions as |y| → ∞ are that U and W tend to zero exponentially,
whereas the conditions for V contain some constants that must be determined by
matching with the outer solution.

To facilitate the analysis, we introduce slow time scales

T1 = εt, T2 = ε2t, · · · ,

so that

ṗk = ε
∂ pk
∂T1

+ ε2
∂ pk
∂T2

+ · · · , (3.4)

and use the following expansion in the spirit of center manifold reduction according
to Eqs. (2.15) and (2.16)

⎡

⎣
U
V
W

⎤

⎦ =
⎡

⎣
U0
V0
W0

⎤

⎦+ε

⎛

⎝

⎡

⎣
U1
V1
W1

⎤

⎦ + αk

⎡

⎣
0
0

U0y

⎤

⎦

⎞

⎠+ε2

⎡

⎣
U2
V2
W2

⎤

⎦+ε3

⎡

⎣
U3
V3
W3

⎤

⎦+h.o.t, (3.5)
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with [U0, V0,W0] being the spike profile and [Uk, Vk,Wk] being orthogonal to
[U0y, V0y,U0y] and [0, 0,U0y] for k ≥ 1. Note that [U0y, V0y,U0y] has been implic-
itly included into [U0, V0,U0] in the way of Eq. (2.15) and αk[0, 0,U0y] accounts
for the corrections from Eq. (2.16). We remark that [U0y, V0y,U0y] and [0, 0,U0y]
are the basis of the center manifold near the spike center. Thus we require the rest
terms to be orthogonal to them. Substituting Eq. (3.5) and Eq. (3.4) into Eq. (3.3) and
collecting different terms in order of ε, we obtain a hierarchy of equations.

In the leading order, we obtain

0 = U0yy − (1 − κ)U0 +U 2
0 /V0 − κW0, (3.6a)

0 = DV0yy, (3.6b)

0 = U0 − W0. (3.6c)

The conditions needed to match to the outer solution are that V0 is bounded and
U0,W0 → 0 as |y| → ∞. Thus, the solution to Eq. (3.6) is

U0 = ck,0ρ(y), V0 = ck,0, W0 = ck,0ρ(y), (3.7)

where ck,0 are constants we will determine by matching and ρ(y) = 3
2 sech

2(
y
2 )

satisfying
ρ′′ − ρ + ρ2 = 0; ρ → 0 as |y| → ∞; ρ′(0) = 0. (3.8)

Since V0 is a constant, the orthogonality conditions are simplified to be

〈Uk,U0y〉 = 0, 〈Wk,U0y〉 = 0, for k ≥ 1 (3.9)

where 〈 f , g〉 denotes the inner product of two functions over R,

〈 f , g〉 :=
∫ ∞

−∞
f (y)g(y) dy. (3.10)

In the order of ε, we obtain

−U0y
∂ pk
∂T1

− F1 = U1yy − (1 − κ)U1 + 2U0U1/V0 − κ(W1 + αkU0y), (3.11a)

0 = DV1yy +U 2
0 , (3.11b)

− W0y
∂ pk
∂T1

= κ
(
U1 − (W1 + αkU0y)

)
, (3.11c)

where
F1 := −U 2

0 V1/V
2
0 . (3.12)

Since V1 is independent of U1 and W1, we solve Eq. (3.11b) for V1 first to obtain

V1 = c2k,0g1 + bk,1y + ck,1, (3.13)
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where bk,1, ck,1 are constants left to be determined and g1 is an even function defined
as

g1 := − 1

D

∫ y

0

∫ z

0
ρ2 dŷdz. (3.14)

The far field behavior of V1 is

V1 →
(
c2k,0g

′
1(±∞) + bk,1

)
y +

[

ck,1 − c2k,0
D

∫ ±∞

0

∫ y

±∞
ρ2 dzdy

]

, as y → ±∞,

(3.15)
Since g′

1 is odd, the constant bk,1 can be determined by the far field behavior of V ′
1:

bk,1 = 1

2

(
V ′
1(+∞) + V ′

1(−∞)
)
. (3.16)

Using Eq. (3.11c) to remove W1 in Eq. (3.11a) yields

U1yy −U1 + 2ρU1 = −F1. (3.17)

SinceU0y is the homogeneous solution of Eq. (3.17), the right-hand side of Eq. (3.17)
must be orthogonal toU0y . Taking the inner product between Eq. (3.17) andU0y gives
rise to the solvability condition of Eq. (3.17):

− 〈U0y,F1〉 = 0, (3.18)

Using the fact that U0y is odd and V1 can be decomposed as the addition of odd and
even functions, we obtain

bk,1

∫ ∞

−∞
ρ2ρ′ydy = 0. (3.19)

Thus, the solvability condition yields

bk,1 = 0. (3.20)

Using Eq. (3.20), we solve Eq. (3.11a) for U1 to obtain

U1 = ck,1ρ + c2k,0 f1, (3.21)

where f1 is an even function satisfying

f ′′
1 − f1 + 2ρ f1 = ρ2g1. (3.22)

Taking the inner product between Eq. (3.11c) and U0y and using the orthogonal con-
dition Eq. (3.9) yield

∂ pk
∂T1

= καk . (3.23)
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Substituting Eq. (3.23) into Eq. (3.11c), we obtain

W1 = U1. (3.24)

In the order of ε2, we obtain

−U0y
∂ pk
∂T2

−U1y
∂ pk
∂T1

+ ∂U1

∂T1
− F2 = U2yy − (1 − κ)U2 + 2U0U2/V0 − κW2,

(3.25a)

0 = DV2yy − V0 + 2U0U1, (3.25b)

− W0y
∂ pk
∂T2

− (W1y + αkU0yy)
∂ pk
∂T1

+U0y
∂αk

∂T1
+ ∂W1

∂T1
= κ(U2 − W2), (3.25c)

where
F2 := U 2

1 /V0 − 2U0U1V1/V
2
0 −U 2

0 V2/V
2
0 +U 2

0 V
2
1 /V 3

0 . (3.26)

Solving Eq. (3.25b) for V2, we obtain

V2 = 1

D

∫ y

0

∫ z

0
(V0 − 2U0U1) dŷdz + bk,2y + ck,2

= 1

2D
ck,0y

2 + bk,2y + ck,2 + 2ck,0ck,1g1 + 2c3k,0g2,

(3.27)

where bk,2, ck,2 are constants determined by matching with the outer region and g2
is defined as

g2 := − 1

D

∫ y

0

∫ z

0
ρ f1 dŷdz. (3.28)

Note that bk,2 can be determined by the far field behavior of V ′
2 as follows:

bk,2 = 1

2

(
V ′
2(+∞) + V ′

2(−∞)
)
. (3.29)

Using Eqs. (3.25c) and (3.24) to remove W2 in Eq. (3.25a) yields

U2yy −U2 + 2ρU2 = −F2 +U0yy
∂ pk
∂T1

αk −U0y
∂αk

∂T1
. (3.30)

Taking the inner product between Eq. (3.30) and U0y gives rise to

∂αk

∂T1
= − 〈F2,U0y〉

〈U0y,U0y〉 + 〈U0yy,U0y〉
〈U0y,U0y〉

∂ pk
∂T1

αk . (3.31)

Note that only the inner product between U0y and the odd part of F2 is nonzero. We
simplify Eq. (3.31) as

∂αk

∂T1
= bk,2

∫ ∞
−∞ ρ2ρ′y dy

ck,0
∫ ∞
−∞ ρ′2 dy

, (3.32)
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We rewrite U2 as a summation of an even function and an odd function

U2 = U2,e +U2,o, (3.33)

where U2,e and U2,o satisfy:

U2,eyy −U2,e + 2ρU2,e = −U 2
1 /V0 + 2U0U1V1/V

2
0 +U 2

0 V2,e/V
2
0

−U 2
0 V

2
1 /V 3

0 +U0yy
∂ pk
∂T1

αk, (3.34)

U2,oyy −U2,o + 2ρU2,o = U 2
0 V2,o/V

2
0 −U0y

∂αk

∂T1
. (3.35)

For latter use, we express U2,e and U2,o as

U2,e = ck,1ck,0e1 + ck,2ρ + ck,0e2 + c3k,0e3

+ck,0κα2
k

2
yρ′, (3.36)

U2,o = bk,2 f2, (3.37)

where e j , j = 1, . . . , 3, are even and f2 is odd, satisfying

e′′
1 − e1 + 2ρe1 = 2ρ2g1, (3.38a)

e′′
2 − e2 + 2ρe2 = 1

2D
ρ2y2, (3.38b)

e′′
3 − e3 + 2ρe3 = − f 21 + 2ρg1 f1 + 2ρ2g2 − ρ2g21, (3.38c)

f ′′
2 − f2 + 2ρ f2 = ρ2y − ρ′ ∫ ∞

−∞ ρ2ρ′ydy
∫ ∞
−∞ ρ′2 dy

. (3.38d)

Taking the inner product between Eq. (3.25c) and U0y and using the orthogonal con-
dition Eq. (3.9) yield

∂ pk
∂T2

= ∂αk

∂T1
− 〈W1y + αkU0yy,U0y〉

〈U0y,U0y〉
∂ pk
∂T1

. (3.39)

Note that

〈W1y + αkU0yy,U0y〉 = 〈U1y + αkU0yy,U0y〉 = 〈U1y,U0y〉
= ck,0ck,1

∫ ∞

−∞
ρ′2 dy + c3k,0

∫ ∞

−∞
f1yρ

′ dy. (3.40)

Thus,

∂ pk
∂T2

= bk,2
∫ ∞
−∞ ρ2ρ′y dy

ck,0
∫ ∞
−∞ ρ′2 dy

− ck,1
∫ ∞
−∞ ρ′2 dy + c2k,0

∫ ∞
−∞ f1yρ′ dy

ck,0
∫ ∞
−∞ ρ′2 dy

καk . (3.41)

123



Journal of Nonlinear Science            (2024) 34:78 Page 15 of 43    78 

Substituting Eq. (3.39) into Eq. (3.25c), we obtain

W2 = U2 + 1

κ
(W1y + αkU0yy)

∂ pk
∂T1

− 1

κ

〈W1y,U0y〉
〈U0y,U0y〉

∂ pk
∂T1

U0y . (3.42)

In the order of ε3, we obtain

−U0y
∂ pk
∂T3

−U1y
∂ pk
∂T2

+ ∂U1

∂T2
+ dU2

dT1
−F3 = U3yy − (1 − κ)U3 + 2U0U3/V0 − κW3, (3.43a)

0 = DV3yy − V1 + 2U0U2 +U 2
1 , (3.43b)

−τ̂ κ
∂ pk
∂T1

U0y − W0y
∂ pk
∂T3

− (W1y + αkU0yy)
∂ pk
∂T2

+U0y
∂αk

∂T2

+∂W1

∂T2
+ dW2

dT1
= κ(U3 − W3). (3.43c)

where

F3 : =
(
2U 2

0 V1V2 + 2U1U2V
2
0 + 2U0U1V

2
1 − 2U0U1V0V2

−(U 2
1 + 2U0U2)V1V0 −U 2

0 V3V0 −U 2
0 V

3
1 /V0

)
/V 3

0 . (3.44)

Solving Eq. (3.43b), we obtain

V3 = 1

D

∫ y

0

∫ z

0
(V1 − 2U0U2 −U 2

1 ) dŷ dz + bk,3y + ck,3, (3.45)

where bk,3, ck,3 are constants determined by matching with the outer region. We
rewrite V3 as the sum of an even function V3,e and an odd function V3,o:

V3 = V3,e + V3,o. (3.46)

Then,
V3,o = bk,3y + 2bk,2ck,0g3. (3.47)

where g3 is an odd function defined as

g3 := − 1

D

∫ y

0

∫ z

0
ρ f2 dŷ dz. (3.48)

Note that bk,3 can be determined by the far field behavior of V ′
3 as follows:

bk,3 = 1

2

(
V ′
3(+∞) + V ′

3(−∞)
) + 2bk,2ck,0

D

∫ ∞

0
ρ f2 dy. (3.49)
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Using Eq. (3.43c) to remove W3 in Eq. (3.43a) yields

U3yy −U3 + 2ρU3 = τ̂ κ
∂ pk
∂T1

U0y + αkU0yy
∂ pk
∂T2

−U0y
∂αk

∂T2
+ d(U2 − W2)

dT1
− F3.

(3.50)
Taking the inner product between Eq. (3.50) and U0y gives rise to

∂αk

∂T2
= τ̂ κ

∂ pk
∂T1

+ 〈 d(U2−W2)
dT1

,U0y〉
〈U0y,U0y〉 + αk

∂ pk
∂T2

〈U0y,U0yy〉
〈U0y,U0y〉 − 〈F3,U0y〉

〈U0y,U0y〉 . (3.51)

We now compute each of the terms on the right-hand side of Eq. (3.51). Integrating
by parts and using Eqs. (3.9), (3.25c), (3.23), (3.24), we calculate

〈d(U2 − W2)

dT1
,U0y〉 = d

dT1
〈U2 − W2,U0y〉 − 〈U2 − W2,−∂ pk

∂T1
U0yy〉

= 0 − 1

κ
〈W1y + αkU0yy,U0yy〉

(
∂ pk
∂T1

)2

= −κα3
k 〈U0yy,U0yy〉.

(3.52)

Using the fact that U0y is odd and U0yy is even, we obtain

〈U0y,U0yy〉 = 0. (3.53)

Since the inner product between U0y and the even part of F3 is 0, we calculate

〈F3,U0y〉 = 〈2V2,oU
2
0 V1 + 2U2,oU1V 2

0 − 2V2,oU0U1V0 − 2U2,oU0V1V0 −U2
0 V3,oV0

V 3
0

,U0y〉

= c2k,0bk,2 I1 − ck,0bk,3 I2,
(3.54)

where

I1 =
∫ ∞

−∞
2
[
(yρ − f2)(ρg1 − f1) − g3ρ

2
]
ρ′dy, I2 =

∫ ∞

−∞
yρ2ρ′dy. (3.55)

Thus,
∂αk

∂T2
= τ̂ κ2αk − κ

∫ ∞
−∞(ρ′′)2 dy
∫ ∞
−∞ ρ′2 dy

α3
k − ck,0bk,2 I1 − bk,3 I2

ck,0
∫ ∞
−∞ ρ′2 dy

. (3.56)
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We summarize the equations for pk and αk at the first two time scales as follows:

∂ pk
∂T1

= καk, (3.57a)

∂αk

∂T1
= bk,2

∫ ∞
−∞ ρ2ρ′y dy

ck,0
∫ ∞
−∞ ρ′2 dy

, (3.57b)

∂ pk
∂T2

= bk,2
∫ ∞
−∞ ρ2ρ′y dy

ck,0
∫ ∞
−∞ ρ′2 dy

− ck,1
∫ ∞
−∞ ρ′2 dy + c2k,0

∫ ∞
−∞ f1yρ′ dy.

ck,0
∫ ∞
−∞ ρ′2 dy

καk, (3.57c)

∂αk

∂T2
= τ̂ κ2αk − κ

∫ ∞
−∞(ρ′′)2 dy
∫ ∞
−∞ ρ′2 dy

α3
k − ck,0bk,2 I1 − bk,3 I2

ck,0
∫ ∞
−∞ ρ′2 dy

. (3.57d)

Thus, Eq. (3.4) becomes

ṗk = καkε +
(
bk,2

∫ ∞
−∞ ρ2ρ′y dy

ck,0
∫ ∞
−∞ ρ′2 dy

− ck,1
∫ ∞
−∞ ρ′2 dy + c2k,0

∫ ∞
−∞ f1yρ′ dy

ck,0
∫ ∞
−∞ ρ′2 dy

καk

)

ε2 + O(ε3),

(3.58a)

α̇k = bk,2
∫ ∞
−∞ ρ2ρ′y dy

ck,0
∫ ∞
−∞ ρ′2 dy

ε +
(

τ̂ κ2αk − κ
∫ ∞
−∞(ρ′′)2 dy
∫ ∞
−∞ ρ′2 dy

α3
k − ck,0bk,2 I1 − bk,3 I2

ck,0
∫ ∞
−∞ ρ′2 dy

)

ε2 + O(ε3).

(3.58b)

Remark 1 The system (3.58) describes the dynamics of centers of N spikes when our
initial condition is close to the quasi-equilibrium solution, in which bk,2, bk,3, ck,0
and ck,1 encode the information from other spikes and need to be determined from the
outer solution.

Outer region: Away from the spike centers where x satisfies |x − x̂k | ∼ O(1),
u is exponentially small and v satisfies Dvxx − v ∼ 0 on the interval x ∈ [−1, 1]
with suitable discontinuity conditions imposed across x̂k . In the limit ε → 0, the even
part of u2

ε
behaves in the distributional sense as a linear combination of δ(x − x̂k)

for k = 1, . . . , N , where δ(x) is the Dirac delta function. Whereas the odd part of
u2
ε

behaves like a linear combination of δ′(x − x̂k) for k = 1, . . . , N . Therefore, v

satisfies

Dvxx − v +
N∑

k=1

(
skδ(x − xk − εpk) + ε2hkδ

′(x − xk − εpk)
)

= 0, v′(±1) = 0,

(3.59)
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where

sk = sk,0 + sk,1ε + · · ·
=

∫ ∞

−∞
U 2
0 dy + ε

∫ ∞

−∞
2U0U1 dy + ε2

∫ ∞

−∞
(U 2

1 + 2U0U2,e) dy + O(ε3)

= c2k,0

∫ ∞

−∞
ρ2 dy + ε

(

2ck,0ck,1

∫ ∞

−∞
ρ2 dy + 2c3k,0

∫ ∞

−∞
ρ f1 dy

)

+ ε2
(

c2k,1

∫ ∞

−∞
ρ2 dy + 2ck,1c

2
k,0

∫ ∞

−∞
ρ f1 dy

+c4k,0

∫ ∞

−∞
f 21 dy + 2ck,1c

2
k,0

∫ ∞

−∞
ρe1 dy + 2ck,2ck,0

∫ ∞

−∞
ρ2 dy

+ 2c2k,0

∫ ∞

−∞
(ρe2 + κα2

k

2
yρρ′) dy

+2c4k,0

∫ ∞

−∞
ρe3 dy

)

+ O(ε3),

(3.60)

hk = hk,0 + εhk,1 + · · ·
=

∫ ∞

−∞

∫ z

∞
2U0U2,o dŷdz + O(ε)

= 2ck,0bk,2

∫ +∞

−∞

∫ z

+∞
ρ f2 dŷdz + O(ε).

(3.61)

Solving Eq. (3.59) yields

v =
N∑

k=1

skG(x; xk + εpk) − ε2
N∑

k=1

hkGz(x; xk + εpk), (3.62)

where G(x; z) is the Green’s function satisfying

DGxx − G = −δ(x − z), Gx (±1) = 0, (3.63)

and Gz(x; z) is the derivative of Green’s function with respect to the second variable,
which satisfies

DGzxx − Gz = δ′(x − z), Gzx (±1) = 0. (3.64)

A simple calculation gives:

G(x; z) = 1√
D sinh (2/

√
D)

⎧
⎨

⎩

cosh
(
1−z√
D

)
cosh

(
1+x√
D

)
, −1 < x < z,

cosh
(
1+z√
D

)
cosh

(
1−x√
D

)
, z < x < 1.

(3.65)

For convenience, we rewrite G as

G = 1

2
√
D
e−|x−z|/√D + R(x; z), (3.66)

123



Journal of Nonlinear Science            (2024) 34:78 Page 19 of 43    78 

where R is the regular part of Green’s function. Then, near the k-th spike x = xk +
ε(pk + y), we have

v(x) =
N∑

j=1

s jG(xk +εy +εpk; x j +εp j ) −ε2
N∑

j=1

h jGz(xk +εy + εpk; x j + εp j )

=vk,0(y) + εvk,1(y) + ε2vk,2(y) + ε3vk,3(y) + · · ·
(3.67)

where

vk,0 =
N∑

j=1

s j,0G(xk; x j ), (3.68)

vk,1 =
N∑

j=1

s j,1G(xk; x j ) +
N∑

j=1

s j,0

[
Gx (xk; x j )pk + Gz(xk; x j )p j

] + y
N∑

j=1

s j,0Gx (x
±
k ; x j ). (3.69)

Since only the derivatives of vk,2 and vk,3 at y = 0 are needed in the later matching

procedure, we compute ∂vk,2(0±)

∂ y and ∂vk,3(0±)

∂ y as follows,

∂vk,2(0±)

∂ y
=

N∑

j=1

(
s j,0

[
Gxx (x

±
k ; x j )pk + Gzx (x

±
k ; x j )p j

] + s j,1Gx (x
±
k ; x j )

)
, (3.70)

∂vk,3(0±)

∂ y
=

N∑

j=1

(1

6
s j,0

[
3Gxxx (x

±
k ; x j )p2k + 6Gzxx (x

±
k ; x j )pk p j + 3Gzzx (x

±
k ; x j )p2j

]

+ s j,1
[
Gxx (x

±
k ; x j )pk + Gzx (x

±
k ; x j )p j

] + s j,2Gx (x
±
k ; x j ) − h j,0Gzx (x

±
k ; x j )

)
.

(3.71)

Matching: To determine the constants in the inner region, we match the local
behavior of the solution v with the far field behavior of V in each order of ε. For
convenience, we define the matrix G as

G = (G(xk; x j )). (3.72)

Let us denote ∂
∂xk

as ∇xk . When k �= j , we can define ∇xk G(xk; x j ) and ∇x j G(xk; x j )
in the classical way. When k = j , we define

∇xk G(xk; xk) := ∂

∂x

∣
∣
x=xk

R(x; xk). (3.73)
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We also define the matrix P and Gg as follows,

P := (∇xk G(xk; x j )
)
, (3.74)

Gg := (∇x j ∇xk G(xk; x j )) . (3.75)

As we have chosen xk as the equilibrium position of the k-th spike, we have the
following identities related to G from Iron et al. (2001):

N∑

j=1

G(xk; x j ) = cg, (3.76a)

N∑

j=1

∇xk G(xk; x j ) = 0,
N∑

k=1

∇x j G(xk; x j ) = 0,

∇xk G(xk; x j ) = ∇xk G(x j ; xk). (3.76b)

where cg :=
[
2
√
D tanh

(
1√
DN

)]−1
is a constant independent of k.

Matching the term in the leading order, we obtain

ck,0 =
N∑

j=1

s j,0G(xk; x j ). (3.77)

We assume N spikes have the same height in the leading order, then ck,0 has the same
value for k = 1, . . . , N . Using Eq. (3.76a), we solve Eq. (3.77) to obtain

ck,0 = 1

cg
∫ ∞
−∞ ρ2 dy

. (3.78)

Matching the terms in the order ε, we obtain

bk,1 = 1

2

(
V ′
1(+∞) + V ′

1(−∞)
) = 1

2

(
∂vk,1(0+)

∂ y
+ ∂vk,1(0−)

∂ y

)

=
N∑

j=1

s j,0∇xk G(xk; x j ), (3.79)
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and

ck,1 = vk,1(0) + c2k,0
D

∫ +∞

0

∫ y

+∞
ρ2 dzdy

=
N∑

j=1

s j,1G(xk; x j ) +
N∑

j=1

s j,0
[∇xk G(xk; x j )pk + ∇x j G(xk; x j )p j

]

+ c2k,0
D

∫ +∞

0

∫ y

+∞
ρ2 dzdy.

(3.80)

Substituting Eq. (3.76b) into Eq. (3.79), we obtain

bk,1 = 0, (3.81)

which is consistent with the solvability condition Eq. (3.20) in the inner region. Using
Eqs. (3.76a) and (3.76b), we can rewrite Eq. (3.80) in the form

(

− 2

cg
G + I

)

c1 = 1

c2g
∫ ∞
−∞ ρ2 dy

(Pᵀp + c̃1N
)
, (3.82)

whereI is the identitymatrix,p := [p1, p2, · · · , pN ]ᵀ, c1 := [c1,1, c2,1, · · · , cN ,1]ᵀ,

1N = [1, 1, · · · , 1]ᵀ and

c̃ =
(∫ +∞

−∞
ρ2dy

)−1
(
1

D

∫ +∞

0

∫ y

+∞
ρ2 dzdy + 2

(∫ +∞

−∞
ρ2dy

)−1 ∫ +∞

−∞
ρ f1dy

)

.

(3.83)

Using
(
− 2

cg
G + I

)−1
1N = −1N , we can express c1 as

c1 = 1

c2g
∫ ∞
−∞ ρ2 dy

((

− 2

cg
G + I

)−1

Pᵀp − c̃1N

)

. (3.84)

Matching the terms in the order of ε2, we obtain

bk,2 = 1

2

(
V ′
2(+∞) + V ′

2(−∞)
)

= 1

2

(
∂vk,2(0+)

∂ y
+ ∂vk,2(0−)

∂ y

)

=
N∑

j=1

(
s j,0

[∇xk∇xk G(xk; x j )pk + ∇x j∇xk G(xk; x j )p j
] + s j,1∇xk G(xk; x j )

)
.

(3.85)

123



   78 Page 22 of 43 Journal of Nonlinear Science            (2024) 34:78 

Using the fact that
∑N

j=1 ∇xk∇xk G(xk; x j ) = 1
D

∑N
j=1 G(xk; x j ) = cg

D and P1N =
0, Eq. (3.85) becomes

b2 = 1

c2g
∫ ∞
−∞ ρ2 dy

(cg
D
I + Gg

)
p + 2

cg
Pc1

= 1

c2g
∫ ∞
−∞ ρ2 dy

(
cg
D
I + Gg + 2

cg
P

(

− 2

cg
G + I

)−1

Pᵀ
)

p.

(3.86)

Matching the constant terms in the order of ε2, we obtain

ck,2 =1

2

N∑

j=1

s j,0
[
∇xk∇xk G(xk; x j )p2k + 2∇xk∇x j G(xk; x j )pk p j + ∇x j ∇x j G(xk; x j )p2j

]

+
N∑

j=1

s j,1
[∇xk G(xk; x j )pk + ∇x j G(xk; x j )p j

] +
N∑

j=1

s j,2G(xk; x j )

+ 2ck,0ck,1
D

∫ +∞

0

∫ y

+∞
ρ2 dzdy

+ 2c3k,0
D

∫ +∞

0

∫ y

+∞
ρ f1 dzdy.

(3.87)
Matching the terms in the order of ε3, we obtain

bk,3 = 1

2

(
V ′
3(+∞) + V ′

3(−∞)
) + 2ck,0bk,2

D

∫ ∞

0
ρ f2 dy

= 1

2

(
∂vk,3(0+)

∂ y
+ ∂vk,3(0−)

∂ y

)

+ 2ck,0bk,2
D

∫ ∞

0
ρ f2 dy

=
N∑

j=1

(1

2
s j,0

[
∇xk∇xk∇xk G(xk; x j )p2k + 2∇x j ∇xk∇xk G(xk; x j )pk p j

+∇x j ∇x j ∇xk G(xk; x j )p2j
]

+ s j,1
[∇xk∇xk G(xk; x j )pk + ∇x j ∇xk G(xk; x j )p j

]

+ s j,2∇xk G(xk; x j ) − h j,0∇x j ∇xk G(x±
k ; x j )

)

+ 2ck,0bk,2
D

∫ ∞

0
ρ f2 dy.

(3.88)

Observe that ck,2 and bk,3 consist of quadratic terms and linear terms involving
p j , j = 1, · · · , N , which will be eliminated in determining the ODE for the slow
evolution of the amplitude in the later subsection. Hence, we omit the exact evaluations
of them.

The constants in Eq. (3.58) have been determined explicitly. Thus, the dynamics
of spikes’ centers in the vicinity of Hopf bifurcations is governed by the system
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(3.58), where the constants ck,0, ck,1, ck,2, bk,1, bk,2, bk,3 are determined by
Eqs. (3.78) (3.84) (3.87) (3.81) (3.86) and (3.88). We do not intend to solve the full
system but seek a leading order approximation in the order of ε.

3.2 Leading Order Periodic Solution

Equation (3.58) can be seen as a linear systemwithweakly nonlinear parts.We proceed
to determine the leading order dynamics of Eq. (3.58). We denote

M = cg
D
I + Gg + 2

cg
P

(

− 2

cg
G + I

)−1

Pᵀ. (3.89)

Substituting Eq. (3.58a) into Eq. (3.58b) and using the slow time t1 = εt , we can
obtain a second- order nonlinear ODE system:

d2p

dt21
− κβ1Mp = ε

(

(τ̂ κ2I + β1M)
dp
dt1

− β2

κ

(
dp
dt1

)◦3
+ dF

dt1
+ H

)

, (3.90)

where [ ∼ ]◦3 is the Hadamard power, β1 and β2 are constants

β1 :=
∫ ∞
−∞ ρ2ρ′y dy
cg

∫ ∞
−∞ ρ′2 dy

= − 2

cg
, β2 :=

∫ ∞
−∞(ρ′′)2 dy
∫ ∞
−∞ ρ′2 dy

= 5

7
, (3.91)

F
(
p,

dp
dt1

)
and H

(
p,

dp
dt1

)
are vectors defined as

F =

⎡

⎢
⎢
⎢
⎣

F1
F2
...

FN

⎤

⎥
⎥
⎥
⎦

, H =

⎡

⎢
⎢
⎢
⎣

H1
H2
...

HN

⎤

⎥
⎥
⎥
⎦

, (3.92)

with

Fk = −ck,1
∫ ∞
−∞ ρ′2 dy + c2k,0

∫ ∞
−∞ f1yρ′ dy.

ck,0
∫ ∞
−∞ ρ′2 dy

καk, Hk = −κ
ck,0bk,2 I1 − bk,3 I2
ck,0

∫ ∞
−∞ ρ′2 dy

.

(3.93)
The eigenvalues of the matrix M are crucial to determine the dynamics. In Iron

et al. (2001) (see Eq. (4.58)), the eigenvalues and eigenvectors of M are computed
analytically. We summarize the result as follows:

Lemma 1 The eigenvalue ζk of M are

ζk = cg
D

− 1

D
3
2 νk

+ 2

D
3
2 νk

(
cg

√
Dνk − 2

)csch2
(

2√
DN

)

sin2
(

πk

N

)

, (3.94)
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with νk = 2 coth
(

2√
DN

)
− 2csch

(
2√
DN

)
cos

(
πk
N

)
and the associated normalized

eigenvectors qk of M are defined in Eq. (2.11). These eigenvalues are positive and
ordered as ζN > · · · > ζ2 > ζ1 > 0 only when D < D∗

N , where

D∗
N := 1

N 2 ln2 (1 + √
2)

. (3.95)

Remark 2 The terms cg
D , − 1

D
3
2 νk

, and 2

D
3
2 νk

(
cg

√
Dνk−2

)csch2
(

2√
DN

)
sin2

(
πk
N

)
are

eigenvalues of the matrices cg
D I, Gg , and 2

cg
P

(
− 2

cg
G + I

)−1 Pᵀ, respectively. The
order of ζk when D < D∗

N is not mentioned in the reference (Iron et al. 2001), but we
can see it by further simplifying ζk as

ζk = cg
D

(
1 − cos

( kπ
N

)) (
1 − 2 tanh2

(
1√
DN

))

2 − cosh
(

2√
DN

)
− cos

( kπ
N

) . (3.96)

Note that D∗
N corresponds to the zero of the term

(
1 − 2 tanh2

(
1√
DN

))
.

Remark 3 An N -spike equilibrium solution will be stable only when D < D∗
N . As we

assume N -spike equilibria are stable at τ = 0, the condition D < D∗
N is implicitly

required.

Let ξ = Qᵀp, then Eq. (3.90) becomes

d2ξ

dt21
− κβ1�ξ = ε

⎛

⎝(τ̂ κ2I + β1�)
dξ

dt1
− β2

κ
Qᵀ

(

Q
dξ

dt1

)◦3
+ Qᵀ

dF
(
Qξ , Q dξ

dt1

)

dt1

+QᵀH
(

Qξ , Q
dξ

dt1

))

, (3.97)

where� is the diagonalmatrixwith ζk on its diagonal. Next, we derive amultiple-scale
approximation of the solution to Eq. (3.97). We introduce slow time scales t2 = εt1
and assume

ξ = ξ0(t1, t2) + εξ1(t1, t2) + · · · . (3.98)

Then,
dξ

dt1
= ∂ξ0

∂t1
+ ε

(
∂ξ1

∂t1
+ ∂ξ0

∂t2

)

+ O(ε2). (3.99)

Substituting Eq. (3.98) into Eq. (3.97) and collecting terms in the leading order yield

∂2ξ0

∂t21
− κβ1�ξ0 = 0. (3.100)
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The general solution of this problem is

ξ0 =

⎡

⎢
⎢
⎢
⎣

B1(t2) cos (ω1t1 + θ1(t2))
B2(t2) cos (ω2t1 + θ2(t2))

...

BN (t2) cos (ωN t1 + θN (t2))

⎤

⎥
⎥
⎥
⎦

, (3.101)

where
ωk = √−κβ1ζk , (3.102)

Bk(t2) and θk(t2) are functions of slow time scale t2 that need to be determined in the
O(ε) equation. In the order of ε, we have

∂2ξ1

∂t21
− κβ1�ξ1 = −2

∂2ξ0

∂t1∂t2

+
⎛

⎝(τ̂ κ2I + β1�)
∂ξ0

∂t1
− β2

κ
Qᵀ

(

Q
∂ξ0

∂t1

)◦3
+ Qᵀ

∂F
(
Qξ0, Q

∂ξ0
∂t1

)

∂t1

+QᵀH
(

Qξ0, Q
∂ξ0

∂t1

))

. (3.103)

Note that Eq. (3.103) can be decoupled into N independent second-order inhomo-
geneous ODEs. To obtain a bounded solution for each element of ξ1, we need
to remove the secular terms (the solutions of the associated homogeneous equa-

tion) in the inhomogeneous part. A careful examination shows that Qᵀ ∂F
(
Qξ0,Q

∂ξ0
∂t1

)

∂t1

and QᵀH
(
Qξ0, Q

∂ξ0
∂t1

)
contain no secular terms involving sin (ωk t1 + θk(t2)) in

the k-th component of Eq. (3.103). Then, by removing the secular term involving
sin (ωk t1 + θk(t2)) in the k-th component, we obtain the equations for the amplitude
of ξ0,k

dBk

dt2
= Bk

⎡

⎣
1

2
(τ̂ κ2 + β1ζk) − 3β2

8κN

N∑

j=1

ak, jω
2
j B

2
j

⎤

⎦ , (3.104)

where

ak, j =
{
N

∑N
l=1 Q

4
l j j = k

2N
∑N

l=1 Q
2
l j Q

2
lk j �= k

. (3.105)

Remark 4 Wecanobtain the equation of θk(t2) by removing the secular terms involving
cos (ωk t1 + θk(t2)) in the k-th component of Eq. (3.103). In this situation, F and H
will contribute to the secular term. As we are interested in the amplitude system that
is critical to the manifestation of the periodic orbit, we will not go into details here.

Remark 5 Note that β1ζk are the eigenvalues of the system at τ = 0. Hence, the
system (3.104) is the same as the corresponding amplitude equations for the extended
Schnakenberg model in Xie et al. (2021) except the different constants terms.
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We summarize our results as follows,

Principal Result 1 Let

τ = 1

κ
+ ε2τ̂ ,

and assume that τ̂ = O(1) as ε → 0. Then there exists a solution to the extended
Gierer–Meinhardt system (3.1) consisting of N spikes nearly-uniformly spaced, but
whose centers evolve near the symmetric configurations ona slow time-scale according
to the following. Let x̂k be the center of the k-th spike. Then x̂k ∼ −1 + 2k−1

N + εpk
where

pk =
N∑

j=1

Qkj B j (ε
2t) cos

(
εω j t + θ j (ε

2t)
)

. (3.106)

In Eq. (3.106), Qk j is the entry of the matrix Q defined by Eq. (2.10), ω j is defined by
Eq. (3.102) and the associated amplitudes {Bj (s), j = 1, . . . , N } satisfy Eq. (3.104).

3.3 Amplitude Equations for the Extended Gray–Scott Model

We consider the extended Gray–Scott system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = ε2uxx − (1 − κ)u + Au2v − κw,

0 = Dvxx + 1 − v − u2v
ε

,

τwt = u − w,

Neumann boundary conditions at x = ±1.

(3.107)

It has been shown in Kolokolnikov et al. (2005a) that there are two symmetric N -spike
equilibrium solutions to the system (3.107) at τ = 0 given asymptotically by

u±(x) ∼ 1

AV±

N∑

j=1

ρ(ε−1(x − x j )), v±(x) ∼ 1 − 1 − V±
cg

N∑

j=1

G(x, x j ), (3.108)

where

V± = 1

2

(

1 ±
√

1 − 24cg/A2

)

, (3.109)

with cg :=
[
2
√
D tanh

(
1√
DN

)]−1
defined in Eq. (3.76a). A necessary condition to

have an N -spike solution is

cg <
A2

24
, (3.110)

which implicitly poses a restriction on D. The stability analysis of these two symmet-
ric N -spike equilibrium solutions of two-component system in Kolokolnikov et al.
(2005a) further reveals that the solution contains V+ is always unstable to the small
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eigenvalues when N > 1. As to the solution determined by V−, we have the follow-
ing lemma related to the stability of an N -spike equilibrium solution at τ = 0, see
Proposition 3.3 in Kolokolnikov et al. (2005a).

Lemma 2 An N-spike equilibrium solution is stable at τ = 0 if D satisfies the follow-
ing transcendental equation

D <
4

N 2 ln2
(

sg+1
sg−1 +

√
(
sg+1
sg−1

)2 − 1

) , (3.111)

where

sg := 1 − V−
V−

. (3.112)

Now we start to derive the dynamics of spikes near the Hopf bifurcations. The
inner region analysis of the Gray–Scott model is similar to the Schnakenberg model,
while the outer solution has the same structure as the Gierer–Meinhardt model up to
a constant addend. After a tedious but straightforward analysis as we have done for
the extended Gierer–Meinhardt model, we obtain the following equations for the slow
evolution of the amplitudes:

dBk

dt2
= Bk

⎡

⎣
1

2
(τ̂ κ2 + β1ζk) − 3β2

8κN

N∑

j=1

ak, jω
2
j B

2
j

⎤

⎦ , (3.113a)

where

ak, j =
{
N

∑N
l=1 Q

4
l j j = k

2N
∑N

l=1 Q
2
l j Q

2
lk j �= k

, (3.113b)

and

β1 := sg
∫ ∞
−∞ ρ2ρ′y dy

cg
∫ ∞
−∞ ρ′2 dy

= −2sg
cg

, β2 :=
∫ ∞
−∞(ρ′′)2 dy
∫ ∞
−∞ ρ′2 dy

= 5

7
, ωk = √−κβ1ζk .

(3.113c)
The matrix Q is defined the same as Eq. (2.10), and ζk, k = 1, . . . , N (with abuse of
notations) are eigenvalues of

M = cg
D
I + Gg + sg

cg
P

(

− sg
cg

G + I
)−1

Pᵀ, (3.114)

which can be computed as

ζk = cg
D

− 1

D
3
2 νk

+ sg

D
3
2 νk

(
cg

√
Dνk − sg

)csch2
(

2√
DN

)

sin2
(

πk

N

)

. (3.115)

Then, we arrive at the following result:
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Principal Result 2 Let

τ = 1

κ
+ ε2τ̂ ,

and assume that τ̂ = O(1) as ε → 0. Then there exists a solution to the extended
Gray–Scott system (3.107) consisting of N spikes nearly-uniformly spaced, but whose
centers evolve near the symmetric configurations on a slow time-scale according to
the following. Let x̂k be the center of the k-th spike. Then x̂k ∼ −1 + 2k−1

N + εpk
where

pk =
N∑

j=1

Qkj B j (ε
2t) cos

(
εω j t + θ j (ε

2t)
)

. (3.116)

In Eq. (3.116), Qk j is the entry of the matrix Q defined by Eq. (2.10), ω j is defined by
(3.113c) and the associated amplitudes {Bj (s), j = 1, . . . , N } satisfy Eq. (3.113a).

3.4 Numerical Validation

In this subsection we use finite element solver FlexPDE7 (Inc 2020) to numerically
solve systems (3.1) and (3.107). In particular, we validate the reduced systems for
the amplitude evolutions in the case of two spikes, as predicted in Principal Results 1
and 2. For the validation of N spikes’ oscillatory dynamics, the readers are referred
to Xie et al. (2021), where the authors have done various numerical computations to
demonstrate the effectiveness of the reduced system for the Schnakenberg model.

We first outline our procedures. Initial two-spike equilibrium states for which
we will use to test the dynamics are obtained by initializing a two-bump pat-
tern in (3.1) and (3.107) with τ set well below the Hopf threshold 1

κ
. We then

evolve (3.1) and (3.107) until the time t is sufficiently large that changes in solu-
tion are no longer observed. Using this equilibrium solution plus a perturbation[
0, 0, α1ε

2ucx
(
x+0.5

ε

)
+ α2ε

2ucx
(
x−0.5

ε

)]ᵀ
as the initial condition, we increase τ

to 1
κ

+ τ̂ ε2 and try various values of α1 and α2 to test the sluggish dynamics of (3.104)
and (3.113a) near the Hopf bifurcation. Here uc denotes a single spike solution and
[α1, α2] gives the initial moving directions of two spikes.

Figure 2 and Fig. 3 illustrate the coexistence of in-phase and out-of-phase oscilla-
tions predicted by (3.104) and (3.113a). All parameters in the specific system are the
same. In Fig. 2(a) and Fig 3(a), the initial perturbation is chosen as [α1, α2] = [1, 1],
resulting in-phase oscillations. In Fig. 2(b) and Fig 3(b), the initial perturbation is cho-
sen as [α1, α2] = [1,−1], resulting in out-of-phase oscillations. The evolution of the
amplitudes described by (3.104) and (3.113a) are solved with MATLAB subroutine
ODE45 and the results are in good agreement with the full PDE simulations.
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Fig. 2 Two types of oscillations in GMmodel when τ is well beyond 1
κ . The parameters are τ̂ = 300, ε =

0.01, D = 0.2
ln2 (1+√

2)
, κ = 0.2. The red dashed lines are the amplitudes’ evolution obtained from solving

the system (3.104). The only difference between Fig. 2(a) and Fig. 2(b) is the initial condition we select

Fig. 3 Two types of oscillations in GS model when τ is well beyond 1
κ . The parameters are τ̂ = 450, ε =

0.01, D = 0.2, κ = 0.2, A = 6. The red dashed lines are the amplitudes’ evolution obtained from solving
the system (3.113a). The difference between Fig. 3(a) and Fig. 3(b) is the initial conditions we select

4 Stability of Equilibria of the Amplitude Equations

In this section, we investigate the equilibrium points of the amplitude equations and
their stability, which is crucial to understand the stable oscillations in the original
reaction–diffusion systems. We start with the general form of amplitude equations

dBk

dt2
= Bk

⎡

⎣
1

2
(τ̂ κ2 + β1ζk) − 3β2

8κN

N∑

j=1

ak, jω
2
j B

2
j

⎤

⎦ , (4.1)

We introduce new variable Xk = 3β2
8κN w2

k B
2
k . Then, the system Eq. (4.1) is equivalent

to
dXk

dt2
= 2Xk(τ̃k −

N∑

j=1

ak, j X j ), with Xk ≥ 0. (4.2)

where τ̃k = 1
2 (τ̂ κ2 + β1ζk). Note that τ̃k is ranked in a descending order, namely,

τ̃1 > τ̃2 > · · · > τ̃N . In the following analysis, we will always assume τ̃N > 0 such
that N Hopf modes are excited.
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Denote A(N ) as the N × N matrix with entries ak, j . In Appendix A, we calculate
ak, j explicitly and have the following result:

Lemma 3 For the matrix A(N ),

• when N = 2n + 1, we have

ak, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, k = j = N ,
3
2 , k = j �= N ,

1, k + j = N ,

2, else.

detA(N ) = 8n + 3

3

(

−3

4

)n

, (4.3)

• when N = 2n, we have

ak, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, k = j = N and k = j = n,
3
2 , k = j �= N and k = j �= n,

1, k + j = N ,

2, else.

detA(N ) = −8n + 1

3

(

−3

4

)n−1

.

(4.4)

For concreteness, when N = 5 and N = 6, we have

A(5) =

⎛

⎜
⎜
⎜
⎜
⎝

3
2 2 2 1 2
2 3

2 1 2 2
2 1 3

2 2 2
1 2 2 3

2 2
2 2 2 2 1

⎞

⎟
⎟
⎟
⎟
⎠

, A(6) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
2 2 2 2 1 2
2 3

2 2 1 2 2
2 2 1 2 2 2
2 1 2 3

2 2 2
1 2 2 2 3

2 2
2 2 2 2 2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.5)

The equilibrium points of the system Eq. (4.2) can be obtained by setting the left-hand
side to be 0, i.e.,

Xk(τ̃k −
N∑

j=1

ak, j X j ) = 0, Xk ≥ 0, for k = 1, · · · , N . (4.6)

We denote S as a subset of the set SN = {1, · · · , N } with m entries and S̄ to be the
complement set of S. The equilibrium points satisfy X S = 0 and A(N )

S̄
X S̄ = τ̃ S̄ ,

where A(N )

S̄
is the square submatrix obtained by removing all the columns and rows

with index in the set S fromA(N ). For instance, when S = {1, 4}, the submatrixA(N )

S̄
is defined as a new matrix obtained by removing the first and fourth columns and the
first and fourth rows from A(N ),

A(5)
S̄

=
⎛

⎝

3
2 1 2
1 3

2 2
2 2 1

⎞

⎠ , A(6)
S̄

=

⎛

⎜
⎜
⎝

3
2 2 2 2
2 1 2 2
2 2 3

2 2
2 2 2 1

⎞

⎟
⎟
⎠ . (4.7)

123



Journal of Nonlinear Science            (2024) 34:78 Page 31 of 43    78 

IfA(N )

S̄
is invertible for all S withm = 1, · · · , N , we can at most find 2N non-negative

solutions to Eq. (4.6).

Remark 6 For a given S, we show that AS̄ is invertible in Appendix A. Thus there

exists a solution to the system A(N )

S̄
X S̄ = τ̃ S̄ . However, the solution may be negative

unless we impose suitable conditions on τ̃ S̄ .

For succinctness, we will represent A(N ) by A in the remainder of this sec-
tion. Linearizing the ODE system Eq. (4.2) around a equilibrium point X =
[X1, X2, · · · , XN ]ᵀ leads to the following eigenvalue problem:

λφk = 2

⎛

⎝τ̃k −
N∑

j=1

ak, j X j

⎞

⎠φk − 2Xk

N∑

j=1

ak, jφ j , 1 ≤ k ≤ N . (4.8)

For the equilibrium point satisfying X S = 0 and X S̄ = A−1
S̄

τ̃ S̄ > 0, the eigenvalue
problem can be decomposed into two sets of equations:

λφk = −2Xk

∑

j∈S̄
ak, jφ j , k ∈ S̄, (4.9a)

λφk = 2

⎛

⎝τ̃k −
∑

j∈S̄
ak, j X j

⎞

⎠φk, k ∈ S. (4.9b)

After relabeling, we write Eq. (4.9) in a matrix form

λφ = 2

(−DXS̄
AS̄ ON−m,m

Om,N−m Dτ̃

)

φ, (4.10)

where DX S̄
is a diagonal matrix with X S̄ on its diagonal, O∗,∗ is a zero matrix and

Dτ̃ = diag(dτ̃ ) is a m ×m diagonal matrix with dτ̃ = [τ̃m −
∑

j∈S̄
am, j X j ] for m ∈ S.

Thus, an eigenvalue of −DXS̄
AS̄ is also an eigenvalue of Eq. (4.8). We will use this

fact to rule out a large part of the unstable equilibrium points. A key observation is
the following lemma.

Lemma 4 For the equilibrium point satisfying X S = 0 and X S̄ = A−1
S̄

τ̃ S̄ , if the
matrix AS̄ has a negative eigenvalue, then the equilibrium point is unstable.

Proof It suffices to show that the matrix −DX S̄
AS̄ has a positive eigenvalue whenAS̄

has a negative eigenvalue. A direct computation yieldsDX S̄
AS̄ is similar to the matrix

D
1
2
X S̄

AS̄D
1
2
X S̄

, which is congruent to the matrix AS̄ .

By Sylvester’s law of inertia, the matrix D
1
2
X S̄

AS̄D
1
2
X S̄

and the matrix AS̄ have the
same number of positive, negative and zero eigenvalues. Thus, if AS̄ has a negative
eigenvalue, then −DX S̄

AS̄ has a positive eigenvalue. ��
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Denote #S as the cardinality of the set S. Regarding the eigenvalues of AS̄ , we have
the following results:

Lemma 5 When # S̄ > 2, the matrix AS̄ has at least one negative eigenvalue.

Proof To prove AS̄ has at least one negative eigenvalue, it suffices to show that AS̄ is
not positive semi-definite. Let ak, j be the entry of AS̄ . When # S̄ > 2, there exists an

index k such that ak+1,k = ak,k+1 = 2. We choose x = [0, · · · ,

k
︷︸︸︷
1 ,−1, · · · , 0]ᵀ,

then xᵀAS̄ x = ak,k − ak+1,k − ak,k+1 + ak+1,k+1. As the entries ak,k and ak+1,k+1

are either 3
2 or 1, we have xᵀAS̄ x = −1, −2, or − 3

2 . By Sylvester’s criterion, AS̄ is
not positive semi-definite. Thus, AS̄ has at least one negative eigenvalue. ��
Lemma 6 When # S̄ = 2, except the matrix

AS̄ =
( 3

2 1
1 3

2

)

, (4.11)

the matrix AS̄ has at least one negative eigenvalue.

Proof When # S̄ = 2, the matrix AS̄ has the following possible forms:

AS̄ =
( 3

2 1
1 3

2

)

,

( 3
2 2
2 3

2

)

, or

( 3
2 2
2 1

)

, for N is odd, (4.12)

AS̄ =
( 3

2 1
1 3

2

)

,

( 3
2 2
2 3

2

)

,

( 3
2 2
2 1

)

, or

(
1 2
2 1

)

for N is even. (4.13)

We can easily calculate their eigenvalues explicitly and find that only the eigenvalues

of AS̄ =
( 3

2 1
1 3

2

)

are all positive. ��

The above two lemmas have identified most of the unstable equilibrium points. Next,
we examine the stability of the remaining equilibrium points.

Lemma 7 For # S̄ = 1 and τ̃N > 2
3 τ̃1,

• when N is odd, only the equilibrium point X = [0, · · · , 0, τ̃N ]ᵀ is stable;
• when N is even, only the equilibrium points X = [0, · · · , τ̃N/2, · · · , 0]ᵀ and

X = [0, · · · , 0, τ̃N ]ᵀ are stable.

Proof For the equilibrium point X = [0, · · · ,
τ̃k
ak,k

, · · · , 0]ᵀ, the eigenvalue problem
Eq. (4.8) can be written in the following matrix form

λφ = 2Dτ̃φ, (4.14)

where Dτ̃ = diag(d) is a diagonal matrix with d = [τ̃1 − a1,k
ak,k

τ̃k, τ̃2 − a2,k
ak,k

τ̃k,

· · · ,−τ̃k, τ̃k+1− ak+1,k

ak,k
τ̃k, · · · , τ̃N − aN ,k

ak,k
τ̃k]. Hence, the equilibrium point is unsta-

ble if one entry in d is positive.
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• When N is odd, the (N − k)-th entry of d is

τ̃N−k − aN−k,k

ak,k
τ̃k = τ̃N−k − 2

3
τ̃k > τ̃N − 2

3
τ̃1 > 0, for k �= N . (4.15)

Thus, the equilibrium point X = [0, · · · ,
τ̃k
ak,k

, · · · , 0]ᵀ is unstable for k �= N .
Whereas for k = N , we have λmax = 2(τ̃1 − 2τ̃N ) < 0. Therefore, only the
equilibrium point X = [0, · · · , 0, τ̃N ]ᵀ is stable.

• When N is even, with a similar analysis as done for the odd case, we can show that
only the equilibrium points X = [0, · · · , τ̃N/2, · · · , 0]ᵀ and X = [0, · · · , 0, τ̃N ]ᵀ
are stable. ��

Lemma 8 For # S̄ = 2 and τ̃N > 2
3 τ̃1,

• when N is odd, the stable equilibriumpoints are [0, · · · , Xk, 0, · · · , XN−k, · · · , 0]ᵀ
for k = 1, · · · , N−1

2 , where Xkand XN−k satisfy:

( 3
2 1
1 3

2

)(
Xk

XN−k

)

=
(

τ̃k
τ̃N−k

)

; (4.16)

• when N is even, the stable equilibriumpoints are [0, · · · , Xk, 0, · · · , XN−k, · · · , 0]ᵀ
for k = 1, · · · , N

2 − 1, where Xk and XN−k satisfy:

( 3
2 1
1 3

2

)(
Xk

XN−k

)

=
(

τ̃k
τ̃N−k

)

. (4.17)

Proof For compactness, we only prove the case when N is odd. Solving Eq. (4.16)
yields

[Xk, XN−k] = [6
5
τ̃k − 4

5
τ̃N−k,−4

5
τ̃k + 6

5
τ̃N−k], (4.18)

which is positive under the condition that τ̃N > 2
3 τ̃1. The eigenvalue problemEq. (4.10)

becomes

λφ = 2

(
B O
O Dτ̃

)

φ, (4.19)

where Dτ̃ = diag(dτ̃ ) is a (N − 2) × (N − 2) diagonal matrix with dτ̃ = [τ̃m −
am,k Xk − am,N−k XN−k] for m �= k, N − k and B is a 2 × 2 matrix defined by

B = −
(
Xk 0
0 XN−k

)( 3
2 1
1 3

2

)

. (4.20)

The eigenvalue of B is negative, thus we only need to examine the entry of dτ̃ . When
τ̃N > 2

3 τ̃1, we have

τ̃m − am,k Xk − am,N−k XN−k = τ̃m − 4

5
(τ̃k + τ̃N−k) < τ̃1 − 8

5
τ̃N < − 1

10
τ̃N < 0.

(4.21)
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Therefore, the equilibrium points [0, · · · , Xk, 0, · · · , XN−k, · · · , 0] for k = 1, · · · ,
N−1
2 are stable. ��

We summarize all the above lemmas and obtain our main results.

Proposition 1 When τ̃N > 2τ̃1
3 , the system Eq. (4.2) possesses �N/2� + 1 stable

equilibrium points.

Proposition 1 implies that we can observe at most �N/2� + 1 stable oscillatory
patterns when τ̃ is above a certain value.

Remark 7 When τ̂ is big enough, the stability of the oscillatory patterns is determined
by the direction vectors

{
q1, q2, · · · , qN

}
that are independent of the spike pro-

file. As the direction vectors are the same for these three singular-perturbed systems,
Proposition 1 is valid for all of them.

5 Discussion

Temporal oscillations in the pattern position are wildly reported in three-component
systems (Gurevich et al. 2006; Giunta et al. 2021). For a two-component system
that admits stable stationary localized patterns, a simple way of producing traveling
patterns is to add a non-diffusive inhabitant to the activator of the two-components
systems and increase the reaction-ratio of that inhabitant (Or-Guil et al. 1998). In
Xie et al. (2021), by introducing a second inhibitor to the Schnakenberg model, the
coexistence of multiple oscillating patterns is reported and analyzed. However, the
number of stable periodic oscillations for an N -spike solution is still unknown. In this
article, we extended the analysis to extensions of two other well-known systems the
Gierer–Meinhardt system and the Gray–Scot system. Moreover, we rigorously prove,
based on the long-time evolution of the amplitudes of the oscillations, that there are
at most �N/2� + 1 stable patterns for three-component extensions of these systems,
thereby resolving the open problem. Our findings shed light on the initiation of rich
dynamical behaviors of localized structures. It is worthwhile to note that our analysis
is only valid for the bifurcation parameter at anO(ε2) distance to the thresholds. More
complex oscillatory patterns, such as zigzag oscillation, when τ exceeds τc in anO(ε)

or O(1) scale are beyond the scope of this article and need alternative treatments.
As described in Appendix B, the system we consider is a simplified version of the

following system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = ε2uxx + f (u, v) − κw

τvvt = Dvvxx + g(u, v)

τwwt = Dwwxx + cu − w

x ∈ (−1, 1), t ≥ 0,

Neumann boundary conditions for at x = ±1.

(5.1)

To facilitate the analysis, we have assumed that τv and Dw are sufficiently small and
can be set to zero. We remark that this assumption leads to a singular reduction of
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the system since it alters the order of differential equation. The generalizability of the
conclusions drawn in this paper to the case where τv and Dw are small but not zero
remains uncertain. Some investigation has been conducted in Saadi et al. (2024) using
a three-component Brusselatormodelwith Dw = ε4, revealing the persistence of spike
patterns even with nonzero Dw. Conversely, in the absence of the third component, it
is widely acknowledged that increasing τv sufficiently results in oscillations in spike
height, as demonstrated in Ward and Wei (2003a, b). We expect to see a combination
of jumping and oscillating spikes in some parameter regimes.

The new phenomena we observe are not limited to the systemswe have studied. In a
more realistic situation with more complicated reaction terms and additional diffusion
of component w, e.g.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = ε2uxx + f (u, v) − κuw,

τvvt = Dvvxx + g(u, v),

τwwt = Dwε2wxx + κuw − w,

x ∈ (−1, 1) , t ≥ 0.

Neumann boundary conditions at x = ±1.

(5.2)

we also observe multiple stable oscillatory moving spikes with suitable parameters.
Although the localized profiles of u and w now are unknown analytically, a similar
analysis can be done since the localized components, u and w, do not change the
stability analysis of the oscillations.

Our result is applicable to the systemwith a uniform feed rate or precursor. It would
be interesting to investigate how the heterogeneity impacts the stability threshold as
well as the spike dynamics at the onset, which are more biologically relevant because
they model the hierarchical formation of small-scale structures induced by large-scale
inhomogeneity. Many results exist for two-component systems with heterogeneity.
For example, the existence of a solution consisting of a cluster of N spikes near a non-
degenerate local minimum point of the smooth inhomogeneity in GMmodel has been
rigorously shown in 1-D (Wei and Winter 2017) and 2-D (Wei et al. 2017) domains.
The evolution ofmulti-pulse patterns in an extendedGray–Scott–Klausmeier equation
with parameters that change in time and/or space is investigated in Bastiaansen and
Doelman (2019). One future direction is to explore the stability and evolution of these
spike clusters in three-component systems.

For the extended Gierer–Meinhardt system (3.1) with periodic boundary condition,
numerical simulations exhibit a traveling and breathing two-spike pattern, which is
similar to the moving and breathing solitons discussed in Gurevich and Friedrich
(2013). It is unclear whether such behaviors are due to the same mechanism, i.e., the
excitation of both drift and Hopf modes.

More complex dynamics are expected in 2-D domains, the freedom in different
directions and impact of the domain geometry on the instability remain to be investi-
gated. For example, Xie and Kolokolnikov (2017) and Tzou and Xie (2023) employ
a hybrid asymptotic-numerical method to investigate the Hopf bifurcation related to
translational instabilities for the Schnakenberg model with the high feed rate in two-
dimensional domains. Various domains and spot arrangements are numerically tested
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there, exhibiting rich dynamics. It is an open question to explore these effects on the
dynamics of multiple spikes in our extended three-component systems.

Appendix A. Calculations ofA andAS̄

We prove Lemma 3

Proof First, we calculate all entries of the matrix A.
Now we calculate the entries on the diagonal of the matrix A, it is easy to find

aN ,N = 1. When N = 2n + 1, for j = 1, . . . , N − 1, we have

a j, j = N
N∑

l=1

Q4
l, j = 4

N

N∑

l=1

sin4
(2l − 1) jπ

2N
= 4

N

(
3N

8
+ sin (4 jπ)

16 sin 2 jπ
N

− sin (2 jπ)

4 sin jπ
N

)

= 3

2
.

(A.1)

When N = 2n, a j, j = 3
2 for j �= n, N . For j = n, we have

an,n = N
N∑

l=1

Q4
l,n = 4

N

N∑

l=1

sin4
(2l − 1)π

4
= 4

N

(
3N

8
+ 1

8

N∑

l=1

cos(2l − 1)π

)

= 1.

(A.2)

Here we use the formula

sin4 x = 3

8
+ 1

8
cos(4x) − 1

2
cos(2x),

N∑

k=1

cos(2k − 1)x = sin (2Nx)

2 sin x
,

x �= kπ (k ∈ N+). (A.3)

Next, we calculate the other entries of the matrix A. For i �= j (i = 1, · · · , N −
1, j = 1, · · · , N − 1) and i + j �= N , we have
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ai, j = 8

N

N∑

l=1

sin2
(2l − 1)iπ

2N
sin2

(2l − 1) jπ

2N

= 1

N

N∑

l=1

[(

cos
(2l − 1)(i + j)π

N
+ cos

(2l − 1)( j − i)π

N

)

−2

(

cos
(2l − 1)iπ

N
+ cos

(2l − 1) jπ

N

)]

+ 2

= 1

N

(
sin (2(i + j)π)

2 sin (i+ j)π
N

+ sin (2( j − i)π)

2 sin ( j−i)π
N

)

− 2

N

(
sin (2iπ)

2 sin iπ
N

+ sin (2 jπ)

2 sin jπ
N

)

+ 2

= 2.
(A.4)

For i + j = N , we have

ai, j = 8

N

N∑

l=1

sin2
(2l − 1)iπ

2N
sin2

(2l − 1) jπ

2N

= 1

N

[
N∑

l=1

(

cos(2l − 1)π + cos
(2l − 1)( j − i)π

N

)

−2

(

cos
(2l − 1)iπ

N
+ cos

(2l − 1) jπ

N

)]

+ 2

= 1

N

(

−N + sin (2( j − i)π)

2 sin ( j−i)π
N

)

− 2

N

(
sin (2iπ)

2 sin iπ
N

+ sin (2 jπ)

2 sin jπ
N

)

+ 2

= 1.

(A.5)

For i = 1, · · · , N − 1, we have

aN ,i = ai,N = 4

N

N∑

l=1

sin2
(2l − 1)iπ

2N
= 2 − 2

N

N∑

l=1

cos
(2l − 1)iπ

N

= 2 − 2

N

sin (2iπ)

2 sin iπ
N

= 2. (A.6)

Finally, we compute the determinant of A. We first define the matrix B
(2n)×(2n)

as

B
(2n)×(2n)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− 1
2 0 · · · 0 −1
0 − 1

2 · · · −1 0
...

...
. . .

...
...

0 −1 · · · − 1
2 0

−1 0 · · · 0 − 1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (A.7)

Using some elementary transformations, we obtain
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det(A)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r j−rN , j=1,··· ,N−1�����������������
rN+ 4

3 ri , i=1,··· ,N−1

(
1 + 8n

3

)
det(B(2n)×(2n)) =

(
1 + 8n

3

)
×

(
− 3

4

)n
, for N = 2n + 1,

r j−rN , j=1,··· ,N−1��������������������
rN+ 4

3 ri , i �=n,N , rN+2rn

−
(
1
3 + 8n

3

)
det(B(2n−2)×(2n−2)) = −

(
1
3 + 8n

3

)
×

(
− 3

4

)n−1
, for N = 2n.

��
Then we show that AS̄ is invertible.
Recall that S is a subset of the set SN = {1, · · · , N } with m elements, and S̄ is the

complement of S. AS̄ is the square submatrix obtained by removing all the columns
and rows with index in the set S. We shall discuss two cases according to the parity of
N . In the following we shall only give details for the case where N is even, the odd
case is simpler and we will omit the details.

1. When N = 2n, according to whether n and 2n belong to S, it will be divided
into four cases.

(1). If #S = m and n, 2n ∈ S, by elementary transformation that exchanges any
two rows and corresponding two columns, the original matrixAS̄ can be transformed
into the following one (

Cs×s(a) Eᵀ
t×s

Et×s Dt×t

)

, (A.8)

where s = 2n − 2m + 3, t = m − 3, a = 3
2 and matrices C , D, E are as follows

Cs×s(a) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
2 2 · · · 2 1 2
2 3

2 · · · 1 2 2
...

...
. . .

...
...

...

2 1 · · · 3
2 2 2

1 2 · · · 2 3
2 2

2 2 · · · 2 2 a

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Dt×t =

⎛

⎜
⎜
⎜
⎝

3
2 2 · · · 2
2 3

2 · · · 2
...

...
. . .

...

2 2 · · · 3
2

⎞

⎟
⎟
⎟
⎠

, Et×s =

⎛

⎜
⎜
⎜
⎝

2 2 · · · 2
2 2 · · · 2
...

...
. . .

...

2 2 · · · 2

⎞

⎟
⎟
⎟
⎠

.

(A.9)
Let r j and ci represent j-th row and i-th column, respectively. Using some elementary
transformations, we have

(
Cs×s(a) Eᵀ

t×s

Et×s Dt×t

) r2n−2m+3+ j−r2n−2m+3, j=1,··· ,m−3
c2n−2m+3+ j−c2n−2m+3, j=1,··· ,m−3��������������������������

r2n−2m+3+ 1
m−2 r2n−2m+3+ j , j=1,··· ,m−3

c2n−2m+3+ 1
m−2 c2n−2m+3+ j , j=1,··· ,m−3

(
Cs1×s1(a1) Oᵀ

t1×s1

Ot1×s1
Ft1×t1

)

.

where s1 = 2n − 2m + 3, t1 = m − 3, a1 = 2 − 1
2(m−2) , Ot1×s1 is a zero matrix and

matrix F is as follows

Ft1×t1
=

⎛

⎜
⎜
⎜
⎝

−1 − 1
2 · · · − 1

2− 1
2 −1 · · · − 1

2
...

...
. . .

...

− 1
2 − 1

2 · · · −1

⎞

⎟
⎟
⎟
⎠

. (A.10)

Here ri − r j means −1 times the j-th row of the matrix is added to the i-th row of the
matrix, ck − cl means −1 times the l-th column of matrix is added to the i-th column
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of the matrix. Using the similar method to calculating the determinant of A, we have

det(Cs×s) =
⎧
⎨

⎩

( 8s−8
3 + a−4s+7

3

) × (− 3
4

) s−1
2 , for s is odd,

−
(
8s−4
3 + a−4s+5

3

)
× (− 3

4

) s−2
2 , for s is even.

(A.11)

and

det (Ft×t )
r1+r j , j=2,··· ,t�������������

r j− 1
t+1 r1, j=2,··· ,t

(

−1

2

)t

× (t + 1) (A.12)

Therefore we have

∣
∣det(AS̄)

∣
∣ =

∣
∣
∣
∣
4n

3
+ 2m

3
− 19

6

∣
∣
∣
∣ ×

(
3

4

)n−m+1

×
(
1

2

)m−3

.

(2). If #S = m and n, 2n /∈ S, by elementary transformation that exchanges any two
rows and corresponding two columns, the original matrixAS̄ can be transformed into
(A.8), where s = 2n − 2m, t = m, a = 1. Again using elementary transformations,
we have

(
Cs×s(a) Eᵀ

t×s

Et×s Dt×t

)

r2n−2m+1+ j−r2n−2m+1, j=1,··· ,m−1
c2n−2m+1+ j−c2n−2m+1, j=1,··· ,m−1
r2n−2m+1+ 1

m r2n−2m+1+ j , j=1,··· ,m−1

c2n−2m+1+ 1
m c2n−2m+1+ j , j=1,··· ,m−1������������������������������

r2n−2m+1−r2n−2m , c2n−2m+1−c2n−2m

r2n−2m+ 2m
2m+1 r2n−2m+1, c2n−2m+ 2m

2m+1 c2n−2m+1

⎛

⎝
Cs2×s2 (a2) 01 Oᵀ

t2×s2
0ᵀ
1 − 2m+1

2m 0ᵀ
2

Ot2×s2
02 Ft2×t2

⎞

⎠ ,

where s2 = 2n − 2m, t2 = m − 1, a2 = 2 − 1
2m+1 , 01 = (0, · · · , 0)ᵀ and 02 =

(0, · · · , 0)ᵀ are s2-dimensional column vector and t2-dimensional column vector,
respectively. By (A.11) and (A.12), we get

∣
∣det(AS̄)

∣
∣ =

(
4n

3
+ 2m

3
+ 1

6

)

×
(
3

4

)n−m−1

×
(
1

2

)m−1

.

(3). If #S = m and 2n ∈ S, n /∈ S, by elementary transformation that exchanges any
two rows and corresponding two columns, the original matrixAS̄ can be transformed
into (A.8), where s = 2n − 2m + 2, t = m − 2, a = 3

2 . Again using elementary
transformations, we have

(
Cs×s(a) Eᵀ

t×s

Et×s Dt×t

) r2n−2m+2+ j−r2n−2m+2, j=1,··· ,m−2
c2n−2m+2+ j−c2n−2m+2, j=1,··· ,m−2��������������������������

r2n−2m+2+ 1
m−1 r2n−2m+2+ j , j=1,··· ,m−2

c2n−2m+2+ 1
m−1 c2n−2m+2+ j , j=1,··· ,m−2

(
Cs3×s3(a3) Oᵀ

t3×s3
Ot3×s3 Ft3×t3

)

.

where s3 = 2n − 2m + 2, t3 = m − 2, a3 = 2 − 1
2(m−1) . By (A.11) and (A.12), we

have
∣
∣det

(AS̄

)∣
∣ =

∣
∣
∣
∣
4n

3
+ 2m

3
− 3

2

∣
∣
∣
∣ ×

(
3

4

)n−m

×
(
1

2

)m−2

.
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(4). If #S = m and n ∈ S, 2n /∈ S, by elementary transformation that exchanges any
two rows and corresponding two columns, the original matrixAS̄ can be transformed
into (A.8), where s = 2n − 2m + 1, t = m − 1, a = 1. Again using elementary
transformations, we have

(
Cs×s(a) Eᵀ

t×s

Et×s Dt×t

)

r2n−2m+2+ j−r2n−2m+2, j=1,··· ,m−2
c2n−2m+2+ j−c2n−2m+2, j=1,··· ,m−2

r2n−2m+2+ 1
m−1 r2n−2m+2+ j , j=1,··· ,m−2

c2n−2m+2+ 1
m−1 c2n−2m+2+ j , j=1,··· ,m−2���������������������������������

r2n−2m+2−r2n−2m+1, c2n−2m+2−c2n−2m+1

r2n−2m+1+ 2m−2
2m−1 r2n−2m+2, c2n−2m+1+ 2m−2

2m−1 c2n−2m+2

⎛

⎝

Cs4×s4 (a4) 01 Oᵀ
t4×s4

0ᵀ
1 − 2m−1

2m−2 0ᵀ
2

Ot4×s4 02 Ft4×t4

⎞

⎠ ,

where s4 = 2n − 2m + 1, t4 = m − 2, a4 = 2 − 1
2m−1 , 01 = (0, · · · , 0)ᵀ and 02 =

(0, · · · , 0)ᵀ are s4-dimensional column vector and t4-dimensional column vector,
respectively. By (A.11) and (A.12), we have

∣
∣det

(AS̄

)∣
∣ =

∣
∣
∣
∣
4n

3
+ 2m

3
− 3

2

∣
∣
∣
∣ ×

(
3

4

)n−m

×
(
1

2

)m−2

.

2. When N = 2n + 1, by (A.11) and (A.12) we have

∣
∣det

(AS̄

)∣
∣ =

{∣
∣ 4n
3 + 2m

3 − 7
6

∣
∣ × ( 3

4

)n−m+1 × ( 1
2

)m−2
, for #S=m and 2n + 1 ∈ S,

∣
∣ 4n
3 + 2m

3 + 1
2

∣
∣ × ( 3

4

)n−m × ( 1
2

)m−1
, for #S = m and 2n + 1 /∈ S.

Appendix B. Scaling of the Three-Component Gierer–Meinhardt
Model

For completeness, we briefly discuss the rescaling of the original Gierer–Meinhardt
model used to arrive at the form (1.3) considered in this paper. The majority of what
follows is a reproduction of the brief discussion in the introduction of Iron et al. (2001);
we perform here an additional rescaling to include the third component w.

The original Gierer–Meinhardt model of Gierer and Meinhardt (1972) is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = Duuxx − μuu + cuρ
ur

vs
+ σuρ

vt = Dvvxx − μvv + cvρ
u p

vq

x ∈ (−�, �), t ≥ 0,

Neumann boundary conditions for at x = ±1.

(B.1)

where u and v are the concentration of the activator and the inhibitor; Du and Dv are
the diffusion coefficients for the activator and inhibitor, respectively, with Du small; ρ
is the rate of production of the activator and inhibitor, μu andμv are the decay rates of
the activator and inhibitor, σu is the source term for the activator, which is small. We
consider the simplest case when r = 2, s = 1, p = 2, q = 0 and add an inhibitor w,
which acts as a feedback regulator that influences the production rate of the activator
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or inhibitor based on the current state of the system, providing a feedback loop. Then
we have the following extended system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = Duuxx − μuu + cuρ
u2

v
+ σuρ − kw

vt = Dvvxx − μvv + cvρu
2

wt = Dwwxx + cwu − μww

x ∈ (−�, �), t ≥ 0,

Neumann boundary conditions for at x = ±�.

(B.2)

Since Du and σu are assumed to be small in Gierer and Meinhardt (1972), we denote

Du = (μu + k)ε2 � 1 and σuρ = (μu+k)2

cuρ
σε2 � 1. Following Iron et al. (2001), we

let

u = (μu + k)ũ

εcuρ
, v = ṽ

ε
, w = (μu + k)w̃

εcuρ
, t̃ = (μu + k)t, h = cv

μv

(μu + k)2

c2uρ

D̃v = Dv

μ̃v

, D̃w = Dw

μ̃w

, τv = (μu + k)

μv

, τw = (μu + k)

μw

, κ = k

(μu + k)
, c = cw

μw

.

(B.3)
Then

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ũt̃ = ε2ũxx − (1 − κ)ũ + ũ2

ṽ
+ σρε3 − κw̃

τvṽt̃ = D̃vṽxx − ṽ + h
ũ2

ε

τww̃t̃ = D̃ww̃xx + cũ − w̃

x ∈ (−�, �), t ≥ 0,

Neumann boundary conditions for at x = ±�.

(B.4)
Neglecting the higher order constant σρε3 and dropping the tilde, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut = ε2uxx − (1 − κ)u + u2

v
− κw

τvvt = Dvvxx − v + h
u2

ε

τwwt = Dwwxx + cu − w

x ∈ (−�, �), t ≥ 0,

Neumann boundary conditions for at x = ±�.

(B.5)

Finally, Setting h = 1, c = 1 and τv = 0, Dw = 0 gives us the rescaled system
(1.1). We remark that taking τv = 0, Dw = 0 leads to a singular reduction of the
system since it alters the order of the differential equation. The generalizability of the
conclusions drawn in this paper to the case where τv and Dw are small but not zero
remains uncertain.
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