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Abstract. We consider the edge-weighted online stochastic matching
problem, in which an edge-weighted bipartite graph G = (I ∪ J,E) with
offline vertices J and online vertex types I is given. The online vertices
have types sampled from I with probability proportional to the arrival
rates of online vertex types. The online algorithm must make immediate
and irrevocable matching decisions with the objective of maximizing the
total weight of the matching. For the problem with general arrival rates,
Feldman et al. (FOCS 2009) proposed the Suggested Matching algorithm
and showed that it achieves a competitive ratio of 1− 1/e ≈ 0.632. The
ratio has recently been improved to 0.645 by Yan (2022), who proposed
the Multistage Suggested Matching (MSM) algorithm. In this paper, we
propose the Evolving Suggested Matching (ESM) algorithm and show that
it achieves a competitive ratio of 0.650.

Keywords: Online Algorithms · Stochastic Matching · Poisson Arrival.

1 Introduction

Motivated by its real-world applications, the online bipartite matching problem
has received extensive attention since the work of Karp, Vazirani, and Vazi-
rani [20] in 1990. The problem is defined on a bipartite graph where one side
of the vertices are given to the algorithm in advance (aka the offline vertices),
and the other side of (unknown) vertices arrive online one by one. Upon the ar-
rival of an online vertex, its incident edges are revealed and the online algorithm
must make immediate and irrevocable matching decisions with the objective of
maximizing the size of the matching. The performance of the online algorithm is
measured by the competitive ratio, which is the worst ratio between the size of
matching computed by the online algorithm and that of the maximum matching,
over all online instances. As shown by Karp et al. [20], the celebrated Ranking
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algorithm achieves a competitive ratio of 1 − 1/e ≈ 0.632 and this is the best
possible for the problem. However, the assumption that the algorithm has no
prior information regarding the online vertices and the adversary decides the
arrival order of these vertices, is believed to be too restrictive and in fact unreal-
istic. Therefore, several other arrival models with weaker adversaries, including
the random arrival model [16,18,19,21], the degree-bounded model [2,7,23] and
the stochastic model [11,14,15,17], have been proposed.

The stochastic model is proposed by Feldman et al. [11], in which the arrivals
of online vertices follow a known distribution. Specifically, in the stochastic set-
ting there is a bipartite graph G = (I ∪ J,E) that is known by the algorithm,
where J contains the offline vertices and I contains the online vertex types,
where each vertex type i ∈ I is associated with an arrival rate λi. There are
Λ =

∑
i∈I λi online vertices to be arrived. Each online vertex has a type sam-

pled from I independently, where type i ∈ I is sampled with probability λi/Λ.
The online vertex with type i has its set of neighbors defined by the neighbors of
i in the graph G = (I ∪ J,E). The competitive ratio for the online algorithm is

then measured by the worst ratio of E[ALG]
E[OPT] over all instances, where ALG denotes

the size of matching produced by the algorithm and OPT denotes that of the
maximum matching. For the online stochastic matching problem, Feldman et
al. [11] proposed the Suggested Matching algorithm that achieves a competitive
ratio of 1− 1/e and the Two Suggested Matching that is 0.67-competitive for in-
stances with integral arrival rates. These algorithms are based on the framework
that makes matching decisions in accordance to some offline optimal solution x
pre-computed on the instance (G, {λi}i∈I). Especially, the Two Suggested Match-
ing algorithm employs a novel application of the idea called the power of two
choices by specifying two offline neighbors and matching one of them if any of
these two neighbors is unmatched. The approximation ratio was later improved
by a sequence of works [3, 6, 17, 22], resulting in the state-of-the-art competi-
tive ratio 0.7299 by [6] under the integral arrival rate assumption. Without this
assumption, the first competitive ratio beating 1 − 1/e was obtained by Man-
shadi et al. [22], who provided a 0.702-competitive algorithm for the problem.
The competitive ratio was then improved to 0.706, 0.711, and 0.716 by Jaillet
and Lu [17], Huang and Shu [14] and Huang et al. [15], respectively. Notably,
Huang and Shu [14] established the asymptotic equivalence between the original
stochastic arrival model and the Poisson arrival model in which online vertex
types arrive independently following Poisson processes.

The weighted versions of the online stochastic matching problem have also
received a considerable amount of attention. In the edge-weighted (resp. vertex-
weighted) version of the problem, each edge (resp. offline vertex) is associated
with a non-negative weight and the objective is to compute a matching with max-
imum total edge (resp. offline vertex) weight. For the vertex-weighted version,
Jaillet and Lu [17] and Brubach et al. [6] achieved a competitive ratio of 0.725
and 0.7299, respectively, under the integral arrival rate assumption. Without
this assumption, Huang and Shu [14] and Tang et al. [24] achieved a competitive
ratio of 0.7009 and 0.704 respectively, while the state-of-the-art ratio 0.716 was
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achieved by Huang et al. [15]. For the edge-weighted version, under the integral
arrival rate assumption, competitive ratios 0.667 and 0.705 were proved by Hae-
uper et al. [13] and Brubach et al. [6], respectively. Without the assumption, the
(1 − 1/e)-competitive Suggested Matching algorithm by Feldman et al [11] re-
mained the state-of-the-art until recently Yan [25] proposed an algorithm called
Multistage Suggested Matching (MSM) algorithm and showed that it achieves a
competitive ratio of 0.645. Regarding hardness results, Huang et al. [15] proved
that no algorithm can be 0.703-competitive for the edge-weighted online stochas-
tic matching problem. The hardness result separates the edge-weighted version
of the problem from the unweighted and vertex-weighted versions, for both of
which competitive ratios strictly larger than 0.703 have already been proved.
It also separates the problem without the integral arrival rate assumption from
that with the assumption, which indicates the difficulty of the problem.

1.1 Our Contribution

We consider the edge-weighted online stochastic matching problem without the
integral arrival rate assumption, and propose the Evolving Suggested Matching
(ESM) algorithm that improves the state-of-the-art competitive ratio to 0.650.

Theorem 1. The Evolving Suggested Matching algorithm is 0.650-competitive
for edge-weighted online stochastic matching with a sufficiently large number of
arrivals.

Remark 1. The result follows from the asymptotic equivalence between the stochas-
tic arrival model and the Poisson arrival model established by Huang and Shu
[14]. For simplicity, we analyze the performance of our ESM algorithm under the
Possion arrival model (the formal definition can be found in Section 2) instead.

Our work follows the common framework that formulates the matching in
the graph G = (I∪J,E) into a Linear Program (LP) and uses the corresponding
pre-computed optimal solution x to guide the design of our online algorithm.
It can be shown that if we can design an algorithm that matches each edge
(i, j) ∈ E with probability at least α · xij , then the algorithm is α-competitive.
The LP is customized for different problems, and we use the LP proposed by
Jaillet and Lu [17] in this paper. By a reduction from [25], it suffices to consider
some kernel instances in which all online vertex types have degree at most two.
We call an online vertex type with one neighbor a first-class type and an online
vertex type with two neighbors a second-class type. The Multistage Suggested
Matching (MSM) algorithm proposed by Yan [25] is a hybrid of the Suggested
Matching and the Two-Choice algorithms. In the MSM algorithm, the second-
class online vertices follow different strategies at three different stages of the
algorithm. Inspired by the MSM algorithm, we propose the Evolving Suggested
Matching (ESM) algorithm by introducing an activation function that allows us
to have theoretically infinitely many different “stages” in the algorithm.
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Technical Contribution 1: Evolving Strategies by Activation Function.
With the activation function, our algorithm is able to evolve the matching strate-
gies in time horizon. As discussed in Section 4, the activation function controls
how “aggressive” the second-class online vertex types propose to their neighbors
and is general enough to capture many of the existing algorithms for the online
stochastic matching problem, including the Suggested Matching algorithm, the
Two-Choice algorithm and that of Yan [25]. Furthermore, the design of a better
online algorithm can thus be reduced to the design of the activation function in
a tractable way, which is key to refining the state-of-the-art competitive ratio.

Technical Contribution 2: Fine-grained Correlation Analysis. One par-
ticular difficulty in competitive analysis by introducing the activation function
is that most of the matching events are now intricately correlated (as opposed to
the Suggested Matching algorithm [11]), and in order to fully utilize the power of
the activation function (as opposed to the analysis for the MSM algorithm [25]),
we need to carefully bound the matching probability of a vertex or an edge
conditioned on the matching status of other vertices or edges. Essentially, all
analysis for the two proposals algorithm needs to take into account the failure
of the first proposal affected by the pairwise correlations. Existing works [14,25]
get around this issue by specific relaxation of the correlated events and thus
incur some intrinsic loss.

To improve the competitive analysis, it is inevitable to conduct a fine-grained
correlation analysis of the matching probability of a vertex or an edge. As shown
in our analysis (in Section 4), we conjecture that the offline vertices being un-
matched up to some time t are positively correlated. However, it is difficult to
capture the correlation between the matching events of offline vertices as there
are many places where the random decisions are dependent. Instead, we observe
that by abstracting the independent arrivals of the “extended online vertices
types”, we can prove a pseudo-positive correlated inequality available for our
analysis. We believe this observation is technically interesting and may lead to
further inspiration in future works.

1.2 Other Related Works

For the online bipartite matching problem under the adversarial arrival model,
the optimal competitive ratio 1 − 1/e was proved in [1, 4, 8, 12] using different
analysis techniques (even in the vertex-weighted version). For the problem under
random arrivals, it is assumed that the adversary decides the underlying graph
but the online vertices arrive following a uniformly-at-random chosen order. For
the unweighted version of this model, the competitive ratios 0.653 and 0.696
have been proved by Karande et al. [19] and Mahdian and Yan [21] respectively.
For the vertex-weighted version of the problem, the competitive ratios 0.653 and
0.662 were proved by Huang et al. [16] and Jin and Williamson [18], respectively.
It is well-known that there exists no competitive algorithm for the edge-weighted
online bipartite matching problem [10]. Consequently, the edge-weighted version
of the problem has attracted attention when additional assumptions are con-
sidered. One significant variant is often referred to as the edge-weighted online
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bipartite matching problem with free disposal, where each offline vertex can be
matched repeatedly, but only the heaviest edge matched to it contributes to the
objective. For the edge-weighted version of the problem with free disposal under
the adversarial arrival order, Feldman et al. [10] proposed a 1 − 1/e compet-
itive algorithm under a large market assumption. For general cases, Fahrbach
et al. [9] first demonstrated a competitive ratio of 0.5086, which surpasses the
long-standing barrier of 0.5 achieved by the greedy algorithm. The current best
competitive ratio for this problem is 0.5368 achieved by Blanc and Charikar [5].
As for the stochastic setting, Huang et al. [15] further improved the competitive
ratio from 1− 1/e [11] to 0.706.

2 Preliminaries

We consider the edge-weighted online stochastic matching problem. An instance
of the problem consists of a bipartite graph G = (I ∪J,E), a weight function w,
and the arrival rates {λi}i∈I of the online vertex types. In the bipartite graph
G = (I ∪ J,E), I denotes the set of online vertex types and J denotes the set of
offline vertices. The set E ⊆ I × J contains the edges between I and J , where
each edge (i, j) ∈ E has a non-negative weight wij . In the stochastic model, each
online vertex type i ∈ I has an arrival rate λi and Λ =

∑
i∈I λi. Online vertices

arrive one by one and each of them draws its type i with probability λi

Λ indepen-
dently. Any online algorithm must make an immediate and irrevocable matching
decision upon the arrival of each online vertex, with the goal of maximizing the
total weight of the matching, subject to the constraint that each offline vertex
can be matched at most once. Throughout, we use OPT to denote the weight
of the maximum weighted matching of the realized instance; and ALG to denote
the weight of the matching produced by the online algorithm. Note that both
ALG and OPT are random variables, where the randomness of OPT comes from
the random realization of the instance while that of ALG comes from both the
realization and the random decisions by the algorithm. The competitive ratio of

the algorithm is measured by the infimum of E[ALG]
E[OPT] over all problem instances.

Poisson Arrival Model. Instead of fixing the number of online vertices, in the
Poisson arrival model, the online vertex of each type i arrives independently
following a Poisson process with time horizon [0, 1] and arrival rate λi. The
independence property allows a more convenient competitive analysis. In this
paper, we consider the problem under the Poisson arrival model. Specifically, we
show that

Theorem 2. The Evolving Suggested Matching algorithm is 0.650-competitive
for edge-weighted online stochastic matching under the Poisson arrival model.

Together with the asymptotic equivalence analysis in [14], Theorem 2 implies
Theorem 1.
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Jaillet-Lu LP. We use the following linear program LPJL proposed by Jaillet and
Lu [17] to bound the expected offline optimal value for instance (G,w, {λi}i∈I):

maximize
∑

(i,j)∈E

wij · xij

subject to
∑

j:(i,j)∈E

xij ≤ λi, ∀i ∈ I;

∑
i:(i,j)∈E

xij ≤ 1, ∀j ∈ J ;

∑
i:(i,j)∈E

max{2xij − λi, 0} ≤ 1− ln 2, ∀j ∈ J ;

xij ≥ 0, ∀(i, j) ∈ E.

We use xi and xj to denote
∑

j:(i,j)∈E xij and
∑

i:(i,j)∈E xij , respectively.
Note that for any feasible solution x we have xi ≤ λi for all i ∈ I and xj ≤ 1 for
all j ∈ J . We remark that although the third set of constraints is not linear, they
can be transformed into an LP problem by applying the standard technique of
introducing auxiliary variables.

Lemma 1 (Analysis Framework). If an online algorithm matches each edge
(i, j) ∈ E with probability at least α · xij for any instance (G,w, {λi}i∈I), where
x is the optimal solution to the above LP, then the algorithm is α-competitive
under the Poisson arrival model.

Proof. Since the algorithm matches each edge (i, j) ∈ E with probability at least
α · xij , the expected total weight of the matching produced by the algorithm is

E [ALG] =
∑

(i,j)∈E

wij ·Pr [(i, j) is matched by the algorithm]

≥
∑

(i,j)∈E

wij · α · xij = α · P ∗ ≥ α ·E [OPT] ,

where P ∗ denotes the objective of the optimal solution x. The last inequality
follows because by defining x′

ij to be the probability that edge (i, j) is included
in the maximum weighted matching of the realized instance, we can obtain a
feasible solution3 with objective E [OPT]. Here, the feasibility of the third set of
constraints can be briefly explained as follows: Under the Poisson arrival model,
as shown in [15], it holds that for any offline vertex j and any subset of online
vertex types S that are adjacent to j, the probability of j getting matched among
S is bounded by 1−e−

∑
i∈S λi . Together with the converse of Jensen’s inequality,

the third set of constraints holds.

3 The proof showing that x′ satisfies all constraints (especially the third set of con-
straints) can be found in the appendix of [14]
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Following the above lemma, in the rest of the paper, we focus on lower bound-
ing the minimum of

1

xij
·Pr [(i, j) is matched by the algorithm]

over all edges (i, j) ∈ E.

Suggested Matching. We first give a brief review of the edge-weighted version of
the Suggested Matching algorithm, proposed by Feldman et al. [11]. The algo-
rithm starts from an optimal solution to a linear program4, in which xij is the
corresponding variable for edge (i, j) ∈ E. The Suggested Matching algorithm
proceeds as follows: when an online vertex of type i arrives, it chooses an offline
neighbor j with probability xij/λi and propose to j. Note that by the feasibility
of solution x, the probability distribution is well-defined. If j is not matched,
then the algorithm includes (i, j) into the matching. It can be shown that each
edge (i, j) will be matched with probability at least (1 − 1/e) · xij when the
algorithm terminates, which implies a competitive ratio of 1− 1/e.

Two-Choice. The idea of power of two choices was first introduced by Feldman
et al. [11], in the algorithm Two Suggested Matching. Generally speaking, the
idea is to allow each online vertex to choose two (instead of one) neighbors, and
match one of them if any of these two neighbors is unmatched. Formally, the Two-
Choice algorithm is described as follows: upon the arrival of each online vertex of
type i ∈ I, the algorithm chooses two different offline neighbors j1, j2 following
a distribution defined by some optimal solution to an LP. If j1 is unmatched,
then the algorithm matches i to j1; otherwise, the algorithm matches i to j2
if j2 is unmatched. We call j1 and j2 the first-choice and second-choice of i,
respectively. As introduced, the Two-Choice algorithm has achieved great success
in the research field of online stochastic matching problems.

3 Multistage Suggested Matching

As a warm-up, we first briefly review the recent progress on the edge-weighted
online stochastic matching problem by Yan [25].

Kernel Instances. We call an instance consisting of graph G = (I ∪J,E), arrival
rates {λi}i∈I , and a fractional matching x of LPJL a kernel instance if (1) there
are only two classes of online vertex types: one with a single offline neighbor
j such that xij = λi, and the other with two offline neighbors j1, j2 such that
xij1 = xij2 = 1

2λi; (2) for any offline vertex j ∈ J , we have xj = 1.

Yan [25] showed that if there exists an online algorithm on the kernel in-
stances such that for any edge (i, j) ∈ E, the probability that (i, j) gets matched

4 The LP used in [11] is similar to the Jaillet-Lu LP defined above but without the
third set of constraints.
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by the algorithm is at least α · xij , then we can transform this algorithm to an
α-competitive algorithm for general problem instances. Specifically, for any gen-
eral problem instances with an optimal fractional matching x of LPJL, we can
first assume that xi = λi for any online vertex type and xj = 1 for any offline
vertex. Otherwise, a satisfying instance can be constructed by introducing some
dummy online vertex types and offline vertices with specific fractional matching
on the involved dummy edges such that the objective and the feasibility of the
fractional matching are preserved. To reduce the number of online vertex types,
Yan [25] proposed a split scheme to split each online vertex type into sub-types
and pair up the fractional matching on their edges systematically for its feasibil-
ity. The split scheme can be simulated by the downsampling of the online vertex
types.

In the rest of this paper, we only consider the kernel instances. We call an
edge (i, j) a first-class edge if xij = λi, or a second-class edge if xij =

λi

2 . If the
online vertex type has an incident first-class (resp. second-class) edge, we call it
a first-class (resp. second-class) online vertex type. For each offline vertex j, we
use N1(j) and N2(j) to denote the set of first-class and second-class neighbors of
j, respectively. Let yj :=

∑
i∈N1(j)

xij be the sum of variables corresponding to
first-class edges incident to j. Note that for the kernel instance, yj also denotes
the total arrival rate of first-class neighbors of j. By the feasibility of solution x
we have:

yj ≤ 1− ln 2, ∀j ∈ J.

Multistage Suggested Matching Algorithm. While the Two-Choice algorithm pro-
vides good competitive ratios for the unweighted and vertex-weighted online
stochastic matching problems [6, 11, 14], it cannot be straightforwardly applied
to the edge-weighted version of the problem. Specifically, traditional analysis
for the unweighted or vertex-weighted versions of the problem focuses on lower
bounding the probability of each offline vertex being matched by the algorithm.
However, for the edge-weighted version we need to lower bound the probability
of each edge being matched (see Lemma 1), and it is not difficult to construct ex-
amples of kernel instances in which some (first-class) edge (i, j) ∈ E is matched
with probability strictly less than (1 − 1/e) · xij in the Two-Choice algorithm.
In contrast, the Multistage Suggested Matching (MSM) algorithm proposed by
Yan [25] is a hybrid of the Suggested Matching and the Two-Choice algorithms.
Specifically, in the MSM algorithm, the first-class vertices always follow the Sug-
gested Matching algorithm while the second-class vertices follow different strate-
gies at different stages of the algorithm. In the first stage of the algorithm, all
second-class vertices are discarded; in the second stage the second-class vertices
follow the Suggested Matching algorithm; and in the last stage they follow the
Two-Choice algorithm. Intuitively speaking, the second-class vertices are getting
more and more aggressive in terms of trying to match their neighbors, as time
goes by. The design of the first stage is crucial because without this stage the
matching probability of a first-class edge (i, j) ∈ E with xij = 1 will be at most
1 − 1/e. The design of the third stage is also important because without it the
performance of the algorithm will not be better than the Suggested Matching
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algorithm, e.g., on the second-class edges. By carefully leveraging the portions
of the three stages, they show that their algorithm is at least 0.645-competitive.

4 Evolving Suggested Matching Algorithm

In this section, we propose the Evolving Suggested Matching (ESM) algorithm
that generalizes several existing algorithms for the online stochastic matching
problem, including that of Yan [25]. The algorithm is equipped with a non-
decreasing activation function f : [0, 1] → [0, 2]. We first present the algorithm
in its general form and then provide a lower bound on the competitive ratio in
terms of the function f . By carefully fixing the activation function (in the next
section), we show that the competitive ratio is at least 0.650.

4.1 The Algorithm

Our algorithm is inspired by the MSM algorithm from [25], in which second-class
edges follow different matching strategies at different stages of the algorithm.
The high-level idea of our algorithm is to introduce a non-decreasing activation
function f : [0, 1] → [0, 2] to make this transition happen smoothly. As in [25], we
only consider the kernel instances in which each online vertex type is either first-
class (having only one neighbor) or second-class (having exactly two neighbors).
In the ESM algorithm, when an online vertex of type i arrives at time t ∈ [0, 1],

– if i is a first-class type, then it proposes to its unique neighbor j. That is, if
j is unmatched then we include the edge (i, j) into the matching; otherwise
i is discarded.

– if i a second-class type, then it chooses a neighbor j1 uniformly at random as
its first-choice, and let the other neighbor j2 be its second-choice. Then with
probability min{f(t), 1}, i proposes to j1. If the proposal is made and j1 is
unmatched then the edge (i, j1) is included in the matching and this round
ends; if the proposal is made but j1 is already matched, then i proposes to
j2 with probability max{f(t)− 1, 0}.

The detailed description of the algorithm can be found in Algorithm 1.
We remark that the activation function f controls how “aggressive” the

second-class online vertex types propose to their neighbors. For example, when
f(t) = 0, the second-class online vertex arriving at time t will be discarded im-
mediately without making any matching proposal; if f(t) = 1 then it will only
propose to its first-choice; if f(t) = 2 then it will first propose to its first-choice
and if the proposal is unsuccessful, then it will propose to its second-choice.
Therefore, with different choices of the activation function, the ESM is gen-
eral enough to capture many of the existing algorithms for the online stochastic
matching problem, including the Suggested Matching algorithm (with f(t) = 1
for all t ∈ [0, 1]); the Two-Choice algorithm (with f(t) = 2 for all t ∈ [0, 1]) and
that of Yan [25] (with f(t) = 0 when t ≤ 0.05; f(t) = 1 when t ∈ (0.05, 0.75)
and f(t) = 2 when t ≥ 0.75). In the following, we derive a lower bound on the
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Algorithm 1: Evolving Suggested Matching algorithm

Input: A kernel instance with graph G = (I ∪ J,E), arrival rates {λi}i∈I , the
optimal solution x to LPJL, and an activation function f .

Output: A matchingM.
1 InitializeM = ∅ to be an empty matching;
2 for each online vertex of type i arriving at time t ∈ [0, 1] do
3 if i is a first-class online vertex type then

// Propose to its unique first-class neighbor j
4 if j is unmatched then
5 M←M∪ {(i, j)};

6 else
7 choose a neighbor j1 uniformly at random and let j2 be the other

neighbor;
8 r1, r2 ∼ Unif[0, 1];
9 if r1 ≤ f(t) then

// Propose to j1
10 if j1 is unmatched then
11 M←M∪ {(i, j1)};
12 else if r2 ≤ f(t)− 1 then

// Propose to j2
13 if j2 is unmatched then
14 M←M∪ {(i, j2)};

15 returnM.

competitive ratio of the algorithm in terms of the activation function f . A spe-
cific choice of f will be decided in the next section to optimize the lower bound
on the ratio.

4.2 Extended Online Vertex Types

For convenience of analysis, in the following, we make use of the properties of
the Poisson process and present an equivalent description of the ESM algorithm.
Specifically, upon the arrival of a second-class online vertex of type i at time t,
suppose that j1 is chosen as the first-choice and j2 is the second-choice.

– If r1 > f(t) then we call the online vertex of type i(⊥,⊥), indicating that it
will not propose to any of its two choices;

– If r1 ≤ f(t) and r2 ≥ f(t)− 1 then we call the online vertex of type i(j1,⊥),
indicating that it will only propose to its first-choice;

– If r1 ≤ f(t) and r2 < f(t)− 1 then we call the online vertex of type i(j1, j2),
indicating that it will propose to its both choices unless it gets matched.

Recall that type i arrives following a Poisson process with rate λi. Hence the
aforementioned types arrive following Poisson processes with time-dependent
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arrival rates (depending on the activation function f). Since the first-choice is
chosen uniformly at random between the two neighbors, and r1, r2 are uniformly
distributed in [0, 1], we can characterize the arrival rates of each specific extended
vertex type as follows.

Proposition 1. For any second-class online vertex type i with neighbors {j1, j2},
at time t ∈ [0, 1]

– the arrival rate of type i(j1,⊥) and i(j2,⊥) are both λi

2 ·min{f(t), 1}·min{2−
f(t), 1};

– the arrival rate of type i(j1, j2) and i(j2, j1) are both λi

2 · min{f(t), 1} ·
max{f(t)− 1, 0}.

Moreover, the Poisson processes describing the arrivals of online vertex of
type i(j, j′), for all i ∈ I and j, j′ ∈ J ∪ {⊥} are independent.

In the following, we use i(j, j′) to describe an extended type, where i is a
second-class online vertex and each of j, j′ is either ⊥ or a neighbor of i. Under
this independent Poisson process modeling on the arrivals of the extended types,
we give an equivalent description of the ESM algorithm in Algorithm 2.

Algorithm 2: ESM algorithm with extend online vertex types

Input: A kernel instance with extended vertex types.
Output: A matchingM.

1 InitializeM = ∅ to be an empty matching;
2 for each online vertex of type i do
3 if i is a first-class online vertex type then
4 if its neighbor j is unmatched then
5 M←M∪ {(i, j)};

6 else
7 Suppose the type is i(j, j′);
8 if j ̸= ⊥ then
9 if j is unmatched then

10 M←M∪ {(i, j)};
11 else if j′ ̸= ⊥ then
12 if j′ is unmatched then
13 M←M∪ {(i, j′)};

14 returnM.

In the remaining analysis, we say that an online vertex is of type i(j, ∗) if its
extended type is i(j, j′) for some j′ ∈ J ∪{⊥}. Likewise we define i(∗, ∗), ∗(j, ∗),
∗(∗, j), etc. These notations only consider the second class arrivals. Note that
for all second-class online vertex type i ∈ I and any of its neighbor j, the arrival
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rate of type i(j, ∗) at time t is λi

2 ·min{f(t), 1} and the arrival rate of type i(∗, ∗)
at any time is always λi. Similarly, for any offline vertex j, the arrival rate of
type ∗(j, ∗) and ∗(∗, j) are both 1− yj which corresponds to the second class
arrival among its neighbors.

4.3 Matching Probability of Edges

By Lemma 1, to derive a lower bound on the competitive ratio of the algorithm,
it suffices to lower bound the probability that an arbitrarily fixed edge (i, j) ∈ E
is matched by the ESM algorithm. Let Mij ∈ {0, 1} be the indicator of whether

(i, j) is matched by the algorithm, and F (t) =
∫ t

0
f(x) dx. Let Uj(t) ∈ {0, 1}

be the indicator of whether the offline vertex j is unmatched at time t, i.e.,
Uj(t) = 1 if and only if j is unmatched at time t. In the following, we provide a
lower bound on Pr [Mij = 1].

First-Class Edge. We first consider the case when (i, j) is a first-class edge. By
the design of the algorithm, the edge will be included in the matching by the
algorithm if an online vertex of type i arrives, and j is unmatched, because i
will always propose to j upon its arrival. Since the arrival rate of type i is λi,
we immediately have the following.

Lemma 2. For any first-class edge (i, j) ∈ E, we have

Pr [Mij = 1] =

∫ 1

0

λi ·Pr [Uj(t) = 1] dt.

Second-Class Edge. Now suppose that (i, j) ∈ E is a second-class edge, and let
j′ be the other neighbor of i. There are two events that will cause edge (i, j) ∈ E
being matched by the algorithm:

– an online vertex of type i(j, ∗) arrives, and j is unmatched;
– an online vertex of type i(j′, j) arrives, j′ is already matched and j is un-

matched.

Let t∗ := sup {t ∈ [0, 1] : f(t) ≤ 1}. We observe that

– at time t ≤ t∗, the arrival rate of i(j, ∗) is λi

2 · f(t); after time t∗, the arrival

rate is λi

2 ;
– before time t∗, the arrival rate of i(j′, j) is 0; at time t > t∗, the arrival rate

is λi

2 · (f(t)− 1).

Therefore, we have the following characterization on Pr [Mij = 1].

Pr [Mij = 1] =

∫ t∗

0

λi

2
· f(t) ·Pr [Uj(t) = 1] dt+

∫ 1

t∗

λi

2
·Pr [Uj(t) = 1] dt

+

∫ 1

t∗

λi

2
· (f(t)− 1) ·Pr [Uj(t) = 1, Uj′(t) = 0] dt
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=

∫ 1

0

λi

2
· f(t) ·Pr [Uj(t) = 1] dt−

∫ 1

t∗

λi

2
· (f(t)− 1) ·Pr [Uj(t) = 1, Uj′(t) = 1] dt.

By upper bounding Pr [Uj(t) = 1, Uj′(t) = 1], we derive the following.

Lemma 3. For any second-class edge (i, j) ∈ E, we have

Pr [Mij = 1] ≥
∫ 1

0

λi

2
· f(t) ·Pr [Uj(t) = 1] dt

−
∫ 1

t∗

λi

2
· (f(t)− 1) · e−yj ·t∗−(2−yj)·F (t∗)−2(t−t∗) dt.

Proof. To prove the lemma, it suffices to argue that for any t > t∗, we have

Pr [Uj(t) = 1, Uj′(t) = 1] ≤ e−yj ·t∗−(2−yj)·F (t∗)−2(t−t∗).

Observe that if any online vertex of type i ∈ N1(j) or ∗(j, ∗) arrives before
time t, then j will be matched before time t. The same holds for the offline vertex
j′. The arrival rate of type N1(j) ∪ ∗(j, ∗) is

– at time x ≤ t∗:
∑

i∈N1(j)
λi +

∑
i∈N2(j)

λi

2 · f(x) = yj + (1− yj) · f(x).
– after time t∗:

∑
i∈N1(j)

λi +
∑

i∈N2(j)
λi

2 = yj + (1− yj) = 1.

Similarly the arrival rate of type N1(j
′) ∪ ∗(j′, ∗) is yj′ + (1 − yj′) · f(x) at

time x ≤ t∗ and 1 after time t∗. Since Pr [Uj(t) = 1, Uj′(t) = 1] is at most the
probability that no online vertex of type N1(j)∪∗(j, ∗) or N1(j

′)∪∗(j′, ∗) arrives
before time t, and the arrivals of types N1(j) ∪ ∗(j, ∗) or N1(j

′) ∪ ∗(j′, ∗) are
independent, we have

Pr [Uj(t) = 1, Uj′(t) = 1]

≤ e−
∫ t∗
0

(yj+(1−yj)·f(x)) dx−
∫ t
t∗ 1 dx · e−

∫ t∗
0 (yj′+(1−yj′ )·f(x)) dx−

∫ t
t∗ 1 dx

= e−(yj+yj′ )·t
∗−(2−yj−yj′ )·F (t∗)−2(t−t∗)

≤ e−yj ·t∗−(2−yj)·F (t∗)−2(t−t∗),

where the last inequality holds since F (t∗) ≤ t∗ and yj′ ≥ 0.

Given Lemma 2 and 3, to provide a lower bound on Pr [Mij = 1], it remains
to lower bound Pr [Uj(t) = 1] (in terms of the activation function f).

4.4 Lower Bounding Pr [Uj(t) = 1]

In this section, we fix an arbitrary offline vertex j and provide a lower bound
on Pr [Uj(t) = 1]. To begin with (and as a warm-up), we first establish a loose
lower bound as follows.
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Lemma 4. For any offline vertex j ∈ J and any time t ∈ [0, 1], we have

Pr [Uj(t) = 1] ≥ e−yjt−(1−yj)F (t).

Moreover, the above equation holds with equality when t ≤ t∗.

Proof. As before, we characterize the events that will cause j being matched.
Observe that if j is matched before time t, then at least one of the following
must happen before time t:

– a first-class online vertex type i ∈ N1(j) arrives;
– an online vertex of type ∗(j, ∗) arrives;
– an online vertex of type ∗(∗, j) arrives.

Note that the third event will only happen after time t∗. Moreover, it will
contribute to the matching of vertex j only if the first-choice of the online ver-
tex is matched upon its arrival. However, for the purpose of lower bounding
Pr [Uj(t) = 1], we only look at the arrivals without caring whether a proposal
to j is made. Since the combined arrival rate of types ∗(j, ∗) and ∗(∗, j) at time
x ∈ [0, 1] is (1 − yj) · f(x), and the total arrival rate of vertices in N1(j) is yj ,
the lemma follows immediately.

It is apparent that the above lower bound on Pr [Uj(t) = 1] can be improved
when t > t∗ because, in the above analysis, we use the event that “an online
vertex of type ∗(∗, j) arrives” to substitute that “an online vertex of type ∗(∗, j)
arrives and its proposal to its first-choice fails”. The advantage of this substitu-
tion is that now the events that may contribute to j being matched are indepen-
dent and it is convenient in lower bounding the probability that none of them
happens. On the other hand, it is reasonable to believe that via lower bounding
the probability that a vertex of type ∗(∗, j) fails in matching its first-choice, a
better lower bound on Pr [Uj(t) = 1] can be derived. However, this requires a
much more careful characterization of these events, because some of them are
not independent. Specifically, suppose that j is not matched at time x, and an
online vertex of type i(j1, j) arrives. The online vertex will contribute to j being
matched only if j1 is matched. Therefore the contributions of types i(j1, j) and
i′(j1, j) are not independent random events because they both depend on the
matching status of j1. Moreover, the contributions of types i(j1, j) and i′(j2, j)
may also be dependent because whether j1 and j2 are matched might not be
independent, e.g., they might have common neighbors.

Therefore, in order to provide a better lower bound on Pr [Uj(t) = 1], it is
inevitable to take into account the dependence on the random events. To enable
the analysis, we introduce the following useful notations.

Definition 1 (Competitor). We call an offline vertex j′ a competitor of j if
N2(j)∩N2(j

′) ̸= ∅. We use C(j) = {j1, j2, . . . , jK} to denote the set of competi-
tors of j. For each jk ∈ C(j), we use ck =

∑
i∈N2(j)∩N2(jk)

λi

2 to denote the total

arrival rate of types {i(jk, ∗)}i∈N2(j)∩N2(jk).
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Note that by definition we have
∑K

k=1 ck = 1− yj . In the following, we show
the following improved version of Lemma 4 when t > t∗.

Lemma 5. For any offline vertex j ∈ J and any time t ∈ [t∗, 1], we have

Pr [Uj(t) = 1] ≥ e−yj ·t−(1−yj)(e−F (1)F (t∗)+(1−e−F (1))F (t)+e−F (1)(t−t∗)).

when F (1) ≥ 1.

Proof. By Lemma 4, we have Pr [Uj(t
∗) = 1] = e−yj ·t∗−(1−yj)F (t∗). Hence the

statement is true when t = t∗. Observe that

Pr [Uj(t) = 1] = Pr [Uj(t) = 1 | Uj(t
∗) = 1] ·Pr [Uj(t

∗) = 1]

. To prove the lemma, it suffices to show that for all t > t∗, we have

Pr [Uj(t) = 1 | Uj(t
∗) = 1] ≥ e−yj(t−t∗)−(1−yj)((1−e−F (1))(F (t)−F (t∗))+e−F (1)(t−t∗)).

(1)
For ease of notation, we use h(t) to denote the LHS of the above. Note that

h : [t∗, 1] → [0, 1] is a decreasing function with h(t∗) = 1. Fix any t > t∗.
Conditioned on j being unmatched at time t∗, j will be matched at or before
time t if any of the following events happen during the time interval [t∗, t]:

– a first-class online vertex i ∈ N1(j) arrives;
– an online vertex of type ∗(j, ∗) arrives;
– an online vertex of type ∗(∗, j) arrives, and it fails matching its first-choice.

Since the total arrival rate of the first two events is 1 and the arrival rate of
∗(jk, j) at time x > t∗ is ck · (f(x)− 1), we have the following

Pr [Uj(t) = 0 | Uj(t
∗) = 1] =

∫ t

t∗

(
Pr [Uj(x) = 1 | Uj(t

∗) = 1]

+ (f(x)− 1) ·
K∑

k=1

ck ·Pr [Ujk(x) = 0, Uj(x) = 1 | Uj(t
∗) = 1]

)
dx.

Observe that Pr [Uj(t) = 0 | Uj(t
∗) = 1] = 1− h(t). The above equation im-

plies that

1− h(t) =

∫ t

t∗

(
1 + (f(x)− 1) ·

K∑
k=1

ck ·Pr [Ujk(x) = 0 | Uj(x) = 1]

)
· h(x) dx.

Solving the above using the standard differential equation, we have

h(t) = e−
∫ t
t∗ g(x) dx, (2)

where g(x) = 1 + (f(x) − 1) ·
∑K

k=1 ck · Pr [Ujk(x) = 0 | Uj(x) = 1]. To provide
an upper bound on g(x), we first establish the following useful claim.
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Claim. For all x ≥ t∗ and j′ ∈ J \ {j}, we have Pr [Uj′(x) = 0 | Uj(x) = 1] ≤
1− e−F (1) when F (1) > 1.

Proof. We prove the equivalent statement that Pr [Uj′(x) = 1 | Uj(x) = 1] ≥
e−F (1). As before, we first list the events that may cause j′ being matched:

– a first-class online vertex i ∈ N1(j
′) arrives;

– an online vertex of type ∗(j′, ∗) arrives;
– an online vertex of type ∗(∗, j′) arrives.

We call the above types the key types and use A(x) to denote the event that
none of the key types arrive before time x. Note that if A(x) happens then j′ is
guaranteed to be unmatched at time x. Hence we have

Pr [Uj′(x) = 1 | Uj(x) = 1] =
Pr [Uj′(x) = 1, Uj(x) = 1]

Pr [Uj(x) = 1]

≥Pr [A(x), Uj(x) = 1]

Pr [Uj(x) = 1]
=

Pr [A(x)] ·Pr [Uj(x) = 1 | A(x)]

Pr [Uj(x) = 1]
.

Since the key types related to event A(x) arrive independently, we have

Pr [A(x)] = e−y′
j ·x−(1−y′

j)·F (x) ≥ e−y′
j−(1−y′

j)·F (1) ≥ e−F (1),

where the last equality holds from the assumption that F (1) ≥ 1.
Given the above, it remains to show that

Pr [Uj(x) = 1 | A(x)] ≥ Pr [Uj(x) = 1] . (3)

The statement can be proved by the coupling argument. Given the same set of
randomness, let M1 and M2 be the matchings obtained by the ESM algorithm
and the one neglecting all arrivals of key types before time x respectively. We
next show that j /∈ M2 if j /∈ M1 for any specified randomness, which implies
eq. (3) immediately. Note that j /∈ M1 means

1. no online vertex of type i ∈ N1(j), ∗(j, ∗) and ∗(∗, j) arrive, or
2. some online vertex of type i(j′′, j) arrive but j′′ is not matched.

In the first circumstance, it is obvious to have j /∈ M2; Otherwise, it suffices to
show that j′′ /∈ M2 when j′′ /∈ M1 before the time x′ that the online vertex of
type i(j′′, j) arrive. Again, we can repeat a similar argument till the beginning
where all vertices are unmatched. Hence the inequality holds and our claim
follows immediately.

Given the above claim, we have

g(x) ≤ 1 + (f(x)− 1) ·
K∑

k=1

ck ·
(
1− e−F (1)

)
= yj + (1− yj) ·

((
1− e−F (1)

)
· f(x) + e−F (1)

)
.

Plugging the above upper bound on g(x) into Equation (2), we obtain Equa-
tion (1), and thus finish the proof of the lemma.
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4.5 Putting Things Together

Plugging the lower bounds on Pr [Uj(t) = 1] we have proved in Lemma 4 and 5
into Lemma 2 and 3, we obtain the following when the activation function sat-
isfying F (1) ≥ 1. For any first-class edge (i, j) ∈ E,

Pr [Mij = 1]

λi
≥
∫ t∗

0

e−yj ·t−(1−yj)F (t) dt

+

∫ 1

t∗
e−yj ·t−(1−yj)(e−F (1)F (t∗)+(1−e−F (1))F (t)+e−F (1)(t−t∗)) dt.

(4)

For any second-class edge (i, j) ∈ E,

Pr [Mij = 1]

λi/2
≥
∫ t∗

0

f(t) · e−yj ·t−(1−yj)F (t) dt

+

∫ 1

t∗
f(t) · e−yj ·t−(1−yj)(e−F (1)F (t∗)+(1−e−F (1))F (t)+e−F (1)(t−t∗)) dt

−
∫ 1

t∗
(f(t)− 1) · e−yj ·t∗−(2−yj)·F (t∗)−2·(t−t∗) dt. (5)

By Lemma 1, to show that the ESM algorithm is α-competitive, it remains
to design an appropriate activation function f such that for all yj ≤ 1 − ln 2,
the RHS of Equations (4) and (5) are both at least α and F (1) ≥ 1. The details
of the construction of the activation function are deferred to the full version.
Specifically, we have

Lemma 6. There exists a non-decreasing activation function f with F (1) ≥ 1
such that

– for any first-class edge (i, j) ∈ E,
Pr[Mij=1]

λi
≥ 0.650;

– for any second-class edge (i, j) ∈ E,
Pr[Mij=1]

λi/2
≥ 0.650.

Together with Lemma 1 and the lower bounds we derived, we prove Theorem 2.
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