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Surface Reconstruction from Point Clouds: A
Survey and a Benchmark

ZhangJin Huang*, Yuxin Wen*, ZiHao Wang, Jinjuan Ren, and Kui Jia

Abstract—Reconstruction of a continuous surface of two-dimensional manifold from its raw, discrete point cloud observation is a
long-standing problem in computer vision and graphics research. The problem is technically ill-posed, and becomes more difficult
considering that various sensing imperfections would appear in the point clouds obtained by practical depth scanning. In literature, a
rich set of methods has been proposed, and reviews of existing methods are also provided. However, existing reviews are short of
thorough investigations on a common benchmark. The present paper aims to review and benchmark existing methods in the new era of
deep learning surface reconstruction. To this end, we contribute a large-scale benchmarking dataset consisting of both synthetic and
real-scanned data; the benchmark includes object- and scene-level surfaces and takes into account various sensing imperfections that
are commonly encountered in practical depth scanning. We conduct thorough empirical studies by comparing existing methods on the
constructed benchmark, and pay special attention on robustness of existing methods against various scanning imperfections; we also
study how different methods generalize in terms of reconstructing complex surface shapes. Our studies help identity the best conditions
under which different methods work, and suggest some empirical findings. For example, while deep learning methods are increasingly
popular in the research community, our systematic studies suggest that, surprisingly, a few classical methods perform even better in
terms of both robustness and generalization; our studies also suggest that the practical challenges of misalignment of point sets from
multi-view scanning, missing of surface points, and point outliers remain unsolved by all the existing surface reconstruction methods.
We expect that the benchmark and our studies would be valuable both for practitioners and as a guidance for new innovations in future
research. We make the benchmark publicly accessible at https://Gorilla-Lab-SCUT.github.io/SurfaceReconstructionBenchmark.

Index Terms—Surface reconstruction, surface modeling, point cloud, benchmarking dataset, literature survey, deep learning.
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1 Introduction

Modeling and reconstruction of object or scene surfaces is
a fundamental problem in computer vision and graphics

research. Its applications range from virtual/augmented reality,
computer animation, to computer-aided design and robotics. Given
that the mathematical nature of a surface shape is a continuous
2D manifold embedded in the 3D Euclidean space, different
approximations are usually adopted when capturing, transmitting,
and storing surface shapes, where the prominent examples include
point clouds, polygon meshes, and quantized volumes. In this
work, we are particularly interested in reconstructing a continuous
surface from its discrete approximation of point cloud, since many
depth sensors (e.g., those based on multi-view stereo, structured
light, or time-of-flight measurements) produce point clouds (or
equivalently, the depth maps) as their original forms of data acqui-
sition, and surface reconstructions from the obtained point clouds
are subsequently demanded for various downstream applications.

The problem is technically ill-posed — infinitely many so-
lutions of the underlying, continuous surface may exist given
an observed set of discrete points. The challenges become even
severer considering that various sensing imperfections would
appear during the data acquisition process; the captured point
clouds could be noisy and distributed in a non-uniform manner,
and they could contain outliers and/or cover less on some surface
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areas; when point clouds are captured at multiple views, they could
be subject to less accurate alignments. All these issues pose the
classical problem of surface reconstruction from point clouds as
a long-standing challenge that draws continuous efforts from the
research community.

In literature, a rich set of methods has been proposed for
the focused studies; depending on the types of data imperfection
they assume, these methods leverage various priors of surface
geometry to combat the otherwise ill-posed problem. While com-
prehensive reviews of these methods are given in [1], [2], [3],
[4], these reviews are short of investigations and analyses on
a common benchmark that could distinguish existing methods
when they cope with the aforementioned data imperfections. In
the meanwhile, the field has witnessed a recent surge of deep
learning surface reconstruction, where models of deep networks
are learned and employed to either decode surface shapes from
point clouds explicitly [5], [6], [7], or generate implicit fields
whose zero-level iso-surfaces can be extracted as the results
of surface reconstruction [8], [9], [10]. It is thus desirable to
benchmark both the classical and the more recent, deep learning
solutions in order to understand their respective strengths and
limitations; such investigations would be no doubt valuable for
use of the appropriate methods by practitioners, and also as a
guidance to new innovations in future research.

The present paper aims to provide a comprehensive review
and benchmark existing methods in the new era of deep learning
surface reconstruction. We organize our review by categorizing
existing methods according to what priors of surface geometry
they have used to regularize their reconstructions, where we
include the more recent priors of deep models and deep learning,
in addition to the classical, optimization-based ones. One of our
key contributions is a large-scale benchmarking dataset consisting
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Fig. 1: An illustration of different surface complexities and scanning challenges included in our contributed benchmark. From left
to right: example object surfaces of low, middle, and high complexities, the five challenges possibly encountered in practical surface
scanning, and examples of different severity levels for the challenge of noisy scanning.

of both synthetic and real-scanned data (cf. Fig. 2, Fig. 3, and
Fig. 5 for illustrations on how the benchmark is constructed). The
benchmark includes object- and scene-level surfaces and takes
into account various sensing imperfections that are commonly
contained in the point clouds obtained by practical 3D scanning,
such as point-wise noise, non-uniform distribution of surface
points, point outliers, missing of surface points, and misalignment
of point sets from multi-view scanning; Fig. 1 gives an illustration
of these scanning imperfections. We conduct thorough empirical
studies on the constructed benchmark, by comparing existing
methods in terms of their capabilities to reconstruct surfaces from
observed point clouds. We pay special attention on robustness of
existing methods against various scanning imperfections; we also
study how different methods generalize in terms of reconstruct-
ing complex surface shapes. Our thorough studies help identify
the strengths and limitations of existing methods from multiple
perspectives. We summarize a few important findings as follows.

• While many challenges of surface reconstruction from
point clouds can be more or less tackled by existing meth-
ods, those of misalignment, missing points, and outliers
have been less addressed and remain unsolved.

• Deep learning solutions have shown great promise recently
for surface modeling and reconstruction; however, our sys-
tematic studies suggest that they struggle in generalizing
to reconstruction of complex shapes. It is surprising that
some classical methods perform even better in terms of
both generalization and robustness.

• The use of surface normals is a key to the success of sur-
face reconstruction from raw, observed point clouds, even
when the normals are estimated less accurately; in many
cases, the result improves as long as the interior/exterior
of the surface can be identified in the 3D space.

• There exist inconsistencies between different evaluation
metrics, and in many cases, good quantitative results are
not always concordant with the visually pleasant ones.
This suggests that more foundation studies are demanded
to better benchmark different methods and advance the
field.

1.1 Related Works
In this section, we give a summary of existing literatures on sur-
face reconstruction from either point clouds or other observations.
We also summarize existing datasets and benchmarks that have
served for advancing the field.

Surface Reconstruction from Point Clouds There exists a rich
set of existing methods studying surface reconstruction from
point clouds. These methods are reviewed in [1], [2], [3], [4],
[11]. Earlier reviews of [1] and [2] organize existing methods
according to what functions of surface representation they use,
e.g., implicit or explicit functions. More recently, existing methods
are categorized in [4] based on the difference of used techniques,
including interpolation and approximation techniques, learning-
based techniques, and soft computing techniques. A most recent
work after us [11] groups methods into surface- and volume-based
categories. Our organization of review in the present paper is
more similar to that in [3], which also organizes existing methods
based on the used geometry priors. Compared with [3], our review
is more comprehensive and includes the recent methods of deep
learning surface reconstruction. In addition, we also compare ex-
isting methods empirically on a benchmark, which helps identify
the respective strengths and limitations of existing methods.

More General Surface Modeling and Reconstruction Surface
reconstruction can be achieved from other raw observations as
well, such as single- or multi-view images, motion, and/or illumi-
nation and shading. Literature reviews on the traditional methods
of multi-view image reconstruction are provided in [12], [13], and
[14]. A more recent survey is given in [15] on multi-view image
reconstruction with deep learning. Fahim et al. [16] focus on a
more challenging setting of deep learning surface reconstruction
from as few as a single image. Zhu et al. [17] provide a more
comprehensive survey of 3D modeling methods, including multi-
view 3D reconstruction, structure from motion, and shape from
shading. Different from the above reviews, the present work
focuses on surface reconstruction from raw, observed point clouds,
considering that depth sensors are increasingly popularly deployed
in either portable or fixed devices.

Datasets and Benchmarks Existing datasets that support surface
reconstruction studies are based on synthetic or real-scanned data;
they may include object- and/or scene-level surfaces. For syn-
thetic datasets, surface meshes are usually provided from which
point clouds can be sampled. For example, the ShapeNet [18]
and ModelNet [19] are two commonly used synthetic datasets
consisting of simple, object-level shapes. More complex synthetic
object surfaces are provided in the datasets of 3DNet [20], ABC
[21], Thingi10k [22], and Three D Scans [23]. The datasets of
SceneNet [24] and 3D-FRONT [25] provides synthetic, scene-
level surfaces. In the meanwhile, there exist datasets of real-
scanned, object-level surfaces [26], [27], [28] and those of real-
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scanned, scene-level surfaces [29], [30]; however, due to the lack
of high-precision scanning, their reconstruction ground truths are
usually obtained by appropriate surface reconstruction algorithms,
which jeopardizes their roles for benchmarking different methods.
Most of the above datasets do not consider sensing imperfections
that may appear in practically scanned point clouds, except for
[31] that uses virtual scanning to simulate point cloud imperfec-
tions; however, the dataset [31] is relatively small, with only eight
instances of object surfaces. Subsequent work [11] benchmarks
methods only on existing object-level dataset with its synthetic
scanning approaches. In contrast, our contributed benchmarking
dataset is more comprehensive, including both synthetic and real-
scanned data, and covering both object- and scene-level surfaces;
we intentionally inject various sensing imperfections into point
cloud data of the dataset, including point-wise noise, non-uniform
distribution of surface points, point outliers, missing of surface
points, and misalignment among point sets from multi-view scan-
ning. We expect our benchmark would facilitate more thorough
studies in future research.

1.2 Contributions

As stated in Section 1, with the surge of deep learning surface
reconstruction, the present paper aims to provide a comprehensive
review of exiting methods in the new era, and study their respec-
tive advantages and disadvantages when reconstructing object- or
scene-level surfaces from raw, observed point clouds. To this end,
we contribute a large-scale benchmark consisting of both synthetic
and real-scanned data. We use the constructed benchmark for
systematic studies of existing methods, focusing on the robustness
of these methods against various data imperfections, and also
on how existing methods generalize in terms of reconstructing
complex surfaces. We summarize our key contributions as follows.

• We provide a comprehensive review of existing surface
reconstruction methods, by bridging together the classical,
optimization-based methods with the more recent, deep
learning-based ones, where we categorize these methods
according to what priors of surface geometry they have
used to regularize their solutions.

• We contribute a large-scale benchmarking dataset consist-
ing of both synthetic and real-scanned data. The point
cloud data in the benchmark have various sensing imper-
fections that are commonly encountered in practical 3D
scanning processes; these imperfections are intentionally
included to benchmark the robustness of existing methods.

• We compare existing methods by conducting thorough em-
pirical studies on the constructed benchmark. Our studies
help identify the strengths and limitations of existing meth-
ods, which are valuable both for choices of appropriate
methods by practitioners and for guiding the directions of
new innovations in future research.

1.3 Paper Organization

The paper is organized as follows. Section 2 gives the formal
definition of our studied problem. Section 3 organizes and reviews
existing methods based on priors of surface geometry that they
have used to regularize the reconstructions. We present our con-
tributed large-scale benchmark in Section 4, where we give details
about how we construct the benchmark and also the benchmark
statistics; we make the benchmark, our construction manner of

the benchmark, and also implementation codes of representative
methods publicly accessible at https://Gorilla-Lab-SCUT.github.
io/SurfaceReconstructionBenchmark. Experimental setups of our
empirical studies are given in Section 5, before results, analyses,
and important insights are presented in Section 6. We finally draw
the paper conclusion in Section 7.

2 Problem Statement
Consider a discrete point set P that may be obtained by scanning
an object or scene surface using some 3D sensing devices; each
p ∈ R3 of its contained points collects the coordinates in the
Euclidean space. Our goal of interest is to recover its underlying,
continuous surface S∗ from which the points {p ∈ P} are practi-
cally observed. Given that recovering the continuous S∗ from the
discrete P is an ill-posed problem, an appropriate regularization
must be imposed in order to recover a geometry-aware approxi-
mation S , e.g., a smooth and/or fair surface [32]. This formally
amounts to solving the following regularized optimization

min
S
L(S;P) + λR(S), (1)

where L is a loss term for data fidelity to the observed P , R
is a regularizer that constrains the solution with a certain prior
of surface geometry, and λ is a scalar penalty. 1 Note that the
objective (1) is only in an abstract form, since it is difficult to
define both L and R directly on S . In practice, one may represent
a surface either explicitly as a parametric mapping f : Ω2 → S ,
where Ω2 ⊂ R2 denotes the 2D domain and S = {f(x) ∈ R3}
with x ∈ Ω2, or implicitly as the zero-level set of an implicit
function F : R3 → R, i.e., S = {q ∈ R3|F (q) = 0}.
Correspondingly, one can instantiate the objective (1) as the
following one that pursues S by optimizing an explicit mapping

min
f∈Hf

Lexp(f ;P) + λRexp(f), (3)

where Lexp and Rexp are respectively the instantiated loss function
and regularizer, and f is optionally constrained in a hypothesis
spaceHf (e.g., by choosing f as a neural network). Alternatively,
one may instantiate the objective (1) as the following one that
pursues an implicit representation of S

min
F∈HF

Limp(F ;P) + λRimp(F ), (4)

where Limp and Rimp are again the instantiated functions, and HF
denotes a hypothesis space that optionally constrains the implicit
function F . We present the subsequent sections based on the
notations defined in Table 1, unless specified otherwise.

3 Surface Reconstruction with a Categorization
of Geometric Priors
Given an observed point set P , a reconstructed surface S should
be close to P under some distance metric; this is guaranteed by

1By writing the simple form (1), we omit the notation of some information
that can be computed from the observed P , e.g., surface normals associated
with individual points p ∈ P , and we also omit some information that would
be useful for surface reconstruction but needs to be additionally provided, e.g.,
the pose of the scanner under which P is captured; given the additionally
provided camera pose, one can rewrite (1) as

min
S
L(S;P,K) + λR(S), (2)

where K denotes the extrinsic matrix of the camera. The formulation (2)
appears to be useful for surface reconstruction, by using the provided K to
determine the orientations of surface normals (cf. Section 6.3 for the details).
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TABLE 1: Math notations.
Notation Description
S∗ An underlying surface to be recovered; S∗ ⊂ R3.
S A reconstructed surface; S ⊂ R3.
GS A triangular mesh representation of surface S.

A mesh with nG faces is collectively written as
GS , {Ti}

nG
i=1, where each face T is specified by

{v1,v2,v3} containing three vertices; we also write
as eij for the edge connecting vertices vi and vj .

P A set of nP discrete points {pi ∈ R3}nPi=1, repre-
senting the practical sampling of an underlying surface
S∗.

np An estimated, oriented surface normal defined at a
surface point p; np ∈ R3.

N (p) A local neighborhood of points centered at p.
Ω A domain of subset space, e.g. , Ωk ⊂ Rk .
Ck The smoothness of a function, where k is the number

of continuous derivatives the function has over some
domain.

d(p) A signed or unsigned distance field value at a point p.
fθ or Fθ An explicit or implicit model of surface reconstruction

parameterized by θ (e.g., a neural network); the param-
eters are also denoted as θf or θF .

∇xfθ or ∇xFθ Model derivative with respect to x.
L(S;P) Loss function of a reconstructed surface S for data

fidelity to an observed P .
R(S) Regularizer imposed on a reconstructed surface S.
K Extrinsic matrix of a camera.

the first term L(S;P) of data fidelity in the abstract objective (1).
Section 2 also suggests that L(S;P) can be instantiated either
explicitly or implicitly. An example of the explicit form can be
written as

Lexp(f ;P) =
1

nP

∑
p∈P

min
x∈Ω2

‖f(x)− p‖`, (5)

where ‖·‖` denotes a proper norm of distance, with ` typically set
as 1 or 2; the above term (5) constrains the learning of mapping
function f ∈ Hf . In practice, one may sample a fixed set {x ∈
Ω2} instead of optimizing over the whole domain Ω2, which gives
variants of Eq. (5) based on point-set distances, such as Chamfer or
Hausdorff distances. An example of the implicit form of L(S;P)
can be written as

Limp(F ;P) =
1

nP

∑
p∈P
‖F (p)‖`, (6)

which learns the implicit function F ∈ HF by minimizing a
proper norm of F (p) for any p ∈ P . Advanced versions of the
implicit data fidelity loss exist, e.g.,

Limp++(F ;P) = α1Eq∈R3‖F (q)− d(q;P)‖`1+

α2Eq∈R3‖∇qF (q)− n(q;P)‖`2 + · · · ,
(7)

where when F models a Signed Distance Function (SDF) [8],
[33], [34], d(q;P) denotes t he signed distance between any space
point q ∈ R3 and the observed point set P , which vanishes when
q hits any p ∈ P , and when F models an Occupancy Field
(OF) [9], [35], [36], d(q;P) ∈ {0, 1} depending on whether q is
inside or outside the surface S , which is practically estimated by
comparing q with the observed P ; n(q;P) denotes the normal
at point q, which, when q hits some p ∈ P , can be estimated by
computing the local tangent plane of P at p, and ‖n(q;P)‖2 =
1 otherwise (when F models an SDF [37], the second term in
Eq. (7) is correspondingly written as Eq∈R3 |‖∇qF (q)‖2 − 1|);
one [37], [38], [39] may use {α1, α2, · · · } to weight or switch
on/off different terms in Eq. (7).

Due to the ill-posed nature of surface reconstruction from P ,
neither of the data fidelity loss terms (5) or (6) is sufficient to
reconstruct a geometry-plausible S . In literature, various instanti-
ations of the regularizationR(S) in Eq. (1) have been proposed, in

order to make the problem be better posed. In the remainder of this
section, we discuss the essence of existing surface reconstruction
methods by categorizing their adopted regularization of geometric
priors, including triangulation-based prior, smoothness prior,
template-based prior, modeling prior, learning-based prior, and
hybrid prior, where we include both classical and the recent, deep
learning ones. We expect our categorization and discussion would
foster new innovations by bridging classical surface reconstruction
methods with the more recent deep learning solutions.

3.1 Triangulation-based Prior
A closed surface is continuous and could be locally differentiable
up to different orders. When the S to be recovered from P is
locally differentiable up to the first order, i.e., f is locally of C1,
a piecewise linear assumption stands as a good prior for modeling
the surface, which gives a mesh representation of the surface.
Among various meshing schemes, Delaunay triangulation [40] is
a classical one that approximates S as a mesh that satisfies the
specific empty sphere property, which can be written as

GS = {Ti}nGi=1

s.t. vT1 ∈ P,vT2 ∈ P,vT3 ∈ P ∀ T ∈ GS ,(
p /∈ CC(T ) ∀ p ∈ P/{vT1 ,vT2 ,vT3 }

)
∀ T ∈ GS , (8)

where T is a triangular face with its three vertices denoted as
{vT1 ,vT2 ,vT3 }, nG is the number of faces, and CC(T ) denotes the
space enclosed by the circumscribing sphere of T passing through
its three vertices; note that by Delaunay triangulation, the explicit
data fidelity Eq. (5) is satisfied simultaneously. We also note that
although Delaunay triangulation is flexible in adapting to complex
shapes, it is not well-defined in 3D. Most reconstruction methods
take it as an initialization [41] or regularization [42], or extend
Delaunay tetrahedralization to remove the triangles of undesirable
shape in reconstruction [6].

Representative methods [41], [42] of Delaunay triangulation
first generate a set of triangular faces directly from the observed
P , and then select the optimal subset from them to generate
the final triangular mesh. Greedy Delaunay (GD) [41] proposes
greedy algorithm based on topological constraints to select valid
triangles sequentially, where the initial triangles are generated by
Delaunay triangulation; Ball-Pivoting Algorithm (BPA) [42] uses
balls with various radii rolling over the points in P to generate
triangles, where every three points touched by a rolling ball will
construct a new triangle if the triangle does not encompass any
other points, which can also be regarded as an approximation of
Delaunay triangulation.

3.2 Surface Smoothness Priors
In more general cases, the surface S to be recovered is expected
to be smooth or continuously differentiable up to a certain order
[32]. Surface smoothness is usually enforced by the following
strategies.
Surface smoothness via local weighted combination – The first
strategy smoothes out {p ∈ P} via local weighted combination
when fitting the explicit mapping function f . For example, the
smoothness prior in [43] is an regularized version of Eq. (5)

min
f
Lexp(f ;P) =

1

nP

∑
p∈P

min
x∈Ω2

‖f(x)− p̂(p)‖22

s.t. p̂(p) =
∑

p′∈N (p)

p′g(‖p− p′‖2),
(9)
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where N (p) denotes a local neighborhood of the observed p,
containing {p′ ∈ P}, and g(‖p − p′‖2) denotes a normalized
weighted function (e.g., a normalized Radial Basis Function or
RBF) whose value decreases as the distance ‖p− p′‖2 increases.
In Poisson Surface Reconstruction (PSR) [38], a similar implicit
objective is used by regularizing the second-order term in Eq. (7)

min
F

LPSR(F ;P) = Eq∈R3‖∇qF (q)− n̂(q;P)‖22

s.t. n̂(q;P) =
∑

p′∈N (q)

n(p′;P)g(‖q − p′‖2), (10)

where N (q) denotes a local neighborhood of a space point
q ∈ R3, containing observed points {p′ ∈ P}. PSR constrains
the normal field only and usually produces over-smooth results.
As a remedy, Screened Poisson Surface Reconstruction (SPSR)
[39] improves over PSR by incorporating regularized versions of
both the first- and second-order terms in Eq. (7). More recently,
Shape As Points [44] develops a differentiable Poisson solver in
a spectral manner, which enables an end-to-end optimization and
thus could be integrated into the learning of deep neural networks.
Surface smoothness by constraining function complexities –
This can be equivalently achieved by constraining the hypothesis
space of Hf or HF , e.g., by constraining Hf as B-spline func-
tions [45], [46], [47], NURBS [48], [49] or Gaussians [50], [51],
[52]. Intuitively, a more complex function is able to fit a surface of
complex geometry; but it also tends to be overfitted to the observed
P , producing a less smooth surface. For example, using RBFs in
[53] means that the approximate function is in the form of low-
degree polynomials with an interpolation of many basic functions
centered at the observed points. The works [54], [55] are similar to
[53] but approximate their respective implicit field functions using
different basis functions. More specifically, Kazhdan [54] firstly
computes the Fourier coefficients of its implicit field function with
the help of Monte-Carlo approximation of Divergence Theorem,
and then uses inverse Fourier transform to obtain the implicit
function for extraction of iso-surface; a regular grid is needed
to perform fast Fourier transform in [54], and instead Manson et
al. [55] use wavelets, which provide a localized, multi-resolution
representation of the implicit function. Instead of using a regular
grid, [50] optimizes the likelihood function over a finer grid under
some topological constraints by solving the parameters of the
Gaussian basis function. More recently, He et al. [56] propose
to regularize the curvatures of the mesh when reconstructing the
surface, which results in a reconstructed surface that is smoother.

Wang [51] introduces a Gaussian convolution to the energy
term, which promotes smoothness on the learned implicit function
during the iterative optimization process. PGR [52] chooses
the basis of the indicator function that is guided by a Gaussian
formulation to recover the surface from un-oriented points.
Surface smoothness by combination of strategies – Methods
such as Point Set Surfaces (PSS) [43], [57], [58], [59] combine
both of the above smoothing strategies. PSS is derived from
Moving Least Squares (MLS) [60], [61], [62], [63], whose surface
can be defined either by an explicit function with stationary
projection operator [43], [57], [60], [61], [58] or by an implicit
function [62], [63], [59]. In either case, a weighted combination
of spatially-varying low-degree polynomials acts as the most
important ingredient to locally approximate the observed points
and construct the surfaces. In Simple Point Set Surfaces (SPSS)
[58], the authors iteratively project all the given points along
the normal directions onto the local reference planes, which are

defined by a weighted average of the points to be projected and
their neighborhood points; then the local reference plane at each
evaluation point would give a local orthogonal coordinate system
to compute a local bivariate polynomial approximation to the
surface. However, the local reference plane can hardly be a good
approximation and sometimes even becomes unstable when the
observed points are sparse. Algebraic PSS [59] overcomes this
issue by using an algebraic sphere to fit the observed points, which
forms an implicit function to represent the algebraic distance
between the evaluation point and the fitted sphere; the fitting
problem is then solved by a least squares problem between the
gradient field of the algebraic sphere and the normals of the
observed points. Robust Implicit MLS (RIMLS) [63] combines
kernel regression and statistical robustness with MLS to cope with
the limitation that MLS can only reconstruct smooth surfaces.
Other PSS methods share the same principle; more details can
be found in [64] and [3].

3.3 Template-based Priors
Template-based priors assume that a surface could be represented
by combination of a group of templates, where the templates could
be geometric primitives such as spheres or cubes, or complex ones
from an auxiliary dataset. As such, surface reconstruction boils
down as the problem of estimating/fitting the correct templates to
the observed P . A way to define this mathematically spells out as

min
{w},{θ}

D

|{M}|∑
i=1

wiMi(θi),P

 , (11)

where {M} denotes the set of predefined templates, and each
template M is parameterized by (the possibly learnable) θ and
weighted by w; D(·, ·) denotes a proper distance between the
formed surface and P . By minimizing the fitting error (11), a
surface is reconstructed by the determined {w} and/or {θ}.

3.3.1 Geometric Primitives
Templates of geometric primitives are simple shapes that can be
analytically represented by a certain number of parameters, e.g. ,
cuboids, spheres, cylinders, cones, etc. Random sample consensus
(RANSAC) [65], [66] is the most commonly used method to solve
Eq. (11) that fits the right templates to the observed P , where
D(·, ·) sums up the element-wise (Euclidean) distances between
randomly sampled {p ∈ P} and their projections onto the fitted
templates. More specifically, Schnabel et al. [65] introduce an
efficient RANSAC-based algorithm with a novel sampling strategy
and an efficient score evaluation scheme, where the primitive with
maximum score is extracted iteratively. Nan and Wonka [66]
propose to only extract planar primitives based on RANSAC,
obtaining the final surface by minimizing a weighted sum of
several energy terms to select the optimal set of faces. Zhu et
al. [67] reconstruct the surface by fitting the segmented point
clouds with different primitive patches defined by the solution
of the partial differentiable equation.

3.3.2 Retrieval-based Templates
Given an auxiliary set {M} of shape models, retrieving-and-
deforming methods solve Eq. (11) to find the closest shapes and
deform them, via optimization of model parameters {θ}, to fit
the observed P . For example, in scene reconstruction [68], [69],
[70], [71], the observed scene points are segmented into semantic
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classes, each of which is then fit with a retrieved shape model fol-
lowed by rigid or non-rigid deformation; in object reconstruction,
Pauly et al. [72] warp and blend multiple retrieved object shapes
to conform with the observed points, and Shen et al. [73] retrieve
individual object parts to form a surface by part assembly.

3.4 Modeling Priors

While constraining the complexity of hypothesis space of Hf
or HF would promote reconstruction of smoother surfaces, as
discussed in Section 3.2, the choice ofHf orHF itself regularizes
the reconstruction given that only specific types of surface can
be modeled by the choice. A prominent example is the recent
trend of using deep neural networks for geometric modeling and
surface reconstruction. We term the geometric priors provided by
the respective designs of models themselves as modeling priors.

Motivated from deep image prior [74], Deep Geometric Prior
(DGP) [75] verifies the efficacy of deep networks as a prior for
geometric surface modeling, even when the networks are not
trained. Later on, Point2Mesh [76] and SAIL-S3 [77] extend
the global modeling adopted in [75] as local ones, where the
former constructs its local, implicit functions as a weight-shared
MeshCNN [78] and the later method constructs them as a weight-
shared Multi-Layer Perceptron (MLP). Deep Manifold Prior [79]
delivers mathematical analyses on such modeling properties for
MLP as well as convolutional networks. There have also been
a few works making use of modeling priors while not explic-
itly mentioning it. Atzmon et al. [80] theoretically prove that
MLP with Rectified Linear Units (ReLUs) generate piecewise
linear surfaces, and a meshing algorithm of Analytic Marching
is also proposed in [81] that is able to analytically compute
the piecewise linear surface mesh from such a network, both of
which deliver mathematical analyses on how the structure of MLP
itself acts as a regularizer. Later on, Deep Manifold Prior [79]
extends such modeling properties for both MLP and convolutional
networks. Implicit Geometric Regularization (IGR) [37] shows
that additional regularization on the gradient of neural network
would further encourage the generated surfaces to be smooth. Sign
Agnostic Learning (SAL) [82] and its variants [83], [84] study
reconstructing a surface from an un-oriented point cloud via a
specially initialized neural network, SSP [85] further utilizes semi-
signed supervision generated by voxelizing the un-oriented point
inputs to avoid bad local minimums, and Davies et al. [86] adopt
the same initialization strategy for surface reconstruction from an
oriented point cloud. Neural Splines [87] performs reconstruction
based on random feature kernels arising from infinitely-wide
shallow ReLU networks and shows that such solutions bias toward
reconstruction of smooth surface.

3.5 Learning-based Priors

Given the parametrization of θf for f ∈ Hf and θF for F ∈ HF ,
priors can be learned from an auxiliary set of training shapes as
optimized model parameters. Note that such learning-based priors
are different from modeling priors presented in the preceding
section, where priors are provided by the models themselves. Let
{Pi,S∗i }Ni=1 be the training set containing N pairs of observed
point sets and their corresponding ground-truth surfaces. By adapt-
ing the objective (3), the following explicit surface reconstruction

based on a learned prior is proposed in [88], [5]

min
z
Lexp

(
f(z; θ̃f );P

)
+ λRexp(z) (12)

s.t. θ̃f = arg min
θf

1

N

N∑
i=1

L̃exp (θf ; {Pi,S∗i }) + λ̃R̃exp(θf ),

(13)

where the constraint (13) learns the prior as the optimized model
parameter θ̃f , L̃exp could be different from Lexp, and an objective
for smooth and/or fair surface may also be incorporated into R̃exp

in addition to a simple norm constraint of θf ; given the learned
and then fixed θ̃f , the objective (12) fits the model prediction to
any observed P by optimizing a latent code z, where norm of z
is usually penalized to prevent overfitting. Similarly, by adapting
the objective (4), the following methods [8], [9] learn a prior for
implicit surface reconstruction

min
z
Limp

(
F (z; θ̃F );P

)
+ λRimp(z) (14)

s.t. θ̃F = arg min
θF

1

N

N∑
i=1

L̃imp (θF ; {Pi,S∗i }) + λ̃R̃imp(θF ).

(15)

The model f can also be constructed as an auto-encoder architec-
ture [9], [35], [89], i.e., f = fencoder ◦ fdecoder. In such a case, given
the prior θ̃f = {θ̃fencoder , θ̃fdecoder} already learned by Eq. (13), a
latent code can be directly obtained as

z = fencoder(P; θ̃fencoder), (16)

instead of optimizing the objective (12). The above applies to an
auto-encoder based implicit function F = Fencoder ◦ Fdecoder as well,
and given the learned prior θ̃F = {θ̃Fencoder , θ̃Fdecoder}, one can
compute its latent code directly as

z = Fencoder(P; θ̃Fencoder). (17)

Note that the most recent implicit methods [90], [36] allow the
priors of model parameters to be further optimized when fitting
to the observed points, i.e., optimizing over both the latent code
and model parameters in Eq. (12) or Eq. (14), and thus potentially
bridge the gap between the learning-based priors and classical
ones.

Depending on how the training shapes in {Pi,S∗i }Ni=1 are
organized, the priors learned via Eq. (13) or Eq. (15) may be
either at a global, semantic level or as local, shape primitives. For
example, when pairs in {Pi,S∗i }Ni=1 capture surfaces of object
instances belonging to a semantic category, the learned priors
would encode shape patterns common to this object category. To
learn priors for reconstruction of arbitrary surface shapes, one may
have to prepare {Pi,S∗i }Ni=1 as those encoding surface patches,
and expect a global surface of arbitrary shape can be better
reconstructed by providing priors on its local shape primitives.

3.5.1 Learning Semantic Priors
The recent trend of deep learning surface reconstruction starts
from learning deep priors at the semantic level (e.g., a category
of object instances). For example, an explicit method of Deep
Marching Cubes [88] proposes a novel, differentiable layer of
marching cubes, which connects mesh surface generation with
the learning of semantic prior via a shape encoding network that
generates displaced voxel grids. The seminal deep learning-based
implicit methods [9], [91], [8] model either SDF or OF via deep
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neural networks. Specifically, OccNet [9] and IM-Net [91] adopt
an auto-encoder structure; after training, the encoder generates the
latent code representing the shape via a single forward propagation
in Eq. (17) for any observed point set, and the decoder predicts the
probability of occupancy according to the given space point along
with the latent code. Different from OccNet and IM-Net, DeepSDF
[8] adopts the structure of decoder-only model, which optimizes
the latent code of the given point clouds via maximum a posteriori
in Eq. (14), and predicts signed distances according to the given
space point along with the latent code. Curriculum DeepSDF
[92] improves DeepSDF by introducing a progressive learning
strategy to learn local details; in the meanwhile, Yao et al. [93]
implement such learning using Graph Neural Networks, which
converts the global, semantic latent code into more sophisticated
local ones, before feeding into the decoder. MeshUDF [94] further
extends DeepSDF to reconstruct open surfaces, which predicts
unsigned distances of any given space point and generates the
surface using their customized marching cubes. More recently, a
few methods [95], [96] adopt networks based on transformer [97],
[98] to help reconstruction. Note also that learning semantic priors
enables reconstruction of surfaces from raw observations that are
originally of no or less 3D shape information (e.g., as few as
a single RGB image [5], [99], [100]), by training encoders that
learn latent shape spaces from such observations.

3.5.2 Learning Priors as Local, Shape Primitives
To reconstruct a scene surface or surface of an object that cannot
be semantically categorized, existing methods resort to modeling
and learning local priors of shape primitives either at regular grids
that partition the 3D space [101], [35], [102], [34], [10], [103],
[104], or on local patches along the surface manifold [105], [33],
[89]. Among the former methods, Implicit Feature Networks (IF-
Net) [101] and Convolutional OccNet [35] (ConvOccNet) obtain
latent codes for local grids via auto-encoder structure, where IF-
Net [101] adopts 3D convolution that convolves each input point
with its surrounding points to get the latent code at each local
grid, and ConvOccNet [35] uses PointNet [106] as its encoder to
get the latent code for each point and then encapsulates all the
latent codes into a volumetric feature via average pooling. Later
on, Chibane et al. [102] extend IF-Net [101] to support sign-
agnostic learning. Deep Local Shape (DeepLS) [34] divides the
whole 3D space into regular voxels, and trains an implicit function
whose parameters are shared among different local voxels. Local
Implicit Grid (LIG) [10] trains an auto-encoder to extract the latent
codes of local voxels during training (via Eq. (17)), while retaining
the voxel-shared decoder with fixed parameters during inference
only. To improve the efficiency of local encoding, Scalable Surface
Reconstruction Network (SSRNet) [103] makes use of octree to
partition the whole 3D space, and uses fully-convolutional U-
shaped network with skip connections, which is based on modified
tangent convolution [107] to get the latent code for each local
grid. Neural Geometric Level of Detail (LOD) [104] adopts the
structure of sparse octree to further improve the efficiency, where
latent codes are computed only for local voxels that intersect with
the surface. Ummenhofer et al. [108] aggregate latent codes for
local grids via adaptive grid convolution on multiple levels of the
octree input space. As for the methods based on local surface
patches, Badki et al. [105] introduce the concept of meshlets,
and train a variational auto-encoder to learn the latent space of
pose-disentangled meshlets; by back-propagating the error with
respect to the given points and the meshlets, the method updates

the meshlets’ latent codes and deforms the meshlets to fit the given
points at inference time. PatchNets [33] leverages the structure
of implicit auto-decoder to learn across different local surface
patches, and the decoder is also trained with an elaborate loss
function to ensure the smoothness of the reconstructed patches.
Points2Surf [89] learns features from both local patches and
the global surface, and reconstructs the surface with an implicit
decoder, where the former takes a local encoder to learn the
absolute distance of a queried point from the local surfaces, and
the latter learns the interior/exterior of the surface with a global
encoder. POCO [109] and [110] encodes each input point into a
single latent code, and then perform weighted interpolation among
a point and its neighboring ones to get the local latent code.
Ma et al. [111] train a local context network that encodes the
points in local regions to be latent codes, and then the queries
of those regions are decoded by SDFs conditioned on the codes.
During testing, another query network is optimized to predict the
corresponding local queries of the global region and the condition
codes, which are then fed into the decoder of the local context
network to obtain SDFs for the surface.

3.6 Hybrid Priors

Methods discussed in the preceding sections are organized accord-
ing to their respectively used, main priors of surface geometry.
To improve the plausibility of reconstructed surfaces, existing
methods usually combine multiple priors, e.g., by combining
smoothness priors with triangulation or template-based ones [112],
[113], [114], by imposing additional priors on top of modeling
ones [115], [116], [117], [118], [119], [120], [121], [122], or by
learning priors to improve over regularization provided by pre-
defined ones [6], [7], [123], [124], [125], [47]. In this section, we
focus our discussion on the last case, considering that such hybrid
priors are popularly used in the new era of deep learning surface
reconstruction.

Given auxiliary sets of training shapes, learning-based priors
are combined with triangulation-based prior in [7], [126], [123]
that encourage deep networks to learn particular properties for
triangulation from the observed point clouds. More specifically,
PointTriNet [7] introduces a framework to generate triangles from
observed point clouds directly, where a proposal network sug-
gests candidates of triangles and a classification network predicts
whether a proposed candidate should appear in the reconstructed
surface or not, and two networks iteratively take effects until the
final surface of triangular mesh is generated. Liu et al. [126]
show that connecting those pairs of vertices whose geodesic
distance approaches to their Euclidean distance can approximately
reconstruct the underlying surface; they construct a network to
select candidate triangles satisfying this property. Delaunay Sur-
face Elements (DSE) [123] introduces small triangulated patches
generated by combining Delaunay triangulation with learned
logarithmic maps, from which candidate triangles of the output
surface are then iteratively selected via their proposed adaptive
voting algorithm. DeepDT [6] learns deep networks to extract
geometric features from observed point clouds, and then integrates
the learned features together with graph structural information to
vote for the inside/outside labels of Delaunay tetrahedrons; the
surface is reconstructed by extracting triangular faces between
tetrahedrons of different labels. Gao et al. [127] learn a network to
predict the offsets of vertices of tetrahedrons and a second network
to predict the occupancy of each tetrahedron, and object surface
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is generated on the facet that belongs to two tetrahedrons with
different occupancies.

Learning-based priors are commonly combined with smooth-
ness priors (e.g., the Laplacian regularization in [128] and the
cosine smoothness in [129]). IMLSNet [124] trains an implicit
network that evaluates signed distances at grids of an octree-based
3D space, where smoothness is regularized by defining the signed
distances in a way similar to implicit moving least-squares [63].
Xiao et al. [130] learn a network to implicitly model an indicator
function derived from Gauss lemma, which is smooth and linearly
approximates the surface; similar to Points2Surf [89], they learn
both local and global features.

There have also been plenty of works [125], [131], [47], [132]
combining learning-based priors with template-based ones. SPFN
[125] proposes to train a deep network to fit geometric primitives
according to the observed point clouds; the trained network pre-
dicts point-wise features that are fed into a differentiable estimator
for algebraic computation of primitive parameters. CPFN [131]
learns two SPFNs, where a global one is used for detecting bigger
primitives and a local one is used for capturing smaller primitives.
ParseNet [47] uses a neural decomposition module to partition

an observed point cloud into multiple subsets, each of which is
assumed to be a primitive type modeled as an open or close B-
spline by a deep network. Local Deep Implicit Function (LDIF)
[132] represents a surface shape as a set of shape elements,
each of which is parameterized by analytic shape variables and
latent shape codes; the method learns such variables and latent
codes by its SIF encoder and PointNet encoder respectively. For
reconstruction of a large-scale scene surface, RetrievalFuse [133]
retrieves a set of object templates from an auxiliary scene dataset,
and learns a network with attention-based refinement to produce
the reconstruction.

4 A Surface Reconstruction Benchmark
As discussed in Section 3, a rich set of methods exist that aim
to address the ill-posed problem of surface reconstruction from
point observations. These methods have their respective merits, yet
it is less clear on their advantages/disadvantages under different
working conditions, due to the lack of a comprehensive surface
reconstruction benchmark that identifies and includes the main
challenges faced by the studied problem.

In this work, we contribute such a benchmark by both syn-
thesizing and practically scanning point clouds of object and
scene surfaces. We identify the main challenges of surface re-
construction from point clouds obtained by imperfect surface
scanning, including point-wise noise, point outliers, non-uniform
distribution of points, misalignment among point sets obtained by
scanning different but overlapped, partial surfaces of an object
or scene, and missing points of one or several surface patches.
An illustration of such challenges is given in Fig. 1. We include
all the five challenges in synthetic data of the benchmark, and
expect that an arbitrary combination of these challenges may
appear in any sample of the real-scanned data. The benchmark is
organized as the synthetic data of object surfaces, the synthetic
data of scene surfaces, and the data of real-scanned surfaces.
Tables 3 and 4 summarize the statistics. We make the bench-
mark publicly accessible at https://Gorilla-Lab-SCUT.github.io/
SurfaceReconstructionBenchmark, where we also release the code
implementation of our synthetic scanning pipeline to facilitate
future research in the community.

4.1 The Synthetic Data of Object Surfaces

To prepare synthetic data of object instances in the benchmark, we
collect CAD models from existing repositories [22], [20], [21],
[23], and pre-process them before synthetically scanning their
point clouds. For each CAD model, we simulate the aforemen-
tioned five ways of imperfect scanning, in addition to a perfect
scanning that gives a clean object point cloud; we in total have six
kinds of scanned point clouds for each instance. We organize the
collected object instances into three levels of (algebraic) surface
complexity [134], in order to study how different methods perform
on surface reconstruction of varying complexities.

4.1.1 Data Collection
We collect CAD models of object instances from the existing
repositories of Thingi10k [22], ABC [21], 3DNet Cat200 subset
[20], and Three D Scans [23]. More specifically, we randomly
select 3, 000 objects from Thingi10k [22] (a dataset collected from
online-shared 3D printing models), 3, 000 industrial components
from the set of Chunk 0080 in ABC [21], 3, 400 commodities from
3DNet Cat200 subset [20], and 106 art sculptures from Three D
Scans [23]. All these instances are represented in the form of
triangular mesh. As illustrated in Fig. 2, some meshes of the
collected instances could be non-watertight, with self-occlusion,
and/or topologically too complex, and are thus less convenient to
be synthetically scanned to simulate practical sensing conditions;
we filter out these instances by determining their states of being
watertight and 2D-manifold [135], checking self-occlusion [136],
and calculating their surface genus [32]. We finally normalize each
mesh of the remaining instances by centering it at the origin and
scaling it isotropically to fit into the unit sphere. We obtain a total
of 1, 620 object surface meshes in the benchmark.

4.1.2 Groups of Varying Surface Complexities
It is possible that performance of different methods depends on the
complexities of object surfaces to be reconstructed. To identify
better working conditions for different methods, we intend to
divide the above processed object surface meshes into groups
of varying complexities. Surface complexities can be measured
under different metrics, among which algebraic complexity and
topological complexity are the measures more relevant to surface
reconstruction from point clouds [134]; simply put, the former
measures the degree of polynomials needed to represent a surface,
and the latter can be measured as the surface genus (e.g., the
number of holes on the surface). Given that our instances of
surface meshes have been processed to satisfy the conditions of
being watertight, 2D manifold, and topologically simpler (equal
to or smaller than genus 5), we divide all the 1, 620 instances into
three groups of low-, middle-, and high-complexity based on the
measure of algebraic complexity.

The algebraic complexity of a surface is usually computed as
the highest degree of polynomial functions that approximate/fit
local patches on the surface [134]. However, given fixed budget
of approximation errors, it is usually unstable to fit local surface
patches with polynomials of high degrees [60], causing inaccurate
prediction of polynomial degrees and thus that of algebraic com-
plexity. Instead, we take the strategy of fixing the highest function
degree and measuring the averaged approximation errors of local
surface patches; technical details are given in Appendix A. We
finally obtain the three groups respectively of 972 instances, 486
instances, and 162 instances (at the ratio of around 6 : 3 : 1 for
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Fig. 2: The pipeline of constructing our synthetic object-level dataset (cf. Section 4.1 for the details). We firstly collect CAD models
of object surface from four repositories, as shown in the leftmost of the figure. We then filter the collected surfaces by dropping
those failing to meet our requirements, and normalize the remaining ones, as shown in the middle of the figure. We further organize
the normalized object surfaces into three groups of low, middle, and high complexities at a ratio of around 6 : 3 : 1, based on the
criterion of (algebraic) surface complexity. We finally perform synthetic scanning as shown in the right of the figure, where different
challenges possibly encountered in practical scanning are simulated. Blue spots indicate the scanning positions on viewing spheres;
after estimating oriented normals (shown as N in the figure), we make registration between different viewpoints of scanning and get the
final scanned point cloud, where farthest point sampling (FPS) is used for sampling a fixed number of points per point cloud (except
otherwise mentioned cases in which random sampling (RS) is used).

low-, middle-, and high-complexity groups). Table 2 summarizes
the group statistics.

TABLE 2: The benchmark collection of synthetic object instances
from existing repositories and their distributions in the three
groups of low, middle, and high complexities.

Surface complexity Low Middle High Total
Thingi10k [22] 516 230 97 845
3DNet Cat200 subset [20] 144 89 33 266
ABC [21] 312 160 6 478
Three D Scans [23] 0 7 26 31
Our benchmark 972 486 162 1,620

4.1.3 Synthetic Point Cloud Scanning
We use Blender Sensor Simulation Toolbox (BlenSor) [137] to
synthetically scan our collected surface meshes of object instances.
We describe in this section our scanning pipeline, including how
we implement different ways of imperfect scanning that simulate
point cloud sensing happening in practical conditions.

Perfect scanning – We first use the case of perfect scanning
to give a whole picture of how we conduct our virtual scanning
pipeline as shown in Fig. 2. As described in Section 4.1.1,
our instances of surface meshes have been normalized at the
center of a unit sphere in the simulator. To scan an instance,
we place a virtual time-of-flight (TOF) camera [138] on viewing
spheres whose radii range from rmin = 2.5 to rmax = 3.5; a
viewpoint on any of the spheres can be specified as the camera
extrinsic K = [R|t] ∈ R4×4, where the rotation R ∈ R4×3

and translation t ∈ R4×1 together specify how the camera is
positioned. Denote as PK the point cloud obtained by scanning
from the viewpoint K; one may transform it into the world
coordinate system as K ◦ PK , where ◦ denotes an operator2.
In our setting, we sample 1, 000 viewpoints on the spheres of

2Note that a point p ∈ PK in the camera coordinate system can be
transformed to point pworld ∈ Pworld

K in the world coordinate system in terms
of a homogeneous equation as [pworld; 1]> = [p; 1]>K−1; here we transform
PK to Pworld

K and write collectively as Pworld
K = K ◦ PK .

different radii, resulting in a collection of scanned point clouds
{K1◦PK1

, · · · ,K1000◦PK1000
}, each of which partially covers

the surface. Then we can register and fuse different partial
point clouds to cover the complete surface

⋃1000
i=1 Ki ◦ PKi

. We
obtain the final, uniformly distributed point cloud scanning P by
applying Farthest Point Sampling (FPS) [106] to

⋃1000
i=1 Ki◦PKi

;
P is set to contain 80k points for low-complexity surfaces, 120k
points for middle-complexity surfaces, and 160k points for high-
complexity surfaces.

For existing methods that require surface normals to per-
form reconstruction, we compute the oriented surface normals
as follows. For any point p ∈ P , we first compute its un-
oriented normal n̄p by performing PCA on the local neighborhood
constructed by k = 40 nearest neighbors of the point; orientation
of n̄p can be simply determined by comparing p with the camera
position, giving rise to the oriented normal np.

Point-wise noise – Due to sensor noise, ambient noise, reflective
nature of the surface, and the incapable precision of the scan-
ning devices, point clouds from practical scanning are inevitably
noisy. In this case, each scanned point is not exactly on the
underlying surface, deviating away from the surface in a point-
wise, independent manner; and to simulate such noise, we add
point-wise perturbations to the points obtained by the aforemen-
tioned perfect scanning. Specifically, for any surface point q, we
generate ∆qnoise ∈ R3 by randomly sampling its element values
from a Gaussian distribution N (0, σ2

noise) with a truncated values
[−2σnoise, 2σnoise]. Given a point p ∈ P , the corresponding noisy
point from noisy scanning is obtained as p = q + ∆qnoise. We set
σnoise respectively as 0.001, 0.003, and 0.006 in our benchmark to
simulate different severity levels of point-wise noise. Note that the
truncation above is to prevent individual {p ∈ P} from deviating
too far away from the surface, which would become point outliers
to be discussed shortly.

Non-uniform distribution of points – Practical scanning often
produces a point cloud whose points are not uniformly distributed
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over the surface. For example, the surface patches that are scanned
for multiple times (possibly from different viewpoints) would
have more points, and a closer scanning position would produce
denser points as well. To simulate such phenomena, we replace the
final step of uniformity-promoting FPS in perfect scanning with
Random Sampling (RS), and local point densities of the resulting
P would be less uniform over the surface.

Point outliers – As mentioned above, outliers of a surface point
cloud are defined as those deviating far away from the surface.
They are often caused by impulsive noise of practical scanning.
We simulate such outliers as follows. Given a point cloud obtained
by perfect scanning, we first randomly sample a ratio routlier of its
points, and for any sampled point q that is on the surface, we
generate ∆qoutlier ∈ R3 by randomly sampling its element values
from a uniform distribution U [aoutlier, boutlier]; the corresponding
point outlier poutlier ∈ P is then obtained as p = q±∆qoutlier. We set
aoutlier = 0.01 to distinguish point outliers from noisy points and
set boutlier = 0.1 to prevent the outliers from being less relevantly
distancing. The ratio routlier is respectively set as 0.1%, 0.3%, and
0.6% for varying numbers of outliers in each obtained P .

Misalignment – As described for perfect scanning, a scanning
viewpoint is specified by the camera extrinsic K = [R|t];
scanning from the viewpoint K would produce a point cloud
PK that covers the surface partially; a complete point cloud is
obtained by scanning from 1, 000 viewpoints and then registering
and fusing the obtained point clouds as

⋃1000
i=1 Ki◦PKi

. However,
misalignment would happen when the camera extrinsics are less
accurate. To simulate such a misalignment, for each viewpoint
K, we generate the perturbation ∆K = [∆R|∆t] ∈ R4×4

where ∆R ∈ R4×3 is obtained by the XYZ Euler angle con-
vention [139], i.e., ∆R = [Rx(α)Ry(β)Rz(γ);0>3 ] with α,
β, and γ uniformly sampled from U [arotation, brotation] and those of
the translation perturbation ∆t ∈ R4×1 uniformly sampled from
U [atranslation, btranslation]. The final point cloud P with misalignment
is obtained by applying FPS to

⋃1000
i=1 (Ki + ∆Ki) ◦ PKi .

We set [arotation, brotation] as [−0.5°, 0.5°], [−1°, 1°], and [−2°, 2°],
and set [atranslation, btranslation] as [−0.005, 0.005], [−0.01, 0.01], and
[−0.02, 0.02], which are respectively for different severities of
misalignment.

Missing points – Due to surface reflection, self-occlusion, and/or
simply insufficient covering of the surface, practical scanning
often produces a point cloud that does not cover the whole object
surface of interest. Surface reflection depends on a mixed effect
of lighting and surface material, and the latter is not included in
our collected CAD models. Instead, we take the following simple
approach in our benchmark to simulate missing surface points.
Rather than allowing the scanning viewpoint Ki to locate on the
whole viewing spheres as in perfect scanning (shown as the blue
points in Fig. 2), we only allow it to locate on a limited number
of viewing positions to simulate missing points. Specifically, we
define the viewing positions in a few narrow bands of trajectories
with the polar angle of ϕ ± ϕ∆ (shown as the yellow points in
Fig. 2). For different severities, we respectively set the number
of trajectories to be 3, 2, and 1, with the polar angle ϕ set to
be [20°, 40°, 60°], [20°, 40°], and [20°] respectively, and with
ϕ∆ = 3°. The scanned surface areas approximately cover 99%,
94%, and 86% of the whole surface for different severities.

4.2 The Synthetic Data of Scene Surfaces

We adopt a pipeline similar to that presented in Section 4.1 for
synthetic scanning of the scene-level data. Since the scale of a
scene surface is larger and practical scanning usually produces
a point cloud that includes multiple types of imperfections. As
such, we include all the five challenges of point-wise noise, point
outliers, non-uniform distribution of points, misalignment, and
missing points into our synthetic scanning of a single scene. Fig. 3
gives the illustration.

Data collection – We choose to collect CAD surface models
of indoor scenes in the benchmark. To form the collection, we
randomly select 28 indoor scenes from SceneNet [24], 14 from
3D-FRONT [25], and 8 from Replica [29]. The scenes from the
three datasets are diverse in terms of varying room types, varying
room sizes, and the contained different furniture and furnishings.
The collected surfaces are represented in the form of triangular
mesh as well. We normalize each scene mesh by centering it at
the origin but keeping its original size.

Synthetic scanning – We still use BlenSor [137] to perform
our synthetic scene-level scanning. In practical scanning of indoor
scenes, the scanner is usually placed at a medium distancing from
the scene surface; we thus choose the sensor of Kinect V2 [140]
whose working distance ranges from 0.75m to 2.1m. We prepare
the scanning by placing each surface mesh of indoor scene in a
bounded 3D space, where the scene center has been aligned at
the origin and the space size is set to be just enclosing the scene
surface (cf. Fig. 3). We firstly partition the 3D space into the
volume of 1m3-sized, 0.5m3-overlapped cubes; some of the cubes
would be empty while others contain certain patches of the scene
surface. We choose the centers of those empty cubes as the posi-
tions from which the virtual camera views the scene, and abandon
others to ensure that the working distance between the camera and
scene surface satisfy the aforementioned Kinect V2 requirements.
From each position, the camera could view a certain patch of the
scene surface towards arbitrary directions on a viewing sphere
originated at the cube center. More specifically, for a center of
empty cube positioned at x ∈ R3, we make it homogeneous in
the form of ti = [x; 1] ∈ R4 and randomly sample 100 directions
to get the camera extrinsics {Kij = [Rj |ti]}100

j=1, each of which
would be used to generate a point cloud PKij

covering a certain
patch of the scene surface. Similar to object scanning, a final point
cloud P is obtained by registering and fusing all the point clouds
obtained by the preceding scanning {Kij ◦ PKij

}i,j . Note that
we do not conduct FPS as object-level synthetic scanning does;
and consequently, the challenge of non-uniform distribution of
points naturally appears here. Since some methods require surface
normals, we compute the oriented normal np for all the point
p ∈ P in the same way as object scanning does. Apart from the
natural challenges of non-uniform distribution and missing points
(due to self-occlusion), we also simulate the other challenges of
point-wise noise, point outliers, and misalignment in the same way
as described in Section 4.1.3. Specifically, following the settings
of Kinect V2 camera, we set σnoise = 0.005m to control the level of
point-wise noise, set aoutlier = 0.01m, boutlier = 0.1m, and the ratio
routlier = 0.4% to control the level of outliers, and set [arotation, brotation]
as [−1.5°, 1.5°] and [atranslation, btranslation] as [−0.015m, 0.015m] to
control the level of misalignment. Such a point cloud P contains
around one million points containing all the five challenges.
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Fig. 3: The pipeline of constructing our synthetic scene-level dataset (cf. Section 4.2 for the details). We collect CAD surface models
of indoor scenes from three datasets, as shown in the left of the figure, and normalize them by centering at the origin in the 3D space.
We partition the 3D space into overlapped cubes, as shown in the right of the figure; some of the cubes contain certain patches of the
scene surface, while others are empty. The camera is positioned at centers of those empty cubes (e.g., the purple and blue cubes); for
each positioned camera, we randomly sample 100 viewpoints for the scanning. We include all the five challenges of practical scanning
into each scanning of the scene surface, whose individual implementations are similar to those for synthetic object scanning.

TABLE 3: Statistics of synthetic data in the benchmark. Elements
in each triple · / · / · represent the hyper-parameters that control the
scanning with three levels of severity; # denotes the number. (cf.
Sections 4.1 and 4.2 for specific meanings of the math notations.)

Object level Scene level
normalization centering+scaling centering
[rmin, rmax] (camera distancing) [2.5, 3.5] [0.75m, 2.1m]
point-wise noise σnoise 0.001/0.003/0.006 0.005m

point outliers [aoutlier, boutlier] [0.01, 0.1] [0.01m, 0.1m]
routlier 0.1%/0.3%/0.6% 0.4%

missing points ϕ [20°, 40°, 60°]/[20°, 40°]/[20°] -
∆ϕ 3°

misalignment [arotation, brotation] [−0.5°, 0.5°]/[−1°, 1°]/[−2°,2°] [−1.5°, 1.5°]
[atranslation, btranslation] [−0.005, 0.005]/[−0.01, 0.01]/[−0.02, 0.02] [−0.015m, 0.015m]

#viewpoints 1000 100/m3

#scanned points
low complexity 80k

middle complexity 120k 1000k
high complexity 160k

#surfaces 1620 50

4.3 The Real-scanned Data

We provide real-scanned data of the benchmark by scanning real
object instances via two depth cameras of varying precisions.
To scan an object, we use SHINING 3D Einscan SE 3 whose
precision is of 100 micrometers to get the input point cloud, and
use SHINING 3D OKIO 5M 4 whose precision is of 5 micrometers
to get the approximate ground-truth.5

Data collection – We collect 20 object instances of varying
surface complexities, including commodities, instruments, and
artwares, and also of varying materials, including metal, plastic,
ceramic, and cloth; this is to ensure that various sensing imper-
fections would appear in the obtained point clouds. Fig. 5 shows
these objects.

Real scanning – In general, better scanning results
could be obtained by increasing the numbers of scanning
shots from multiple viewpoints, as verified in Fig. 4,

3https://www.einscan.com/desktop-3d-scanners/einscan-se/
4https://www.shining3d.com/solutions/optimscan-5m
5Our surface reconstruction evaluation is based on metrics of point set

distances (cf. Section 5.3), for which we obtain the ground-truth point clouds
by sampling from the corresponding surface meshes. We thus choose to
directly use the raw point clouds scanned by SHINING 3D OKIO 5M, instead
of converting the scanned point clouds as surface meshes using its in-built
software.

where the Chamfer Distances (CD, cf. Appendix B
for its definition) decrease with more scan shots.

Fig. 4: The relation between
Chamfer Distance (CD) and
the number of scanning shots.
The ground truth for CD is a
100-shot scan of OKIO 5M.

Since qualities of the scanned point
clouds start to saturate at 40 shots for
Einscan SE and 20 shots for OKIO
5M, we conduct around 40 shots for
Einscan SE and 20 shots for OKIO
5M shots when scanning an object.
After scanning an object, we use
CloudCompare [141] to align different
point clouds obtained from different
shots. Table 4 gives the statistics of our
real-scanned data in the benchmark.
Some scanned pairs from the two
scanners are visualized in Fig. 6.

a b

c d
Fig. 5: An illustration of the objects used in our real-scanned
dataset. The objects are organized by the types of material, where
“a” shows the objects made of plastic, “b” for ceramic, “c” for
cloth, and “d” for metal.
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TABLE 4: Statistics of real-scanned data. # denotes the number.
Einscan SE OKIO 5M

precision 100 micrometers 5 micrometers
professional operators × X
#resolution 1300k 5000k
#viewpoints 30-50 13-35
#scanned points 210k-3000k 330k-2000k
#surfaces 20

#material

metal 4
plastic 9
ceramic 5
cloth 2

E
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Fig. 6: Examples of real-scanned object pairs.

5 Experimental Set-up for Benchmarking Exist-
ing Surface Reconstruction Methods
With the benchmark prepared in Section 4, we aim to empirically
compare existing surface reconstruction methods, and identify
their advantages and disadvantages in different working conditions
(e.g., various scanning imperfections considered in our bench-
mark). We expect such studies would both provide insights for fu-
ture research in this area, and guide the use of appropriate methods
for practical surface reconstruction from point observations. Such
a comprehensive investigation could be timely for the community,
given that a plethora of new methods have been proposed recently,
in particular those based on deep learning.

5.1 Data
We conduct the empirical studies using a subset of our collected
benchmark, while publicly releasing the whole benchmark to
facilitate the community research. More specifically, we randomly
sample 22 synthetic surfaces of object instances, whose distribu-
tion in the three groups of low-, middle-, and high-complexity
is 12 : 6 : 4; as described in Section 4.1, for each instance we
conduct six ways of synthetic scanning, which produce either
a clean point cloud or point clouds with various imperfections,
giving rise to a total of 308 input-output pairs for benchmarking
algorithms. We also use all the 50 synthetic scene surfaces and all
the 20 real-scanned surfaces for the studies. For existing methods
that use learning-based priors, we prepare an auxiliary set of
training data consisting of surfaces from ShapeNet [18] and ABC
[21], and also the remaining synthetic data of object instances from
our benchmark. Specifically, we retrain OccNet [9] and DeepSDF
[8] on the auxiliary set of data; the details are in Appendix C.

5.2 Pre-processing
While existing surface reconstruction methods can be compared
using the data prepared in Section 5.1, for most of them, their
performance could be greatly improved via some standard pipeline
of point cloud pre-processing. In this work, we compare existing
methods both without and with such a pre-processing pipeline. For

synthetic data, the pipeline is in the order of outlier removal, de-
noising, and point re-sampling; details are given as follows. For
real-scanned data, we use the inbuilt pre-processing of different
scanners, and use a final step of FPS to re-sample 200, 000 points
for each point cloud.

Outlier removal – Performance of surface reconstruction de-
grades severely when extreme outliers exist in a point cloud;
fortunately, these outliers are easy to be removed. We use a
statistical method [142] to remove extreme point outliers. For a
point cloud P , it regards any p ∈ P as an outlier and remove
it when p is very far away from its local neighborhood. More
precisely, for any p ∈ P , we first compute the averaged distance
d̄p between p and its k nearest neighbors in P ; we then compute
the mean md̄ and standard deviation σd̄ of such distances for
all {p ∈ P}; a point p is regarded as an outlier when its
corresponding d̄p > 5 · σd̄. We set k = 35 in this work for
outlier removal.

De-noising – The inevitable existence of point-wise noise in-
fluences surface reconstruction as well. For an input point cloud
P , we choose to suppress such noise using Jets smoothing [143],
which smoothes out the point cloud without sacrificing its surface
curvatures. It works by first fitting a parametric surface patch to
a local neighborhood N of k points in P , and then projecting
{p ∈ N} onto the fitted surface patch. We set k = 18 in this
work for point-wise de-noising.

Point re-sampling – Empirical results show that surface recon-
struction benefits from more uniform distribution of points, even
when reducing the number of points contained in P [144]. For the
synthetic data of object or scene surfaces, we simply use farthest
point sampling [106] as the method to re-sample a more uniform
distribution of points; we preserve 40% of original points during
re-sampling.

5.3 Evaluation Metrics
We quantitatively compare reconstruction results from different
methods using the popular metrics of Chamfer Distance (CD)
[145], F-score [146], and Normal Consistency Score (NCS) [9].
Their computations are specified in Appendix B. We also propose
a neural metric, termed Neural Feature Similarity (NFS), focusing
on perceptual consistency between each reconstruction and the
ground-truth; intuitively speaking, NFS compares the similarity of
two shapes in the deep feature space, and thus depends more on the
high-level semantic information consistent with human perception
[147]. We present the details of NFS in Appendix B and compare
it with a classical metric called Light Field Distance (LFD) [148].
Similar to LFD, NFS can capture the coarse-to-fine details of
shapes; different to LFD, NFS can be used to evaluate all the
three types of datasets in the benchmark, while LFD can only be
used for the synthetic object-level surfaces (cf. Appendix B).

CD and F-score are used for measuring the overall similarity
between two shapes; NCS is more useful for measuring the nuance
of two similar shapes by measuring their consistency of surface
normals; NFS measures semantic difference related to human
perception.

5.4 Methods and Implementation Details
In Section 3.5, we have categorized existing methods according to
what geometric priors they have respectively used to regularize the
reconstruction. It is less feasible to study and empirically compare
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all the existing methods; instead, we take the strategy of selecting
representative ones from each method group of geometric priors,
assuming that our studies and conclusions would generalize in
the same groups of existing methods. More specifically, we adopt
the most representative GD [41] and BPA [42] as the methods
to be studied for triangulation-based prior; for priors of surface
smoothness, we adopt SPSR [39] using the first strategy of
surface smoothness (cf. Eq. (10)) and RIMLS [63] using both
two strategies of surface smoothness (cf. Eq. (9) and constraining
Hf ); for modeling priors, we adopt SALD [83] that is able to
reconstruct surfaces from un-oriented point clouds, and IGR [37]
that can do so from oriented ones; for learning-based priors, we
adopt the global, semantic learning methods of OccNet [9] and
DeepSDF [8], and also the local learning methods of LIG [10]
and Points2Surf [89]; we consider three methods that use hybrid
priors, including DSE [123] that combines triangulation-based
prior with learning-based prior, IMLSNet [124] that combines
surface smoothness prior with learning-based prior, and ParseNet
[47] that combines template-based prior with learning-based prior;
we do not consider methods using template-based priors only,
given that their performance largely depends on whether there
would exist a good match between a surface to be reconstructed
and the assumed templates (e.g., the assumed geometric primitives
or the templates that can be retrieved in an auxiliary dataset),
and that even the one with learning-based templates [47] fail to
reconstruct surfaces of certain complexities.

Our implementations of the more classical, learning-free meth-
ods are based on established libraries; for example, we implement
GD using the CGAL library [149], and directly execute BPA
[42], SPSR [39], and RIMLS [63] with proper parameter tunings
in MeshLab [150]. For those learning-based methods, we use
the implementation codes publicly released by the authors when
they are available, again with proper tuning of hyper-parameters
for individual surfaces to be reconstructed. For those without
code releasing, we re-implement their algorithms and tune the
respective hyper-parameters as the optimal ones.

In Section 6, we report and discuss the results that are obtained
with the pre-processing mentioned in Section 5.2. We note that
those without pre-processing are of similar comparative qualities,
and we put them in Appendix F.

6 Main Results
We first summarize our key empirical findings, before presenting
details of our series of experiments; insights are drawn subse-
quently.

• While many challenges of surface reconstruction from
point clouds can be more or less tackled by using different
regularization/priors of surface geometry, the challenges
of misalignment, missing points, and outliers have been
less addressed and remain unsolved.

• Data-driven solutions using deep learning have recently
shown great promise for surface modeling and recon-
struction, including their potential to deal with various
data imperfections, however, our systematic experiments
suggest that they struggle in generalizing to reconstruction
of complex shapes; it is surprising that some classical
methods such as SPSR [39] perform even better in terms
of generalization and robustness.

• Use of surface normals is a key to success of surface
reconstruction from raw, observed point clouds, even when

the normals are estimated less accurately; in many cases,
the reconstruction result improves as long as the interior
and exterior of a surface can be identified in the 3D space.

• There exist inconsistencies between different evaluation
metrics, and in many cases, good quantitative results do
not translate as visually pleasant ones. For example, quan-
titative results measured by CD and F-score are not much
affected by the challenge of misalignment; however, the
reduced scores of NCS and NFS suggest that the recovered
surfaces might be less pleasant to human perception.

Quantitative results of the comparative methods are given in
Tables 5, 6, and 7, which are respectively for synthetic data of
object surfaces, synthetic data of scene surfaces, and real-scanned
data. Qualitative results are presented in the following sections
accompanying our discussions.

6.1 The Remaining Challenges

(a) CD (b) F-score

(c) NCS (d) NFS
Fig. 7: Plotting of quantitative results in Table 5.

For ease of analysis, we plot in Fig. 7 the quantitative results
in Table 5 under the metrics of CD, F-score, NCS, and NFS.
As presented in Section 5.3, the four metrics focus on different
measure perspectives. By diagnosing the comparative methods
using these measures and investigating their capabilities to cope
with different challenges of imperfect scanning, Fig. 7 helps in
identifying the remaining challenges.

Fig. 7 shows that, under all the metrics, the challenge of non-
uniform distribution of points is relatively easy to be tackled by
almost all the methods, except those learning semantics or geomet-
ric primitives (i.e., DeepSDF [8], OccNet [9], and ParseNet [47]),
achieving similar results as those on data of perfect scanning. The
discussion on why some learning-based methods fail to generalize
is given in Section 6.2. For the challenge of point-wise noise,
though the overall shape structures (measured by CD and F-Score)
can be roughly recovered by most of the methods (again, except
some learning-based ones), the reconstructions might be short of
surface details, as verified by the reduced scores of NCS and
NFS, especially for triangulation-based methods such as GD [41],
BPA [42], and the hybrid one of DSE [123] that combines the
triangulation-based prior. This is intuitive since methods based on
triangulation of points rely heavily on cleanness of input points.

There exists a similar but severer phenomenon for the chal-
lenge of misalignment. As indicated by Fig. 7, when measured
by CD and F-score, most of the methods give reasonably good
results, suggesting that the overall shape structures have been
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TABLE 5: Quantitative results on the testing synthetic data of object surfaces. Comparisons are made on data of perfect scanning and
those of all the five challenges of imperfect scanning specified in Section 4.1.3; for those challenges with varying levels of severity, we
use the data of middle-level severity for the comparison (cf. Appendix D for the overall results). Results of the best and second best
methods are highlighted in each column. Comparative methods are also grouped according to what priors of surface geometry they
have used (cf. Section 3 for the grouping and Section 5.4 for how these representative methods are selected).

Prior Method CD (×10−4) ↓ F-score (%) ↑
Perfect

scanning
Non-uniform
distribution

Point-wise
noise

Point
outliers

Missing
points

Mis-
alignment

Perfect
scanning

Non-uniform
distribution

Point-wise
noise

Point
outliers

Missing
points

Mis-
alignment

Triangulation-
based

GD [41] 14.24 14.87 18.20 123.19 64.15 21.15 99.66 99.07 98.91 54.59 87.72 97.41
BPA [42] 14.89 17.13 18.58 14.66 62.55 20.88 98.70 97.02 98.51 99.31 87.85 97.24

Smoothness SPSR [39] 14.47 15.36 16.05 14.71 225.66 17.24 99.59 99.02 99.46 99.65 76.91 99.27
RIMLS [63] 15.73 16.74 17.17 126.40 65.36 21.12 99.27 98.76 99.24 57.78 87.92 97.53

Modeling SALD [83] 15.10 14.96 18.77 53.65 55.63 20.09 99.45 99.10 98.94 88.05 85.78 98.09
IGR [37] 18.40 18.33 18.57 43.60 151.53 20.72 97.54 97.79 97.75 91.11 70.49 96.46

Learning
Semantics

OccNet [9] 201.96 210.80 205.21 225.85 231.65 212.51 31.03 29.90 29.77 23.75 24.52 29.19
DeepSDF [8] 229.18 227.42 230.40 511.36 378.58 232.16 17.79 18.81 17.08 4.15 14.06 17.05

Local
Learning

LIG [10] 23.09 24.03 22.05 115.38 70.98 24.30 96.20 95.32 96.99 76.69 82.43 95.01
Points2Surf [89] 17.18 18.81 18.48 83.91 102.18 20.36 98.14 97.72 97.39 72.94 76.46 96.49
DSE [123] 14.26 15.34 17.89 100.37 68.88 20.06 99.64 98.84 99.17 52.21 87.71 98.20

Hybird IMLSNet [124] 22.56 23.17 22.67 99.95 74.35 23.77 94.82 94.51 94.36 64.55 80.01 94.14
ParseNet [47] 162.94 161.14 135.84 176.38 195.98 136.86 40.52 38.82 44.13 37.21 41.28 46.60

Prior Method NCS (×10−2) ↑ NFS (×10−2) ↑
Perfect

scanning
Non-uniform
distribution

Point-wise
noise

Point
outliers

Missing
points

Mis-
alignment

Perfect
scanning

Non-uniform
distribution

Point-wise
noise

Point
outliers

Missing
points

Mis-
alignment

Triangulation-
based

GD [41] 98.57 98.05 87.58 92.17 95.17 84.96 95.22 95.19 84.63 37.47 82.93 80.69
BPA [42] 98.37 97.89 91.68 98.07 94.42 90.12 94.10 93.60 87.49 93.24 80.36 81.96

Smoothness SPSR [39] 98.58 98.38 97.03 98.56 89.99 96.24 96.38 96.22 94.98 96.31 69.34 94.28
RIMLS [63] 98.19 97.77 95.23 83.42 93.27 92.48 95.01 94.02 92.67 62.01 79.23 87.12

Modeling SALD [83] 98.67 98.52 96.42 95.32 95.19 94.73 96.11 96.65 89.72 51.74 84.01 88.26
IGR [37] 97.62 97.59 97.52 96.47 90.61 97.04 94.71 94.22 94.52 84.63 68.14 92.54

Learning
Semantics

OccNet [9] 79.55 79.30 79.64 78.55 78.43 79.58 47.33 46.55 46.03 42.11 42.46 45.80
DeepSDF [8] 78.65 79.11 77.78 73.40 74.52 78.12 39.94 40.91 39.29 16.65 31.59 39.26

Local
Learning

LIG [10] 96.49 95.79 94.22 91.66 89.56 92.70 91.58 90.66 89.55 66.21 74.98 84.34
Points2Surf [89] 95.24 95.09 94.62 87.87 86.36 94.48 93.45 93.23 92.59 63.30 68.53 91.59
DSE [123] 98.60 97.86 87.79 77.34 94.40 86.20 94.50 94.75 83.53 42.32 79.62 76.63

Hybird IMLSNet [124] 96.13 95.98 96.02 87.45 90.48 95.87 90.61 90.20 89.97 52.82 74.59 89.19
ParseNet [47] 77.71 76.89 80.31 75.46 75.83 80.48 38.54 37.71 49.30 35.98 38.40 45.73

Input PC GT GD [41] BPA [42] SPSR [39] RIMLS [63] SALD [83] IGR [37]

OccNet [9] DeepSDF [8] LIG [10] Points2Surf [89] DSE [123] IMLSNet [124] ParseNet [47] View Direction
Fig. 8: An example of qualitative results from different methods when dealing with the challenge of misalignment.

Input PC GT GD [41] BPA [42] SPSR [39] RIMLS [63] SALD [83] IGR [37]

OccNet [9] DeepSDF [8] LIG [10] Points2Surf [89] DSE [123] IMLSNet [124] ParseNet [47] GT
Fig. 9: An example of qualitative results from different methods when dealing with the challenge of missing points.

Input PC GT GD [41] BPA [42] SPSR [39] RIMLS [63] SALD [83] IGR [37]

OccNet [9] DeepSDF [8] LIG [10] Points2Surf [89] DSE [123] IMLSNet [124] ParseNet [47] GT
Fig. 10: An example of qualitative results from different methods when dealing with the challenge of point outliers.
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OccNet [9] DeepSDF [8] LIG [10] Points2Surf [89] DSE [123] IMLSNet [124] ParseNet [47] GT
Fig. 11: Qualitative results respectively from optimization-based, learning-free methods and learning-based, data-driven methods on the
testing synthetic data of scene surfaces. The scene is a bedroom instance from the 3D-FRONT [25].
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TABLE 6: Quantitative results on the testing synthetic data of
scene surfaces. Results of the best and second best methods are
highlighted in each column. Comparative methods are grouped
according to what priors of surface geometry they have used (cf.
Section 3 for the grouping and Section 5.4 for how these repre-
sentative methods are selected). “-” indicates the method cannot
produce reasonable results due to their limited generalization.

Prior Method
CD

(×10−3) ↓
F-score
(%) ↑

NCS
(×10−2) ↑

NFS
(×10−2) ↑

Triangulation-
based

GD [41] 51.54 58.89 57.81 37.74
BPA [42] 77.97 33.36 54.41 33.28

Smoothness SPSR [39] 49.46 64.41 74.23 47.82
RIMLS [63] 67.46 53.61 58.16 27.37

Modeling SALD [83] 50.42 61.14 86.47 45.98
IGR [37] 50.06 62.67 84.36 46.31

Learning
Semantics

OccNet [9] 108.29 29.16 79.48 35.08
DeepSDF [8] - - - -

Local
Learning

LIG [10] 69.38 57.57 79.24 43.92
Points2Surf [89] 66.22 56.27 75.53 45.64
DSE [123] 51.72 57.49 55.44 37.64

Hybird IMLSNet [124] 59.95 59.88 80.80 44.86
ParseNet [47] - - - -

TABLE 7: Quantitative results on the real-scanned data. Results of
the best and second best methods are highlighted in each column.
Comparative methods are grouped according to what priors of
surface geometry they have used (cf. Section 3 for the grouping
and Section 5.4 for how these representative methods are selected).

Prior Method
CD

(×10−2) ↓
F-score
(%) ↑

NCS
(×10−2) ↑

NFS
(×10−2) ↑

Triangulation-
based

GD [41] 31.72 87.51 88.86 82.20
BPA [42] 40.37 80.95 87.56 68.69

Smoothness SPSR [39] 31.05 87.74 94.94 89.38
RIMLS [63] 32.80 87.05 91.97 85.19

Modeling SALD [83] 31.13 87.72 94.68 86.86
IGR [37] 32.70 87.18 95.99 89.10

Learning
Semantics

OccNet [9] 232.71 17.11 80.96 39.70
DeepSDF [8] 263.92 19.83 77.95 40.95

Local
Learning

LIG [10] 48.75 83.76 92.57 81.48
Points2Surf [89] 48.93 80.89 89.52 81.83
DSE [123] 32.16 86.88 87.20 76.81

Hybird IMLSNet [124] 38.46 82.44 93.31 85.30
ParseNet [47] 149.96 38.92 81.51 45.67

recovered. However, the reduced scores of NCS and NFS suggest
that some of the recovered surfaces might be less pleasant to
human perception. In fact, as shown by the example in Fig. 8, most
methods fail in reconstructing the surface on the misaligned areas,
generating thickened or even multiple layers of the local surface.
Misalignment is a practical issue in 3D scanning, especially when
using hand-held, consumer scanners. Fig. 7 and Fig. 8 show
that methods using smoothness and/or modeling priors have the
advantage in handling misalignment.

Fig. 7 also shows that the two challenges of missing points
and point outliers are much more difficult to be handled. When
an input point cloud has missing points, as shown in Fig. 9, most
of the methods ignore reconstruction of the missing surface areas,
resulting in incomplete surfaces. The implicit methods (e.g., IGR
[37], OccNet [9], and Points2Surf [89]) tend to generate watertight
surfaces by filling the holes with concave/convex hulls; however,
such envelopes may not represent the surface correctly, possibly
making the reconstruction even poorer under all the evaluation
metrics (cf. Fig. 7).

As for point outliers, although a pre-processing step of outlier
removal has already been adopted for all the comparative methods
(cf. Section 5.2), performance of different methods still varies
drastically. Fig. 10 gives an example; the results depend on
whether the respective methods have their inbuilt mechanisms of
outlier removal. For example, BPA [42] requires the sizes of its
triangular faces to satisfy certain conditions, making it naturally
suitable for handling outliers; methods using a global implicit field
(e.g., SPSR [39] and IGR [37]) ignore the outliers implicitly, and
are thus capable of handling point outliers as well.

Summarizing the above analyses gives us the following em-
pirical findings: (1) the challenge of missing points remains
unsolved by all the comparative methods; (2) for the challenges

of misalignment and point outliers, most of the methods (except
few ones such as SPSR [39]) give unsatisfactory results; (3) there
exist inconsistencies between different evaluation metrics, and in
many cases, good quantitative results do not translate as visually
pleasant ones; (4) methods that learn semantics or pre-defined
shape patterns may fail to generalize even on clean data of perfect
scanning, when the testing point clouds do not fall in the learned
data domains; we will discuss more on this issue shortly.

6.2 Optimization-based, Learning-free Methods Versus
Learning-based, Data-driven Ones

In this section, we investigate the behaviors of comparative meth-
ods by organizing them into two groups of optimization-based,
learning-free methods and learning-based, data-driven ones. The
former group includes SPSR [39], RIMLS [63], SALD [83], IGR
[37], and we also include GD [41] and BPA [42] into the group
for a complete coverage of the studied methods; the latter group
includes OccNet [9], DeepSDF [8], LIG [10], Points2Surf [89],
DSE [123], IMLSNet [124], and ParseNet [47]. By doing so,
we aim to investigate how the two groups perform in terms of
generalizing to complex shapes, where we pay special attention
to methods of global, semantic learning (i.e., OccNet [9] and
DeepSDF [8]) whose advantages may only be manifested when
the categories of object surfaces exist in the auxiliary training
set. Note that our testing data of synthetic object surfaces include
22 randomly selected objects, as described in Section 5.1, which
contain both those belonging to popular semantic categories (e.g.,
chair) and those without clearly defined semantics; for the former
case, our auxiliary training set contains rich shape instances of
same categories from ShapeNet [18]. In this section, we also
study robustness of the two groups of methods against imperfect
scanning at varying levels of severity.

Quantitative results in Table 8 show that on reconstruction
of synthetic object surfaces, optimization-based, learning-free
methods generalize better under different evaluation metrics, since
our testing shapes contain both semantic ones and non-semantic,
complex ones; we have consistent observations from examples in
Fig. 12 — while learning-based, data-driven methods are good at
reconstructing an chair surface, they fail in generalizing to non-
semantic shapes. Table 8 also shows that learning-based methods
are good in terms of robustness against higher levels of data
imperfections. This suggests that learning-based methods perform
better when the input provides less information, e.g., when the
input cloud of points is getting sparser, as discussed in [11].
We observe similar phenomena on reconstruction of real-scanned
data (cf. Appendix G for more details), by re-organizing Table 7
according to the two method groups.

To further investigate the behaviors of learning from aux-
iliary data, we conduct experiments of synthetic scene surface
reconstruction. Results in Table 6 (after re-organization of method
groups) and Fig. 11 show that among the learning-based methods,
LIG [10], Points2Surf [89] and IMLSNet [124] are capable of
handling reconstruction of scene-level surfaces via local modeling
and aggregation, while semantic learning methods of OccNet and
DeepSDF fail, as expected.

We summarize the above analyses as follows: (1) learning-
based, data-driven methods are able to reconstruct object surfaces
when the training set contains object instances of the same seman-
tic categories, and they show a certain degree of robustness against
data imperfections; however, these methods fail to generalize
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TABLE 8: Comparison between optimization-based, learning-free methods and learning-based, data-driven methods on the testing
synthetic data of object surfaces. We report quantitative results for the imperfect scanning of point-wise noise at three levels of severity;
results are in the format of “· / · / ·”, where the most left one is the absolute value under each evaluation metric, and the right two ones
are those relative to the most left one. The best and second best methods are highlighted in each column.

Algorithms Priors CD (×10−4) ↓ F-score (%) ↑ NCS (×10−2) ↑ NFS (×10−2) ↑
low- /middle- / high-

level low- /middle- / high-
level low- /middle- / high-

level low- /middle- / high-
level

GD [41]

learning-
free

16.52 / 1.68 / 13.21 99.09 / -0.18 / -7.44 94.00 / -6.42 / -25.68 91.57 / -6.94 / -35.27
BPA [42] 16.59 / 1.99 / 12.71 98.63 / -0.12 / -9.04 95.36 / -3.68 / -17.39 90.71 / -3.22 / -25.56
SPSR [39] 15.50 / 0.55 / 2.66 99.51 / -0.05 / -0.35 97.84 / -0.81 / -3.95 95.60 / -0.62 / -3.61
RIMLS [63] 16.13 / 1.04 / 9.75 99.36 / -0.12 / -4.67 97.36 / -2.13 / -11.23 94.19 / -1.52 / -14.43
SALD [83] 15.33 / 3.44 / 12.26 99.54 / -0.60 / -7.06 98.07 / -1.65 / -9.16 95.66 / -5.94 / -28.48
IGR [37] 18.21 / 0.36 / 0.99 97.87 / -0.12 / -0.35 97.64 / -0.12 / -0.54 94.37 / 0.15 / -0.70
OccNet [9]

learning-
based

209.04 / -3.83 / 0.97 29.85 / -0.08 / -1.93 79.43 / 0.21 / -0.38 46.17 / -0.14 / -1.13
DeepSDF [8] 241.28 / -10.88 / -1.65 16.70 / 0.38 / -0.71 78.01 / -0.23 / 0.51 38.55 / 0.74 / 0.15
LIG [10] 23.96 / -1.91 / 2.31 94.50 / 2.49 / -0.70 93.96 / 0.26 / -5.70 86.71 / 2.84 / -5.68
Points2Surf [89] 17.74 / 0.74 / 4.89 98.02 / -0.63 / -3.81 94.97 / -0.35 / -1.53 92.83 / -0.24 / -2.62
DSE [123] 16.07 / 1.82 / 11.54 99.40 / -0.23 / -6.65 94.43 / -6.64 / -23.04 90.05 / -6.52 / -32.97
IMLSNet [124] 22.64 / 0.03 / 1.09 94.41 / -0.05 / -0.01 96.08 / -0.06 / -0.46 90.13 / -0.16 / -0.47
ParseNet [47] 154.11 / -18.27 / -14.14 44.80 / -0.67 / -2.14 78.55 / 1.76 / 2.60 46.21 / 3.09 / 2.79
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OccNet [9] DeepSDF [8] LIG [10] Points2Surf [89] DSE [123] IMLSNet [124] ParseNet [47] GT
Fig. 12: Qualitative results respectively from optimization-based, learning-free methods and learning-based, data-driven methods on the
testing synthetic data of object surfaces. The input point clouds have imperfect scanning of point-wise noise. The example of chair is
of popular semantic categories, for which our auxiliary training set contains rich instances of the same category from ShapeNet [18];
the other one is non-semantic.

when the condition is not satisfied; (2) for reconstruction of scene-
level surfaces, local learning methods succeed by local model-
ing and aggregation, and in contrast, global, semantic learning
methods fail to do so; (3) some optimization-based, learning-free
methods (e.g., SPSR [39]) perform surprisingly well in robustness
and generalization for both object-level and scene-level surfaces.

TABLE 9: Comparison on testing synthetic data of object surfaces
among methods without using surface normals (×), methods using
surfaces normals (X), and methods using surface normals only
during learning (∗). We report quantitative results for the imperfect
scanning of point-wise noise at the middle level of severity; results
are in the format of “· / ·”, where the left one is obtained assuming
the availability of ground-truth camera poses, and the right one
is obtained without knowing the camera poses. The best and
second best methods are highlighted in each column.

Algorithms Normals CD (×10−4) ↓ F-score (%) ↑ NCS (×10−2) ↑ NFS (×10−2) ↑
GD [41]

×
18.20 / 98.91 / 87.58 / 84.63 /

SALD [83] 18.77 / 98.94 / 96.42 / 89.72 /
DSE [123] 17.89 / 99.17 / 87.79 / 83.53 /
BPA [42]

X

18.58 / 18.61 98.51 / 98.56 91.68 / 91.79 87.49 / 85.08
SPSR [39] 16.05 / 60.42 99.46 / 91.45 97.03 / 94.68 94.98 / 84.34
RIMLS [63] 17.17 / 18.58 99.24 / 97.47 95.23 / 94.06 92.67 / 86.63
IGR [37] 18.57 / 262.40 97.75 / 85.98 97.52 / 95.28 94.52 / 79.61
OccNet [9] 205.21 / 214.12 29.77 / 28.83 79.64 / 79.01 46.03 / 45.12
DeepSDF [8] 230.40 / 569.41 17.08 / 15.64 77.78 / 77.09 39.29 / 33.78
LIG [10] 22.05 / 34.78 96.99 / 89.60 94.22 / 91.36 89.55 / 80.02
ParseNet [47] 135.84 / 197.28 44.13 / 35.67 80.31 / 76.19 49.30 / 41.65
Points2Surf [89] ∗ 18.48 / 97.39 / 94.62 / 92.59 /
IMLSNet [124] 22.67 / 94.36 / 96.02 / 89.97 /

6.3 The Importance of Orientations of Surface Normals

Some of our studied methods compute surface normals from
observed point clouds, and use the computed normals for surface
reconstruction, including BPA [42], SPSR [39], RIMLS [63], IGR
[37], OccNet [9], DeepSDF [8], LIG [10], and ParseNet [47];
a few other methods (e.g., Points2Surf [89] and IMLSNet [124])
compute surface normals on training data, and then train models to
estimate surface normals when reconstructing testing surfaces. To
investigate how these methods benefit from surface normal com-
putation/estimation, we conduct experiments on our testing data
with scanning imperfections, since robustness of these methods
would be tested when less accurate surface normals are computed
from imperfectly scanned data. Assume that the relative pose of a
camera w.r.t. an observed point cloud is given; for any observed
point, we compute its oriented surface normal by performing
PCA on its local neighborhood of points (cf. Section 4.1.3 for
the details); as such, the computed surface normals may not be
precise but their inward or outward orientations must be correct.

Table 9 gives the quantitative results for synthetic data of
object surfaces; under different evaluation metrics, the additional
computation or estimation of surface normals does help in im-
proving surface reconstruction. When the relative pose of camera
w.r.t. observed surface points is not available, the computed
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surface normals would be wrongly oriented at some local sur-
face neighborhoods, since principal directions of PCA on local
neighborhoods of noisy points are less reliable. To investigate the
importance of inward or outward orientations of surface normals,
we also report experiments in Table 9 where each result on the
right of the “/” symbol is obtained without knowing the relative
camera poses; compared with results on the left side of “/” that are
obtained assuming the ground-truth camera poses, results on the
right side drops drastically. We also conduct experiments on our
synthetic data of scene surfaces and real-scanned data, and observe
similar phenomena; these results are presented in Appendix E.

We have the following empirical findings based on the above
analyses: (1) computation or estimation of oriented surface nor-
mals help in surface reconstruction from point clouds; (2) com-
pared with precisions of surface normals, it is more important to
have the correct inward or outward orientations of surface normals.

7 Conclusion
In this paper, we have reviewed both the classical and the more re-
cent deep learning-based methods for surface reconstruction from
point clouds; we have organized our reviews by categorizing these
methods according to what priors of surface geometry they had
used to regularize their solutions. To better understand the respec-
tive strengths and limitations of existing methods, we contribute a
large-scale benchmarking dataset consisting of both synthetic and
real-scanned data, which provides various sensing imperfections
that are commonly encountered in practical 3D scanning. We
conduct thorough empirical studies on the constructed benchmark,
evaluating the robustness and generalization of different methods.
Our studies help identify the remaining challenges faced by
existing methods, and we expect that our studies would be useful
for guiding the directions in future research.
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