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Abstract
Wireless federated learning (FL), which allows 

edge devices to perform local deep/machine 
learning (DL/ML) training and further aggregates 
the locally trained models from them via radio 
channels, establishes a promising framework for 
enabling various DL/ML-based services in future 
B5G/6G networks. Despite respecting the data 
privacy, periodically performing the local model 
training is not friendly to energy-constrained edge 
devices and degrades the sustainability and per-
formance of FL services. In this article, motivated 
by the advanced simultaneous wireless informa-
tion and power transfer (SWIPT), we propose a 
framework of SWIPT-empowered wireless FL that 
can provide over-the-air wireless power transfer in 
parallel with the transmission of global/local mod-
els. We present the key approaches of leveraging 
SWIPT for FL with their advantages illustrated. The 
practical challenging issues in reaping the bene-
fits of integrating SWIPT are then discussed and 
we also provide the potential solutions to address 
these issues. A representative case study of FL via 
SWIPT is presented to validate the advantages of 
exploiting SWIPT. To this end, we present a joint 
design of SWIPT policy and the client-schedul-
ing for FL, which is firstly formulated as a finite 
horizon dynamic optimization problem and then 
is solved by an actor-critic-based deep reinforce-
ment learning algorithm. We finally articulate 
some potential open future directions regarding 
the SWIPT-empowered wireless FL.

Introduction
With the deep penetration of advanced B5G/6G 
cellular systems into all sectors of human soci-
ety, the past decades have witnessed an explosive 
growth of machine learning (ML) and deep learn-
ing (DL)-based services and applications, e.g., 
autonomous driving, edge computing, virtual/
augmented reality, etc. [1]. Thanks to the rapidly 
growing capacity of wireless devices with increas-
ing computational and storage resources, the 
framework of distributed learning has become 
a promising solution to enable emerging ML/
DL-assisted services in wireless edge networks. 

In particular, federated learning (FL), as a key par-
adigm for enabling the distributed ML/DL while 
respecting the privacy of users’ local data, has 
attracted lots of interests from both academia and 
industries. Different from the conventional cen-
tralized training schemes requiring the collection 
of users’ local data, FL allows a group of wireless 
devices to train their respective local models and 
further collects those locally trained models for 
aggregation, which thus improves the privacy of 
users’ local data. As such, there has been a grow-
ing interest in the study of various wireless FL 
paradigms and the corresponding applications 
[2], [3], [4], [5].

Despite its potential benefits, FL requires its 
client devices (e.g., wireless edge devices) to peri-
odically perform local training and further upload 
the computed local models to the FL server via 
radio transmission. These periodic operations 
are generally energy-consuming and shorten 
the lifetimes of the client devices which are 
usually energy-limited. For instance, under wild 
environments without a reliable energy supply, the 
batteries of smart Internet-of-Things (IoT) terminals 
would be quickly exhausted when participating in 
FL, which not only impairs the sustainability of FL 
services, but also degrades the accuracy of the 
collective training. Thus, how to balance between 
the energy consumption of wireless FL and its per-
formance (e.g., convergence accuracy) is with 
the utmost importance. As a remedy, much effort 
has been devoted to optimizing the energy effi-
ciency of wireless FL from different perspectives, 
including resource allocation, FL parameter-config-
uration, and client-scheduling policy, e.g., [6], [7], 
[8], [9]. Viewing the growing maturity of the tech-
nology of wireless power transfer, several recent 
studies have focused on improving the energy 
availability for FL clients by utilizing the technique 
of wireless power transfer [10], [11], [12].

Motivated by the recent advances in trans-
ferring power in parallel with wireless data 
transmission, in this article, we advocate the 
application of simultaneous wireless information 
and power transfer (SWIPT) to facilitate FL [13], 
in which the radio transmission between the FL 
server and clients is utilized for the dual use of 
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delivering the global/local ML model and trans-
ferring power simultaneously. For instance, the 
FL server can send the global model to the client 
devices and meanwhile transfer wireless power 
to them via SWIPT. As such, the client devices 
can exploit the harvested energy to perform their 
following local model training and uploading. 
This approach not only improves the efficiency 
in utilizing the radio channels, but also effectively 
increases the client devices’ available energy and 
enhances their capabilities of local training and 
uploading the trained models to the FL server. 
Moreover, the recent advances in leveraging ultra-
high spectrums, e.g., the visible light and laser, for 
wireless data transmission can also be exploited 
to enable SWIPT for FL, especially in the indoor 
environment [14].

Leveraging SWIPT for FL, however, necessitates 
a careful design of wireless charging management 
and the corresponding allocation of computa-
tion/communication resources. For instance, the 
client device’s central processing unit (CPU) fre-
quency for local model training would influence 
its energy consumption that plays a key role in 
determining the optimal wireless charging policy 
in SWIPT networks. Although adopting a longer 
wireless charging duration enables the devices to 
harvest more energy to facilitate their operations, 
it would incur a longer time-overhead for perform-
ing SWIPT and thus might adversely influence the 
FL convergence latency. Therefore, it is an open 
research direction on how to reap the benefit of 
SWIPT for FL while accounting for its consequent 
influence. Our detailed contributions in this article 
can be summarized as follows.
•	 We illustrate several key paradigms of lever-

aging SWIPT that provide over-the-air wire-
less power transfer concurrently with the 
transmission of global/local models in FL, 
depending on the receivers/sources of the 
transferred energy. The potential advantag-
es of utilizing SWIPT are summarized with 
various promising application scenarios 
presented.

•	 We discuss several challenging issues in 
achieving the benefits of SWIPT, including 
the time-overhead, the efficiency of wireless 
power transfer, the reliability of the harvest-
ed energy, and the incentive for providing 
SWIPT. We also provide the corresponding 
potential solutions. Open research direc-
tions in exploiting SWIPT for wireless FL are 
also discussed.

•	 A case study of leveraging SWIPT for the 
FL service is presented to demonstrate its 
advantages in terms of enhancing the over-
all training accuracy with a sustainable 
energy supply. To this end, we present joint 
optimization of the SWIPT charging poli-
cy and the client-scheduling for FL, which is 
firstly formulated as a finite horizon dynamic 
optimization problem and then is solved by 
the actor-critic-based deep reinforcement 
learning. Numerical results are presented to 
validate the performance of the SWIPT-aid-
ed FL.
The remainder of this article is organized as 

follows. We present the key approaches for lever-
aging SWIPT for FL in Section II. We then discuss 
the technical challenges in reaping the benefits of 

SWIPT-empowered FL and their possible solutions 
in Section III. A case study of the FL empowered 
by SWIPT is presented in Section IV, and the open 
research directions are discussed in Section V. We 
conclude this work in Section VI.

Key Approaches for SWIPT-Enabled FL
Thanks to the dual use of the information carrier 
for wireless power transfer, SWIPT can be uti-
lized for wireless FL when delivering the global/
local models between the FL server and the client 
devices. Depending on different receivers/sources 
of the transferred energy, we consider the follow-
ing important paradigms to exploit SWIPT for FL.
•	 (Transferring Power to the FL Clients): As 

shown in Fig. 1a, transferring power direct-
ly to the FL clients is the most appealing 
scenario, since the clients (e.g., wireless 
terminals) are usually energy-constrained 
due to the limited battery capacities. By per-
forming the dual-role of the global model 
aggregation and downlink power transfer, 
the FL server can exploit SWIPT to simulta-
neously send the global model to the clients 
and transfer energy to them. Meanwhile, the 
FL clients can adopt the power-splitting or 
time-switching approach [13] to receive the 
global model data and meanwhile harvest 
energy for supporting its operations, e.g., 
the local model training and uploading.

•	 (Transferring Power to the FL Server in an 
Infrastructureless Network): In the scenarios 
of infrastructure-less networks, the FL server 
itself might also be energy-constrained. For 
instance, as shown in Fig. 1b, an unmanned 
aerial vehicle (UAV) serves as an ad-hoc FL 
server that coordinates two ground stations 
as the FL clients for performing the collec-
tive surveillance services. In this scenario, 
the FL clients with a reliable energy supply 
can adopt SWIPT to actively transfer energy 
to the FL server when they are uploading 
the local models wirelessly.

•	 (Dedicated Fixed/Mobile Third-Party Char-
gers for Transferring Power): Transferring 
wireless power via a long-distance radio 
propagation may suffer from a non-negligible 
attenuation. To address this issue, some ded-
icated fixed (or mobile) third-party power 
charging stations can be placed close to 
the FL clients for enhancing the charging 
efficiency. As shown in Fig. 1c, a dedicat-
ed wireless charging station is placed at the 
edge of the cell. Being synchronized with 
the BS, the dedicated charging station can 
collaborate with the BS (e.g., by forming a 
non-orthogonal multiple access (NOMA) 
transmission group with the BS), to transfer 
wireless energy to the client devices when 
the BS sends the global model to them.
Introducing SWIPT effectively increases the 

energy capacities of the FL server/clients and 
thus potentially enhances the performance of FL. 
On one hand, SWIPT can prolong the lifetime 
of the energy-constrained client devices. Thus, 

Introducing SWIPT effectively increases the energy capacities of the FL server/clients and thus 
potentially enhances the performance of FL.
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more client devices would be available to pro-
vide their heterogeneously featured local models, 
which is beneficial to improve the accuracy of the 
aggregated global model in FL [9]. On the other 
hand, the enhanced energy capacities via SWIPT 
also grant the FL server and clients to achieve a 
higher flexibility in adapting their operations (e.g., 
overclocking the CPU frequency for faster com-
putation in training and transmitting with a higher 
power for sending the models), which in turn 
helps speed up the global/local models training 
and transmission. The above advantages of SWIPT 
are appealing to numerous wireless FL services, 
especially for the infrastructure-less networks 
without a reliable on-grid power supply. Some 
exemplified applications are as follows.
•	 (Air-Ground Integrated Networks): As shown 

in Fig. 2a,1 in the integrated air-ground net-
works, several UAVs are deployed as the 
edge agents to collect the environmental 
information and conduct the local training 
distributively. These locally trained models 
are then sent back to the ground base sta-
tion (BS) for aggregation. Considering the 
UAVs’ limited battery capacities, the ground 
BS can exploit SWIPT to simultaneously send 
the global model to the UAVs and transfer 
energy to them for prolonging their lifetimes.

•	 (Maritime Networks): As shown in Fig. 2b, in 
maritime networks, a group of surface ves-
sels are deployed as the agents to conduct 
environmental sensing and analysis, while 
a UAV can be deployed as the FL server 
for model aggregation. In particular, when 
being close to the surface vessels, the UAV 
can be charged by the vessels via SWIPT in 
parallel with the vessels’ uploading of their 
local models.

•	 (IoT Devices): The limited energy capacity 
of massive IoT devices has become a bot-
tleneck for performing ML-based tasks and 
services. Thanks to SWIPT, the indoor wire-
less access point can play as a charger that 
transfers wireless power to nearby IoT devic-
es when sending the updated global model 
to them, as shown in Fig. 2c.

Challenges and Potential Solutions
Despite the benefits of introducing SWIPT for 
wireless FL, there are several challenging issues 
when exploiting SWIPT, which are illustrated as 
follows.
•	 (Time-Overhead for SWIPT): Performing 

SWITP consumes a certain duration of 
time-overhead, which, if without a proper 
control, may adversely impair the FL perfor-
mance (e.g., a longer latency). For instance, 
although using a long SWIPT-duration to 
charge the client devices can enable them 
to harvest more energy, this directly increas-
es the latency of the single-round FL iter-
ation. To address this issue, it is crucial to 
investigate a proper management of the 
time-duration for performing SWIPT such 
that i) the successful transmission of the 
global/loal can be guaranteed, and that ii) 
a sufficient amount of wireless energy can 
be delivered to accommodate the required 
operations of the FL server/clients, while 
taking into account for the time-overhead 
incurred by performing SWIPT.

•	 (Efficiency of Power Transfer): To improve 
the accuracy of distributed learning, more 
clients with heterogeneously featured local 
data are encouraged to contribute their 
local models. However, charging the clients 
might be costly especially when those cli-
ents suffer from a poor radio channel con-
dition, leading to a unsatisfactory efficiency 
in transferring power. Therefore, how to 
improve the efficiency of SWIPT (e.g., by 
opportunistically charging those FL clients 
with favorable channel conditions) while 
improving the overall FL performance is 
important.

•	 (Intermittency of Harvested Energy): Due 
to the open nature of radio channels, the 
channel condition between the FL server 
and client devices are time-varying, leading 
to the fluctuation in the harvested energy 
via SWIPT. The unstable energy availability 
adversely impairs the FL performance, e.g., 

FIGURE 1. Three paradigms of leveraging wireless power transfer. a) Charging for the FL clients. b) Charging for the ad-hoc FL server.  
c) Dedicated/mobile third-party wireless charger.

1 In this article, we aim at 
demonstrating a wide variety 
of typical yet presentative 
paradigms of leveraging 
SWIPT for FL, e.g., those 
related but with different 
providers of wireless energy 
in Figs. 1b and 2a.
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a temporary degraded local training accu-
racy due to a shortage of harvested energy 
at the FL clients. This also leads to a major 
concern.

•	 (Incentive for Transferring Energy): Exploit-
ing SWIPT to charge the client devices may 
substantially increase the FL server’s ener-
gy consumption, which incurs additional 
economic cost. However, in practice, the 
FL server and the client devices might be 
self-interested. Thus, it is crucial to inves-
tigate how to motivate the FL server to 
transfer energy to the client devices in a 
self-incentive manner.
To address the aforementioned challenges, the 

following possible solutions are envisioned.
•	 (Joint Optimization of SWIPT and FL Config-

uration): A proper SWIPT duration should 
be designed such that the FL clients can 
collect sufficient energy while receiving 
the model data successfully. Moreover, to 
address the time-overhead when invoking 
SWIPT, a joint optimization of the SWIPT 
policy and FL iteration is necessary. Spe-
cifically, the designed SWIPT policy (i.e., 
the charging duration and the power/time 
splitting) should accommodate different cli-
ents’ needs for local model training (which 
depends on their settings of CPU frequen-
cy and training accuracy) and uploading 
transmissions (which depend on the clients’ 
transmit-powers, transmit-duration, and 
other hardware features such as radio fre-
quency front-end). Thus, taking the overall 
FL performance, e.g., the convergence laten-
cy, into consideration, a joint optimization 
of the SWIPT policy, the FL configuration, 
and the radio/computing resource alloca-
tion can be utilized.

•	 (Opportunistic Scheduling and Trajecto-
ry Optimization): Client selection plays an 
important role in improving the training 
accuracy while accounting for the limited 
radio/computing resources at the wireless 
edge. Opportunistic scheduling of the cli-
ents, which jointly considers the time-vary-
ing channel conditions as well as different 
clients’ features of local models and remain-
ing energy levels, provides a promising 
approach to improve the efficiency of wire-
less power transfer while ensuring the FL 
performance. In some application scenarios, 

the FL clients (e.g., UAVs and vehicles) 
could be moving according to a prescribed 
trajectory. Exploiting this feature, SWIPT can 
be invoked when the FL clients and server 
are close to each other, which thus effec-
tively mitigates the energy transfer loss via 
radio channel. For instance, for the vehicle 
networks, the SWIPT can be invoked when 
the vehicles (as the FL clients) are close to 
the road side unit (as the FL server) with-
in a certain range. Moreover, to further 
reap the benefit of short-distance wireless 
charging, we can optimize the trajectory 
of a client device such that it can move a 
favorable location to harvest energy from 
the FL server with a good efficiency of wire-
less charging, while accounting for the cor-
responding cost (e.g., latency and energy 
consumption) for movement.

•	 (Stochastic Optimization for Energy Manage-
ment): The time-varying channel conditions 
may result in some uncertainty in the total 
harvested energy via SWIPT. To address this 
issue, the technique of stochastic optimiza- 
tion can be utilized for modeling and opti-
mizing the energy management of the FL 
server and clients by accounting for the sto-
chastic/unreliable feature of radio channels. 
Moreover, with the optimal policy produced 
by the stochastic optimization, the FL cli-
ents can further adapt their following opera-
tions (e.g., the CPU frequency for their local 
model training and the transmit power for 
the model uploading) according to the fluc-
tuated time-varying channel conditions.

•	 (Incentive Mechanism for Wireless Power 
Transfer): Using SWIPT to provide wireless 
power to the client devices increases the 
FL server’s own energy consumption cost. 
A proper design of incentive mechanism is 
necessitated such that the FL server is will-
ing to provide the wireless power transfer in 
a self-incentive manner. Specifically, the FL 
server can ask for the clients’ payments to 
compensate for its own energy consump-
tion cost for wireless charging. Meanwhile, 
the client devices can also benefit from 
achieving an improved FL performance 
while paying for the required charges by 
the FL server. Several techniques (e.g., the 
pricing game and contract theory) can be 
utilized for modeling and analyzing the 

FIGURE 2. Typical applications of leveraging SWIPT for FL. a) Air-ground integrated networks. b) Maritime networks. c) Smart IoT 
devices.
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above incentive mechanism design, with 
the goal of achieving the multi-party win-
win solution such that the FL server and 
the client devices can simultaneously bene-
fit from the collaborative power transfer via 
SWIPT [15].

Case Study of Joint Optimization of SWIPT and 
Client-Scheduling

We present a case study to demonstrate the 
advantages of SWIPT-aided FL, by proposing a 
joint optimization of the SWIPT charging pol-
icy and client-scheduling. Specifically, as shown 
in Fig. 3, a group of client devices (denoted by 
I = {1, …, i, …, I}) perform local model training 
under the coordination of a FL server. In the t-th 
round of the FL iterations, the following opera-
tions are performed.
•	 (Stage-I): The FL server exploits SWIPT to 

simultaneously send the updated global 
model to all the client devices and transfer 
energy to them with a transmit power PB(t) 
for a duration of TSWIPT. At the client side, 
each device i adopts the power-splitting of 
βi(t) to receive the global model and the rest 
ratio (i.e., 1 – βi(t)) of the received power 
for charging its battery, and we assume that 
each device has a limited battery capacity.

•	 (Stage-II): After being wirelessly charged, 
each device utilizes its energy supply from 
its battery to perform the local modeling 
training and uploading (if it is selected). We 
adopt the similar model as [8] for measur-
ing each device’s energy consumption for 
its local model training as well as the data 
transmission and reception. To improve the 

training efficiency, we consider a dynam-
ic scheduling of the devices to participate 
in the t-round iteration. Depending on the 
current system state (which we will spec-
ify soon), a subgroup of the devices are 
selected to conduct the local training and 
upload the trained models to the FL server. 
We adopt variable αi(t) = 1 to denote that 
device i is selected in the t-th round, and 
αi(t) = 0 otherwise. Notice that supposing 
αi(t) = 1, device i’s available energy after 
being charged by SWIPT should be suffi-
cient to accommodate its energy consump-
tion for the local training (which depends 
on its internal CPU-frequency setting) as 
well as that for uploading the local model to 
the FL server. Otherwise, device i cannot be 
selected to perform the local training.

•	 (Stage-III): After the FL server collects the 
local models from the selected devices at 
the t-th round iteration, the FL server then 
performs the model aggregation and eval-
uates the current value of the loss function.
In general, to minimize the training loss, we 

prefer to selecting as many client devices as pos-
sible to participate the local model training and 
uploading. However, selecting exceeding num-
bers of devices in each round of the FL iteration 
would incur a significant energy consumption of 
the FL server to charge them via SWIPT. Thus, 
our objective is to minimize a system-wise cost 
function that is a weighted sum of the average 
energy consumption of the FL server and the 
global training loss after executing T rounds of 
the global iterations (with the two weights pre-
set to balance the FL training accuracy and the 
corresponding energy consumption). Specifically, 

FIGURE 3. A case study of SWIPT-aided FL in which the FL server adopts SWIPT for charging the client 
devices. As an illustrative example, device 2 and device 3 are selected to perform local model training 
and uploading at the t-th round of the FL iteration.
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in each round of FL iteration, the FL server’s 
energy consumption includes two parts, namely, 
i) its energy consumption for performing SWIPT 
and ii) its energy consumption to aggregate the 
local models from the FL clients. In particular, it is 
noticed that the FL server’s energy consumption 
for SWIPT also covers all FL clients’ consequent 
energy usages, since the clients harvest energy 
from SWIPT and further use the harvested 
energy to perform their respective local model-
ing training and transmissions. To minimize the 
system-wise cost, we dynamically optimize the 
FL server’s transmit-power PB(t), each device’s 
power-splitting βi(t) for receiving data and har-
vesting energy, and the selection of the devices 
{αi(t)} for performing local training in each round 
of the FL iterations. The above joint optimiza-
tion problem can be regarded as a finite horizon 
dynamic programming problem. Specifically, at 
the t-th round iteration, we consider the system 
state S(t) comprised of (i) the current channel 
conditions between the FL server and the client 
devices, (ii) each device’s current battery status, 
and (iii) the current value of the FL training loss. 
Meanwhile, we set the action profile A(t) at the 
t-th round iteration comprised of the FL server’s 
transmit power PB(t) for SWIPT, the scheduling of 
the devices {αi(t)}i∈I to perform the local training 
at the t-th round and their power-splitting ratios 
{βi(t)}. The essence of our problem is to find an 
optimal mapping from the system state S(t) to the 
action profile A(t), i.e., the optimal SWIPT pol-
icy and the client-scheduling across the iteration 
horizon. This problem, however, is challenging 
to solve, since we need to account for a three-
folded system state. Moreover, the action space 
is also complicated, since it includes both the 
continuous decision-variables (i.e., the FL server’s 
transmit-power and each device’s power-split-
ting in performing SWIPT) as well as the binary 
decision-variable (i.e., the selection of the client 
devices in participating in the different rounds of 
the global iterations). As a result, conventional 
algorithms are not applicable to solve our prob-
lem in the case study. To address this issue, we 
exploit the capacity of deep reinforcement learn-
ing (DRL) based algorithms to realize an efficient 
decision-making including both the continuous 
and binary variables. Moreover, we adopt the 

actor-critic aided DRL (AC-DRL) algorithm, since it 
can effectively improve the robustness of sample 
training by avoiding the potential instable training, 
which thus enables a more efficient and stable 
convergence of training process compared to the 
value-based DRL.

To evaluate the performance of our proposed 
SWIPT-aided FL, we use the real-world data-set, 
i.e., Fashion-MNIST. In particular, we test the sce-
narios of 4, 8, and 12 devices. To reflect the system 
heterogeneity, the number of training samples on 
all devices are uniformly distributed from 1,000 
to 3,000. Each device is randomly located within 
a circular plane with a radius of 300 meters, and 
the FL server is located at the centre of the plane. 
The path-loss model is adopted to generate the 
channel power gains between the FL server and 
the client devices. At the beginning of each global 
iteration, the FL server collects the states of all the 
devices and computes the actions to instruct the 
training process. Figures 4 and 5 demonstrate the 
performance of our proposed SWIPT-aided FL in 
comparison with two benchmark schemes, i.e., 
the scheme without SWIPT and the scheme with 
a fixed power-splitting ratio of 0.5 in SWIPT. We 
set the size of the global/local model as 100 KB, 
and the batch size for the local training as 10, and 
the learning decay-rate as 0.996. In addition, we 
set the power charging efficiency as 0.8 in SWIPT.

As shown in the left-subplot of Fig. 4, our 
design of SWIPT-aided wireless FL can effectively 
reduce the overall system cost in comparison with 
the other two benchmark schemes. For instance, 
let us take the case of 4-clients in the left-subplot 
of Fig. 4 as an example, our proposed scheme 
can reduce the system cost by 52.89% against 
the scheme without SWIPT. Such an advantage 
essentially stems from that SWIPT can increase 
the devices’ lifetimes via wireless charging. As a 
result, more devices are able to participate in the 
FL and contribute their local models, which can 
effectively increase the training accuracy. This 
point is validated by the right-subplot in Fig. 4, 
in which the Y-axis denotes the training accuracy 
(i.e., the tested accuracy of the achieved global 
model). As shown in this subplot, by using SWIPT, 
the training accuracy can be effectively improved 
in comparison with the benchmark result without 
using SWIPT. In contrast, the FL training accuracy 

FIGURE 4. Advantages of SWIPT-aided FL compared to two benchmark schemes: system-wise cost, energy consumption cost, and 
training accuracy.
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is degraded without using SWIPT, since the cli-
ent devices quickly exhaust the energy stored at 
their batteries. Nevertheless, to achieve a more 
accurate training, it is reasonable to observe from 
the middle-subplot in Fig. 4 that our scheme con-
sumes a larger energy consumption compared to 
the scheme without using SWIPT, since we exploit 
SWIPT to provide the client devices with a sus-
tainable energy supply with which the selected 
devices can contribute their locally trained models 
for aggregation.

Figure 5 further demonstrates a detailed com-
parison between our SWIPT-aided FL and the 
benchmark scheme without SWIPT in terms of 
the convergence process of the testing accuracy. 
It can be observed from the three subplots in Fig. 
5 (for different numbers of the client devices), 
without SWIPT, the testing accuracy is saturated 
and cannot be improved any further after around 
thirteen rounds of iterations, since all the devices’ 
batteries are exhausted. In contrast, leveraging 
SWIPT can provide the client devices with a sus-
tainable energy supply, with which the selected 
devices can always contribute their locally trained 
models for aggregation. Thus, the proposed 
SWIPT-empowered scheme can improve the train-
ing accuracy for all the test cases, compared to 
the benchmark scheme without SWIPT.

Open Research Directions
There are several open directions to further 
explore when integrating SWIPT with wireless FL 
services. The details are illustrated as follows.
•	 (Intelligent Reflection Surface for Customiz-

ing the Radio Channels): The performance 
of SWIPT is governed by the channel 
condition. By using the recent advanced 
metasurfaces with controllable reflection 
units, the intelligent reflection surface (IRS) 
provides an effective approach to custom-
ize the wireless channel between the FL 
server and the clients, which thus improves 
the performance of power transfer and the 
model transmission. Although the deploy-
ment of IRS introduces a customized 
strong path, it may also incur co-channel 
interference among the FL clients and a 
non-negligible overhead for signal process-
ing. Thus, on one hand, joint optimization 
of the IRS configuration and the FL oper-
ation is necessitated to realize the benefits 

of exploiting IRS. On the other hand, the 
balance between achieving the benefit of 
IRS as well as addressing the consequent 
complexity in signal processing requires a 
deep investigation, e.g., a proper setting of 
the number of reflection elements used by 
the reflection surface.

•	 (Millimeter-Wave for SWIPT-Empowered FL): 
Leveraging the ultra-high frequency bands 
such as millimeter-wave (mmWave) has been 
regarded as a promising approach for reliev-
ing the spectrum congestion in B5G/6G 
networks. Thanks to the vastly available 
spectrums, exploiting mmWave bands can 
enable both an ultra-high throughput for 
delivering the global/local model data as 
well as a high-volume power transfer. Nev-
ertheless, mmWave signals are highly direc-
tional and susceptible to blockages. Thus, it 
is challenging to investigate how to achieve 
the benefits of SWIPT-empowered FL via 
mmWave bands while accounting for the 
features of mmWave transmissions.

•	 (Multi-Server FL With Hierarchical Structure): 
To avoid the congestion at the single FL 
server for the global model aggregation, 
the paradigm of hierarchical FL has been 
envisioned in which several FL servers are 
deployed and the clients can flexibly select 
one of the nearby FL servers to upload 
their respective local models for aggrega-
tion. Thus, the association between the FL 
servers and client devices becomes a critical 
problem. Moreover, how different FL servers 
provide efficient wireless power transfer to 
the properly selected client devices (while 
sending the global models) requires more 
investigations.

•	 (Age of Information Aware for Client-Sched-
uling): Due to the limited computing and 
communication resources at the FL client 
devices, training DL/ML model in a dis-
tributed manner may introduce latency, 
which degrades of the timeliness of the 
services. As a quantitative metric for mea-
suring the freshness of the information, the 
age of information (AoI) can be leveraged 
for wireless FL to enhance the freshness of 
the distributed training. Thus, it is an open 
direction about how to jointly exploit SWIPT 
and AoI to achieve fresh FL performance, 

FIGURE 5. Advantages of using SWIPT to provide a sustainable energy supply.
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e.g., the FL server can use SWIPT to actively 
transfer more energy to some client devices 
with critical local models and large AoI such 
that those devices can speed up their local 
model training.

•	 (Multi-Agent Distributed Optimization): Var-
ious recent studies about the performance 
optimization of wireless FL assume a cen-
tralized optimization approach. Neverthe-
less, in practical wireless FL services, the FL 
server and each client device may need to 
individually optimize their own decisions. 
This problem becomes even more compli-
cated when the FL server adopts SWIPT to 
empower the client devices, in which the 
FL server’s wireless charging policy naturally 
couples with the clients’ decisions. Thus, it is 
challenging to address such a coupling issue 
due to introducing SWIPT and achieve the 
distributed decision making of the FL server 
and client devices. In particular, the recent 
advanced multi-agent distributed optimi-
zation via deep learning serves as a viable 
solution to address this challenge.

Conclusion
In this article, we have proposed the framework of 
SWIP-empowered FL that can provide over-the-air 
wireless power transfer between the FL server and 
clients in parallel with the transmission of global/
local models, which effectively improves the sus-
tainability and performance of wireless FL. We 
have presented the key approaches of leveraging 
SWIPT for FL with their advantages illustrated. We 
then have discussed the major challenges in reap-
ing the benefits of SWIPT for FL and provided the 
corresponding potential solutions. An illustrative 
case study of the SWIPT-aided FL is presented 
to validate the advantage of exploiting SWIPT for 
improving the accuracy of FL training. We finally 
have presented several open research directions 
in the SWIPT-empowered FL with their corre-
sponding research problems discussed.
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