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mocap solving with various marker layouts using unstructured unlabeled optimal markers and a monocular video for mocap

unstructured

 full-body

unstructured 

partial-body

structured 

full-body unstructured  partial-body mocap

unstructured full-body mocap

Figure 1: We solve the problem of unstructured unlabeled optical (UUO) motion caption (mocap), in which retroreflective
optical markers are placed in an unstructured way on the body. Importantly, markers are not manually labeled. UUO mocap
reduces human effort to set up mocap environments but is more challenging than typical mocap settings that either manually
label markers or place markers w.r.t some predefined structured layouts. To solve UUO mocap, we leverage a monocular video
captured alongside markers and use it to extract an initial body model as a prior for subsequent optimization for body pose,
shape, global translation, and rotation.

ABSTRACT
Optical motion capture (mocap) requires accurately reconstruct-
ing the human body from retroreflective markers, including pose
and shape. In a typical mocap setting, marker labeling is an impor-
tant but tedious and error-prone step. Previous work has shown
that marker labeling can be automated by using a structured tem-
plate defining specific marker placements, but this places additional
recording constraints. We propose to relax these constraints and
solve forUnstructured Unlabeled Optical (UUO)mocap. Compared to
the typical mocap setting that either labels markers or places them
w.r.t a structured layout, markers in UUO mocap can be placed any-
where on the body and even on one specific limb (e.g., right leg for
biomechanics research), hence it is of more practical significance. It
is also more challenging. To solve UUO mocap, we exploit a monoc-
ular video captured by a single RGB camera, which does not require
camera calibration. On this video, we run an off-the-shelf method
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to reconstruct and track a human individual, giving strong visual
priors of human body pose and shape. With both the video and
UUOmarkers, we propose an optimization pipeline towards marker
identification, marker labeling, human pose estimation, and human
body reconstruction. Our technical novelties include multiple hy-
pothesis testing to optimize global orientation, and marker localiza-
tion and marker-part matching to better optimize for body surface.
We conduct extensive experiments to quantitatively compare our
method against state-of-the-art approaches, including marker-only
mocap and video-only human body/shape reconstruction. Exper-
iments demonstrate that our method resoundingly outperforms
existing methods on three established benchmark datasets for both
full-body and partial-body reconstruction.
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1 INTRODUCTION
Human reconstruction is a crucial component for creating realistic
humans in movies and games [Bregler 2007; Holden 2018; West III
2019], biomechanics analysis [Averta et al. 2021; Camargo et al.
2021; Moeslund et al. 2006; Roetenberg et al. 2009; van der Zee et al.
2022], and computer vision applications [Kocabas et al. 2020; Rempe
et al. 2021; Wang et al. 2023]. This is a challenging problem as indi-
viduals have different body shapes and can express various poses.
Optical motion capture (mocap) systems have been the de facto
system to capture pose and body shape due to their high accuracy
in determining 3D marker positions [Merriaux et al. 2017]. These
systems use multi-view infrared cameras to recover the positions of
retroreflective markers placed on the body. Subsequently, one can
fit a 3D body model (e.g., SMPL [Loper et al. 2015]) to the marker
positions if the placement and corresponding body parts of markers
are known [Loper et al. 2014; Pavlakos et al. 2019].

In optical mocap, accurate body reconstruction typically requires
manually labeling markers and consistent placement [Loper et al.
2014; Mahmood et al. 2019]. When provided labeled markers, ap-
proaches such as HuMoR [Rempe et al. 2021] and VPoser [Pavlakos
et al. 2019] can fit a 3D human body to marker locations by solving
for pose and body shape through optimization. However, manually
labeling markers is prone to errors and is time consuming; without
labels for markers, approaches like HuMoR and VPoser can fail
to reconstruct pose as optimization easily gets stuck on bad local
minima. Therefore, some methods propose to automate marker
labeling [Ghorbani and Black 2021; Ghorbani et al. 2019]. These
methods are trained on some predetermined marker layouts and
struggle to label markers placed w.r.t unseen layouts. Such layouts
could come from a more user-friendly setup that allows markers to
be placed anywhere on the body, i.e. unstructured mocap. Finally,
current approaches are not able to handle partial marker layouts
such as markers placed on only the left leg or right shoulder. Partial-
body reconstruction is critical for biomechanics research [Averta
et al. 2021; Camargo et al. 2021; Moeslund et al. 2006; Roetenberg
et al. 2009; van der Zee et al. 2022] which often seeks to minimize
the number of unnecessary markers. However, it is difficult to pre-
cisely understand howmarkers cover the body part without marker
labels or a full body reference.

We summarize the present dilemma of mocap: accurate labeling is
crucial to accurate pose and body reconstruction, yet accurate labeling
relies on accurate pose and body shape, which is challenging, if not
impossible, with unstructured markers.

This dilemma motivates our work of solving Unstructured Unla-
beled Optical (UUO) mocap, aiming for simultaneous human body
reconstruction and pose estimation. Inspired by recent advances
in human reconstruction from monocular videos [Goel et al. 2023],
we leverage a video captured by a commodity camera (such as a
cellphone) along with UUO markers for mocap. It is worth noting
that the UUO mocap setup only requires the video to be temporally
synchronized w.r.t optical markers. It does not require (1) marker
identification from video frames, and (2) camera calibration be-
tween the camera and multi-view infrared cameras in the mocap

studio. In other words, we exploit the monocular video to obtain a
human body prior to aid mocap. Hence, methods developed in this
setup can generalize across a wide range of optical mocap systems.

We leverage the following insights to assist in combining UUO
markers and the corresponding monocular video for solving mocap.
First, modern pose estimation techniques from monocular video,
though they struggle to predict global translation and absolute size,
tend to produce relatively accurate poses and correctly estimate pro-
portional body shape. We therefore use such estimations to serve as
pose priors for 3D model fitting. Second, part-based segmentation
of markers, which assigns a body part label to each marker, is rela-
tively easy to solve. We leverage a statistical human model together
with the insight that body parts are relatively rigid to help find
optimal marker fits. By finding motion correspondence between
markers and video-estimated human motion, we can jointly label
the markers and solve for human pose and shape. Importantly, our
method does not expect a structured marker layout; the markers
can be placed anywhere or just on part of the body. Partial-body
mocap is especially useful for biomechanics mocap [Averta et al.
2021; Camargo et al. 2021; van der Zee et al. 2022] and animal mo-
cap (where marker templates may not be available) [Abson and
Palmer 2015; Zhang et al. 2018].

We make three major contributions (cf. §3).
• Problem statement. We introduce the problem of Unstruc-
tured Unlabeled Optical (UUO) mocap, aiming for simultaneous
body reconstruction and pose estimation using UUO markers.
It relaxes the constraints of marker placement and requires no
manual work of labeling markers.

• New strategy. To solve UUO mocap, we leverage a monocular
video captured alongside markers to extract a body prior using
an off-the-shelf method of monocular human body reconstruc-
tion. We use this body prior for optimizing body/part pose, size,
and marker locations.

• Novel techniques. We propose a UUO mocap pipeline con-
sisting of multiple novel techniques such as (1) a multi-stage
fitting process for temporally-stable motion reconstruction, (2)
identifying and localizing markers by finding their correspon-
dence to individual body parts, and (3) multiple hypothesis
testing for rotational alignment of body mesh.

Code and data are at https://github.com/NicholasMilef/UUO-Mocap.

2 RELATEDWORK
2.1 Statistical Human Models
Mocap markers are placed near the surface of the skin, so one can
use the marker 3D locations to model the body mesh. Various statis-
tical methods propose to model the human body [Loper et al. 2015;
Pavlakos et al. 2019; Xu et al. 2020] by introducing different vertex
offsets from a based mesh template (e.g., blend shapes) that can be
controlled through a learned parameter space. SMPL [Loper et al.
2015] is a well-established statistical human model that has gained
popularity in various applications, The SMPL model is parame-
terized by body shape 𝛽 ∈ R10, pose Θ ∈ R23, global translation
Γ ∈ R3, and global orientation Φ ∈ R3. The SMPL model is differ-
entiable w.r.t vertex positions 𝑉 and joint positions 𝐽 defined as
functionM: [𝐽 ,𝑉 ] = M(Φ,Θ, 𝛽) + Γ. To solve for human pose and
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shape reconstruction from markers, various methods fit an SMPL
model to the labeled markers. For example, VPoser [Pavlakos et al.
2019], a conditional variational autoencoder, learns a pose prior
from the AMASS [Mahmood et al. 2019] dataset and fits SMPL to
labeled keypoints. HuMoR [Rempe et al. 2021] extends this idea by
using a motion prior to assist in keypoint fitting for both image and
motion capture applications. However, both of these approaches
struggle to find strong initialization priors using just unlabeled
marker point clouds. Our work also uses SMPL [Loper et al. 2015]
to represent a 3D body but optimizes it for solving mocap and
human body reconstruction in the UUO mocap setting.

2.2 Motion Capture Solving
Motion capture solving typically uses labeled markers to determine
body pose and/or shape via optimization [Loper et al. 2014; Mah-
mood et al. 2019], which fits a bodymodel to markers byminimizing
distances between labeled markers and vertices of the body model.
Recent approaches perform mocap solving and marker denoising
via deep learning [Chen et al. 2021; Han et al. 2018; Pan et al. 2023].
These approaches assume the marker inputs to be labeled already.
Some prior works attempt to mitigate the need of marker labeling.
Han et al. [2018] use a deep neural network and bipartite matching
to label mocap markers placed on a hand and assume a structured
marker layout. Holden [2018] uses a residual network to jointly
denoise marker positions and solve for pose for each frame. Mo-
capSolver [Chen et al. 2021] estimates marker offsets from each
skeletal joint, bone lengths, and the pose using a window of frames
consisting of mocap marker positions. Other follow-up works adopt
deep learning and optimization to improve mocap using unlabeled
markers [Pan et al. 2023; Tang et al. 2023]. However, these meth-
ods all require a known marker layout. Our work distinguishes
from existing ones in that we, for the first time, solve mocap using
unstructure unlabeled optical (UUO) markers.

2.3 Automatic Marker Labeling
Traditional mocap workflows require technicians to manually label
markers, which is time-consuming and error-prone. Hence, some
works study marker auto-labeling. Among plenty of marker auto-
labeling and mocap solvers, Meyer et al. [2014] propose an online
labeling solution, but they require the actor to perform a T-pose
for initialization, making it unsuitable for archival data. Schubert
et al. [2015] propose an automatic mocap solver and marker loca-
tion finder with a reasonably dense marker layout. However, their
method needs a database of human pose/shape templates, limiting
the method to poses and shapes present in the database. Alexan-
derson et al. [2017] propose an algorithm that solves unlabeled
markers on the hands and head but does not temporally lock the
marker labels and requires knowledge of the orientation of these
body parts before running. Recent works propose to train neural
networks on a database of defined human pose/shape layouts and
use the trained networks to automatically label markers and solve
mocap [Clouthier et al. 2021; Ghorbani and Black 2021; Ghorbani
et al. 2019]. For example, SOMA [Ghorbani and Black 2021] labels
unlabeled mocap markers through a per-frame self-attention net-
work. After labeling, the markers can then be used to optimize for
body shape and pose using MoSh++ [Mahmood et al. 2019]. While

SOMA trains a “SuperSet” that can work for a variety of known
marker layouts, it does not generalize to unseen or partial-body
layouts. In sum, existing approaches require a database of defined
layouts to train networks for marker labeling and mocap, limiting
their generalization to new marker layouts. Our problem of UUO
mocap does not provide marker labels and requests the study of
mocap with unstructured markers, hence solutions to this problem
is of practical significance in mocap systems.

2.4 Monocular Video Mocap
Markerless mocap has become a popular alternative to traditional
optical marker-based mocap systems. Mocap from monocular RGB
video is the most accessible form of markerless mocap due to the
ubiquity of RGB cameras. For monocular video mocap, recent meth-
ods adopt model-based optimization [Bogo et al. 2016; Pavlakos
et al. 2019; Rempe et al. 2021] and deep learning [Goel et al. 2023;
Kanazawa et al. 2018; Zhang et al. 2023, 2021], resulting in reason-
ably accurate poses and proportional body shape (e.g., absolute
measures such as height may be inaccurate). However, recovering
global position and rotation in the world is still difficult during
monocular reconstruction [Ye et al. 2023; Yuan et al. 2022]. Some
approaches have sought to augment different forms of tracking
data. One popular form of mocap, due to cheap cost and less setup,
is Inertial Measurement Unit (IMU) based motion capture. Com-
bining video and IMU data has been shown to be more effective
than just using video or IMU data alone [Pearl et al. 2023; Tan et al.
2022]. The combination even approaches optical mocap accuracy
[Shin et al. 2023b]. However, IMU sensors have a tendency to drift
that video cannot fully fix, causing lower accuracy [Van der Kruk
and Reijne 2018]. Another approach has been to use depth maps
with optical mocap marker positions. Some approaches [Chatzitofis
et al. 2022, 2021] use a few low-cost multi-view depth cameras to
jointly label markers and solve for pose but theydo not match the
performance of professional optical mocap systems. In our work,
we show that monocular video can assist in optical marker-based
mocap. Experiments demonstrate that our mocap solver, which ex-
ploits both UUO markers and the corresponding monocular video,
outperformsmethods based on either, approaching the performance
of a labelled-marker based solver.

3 PROBLEM DEFINITION AND
METHODOLOGY

We first present the formal problem definition of Unstructured Un-
labeled Optical (UUO) mocap, then explain our method for solving
UUO mocap, and finally present important implementation details.

3.1 Problem Definition
The problem of unlabeled and unstructured optical (UUO) mocap
aims to reconstruct a full/partial body pose and shape from a se-
quence of unlabeled markers, which are placed without a predefined
structure on an individual’s body or body part. The problem re-
laxes some unfriendly constraints in existing mocap: (1) it does
not require manual labeling for the markers (so alleviating man-
ual intervention), and (2) it does not require placing markers on a
predefined layout (so reducing human effort in mocap setup and
allowing reconstructing a partial body). While solutions to UUO
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Figure 2: The proposed pipeline of our UUO mocap solver consists of three modules (cf. details in Section 3). Our method takes
as input monocular video and UUOmarkers to jointly predict marker labels, pose, and body shape. First, we use an off-the-shelf
method (HMR2.0 [Goel et al. 2023]) to generate a human prior from the video. Then, we segment the 3D mocap markers to
estimate the number of bones that need to be reconstructed. Then, we search for the best-fitting body part. Finally, we solve for
the pose and body shape through a novel optimization process.

mocap are of practical significance in mocap, solving mocap under
the UUO setting is more challenging than existing settings due to
the lack of marker labels and any predefined structured marker
placement. Next, we elaborate our method for UUO mocap.

3.2 The Proposed UUO Mocap Method
The core insight of our method is using a monocular video to
reconstruct human body as a prior for subsequent mocap solving.
Our method takes as input the sequence of UUO markers and
the corresponding video, and maps them into SMPL [Loper et al.
2015] parameters. We denote 𝑀 markers from 𝑇 frames as a set
of 3D points by𝑚 ∈ R𝑇×|𝑀 |×3. Fig. 2 sketches the pipeline of our
method, consisting of three modules. First,monocular reconstruction
produces an initial SMPL model from the video that extracts pose,
shape, and relative rotation across time (§3.3). Second, marker-part
matching finds the best correspondences between UUOmarkers and
the initial SMPL model (§3.4). Third, mocap solver takes the output
of the marker-part correspondence and optimizes for the final result
(§3.5). We elaborate them in the following three subsections.

3.3 Monocular Reconstruction from Video
Monocular video contains important visual cues that are not present
in rawmarker data and can serve as a strong prior for marker fitting.
Our strategy of exploiting this video is to estimate an initial body
from it. Human reconstruction from monocular video is a well-
studied area and various methods have been proposed in the litera-
ture. In this work, we use the state-of-the-art method HMR2.0 [Goel
et al. 2023] as an off-the-shelf method, which returns parameters
of the well-established SMPL model [Loper et al. 2015], e.g., pose Θ
and shape 𝛽 . It is worth noting that, while SMPL is widely used in
mocap from (labeled) markers, we make the first attempt of using
it to represent a body prior extracted from a monocular video for
UUO mocap. As a monocular video has ambiguities in body size,
orientation, and world translation, the SMPL model estimated from

it unlikely aligns with real marker positions. Therefore, we adopt
the next modules to incorporate it for mocap solving.

3.4 Marker-Part Matching
Mocap essentially requires finding the correspondence of markers
and body (or vertices of body surface). With the initial SMPL model
estimated from the monocular video in the previous module, intu-
itively one can optimize this SMPL model by fitting it to the UUO
markers. However, directly solving this optimization problem can
easily get stuck to bad local minima. Therefore, we aim to provide
a better initialization for mocap solving with a marker-part match-
ing module, which finds correspondences of markers and body
parts. This module is not only important for full-body mocap but
also particularly crucial for partial-body mocap, because without
marker-body correspondence, it is difficult, if not impossible, to
find a good matched body part for markers without signals from
the full body (cf. Table 2).

In Marker-Part Matching, we first use the median marker posi-
tion to align the SMPL mesh. This provides a good initialization of
global translation (for both full-body and partial-bodymocap). Next,
we adopt a two-step process to find marker-part correspondence.

3.4.1 Step 1: marker segmentation. Recall that in SMPL, each ver-
tex 𝑣 on the body surface has an associated linear blend skinning
(LBS) weight that is the summation of the bones. The maximal LBS
weight for the vertex can be used to indicate which bones the vertex
belongs to; vertices belonging to the same bones are approximately
related by a rigid transformation. Therefore, finding marker-bone
correspondence largely simplifies mocap solving for body part re-
construction. But searching for the best correspondence requires
testing all combinations of markers and SMPL bones and hence
computationally expensive. Therefore, to reduce the search space,
we propose to group markers and presume each group is corre-
sponding to a specific bone. For example, for partial-body mocap of
a leg (i.e., thigh, calf, foot), we would only be interested in searching
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for kinematic chains consisting of 3 bones. Inspired by marker clus-
tering [De Aguiar et al. 2006], we use the standard deviation of the
Euclidean distance between every pair of markers across all frames
in the sequence. Note that one can easily obtain marker-marker cor-
respondence across time by tracking them. Then we construct an
affinity matrix that consists of these standard deviations. Lastly we
use agglomerative clustering with average linkage [Pedregosa et al.
2011] and distance threshold of 5mm, resulting into 𝐾 segmented
groups of markers for each timestamp.

3.4.2 Step 2: multiple hypothesis testing for part localization. We
adopt a search-based method to determine where the markers are
located on the body. Note that the 𝐾 groups of segmented markers
can be interpreted as a kinematic chain S that contains a group of
𝐾 bones. Therefore, we aim to find the best match between the 𝐾
groups of markers and a kinematic chain from a pool of 𝐾-bone
candidate chains generated from the initial SMPL. For the pool of
candidate chains, we extract all possible chains with length 𝐾 from
the hierarchy of SMPL bones. Then, for each of the candidate chain
S, whose vertices are denoted as 𝑉S ⊂ 𝑉 , we fit the vertices of
𝑉S to all the markers𝑀 . Concretely, for a marker𝑚 at time-𝑡 (i.e.,
𝑚 (𝑡 ) ∈ 𝑀 (𝑡 ) ), whose corresponding part of the candidate chain S
at time-𝑡 is denoted as 𝑉 (𝑡 ) , we find the closest vertex 𝑣 (𝑡 ) ∈ 𝑉 (𝑡 ) .
Lastly, we select the candidate chain that produces the minimum
fitting error, which is defined as 𝐸S = 𝜆−→

3D
𝐸−→
3D

+ 𝜆𝛽𝐸𝛽 that consists
of two terms explained below. 𝐸−→

3D
is a single-directional Chamfer

distance loss between markers and vertices of 𝑉S :

𝐸−→
3D

=
1

|𝑇 | · |𝑀 |

𝑇∑︁
𝑡=1

∑︁
𝑚 (𝑡 ) ∈𝑀 (𝑡 )

min
𝑣 (𝑡 ) ∈𝑉 (𝑡 )

∥𝑣 (𝑡 ) −𝑚 (𝑡 ) ∥2 (1)

𝐸𝛽 is a mean-squared error that regularizes the body shape against
the initial SMPL body shape 𝛽 img:

𝐸𝛽 = (𝛽 − 𝛽 img)2/|𝛽 img | (2)

The number of chain candidates increases with the number of
bones𝐾 . Searching over a large number of chains, e.g., for full-body
reconstruction, can be computationally expensive. Fortunately, for
full-body reconstruction, the exact kinematic chain selection is less
relevant as our system can generally recover from poor initialization
in later stages. Moreover, we reduce searching computation by
removing redundant candidate chains which contain ≥90% of the
same bones to other candidates. Running this module produces
correspondences of UUO markers to vertices of the initial SMPL
model, allowing for the subsequent mocap solving towards body
pose and shape reconstruction.

3.5 Mocap Solving
Given UUO markers positions and the SMPL model (containing
parameters of body shape 𝛽 , poseΘ, global translation Γ, and global
orientation Φ from the previous two modules), we solve mocap by
fitting the SMPL model to the mocap marker positions. Intuitively,
one can optimize them altogether, but the solution is easily stuck
in bad local minima due to the difficulty of optimizing rotation Φ.
Therefore, we break up the mocap solving process into a sequence
of optimization stages and propose a multiple hypothesis testing
for solving rotation.

Figure 3: Our Marker-Part Matching first computes the stan-
dard deviation of distances between every other marker
across all frames, then uses them to construct an affinity
matrix to clustering markers into groups, and conducts hy-
pothesis testing to select the best match that produces the
minimum fitting error w.r.t the initial body model obtained
from the monocular video.

3.5.1 Stage 1: multiple hypothesis testing for root rotation. We first
predefine a grid of initialized rotational offsets. We optimize each
of them alongside the rest of the SMPL parameters. Then, we select
the SMPL parameters from the best-fitting rotational offset. Our
work assumes that the global rotations of the initial SMPL meshes
and markers differ by a yaw rotation 𝑏 such that Φimg = 𝑏 × Φ̂.
To facilitate rotation optimization, we independently optimize the
rotation offset 𝑏, initialized by four uniformly-distributed values
𝑦 ∈ B = {0◦, 90◦, 180◦, 270◦} using Stages 2 to 4 (described next).
We then select the best optimized rotations such that:

𝛽,Θ, Γ,Φ = argmin
𝑦∈B

𝐸−→
3D

(𝛽𝑦,Θ𝑦, Γ𝑦,Φ𝑦) (3)

3.5.2 Stage 2: pose fitting. With an initial rotational offset 𝑦 ∈ B,
we optimize 𝑏 along with pose Θ, translation Γ, and shape 𝛽 by
minimizing the following:

𝐸pose = 𝜆−→3D𝐸−→3D + 𝜆𝛽𝐸𝛽 + 𝜆Θ𝐸Θ (4)

where 𝐸−→
3D

is defined in Eq. 1, 𝐸−→
𝛽
is defined in Eq. 2, and 𝐸Θ regu-

larizes pose which is defined below:

𝐸Θ =
1

|𝑇 | · |Θ|

𝑇∑︁
𝑡=1

(Θimg
𝑡 − Θ̂𝑡 )2 (5)

3.5.3 Stage 3: marker-vertex correspondence. To better reconstruct
the human body, for each marker𝑚, we find the vertex 𝑣𝑚 of the
optimized SMPL mesh with the closest average distance to𝑚 over
the entire sequence:

𝑣𝑚 = argmin
𝑣∈𝑉

( 1
|𝑇 |

𝑇∑︁
𝑡=1

∥𝑣 (𝑡 ) −𝑚 (𝑡 ) ∥2) (6)

where 𝑣 (𝑡 ) and𝑚 (𝑡 ) denote the vertex and marker at time-𝑡 , respec-
tively. With this found marker-vertex correspondence, we adopt
inverse kinematics below that refines body reconstruction.

3.5.4 Stage 4: inverse kinematics. With the identified marker lo-
cations on the mesh surface from Stage 3, we solve an inverse
kinematics (IK) problem via optimizing pose, shape and mesh:

𝐸IK = 𝜆𝑀𝐸𝑀 + 𝜆𝛽𝐸𝛽 + 𝜆Θ𝐸Θ (7)
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where minimizing 𝐸𝑀 will better align the SMPL mesh with mark-
ers. 𝐸𝑀 is a squared L2 norm loss between each marker𝑚 (𝑡 ) and
its corresponding vertex position 𝑣𝑚 :

𝐸𝑀 =
1

|𝑇 | · |𝑀 |

𝑇∑︁
𝑡=1

∑︁
𝑚 (𝑡 ) ∈𝑀

(∥𝑣 (𝑡 )𝑚 −𝑚 (𝑡 ) ∥2 − 𝛿)2 (8)

We set 𝛿 = 9.5 (in mm) which is a common mocap marker offset
from the skin [Ghorbani and Black 2021].

3.5.5 Stage 5: solver refinement. Finally, we repeat the stages 3
and 4 one time to refine body reconstruction. Instead of regular-
izing against the initial SMPL model Θimg, we regularize the pose
against the output from Stage 4. This helps to reduce distance in-
consistencies between markers and the corresponding vertices. We
do not repeat more times as more iterations do not yield notable
improvements despite more computation.

3.6 Implementation
For our mocap solver, we set the learning rate of the L-BFGS solver
as 1.0 for part localization (Step 2) and inverse kinematics (Stage
4) and 0.1 for pose fitting (Stage 2). We use terminal tolerances of
1e-7 on first order optimality and 1e-9 on function value/parameter
changes. We process the entire sequence at once and optimize for
a maximum of 10k iterations. We tune these hyperparameters on a
few random annotated examples (e.g., from UMPM). After tuning,
we use the same hyperparameters throughout our experiments for
all the datasets (including both full-body and partial-body mocap):
𝜆−→
3D

= 10 and 𝜆𝛽 = 0.1 for Step 2; 𝜆Θ = 1, 𝜆−→
3D

= 10, 𝜆𝛽 = 1 at Stage
2; 𝜆𝑀 = 1, 𝜆Θ = 0.1, 𝜆𝛽 = 1 at Stage 4.

4 EXPERIMENTS
We conduct extensive experiments to validate our method by com-
paring against prior art. We also show rigorous ablation studies to
demonstrate the importance of each step in our proposed optimiza-
tion pipeline. We start with setups of datasets and metrics, followed
by comprehensive results with in-depth analyses and discussions.

4.1 Evaluation Protocols
4.1.1 Metrics. We adopt multiple well-established metrics to com-
prehensively evaluate methods.
• MPJPE measures the mean per-joint position error. It is a
common metric used to evaluate human pose reconstruction.
Joint position errors are computed using the Euclidean distance
between predicted and reference 3D joints.

• MPJVE evaluates the mean estimated velocity error of each
joint, computed on adjacent poses. This metric evaluates the
temporal consistency of a motion.

• V2V [Pavlakos et al. 2019] computes the vertex-to-vertex error
between the predicted and reference SMPL meshes. It measures
both body shape and pose.

• m2s measures the marker-to-surface distance. Intuitively, m2s
measures the offset of the marker from the surface (skin) of
the SMPL mesh. Real mocap markers have a marker offset, so
there should be a small m2s even for the reference.

MJPVE is inmillimeters per second and the others are inmillimeters.
For all the metrics, smaller values mean better performance.

4.1.2 Datasets. We use publicly available datasets that have hard-
ware synchronized video and mocap markers. Following the litera-
ture [Rempe et al. 2021], we downsample all datasets to 30Hz. We
use MoSh++ [Mahmood et al. 2019] to generate reference data for
both the CMU Kitchen Pilot dataset and the UMPM dataset. To set
up the UUO mocap, we remove marker labels in these datasets. Im-
portantly, we do not use these datasets to train any models so that
this simulates the unstructured setup. Therefore, at best, methods
can be trained on layouts in their training data but might not know
layouts on the testing datasets.
• CMU Kitchen (pilot study) [De la Torre et al. 2009] is a chal-
lenging dataset due to self-occlusion and prevalence of sta-
tionary motions. Interestingly, individuals in this dataset wear
backpacks and we remove the markers on the backpack as
they are not near the appropriate body landmarks. It has 241
sequences and each is 15s long.

• UMPM [van der Aa et al. 2011] contains both markers and
synchronized videos. As it uses it uses uncommon labels and
marker placements, we create ground-truth label-vertex cor-
respondences for this dataset. As we focus on single-person
reconstruction, we use its single-person subset (p1) in our work.
It has 12 sequences and each is 15s long.

• MOYO [Tripathi et al. 2023] contains many novel and difficult
poses that are largely out-of-distribution compared to exist-
ing motion capture datasets. Importantly, we do not use this
dataset to train models but only use its validation split for eval-
uation. This helps benchmark the generalization performance
of different methods. It has 171 sequences and each is 3s long.

4.1.3 Compared methods. We repurpose and compare existing mo-
cap methods for UUO mocap. First, for the video-only method, we
compare HMR2.0 [Goel et al. 2023], a recent algorithm of monocular
pose estimation. Because reconstruction from a monocular video
contains ambiguities in global position, orientation, and scale, we
evaluate its result with a rigid registration step to globally align the
body w.r.t the mocap markers. We call this method HMR2.0+RR.
Moreover, we repurpose well-established marker-based methods
for UUO mocap using appropriate modifications. For example,
SOMA [Ghorbani and Black 2021] trains on diverse marker lay-
outs and expects to generalize to unseen layouts. We find that it
has limited generalization in experiments; it trains on marker lay-
outs that share marker labels with the CMU Kitchen and performs
well on this dataset, but it performs significantly worse on other
datasets (Table 1). For SOMA, we run MoSh++ on the marker labels
to solve for the SMPL parameters. VPoser [Pavlakos et al. 2019] and
HuMoR [Rempe et al. 2021] are not designed for UUO mocap but
can be modified for it using appropriate constraints. Importantly,
both VPoser and HuMoR are sensitive to having strong initial-
ization, so we initialize them with HMR 2.0’s SMPL parameters.
This results in modified versions that exploit both markers and
video. We denote these as VPoser+V and HuMoR+V. Finally, we
use MoSh++ [Mahmood et al. 2019] as the reference achieved by
using labeled markers.

4.2 Comparisons
Tables 1 and 2 benchmark methods for full- and partial-body re-
construction, respectively. We summarize salient conclusions here.
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Table 1: Comparison of different methods for full-body reconstruction with UUO markers on three datasets. HMR2.0 is a method of
reconstructing human body from a monocular video, we use rigid registration w.r.t UUO markers for its output (i.e., HMR2.0+RR) as a modified
version that can serve UUO mocap. It underperforms the marker-only method SOMA. SOMA trains on marker layouts similar to CMU Kitchen
so that it yields better numeric metrics on this dataset than the other two. Nevertheless, our method resoundingly outperforms all the compared
approaches, approaching the performance of the reference which uses labeled markers.

Method Modality UMPM MOYO CMU Kitchen

m2s↓ MPJPE↓ MPJVE↓ V2V↓ m2s↓ MPJPE↓ MPJVE↓ V2V↓ m2s↓ MPJPE↓ MPJVE↓ V2V↓

VPoser markers 204.9 713.5 2962.1 738.7 39.3 612.4 1892.0 638.2 40.4 371.4 857.9 394.5
HuMoR markers 195.3 651.4 2464.8 689.5 42.3 607.9 1828.0 636.2 44.5 369.3 873.4 395.6
SOMA markers 26.8 101.1 151.5 95.5 54.3 268.5 102.9 276.2 17.0 88.0 23.7 90.9

HMR2.0+RR markers+video 150.1 334.1 515.1 360.7 146.6 430.5 305.8 448.3 131.9 396.3 267.8 425.4
VPoser+V markers+video 201.5 524.4 3134.6 572.5 19.2 132.2 1299.1 150.1 33.9 321.2 436.3 404.9
HuMoR+V markers+video 249.7 558.1 2137.6 598.2 32.5 205.9 1259.7 234.3 33.2 308.7 316.3 376.6
our method markers+video 11.0 60.8 81.5 62.6 15.5 65.2 37.9 78.1 10.6 44.2 27.2 47.4

Reference labeled markers 9.7 0.00 0.00 0.00 27.9 0.0 0.0 0.0 11.1 0.0 0.0 0.0

Table 2: Comparison of different methods for partial-body reconstruction with UUO markers on the UMPM dataset [van der Aa et al. 2011].
Different from the conclusions in full-body reconstruction (Table 1), SOMA, as well as other marker-only methods, underperforms HRM2.0+RR,
showing the limitation of marker-only mocap approaches for partial-body reconstruction. Our method still performs the best. Note that our
method produces lower m2s than the reference method (achieved by MoSh++ over labeled markers), but it does not indicate which one is
factually better than the other because 9.5mm offsets [Mahmood et al. 2019] are expected between markers and a “ground-truth” body mesh.

Method Modality Left Leg Right Arm Left Shoulder

m2s↓ MPJPE↓ MPJVE↓ m2s↓ MPJPE↓ MPJVE↓ m2s↓ MPJPE↓ MPJVE↓

VPoser markers 265.5 812.1 3137.0 165.2 652.8 2941.4 176.0 696.0 2913.2
HuMoR markers 241.6 721.9 2618.9 157.3 641.2 2555.3 180.2 632.2 2377.0
SOMA markers 106.6 678.1 509.5 53.0 451.5 625.8 53.6 716.8 610.0

HMR2.0+RR markers+video 42.0 301.3 751.0 25.4 280.6 506.2 32.1 413.2 610.5
VPoser+V markers+video 235.1 565.7 3413.7 210.4 620.7 3480.8 115.1 450.0 3003.5
HuMoR+V markers+video 309.3 627.1 2310.0 250.4 655.0 2405.4 148.2 458.9 1939.8
our method markers+video 7.6 278.3 538.6 8.6 143.2 208.2 8.8 384.8 454.7

Reference labeled markers 11.4 0 0 10.2 0 0 8.4 0 0

First, our method outperforms the compared approaches by a large
margin on all datasets for both full- and partial-bodymocap. Second,
SOMA, a method that involves labeling markers from a database of
diverse full-body marker layouts, performs competitively against
our method for full-body mocap (Table 1) but performs poorly for
partial-body mocap. This demonstrates the challenge of mocap
w.r.t unstructured markers, e.g. for partial-body reconstruction.
Third, VPoser and HuMoR, originally designed for mocap using
labeled markers, perform poorly with unlabeled markers. Assisted
by monocular video, they (VPoser+V and HuMoR+V) generally
achieve significant improvement for full-body reconstruction (Ta-
ble 1). However, for partial-body reconstruction, all other methods
perform significantly worse than ours (Table 2), further confirming
the difficulty of solving mocap using unstructured markers. Our
method still outperforms others for partial-body mocap.

We provide visualizations in Figs. 4, 5, and 6 to qualitatively
compare different methods. We also attach video demos in the
supplementary material. Visual results show that VPoser+V and
HuMoR+V both struggle to find correct root alignment during
optimization, even with a video prior. Both additionally struggle to

generate poses that match the markers well for the UMPM dataset,
often resulting in more static poses. In addition, these two methods
tend to produce far more jittery motions. Recall that SOMA is
trained on a few different marker layouts, it chooses marker labels
a superset of positions of these layouts; as UMPM has an unusual
marker layout, SOMA does not perform well on it. On a 15-second
UMPM sequence data, our method takes 12min (plus 6min for video
processing), while SOMA (GPU) and MoSh++(CPU) takes 20min
(i5-13600k/Titan RTX).

4.3 Ablation Study
We perform two main ablations studies to demonstrate the effec-
tiveness of different parts of our pipeline.

4.3.1 System design. We highlight some of the key design choices
in Table. 3. We show that having multi-hypothesis testing (MHT)
is critical for correct alignment for solving. Our method that uses
B = {0◦, 90◦, 180◦, 270◦} performs substantially better than solving
for rotation with a single initial starting angle (i.e., B = {0◦}).
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Table 3: Ablation for multi-hypothesis testing (MHT) for root orien-
tation (Sec. 3.5, Stage 1) on the UMPM dataset [van der Aa et al. 2011].
“- MHT” means that we remove MHT and only optimize the initial
orientation. Using multiple initial rotations avoids local minima
during mesh alignment and significantly improves mocap perfor-
mance.

Method m2s↓ MPJPE↓ MPJVE↓ V2V↓

our method (that uses | B |=4) 11.0 60.8 81.5 62.6
- MHT (i.e., | B |=1) 26.6 297.0 421.5 395.0

Table 4: Stage ablations on the UMPM [van der Aa et al. 2011] dataset
for the full-body reconstruction task (Sec. 3.5). We progressively
evaluate the result after each stage. Note that Stage 3 finds marker-
vertex correspondence and does not involve optimization. Results
show that the stage-wise optimization clearly leads to better mocap
performance.

Stage m2s↓ MPJPE↓ MPJVE↓ V2V↓

Marker-part matching 69.8 240.4 651.5 283.4
Stage 2: pose fitting 15.7 88.1 620.2 88.3
Stage 4: inverse kinematics 11.6 62.1 89.3 63.6
Stage 5: solver refinement 11.0 60.8 81.5 62.6

4.3.2 Stage ablations. Table 4 measures the errors produced after
each stage in the third module Mocap Solver (Sec. 3.5). We use
the best angle as determined after MHT for root orientation to
evaluate stages 2 and 4. Stage 2, the pose fitting stage, is domi-
nated by a Chamfer distance loss and finds best fit on a per-frame
basis. Unfortunately, this stage adds considerable jitter, which is
reflected by the high MPJVE error. The Stage 4 inverse kinematics
effectively removes this jitter because the marker-surface corre-
spondence is locked during the optimization process. Finally, Stage
5 solver refinement helps to mitigate the effect of incorrect marker
locations.

5 LIMITATIONS
Our approach sometimes struggles with aligning the correct part to
markers, especially when they lack certain identifiable characteris-
tics (Fig. 8). For example, if an actor only has markers on the left
leg and jumps with both legs, then the wrong leg could be aligned
to the markers. In practice, this may be less of an issue because the
use of unilateral partial-body reconstruction is often for isolation
movements in biomechanical analysis. Another issue is that very
sparse layouts (e.g., UMPM) can be labeled incorrectly due poor
coverage. Incorporating physical scene constraints could help (e.g.
the floor) improve reconstruction.

6 CONCLUSION
We motivate the problem of mocap with unstructured unlabeled
optical (UUO) markers. We propose to exploit a monocular video,
captured alongside markers, to estimate a human body prior. Con-
cretely, we extract an initial SMPL model from the video, and use it
to optimize human body shape, pose, global translation, and rota-
tion by fitting the SMPL model to the UUO markers. We introduce

a pipeline of optimization techniques and show its superior perfor-
mance over prior art on three benchmark UUO mocap datasets for
both full-body and partial-body mocap.
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HMR 2.0+RR SOMA+Mosh++ Ours Reference from MOYO

Figure 4: Qualitative results for the validation split of the MOYO dataset [Tripathi et al. 2023]. This dataset is challenging that
has unique and difficult poses. Furthermore, markers are densely packed, which can present ambiguity for labeling. SOMA
struggles to accurately label the markers, resulting in poor quality reconstruction. Our method produces better visual results.

HMR 2.0+RR SOMA+Mosh++ Ours Reference

Figure 5: Qualitative results for the validation split of the UMPMdataset [van der Aa et al. 2011]. HMR2.0+RR contains alignment
issues, and SOMA produces an incorrect joint position at the right knee. In contrast, our method produces better visual results.
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HMR 2.0+RR SOMA+Mosh++ Ours Reference

Figure 6: Qualitative results for the validation split of the CMU Kitchen dataset [De la Torre et al. 2009]. Our approach does
aligns better to the markers compared to HMR 2.0+RR and produces a closer body shape and poser to the reference compared
to SOMA.

HMR 2.0+RR SOMA+Mosh++ Ours Reference

Figure 7: Partial-body reconstruction for the UMPM dataset [van der Aa et al. 2011] for right arm (top row) and left leg
(bottom row). SOMA is unable to handle partial body reconstruction; HMR 2.0+RR aligns the correct part due to using our part
localization but has noticeable gaps between the markers and the surface and incorrect alignment. Our method produces better
visual results.
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A PARTS
For part evaluation, we use the part definitions in Table 5. Each
part consists of multiple bones (i.e., SMPL "joints").

B COMPARISONS
In this section, we discuss experimental setups of comparison tech-
niques.

B.1 Reference
B.1.1 UMPM and CMU Kitchen. . Our reference data is computed
by using labeled markers with MoSh++ [Mahmood et al. 2019].
However, one problem is that there is variation with the marker
placements.WhileMoSh++ can handle some variation in placement,
too much variation can cause error in reconstruction. In our dataset,
we observe some errors in fitting markers to joint positions.

For the UMPM [van der Aa et al. 2011] dataset, we manually
create the marker-label correspondence between UMPM marker
labels and SMPL-X [Pavlakos et al. 2019] vertices. During manual
labeling, we cross referenced various videos of the actors and the
manual [van der Aa et al. 2011] to determine marker placement.
Markers are often placed along a band around limbs, but the orienta-
tion of this band can vary and cause some errors in reconstruction.
Thus, we report m2s as well as other traditional pose metrics.

The CMU Kitchen Pilot [De la Torre et al. 2009] dataset uses
commonmarker labels, so we use the labels provided in the MoSh++
source code. One problem with this dataset is that the actors wear
a backpack with 7 markers (LBWT, NEWLBAC, NEWRBAC, RBAC,
RBWT, T10, T8), on the exterior of the backpack. These marker
labels traditionally correspond to markers placed on the back, but
the backpack adds offsets that distort the body shape considerably.
Thus, we test both with and without these markers. While this
dataset used hardware synchronization, we found that the source
files are not synchronized. Each clip has a synchronization event
in which the actor turns on and off a light bulb at the start and end
of each trial. We manually synchronize the video and mocap data
using these events. Furthermore, we found that the video data is
closer to 29.97Hz while the source mocap data is at 120Hz (which
we downsample to 30Hz). The discrepancy between frequencies
becomes an issue for longer video sequences. To account for this,
we insert a duplicate video frame to change the frequency to 30Hz.

For all of the datasets, we use 12 evenly-spaced frames (starting
with the first frame and ending with the last frame) to perform the
first stage in MoSh++ [Mahmood et al. 2019].

B.1.2 MOYO. . For the MOYO [Tripathi et al. 2023] dataset, we
use the SMPL-X models provided by the authors.

B.1.3 Conversion. . For all three datasets, we need to convert from
the SMPL-X model to the neutral SMPL body model for evaluation.
More specifically, we convert SMPL-Xmodels to neutral SMPLmod-
els via the official conversions tools (https://github.com/vchoutas/smplx).

B.2 HuMoR
For motion capture solving [Rempe et al. 2021], HuMoR requires
marker labels in the form of vertex correspondences. However,
they also test on RGB-D datasets. In this case, they use a Cham-
fer distance loss. We apply a single-directional Chamfer distance

loss without robust weighting as we found this to help with recon-
struction. Additionally, as HuMoR is more efficient for optimizing
smaller timewindow,we adopt their sequence splitting andmerging
method wherein we split the sequence into overlapping sequences
of 2 seconds. We found it necessary to tune some of the parameters
used in their approach:

--data-fps 30

--prox-batch-size 8 # 2 for MOYO, 8 for UMPM and CMU Kitchen

--prox-seq-len 60
--prox-overlap-len 1
--point3d-weight 100000.0 100000.0 100000.0
--pose-prior-weight 0.01 0.01 0.0
--shape-prior-weight 0.1 0.1 0.1

--joint3d-smooth-weight 0.1 0.1 0.0

--motion-prior-weight 0.0 0.0 1e-5
--motion-optim-shape

--init-motion-prior-weight 0.0 0.0 0.0

--joint-consistency-weight 0.0 0.0 100.0
--bone-length-weight 0.0 0.0 2000.0

--contact-vel-weight 0.0 0.0 100.0
--contact-height-weight 0.0 0.0 10.0

--floor-reg-weight 0.0 0.0 1.0

--lr 1.0
--num-iters 30 70 70

--stage3-tune-init-num-frames 15
--stage3-tune-init-freeze-start 30
--stage3-tune-init-freeze-end 55

B.3 SOMA
SOMA [Ghorbani and Black 2021] labels markers from generally
structuredmarker layouts.We compare their SuperSetmodel, which
is trained to classify 89 common marker labels. The idea behind
the SuperSet is that there are many common marker layouts that
share selected keypoints on the body for humans. Note that the
SuperSet model is generally less accurate than fine-tuned models
per layout, but it is necessary to use this model when the marker
layout is unknown. SOMA provides these discrete marker labels,
and then MoSh++ uses these labels to compute the SMPL-X param-
eters for the human. MoSh++ uses two stages of optimization. The
goal of the first stage is to estimate the body shape and the marker
locations on the surface. The goal of the second stage is to estimate
the pose. We repeat both stages for every sequence. Furthermore,
MoSh++ requires 12 representative frames for the first stage. For
this we simply select 12 frames uniformly spaced across the entire
sequence.
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Table 5: Part definitions with corresponding SMPL bone names

Part name Joints

Left arm left_shoulder, left_elbow, left_wrist
Left leg left_hip, left_knee, left_ankle, left_foot
Left shoulder spine3, left_collar, left_shoulder, left_shoulder, left_elbow
Right arm right_shoulder, right_elbow, right_wrist
Right leg right_hip, right_knee, right_ankle, right_foot
Right shoulder spine3, right_collar, right_shoulder, right_shoulder, right_elbow

C ALIGNMENT OF MONOCULAR VIDEO AND
MOCAP MARKERS

HMR 2.0 [Goel et al. 2023] provides SMPL and camera parameters.
However, it does not provide accurate root translation, as root trans-
lation in world-space is a difficult problem to solve for monocular
video [Shin et al. 2023a; Ye et al. 2023; Yuan et al. 2022]. The root
orientation from HMR 2.0 does not necessarily align with the root
orientation of the mocap markers. The difference is mostly due to a
single yaw-rotational offset between the root orientations of HMR
and mocap markers. Optimizing for root orientation is prone to
local minima, particularly with respect to front and back of the
SMPL mesh.

D DATA PREPROCESSING
The motion capture data generally is high quality in all three
datasets. However, we needed to handle some edge cases in pre-
processing for a small number of sequences. During some frames,
markers could reset to the origin, which may have been caused
by tracking errors. These markers are masked for the problematic
frames during the optimization process. HMR 2.0 [Goel et al. 2023]
with PHALP [Rajasegaran et al. 2022] sometimes drops tracking
for some frames. If these frames are at the beginning or end of
the sequences, we use the closest known SMPL parameters. If the
frames are in the middle of the sequences, we linearly interpolate 𝛽
and Γ and perform spherical linear interpolation [Brégier 2021] Φ
and Θ. However, we mask out these frames with our method when
finding the marker-vertices correspondences.

D.1 Video Processing
All three datasets have multiple cameras with different labels. Be-
causewe only evaluate withmonocular vision, we select one camera
for each dataset. Furthermore, we down-sample each dataset to re-
duce video processing time. The video properties and resolutions
are shown in Table 6.

Table 6: We list the configurations for the community to reproduce
results and fairly benchmark results.

UMPM CMU Kitchen MOYO

Camera name l 7151062 YOGI_Cam_06
Resolution 644 × 486 1024 × 768 1028 × 752

E ADDITIONAL RESULTS
E.1 Synthetic Marker Placement
To stress-test our algorithm, we randomly place markers to simulate
different marker layouts. To get marker placement, we uniformly
sample the surface based on surface area and add an offset of 9.5mm
to the surface of the ground-truth SMPL mesh. We acquire layouts
with 20, 30, 40, and 50 markers (see Fig. 10 for reconstructions). We
only generate the 50-marker layout and then progressively remove
10 markers to get the other layouts. We do this with 10 different
random seeds, effectively producing 10 unique layouts for each
number of markers.

As seen in Fig. 9, we test different numbers of markers to show
that our technique generally has lower errors with more markers.
Importantly, because the markers are randomly placed, they may
not be placed in optimal positions.

E.2 Video Reconstruction Error Robustness
While HMR 2.0 [Goel et al. 2023] provides accurate results in gen-
eral, it does fail in certain cases. For example, we observed problems
in reconstruction when self-occlusions are present. Additionally,
sometimes tracking can temporarily fail (see Fig. 12). Our approach
generally recovers well from these issues because we mostly rely
on the video reconstruction results for initialization.

E.3 Marker Tracking Loss
Our method is robust against markers that get lost during tracking
(e.g., from occlusions). In our implementation, markers with lost
tracking are masked out during optimization, so they only con-
tribute to frames in which they are visible (i.e., the marker position
𝑚 (𝑡 ) ≠ (0, 0, 0)).

To test robustness for marker loss, we simulate marker loss by
randomly dropping markers. The results of these experiments are
shown in Fig. 13. Each frame, we hide markers with probabilities of
(0.0%, 0.2%, 1.0%) and keep them hidden for 10 frames. Even with
multiple dropped markers, our approach can still perform accurate
mocap solving.
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Figure 9: Synthetic benchmark. We generate and evaluate
synthetic examples for 10 different synthetic layouts with 20,
30, 40, and 50 markers. Our method produces lower MPJPE,
MPJVE, and V2V with a higher number of markers. As the
layouts are randomly generated, the reconstruction error can
vary depending on the marker placement.

|𝑀 | = 20 |𝑀 | = 30 |𝑀 | = 40 |𝑀 | = 50

Figure 10: Our reconstruction for synthetic mocap data for
layouts with 20, 30, 40, and 50 markers. While our method
works better with more markers, it can still solve even with
lower numbers of markers.

Figure 11: Our reconstruction with different seeds formarker
placement with 50 markers. Our method is robust against
different marker layouts, even if marker placement is sub
optimal.

60 80 100 120 140

Figure 12: Qualitative results for a sequence from UMPM [van der
Aa et al. 2011] at frames {60, 80, 100, 120, 140}. First row: the pink re-
projected SMPL overlay shows the tracked person by HMR 2.0 [Goel
et al. 2023]. Images without the pink overlay show tracking failure.
Second and third rows: successful reconstruction with our method
from two different camera angles.

0.0% 0.2% 1.0%

Figure 13: Reconstruction results for simulated marker loss. The
red circles show places where the marker should be located but
tracking failed. Even with a few lost markers, our approach can
accurately reconstruct results.
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