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Summary

Heteroskedasticity is a common feature in empirical time series analysis,
and in this paper, we consider the effects of heteroskedasticity on statisti-
cal tests for equal forecast accuracy. In such a context, we propose two new
Diebold–Mariano-type tests for equal accuracy that employ nonparametric esti-
mation of the loss differential variance function. We demonstrate that these
tests have the potential to achieve power improvements relative to the original
Diebold–Mariano test in the presence of heteroskedasticity, for a quite general
class of loss differential series. The size validity and potential power superior-
ity of our new tests are studied theoretically and in Monte Carlo simulations.
We apply our new tests to competing forecasts of changes in the dollar/sterling
exchange rate and find the new tests provide greater evidence of differences in
forecast accuracy than the original Diebold–Mariano test, illustrating the value
of these new procedures for practitioners.
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1 INTRODUCTION

Forecasting economic and financial time series plays a central role in decision making, both in the public sector
policy-making context and in private sector environments, with the quality of the forecasts being a key ingredient in
making effective and appropriate decisions. Consequently, evaluation of the quality of competing forecasts is of great
importance, in order to determine which of a number of forecasting approaches will deliver the best indicator of the
future state of the world. In this context, it is crucial to have available techniques that allow discernment as to whether
one set of forecasts is more accurate than another according to some measure of forecast error loss. In statistical terms,
this translates into the need to have size-controlled but powerful tests of the null of equal forecast accuracy, and a number
of procedures have been developed to this end. Early contributions to this problem were provided by, inter alia, Granger
and Newbold (1977) and Meese and Rogoff (1988), focusing on testing equal mean squared forecast error under restricted
assumptions concerning the forecast errors. In a key development to the literature, Diebold and Mariano (1995) (DM)
proposed a test for equal forecast accuracy based on general loss differentials. Subsequent work on forecast evaluation
testing has focused on cases where the forecasts have been produced by estimated models, either non-nested or nested,
with major contributions to this strand of the literature being West (1996) and Giacomini and White (2006) (GW); for
reviews of this literature, see West (2006) and Clark and McCracken (2013).

Heteroskedasticity is a common feature in macroeconomic and financial data. If heteroskedasticity exists in the series
being forecast during the evaluation period, that will likely be transferred into loss differential series based on the forecast
errors over that evaluation period. For example, suppose we consider two competing q-step-ahead forecasts 𝑓1t and 𝑓2t
of a variable 𝑦t+q and evaluate the forecasts using quadratic loss. Then, the loss differential can be expressed as ΔLt,q =
(𝑦t+q − 𝑓1t)2 − (𝑦t+q − 𝑓2t)2 = 𝑓 2

1t −𝑓
2
2t − 2𝑦t+q(𝑓1t −𝑓2t), and it is clear that any heteroskedasticity in 𝑦t+q will be translated
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into heteroskedasticity in the loss differential series. That heteroskedasticity is a pertinent feature of loss differential series
in practical applications can clearly be seen from the exchange rate examples considered in our empirical application
(see Figures 7 and 8). Consequently, the effects of heteroskedasticity are a very important consideration when analysing
the performance of tests of competing forecast accuracy. The asymptotic size of the DM test is robust to the presence of
heteroskedasticity in the loss differential, but it is not necessarily efficient in terms of power.

In this paper, in the context of a constant mean model for the loss differential series, we propose new DM-type tests,
exploiting the unconditional heteroskedasticity structure present in the data (while also permitting the existence of rather
flexible conditional heteroskedasticity), which can achieve power gains relative to the original DM test. The new tests are
constructed using unconditional heteroskedasticity-adjusted loss differential series, where the heteroskedasticity struc-
ture is estimated by a kernel-type nonparametric estimator. We derive the limit distributions of the test statistics under
the null of equal forecast accuracy, and these limits are found to be standard normal, in line with the original DM test. We
further derive the distributions of the new statistics under a local alternative, and we show that under heteroskedasticity,
the new tests dominate the original DM test in terms of local asymptotic power for a quite general class of loss differential
series.

Our approach largely follows the GW framework of testing hypotheses about forecasting methods, with the ‘method’
encapsulating both the model and the parameter estimation procedure used to generate the forecasts, assuming a rolling
window model estimation scheme. Clearly, the performance of model-based forecasts relies on both the adequacy of the
model and the precision of the estimation procedure. In particular, the GW framework offers a context to discuss technical
conditions imposed on the models, which has practical value in comparing model-based forecasts. In contrast, the DM
framework abstracts from forecast models and imposes assumptions directly on the loss differential series, thereby being
able to compare non-model-based forecasts (e.g., survey-based forecasts). However, as discussed in Patton (2015) and
Diebold (2015b), the two frameworks are closely related, and conditions imposed on loss differentials directly as in the
DM framework can be viewed as high-level conditions to be satisfied by forecasting methods. Therefore, our approach
can be equally applied to the DM forecast comparison environment.

A highly relevant problem for many forecast evaluators is using forecasts to compare forecasting models. West (1996)
makes an important contribution in this direction, showing that in order to compare models based on forecasts, one has
to take into account the model estimation error and modify the DM statistic to achieve correct inference. We discuss how
our new DM-type statistics might also be adjusted to test hypotheses about models, along the lines of West (1996) and
West and McCracken (1998).

The rest of the paper is organised as follows. In Section 2, we set up our framework, and in Section 3, we introduce
two new DM-type tests for equal accuracy of competing forecast methods, demonstrating their asymptotic validity under
quite general assumptions on the data and models. Section 4 studies the local asymptotic powers of our tests and com-
pares them with the corresponding local asymptotic power of the DM test. In Section 5, we present finite sample size and
power simulation results. Section 6 discusses the issue of comparing forecasting models and also considers the implica-
tions of a time-varying loss differential mean for equal accuracy testing. In Section 7, we present the results of an empirical
illustration, evaluating competing forecasts of changes in the dollar/sterling exchange rate across both the pre-European
Exchange Rate Mechanism (ERM) and post-ERM periods. Section 8 concludes. Proofs of our asymptotic results are pro-

vided in Appendix S1. In the remainder of the paper, we use the following notation:
d
→denotes convergence in distribution,

p
−−→ convergence in probability and ⌊.⌋ the integer part of its argument.

2 MODELLING FRAMEWORK

We first introduce the notation and discuss assumptions about the data, the models and the estimation procedures, where
we largely follow the framework associated with the unconditional predictive ability test of GW. Consider a sequence
of random data vectors Wt ≡ {Wt ∶ Ω → R

s+1
, s ∈ N, t = 1, 2, …} defined on a complete probability space (Ω, ,P).

The data vector Wt is partitioned as Wt = (𝑦t,X ′
t )

′, where 𝑦t is the variable being forecast and Xt is a vector of predictors.
Define the filtration t = 𝜎(W1,W2, … ,Wt). Suppose two competing models are used to forecast the variable of interest
q steps ahead, that is, 𝑦t+q. The forecasts formulated at time t are based on the information set t and are denoted by
𝑓i(Wt,Wt−1, … ,Wt−wi+1; 𝛽i,t) for model i, i = 1, 2. Here, 𝑓i is a measurable function, and 𝛽i,t is the estimated parameter for
model i using a fixed number of observations wi over the period t − wi + 1, … , t, for i = 1, 2. As in GW, this formulation
is rather general and the forecasts can be point, interval, probability or density predictions. With this formulation, it is
explicit that the two forecasts are mappings which actually map past data, through models chosen and the parameters
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estimated, to forecasts of the future time period t + q. We follow GW and refer to 𝑓i(Wt,Wt−1, … ,Wt−wi+1; 𝛽i,t), i = 1, 2 as
forecast methods.

Let t = 1, … ,R with R ≥ max(w1,w2) denote the sample of data prior to the beginning of the forecasting exercise, such
that the forecasts are generated at times t = R + 1, … ,T. For a measurable loss function L , we thus have a sequence of
T − R forecast loss differentials:

{ΔLt,q}T
t=R+1 ≡ {

L
(
𝑦t+q, 𝑓1

(
Wt, … ,Wt−w1+1; 𝛽1,t

))
− L

(
𝑦t+q, 𝑓2

(
Wt, … ,Wt−w2+1; 𝛽2,t

))}T
t=R+1 .

The loss function L can take many forms, for example quadratic loss, absolute loss or others such as those discussed in
Chapter 2 of Elliott and Timmermann (2016). In the case of evaluating density forecasts, the loss function usually takes
the form of the negative of a scoring rule—see Gneiting and Raftery (2007) for more discussion and the references therein.
In what follows, to ease exposition, we take q = 1 and suppress the dependence on q in all our notation for ΔLt. This gives
rise to a sample of n = T − R loss differentials

ΔLt, t = R + 1, … ,T,

from which to compute test statistics for equal forecast accuracy.
In this paper, we consider a model where the loss differential series has a constant mean. That is, E(ΔLt) = c, where c

is a constant. We are interested in testing between the following hypotheses:

H0 ∶ c = 0 vs. H1 ∶ c ≠ 0.

One-sided alternatives can also be considered in the usual way. Note that our framework is in line with DM and
West (1996) who also assume a constant mean for the ΔLt series (these papers also assume stationarity). This differs
from the GW framework where the loss differential mean is allowed to be time varying; in section 6.2 we discuss issues
surrounding testing within a framework that permits a time-varying mean for ΔLt.

As in GW, we make the following assumption on the data vector {Wt}:

Assumption 1. {Wt} is 𝛼-mixing of size −r∕(r − 2) with r > 2.

Given our focus on considering unconditional heteroskedasticity in the loss differential series, we now specify possible
unconditional heteroskedasticity in the ΔLt sequence through the following assumption:

Assumption 2. Let Var(ΔLt) = 𝜎2
t = 𝜎2((t − R)∕n), where 𝜎(.) is a deterministic, positive function.

Assumption 1 specifies dependence conditions permitted in the data and does not require stationarity; these depen-
dence conditions are sufficient for a central limit theorem (CLT) to hold and are comparable with the assumptions made
in Theorem 4 of GW. Within our testing framework, the loss differential series {ΔLt} will inherit the same dependence
conditions as the data. Assumption 2 imposes very little on the unconditional variance of the loss differential series {ΔLt}.
Further assumptions for the 𝜎(.) function will be relevant and imposed later when discussing the estimation of this func-
tion. Notice that the conditional variance of the {ΔLt} series is not explicitly specified in our framework, thus can be very
flexible. To be more explicit, any conditional heteroskedasticity structure is permitted in our model, provided the depen-
dence conditions in Assumption 1 are satisfied. From Carrasco and Chen (2002), it is known that many commonly used
conditional heteroskedasticity models, such as the ARCH model of Engle (1982), the GARCH model of Bollerslev (1986)
and the log normal stochastic volatility model of Andersen (1994), when stationary, are all 𝛼-mixing with coefficients
decaying exponentially fast and are thus permitted in our model.

Heteroskedasticity in the loss differential might arise from heteroskedasticity in the target variable being predicted. By
way of an illustration, consider a simple forecast accuracy comparison where the target variable is given by 𝑦t = 𝜇 +𝜔t𝜂t,
with 𝜔t deterministic and 𝜂t ∼ IIDN(0, 1), so that the variable being predicted is heteroskedastic (Var(𝑦t) = 𝜔2

t ). Suppose
two methods for forecasting 𝑦t+q are being evaluated: (i) a forecast based on the mean plus an irrelevant putative predictor
xt, 𝑓1t = 𝜇+ xt, where xt ∼ IIDN(0, c) and xt, 𝜂t independent; (ii) a naive forecast based on the mean of the target variable,
𝑓2t = 𝜇. In this scenario, abstracting from estimation of 𝜇 and using a quadratic loss function, we have

ΔLt = 𝑓 2
1t − 𝑓

2
2t − 2𝑦t+q(𝑓1t − 𝑓2t)

= x2
t − 2xt𝜔t+q𝜂t+q.
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Here, E(ΔLt) = c and Var(ΔLt) = 2c2 + 4c𝜔2
t+q; hence, the heteroskedasticity in 𝑦t translates into heteroskedasticity in

ΔLt. Given the prevalence of heteroskedasticity in target variables being predicted in economics and finance, it is to be
expected that heteroskedastic loss differentials will be commonplace in forecast evaluation exercises.

Further motivation for the heteroskedastic loss differential framework that we adopt can be seen through consider-
ing the impact of heteroskedasticity in forecast errors. For example, consider the following simple illustrative model for
forecast errors, using the notation ei,t+q = 𝑦t+q − 𝑓it, i = 1, 2:

e1,t+q = 𝜔t+qu1,t+q + zt,

e2,t+q = 𝜔t+qu2,t+q,

with𝜔t deterministic, (u1t,u2t) ∼ IIDN(0, I2) and zt ∼ IIDN(0, c), with zt independent of (u1t,u2t). In this setup, the forecast
errors are clearly heteroskedastic, with Var(e1,t+q) = 𝜔2

t+q + c and Var(e2,t+q) = 𝜔2
t+q. Using a quadratic loss function, we

have
ΔLt = e2

1,t+q − e2
2,t+q

= 𝜔2
t+qu2

1,t+q + z2
t + 2𝜔t+qu1,t+qzt − 𝜔2

t+qu2
2,t+q.

Here, E(ΔLt) = c and Var(ΔLt) = 2c2 + 4c𝜔2
t+q + 8𝜔4

t+q, and the heteroskedasticity in the forecast errors translates into
heteroskedasticity in ΔLt.

In the context of model-based density forecast evaluation based on scoring rules, such as those discussed in Gneiting and
Raftery (2007), heteroskedasticity could also emerge as a result of model misspecification. Consider forecast evaluation
for macroeconomic series as discussed in Clark (2011). For illustrative purposes, we consider the special case of a density
forecast for a scalar variable. In Clark's model, the forecast for the one-step-ahead conditional density function of the
target series is the normal density

𝑓 (𝑦) = 1√
2𝜋𝜎̂2

t

exp

(
−1

2

(
𝑦 − 𝜇̂t

𝜎̂t

)2
)
,

for 𝑦 ∈ R, where 𝜇̂t is the one-step-ahead forecast of the conditional mean implied by Clark's conditional mean autore-
gressive model and 𝜎̂t is the corresponding one-step-ahead conditional volatility estimator implied by Clark's stochastic
volatility model for the error volatility. When the logarithmic scoring rule is used, the loss series takes the form

L(𝑦t+1) = − log𝑓 (𝑦t+1) =
1
2
(
log(2𝜋) + log

(
𝜎̂2

t
))

+ 1
2

(
𝑦t+1 − 𝜇̂t

𝜎̂t

)2

, t = R + 1, … ,T.

From this representation, we see that if Clark's stochastic volatility model is correctly specified, then both log
(
𝜎̂2

t
)

and(
𝑦t+1−𝜇̂t

𝜎̂t

)2
will be homoskedastic and the loss series will also be homoskedastic. If two forecasters both adopt the correctly

specified model, but estimate the parameters with different model estimation strategies, the resulting loss differentials
will be homoskedastic, even if the original data are heteroskedastic. However, other than this specific case, any misspeci-
fication in the dynamics of the conditional mean and/or conditional volatility models in one or both forecasters will likely
result in heteroskedasticity in the loss differential series.

3 TEST STATISTICS AND THEIR ASYMPTOTIC NULL DISTRIBUTIONS

The test statistic given in DM and GW is defined as

DM =
√

n
n−1 ∑T

t=R+1 ΔLt√
Ω̂(ΔL)

, (1)

where Ω̂(ΔL) is a suitable heteroskedasticity and autocorrelation consistent (HAC) estimator of the variance of
n−1∕2 ∑T

t=R+1 ΔLt. Throughout our analysis, the HAC estimator used takes the form

Ω̂(x) = n−1
T∑

t=R+1

T∑
s=R+1

xtxsk
( t − s

b

)
, (2)

HARVEY ET AL. 853
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where k(.) denotes a kernel function and b the lag truncation parameter. In (1), we have the HAC estimator obtained by
setting xt = ΔLt in (2).

3.1 Infeasible heteroskedasticity-adjusted statistics

We now motivate two DM-type test statistics that explicitly account for the unconditional heteroskedastic component 𝜎t,
initially assuming the function 𝜎(.) is known. First, notice that the null hypothesis H0 ∶ E(ΔLt) = 0 is equivalent to a null
hypothesis H′

0 ∶ E(ΔLt∕𝜎t) = 0 given that 𝜎t is deterministic. That is, the equal forecast accuracy hypothesis expressed
in terms of the {ΔLt} series is equivalent to equal forecast accuracy expressed in terms of the heteroskedasticity-adjusted
{ΔLt∕𝜎t} series. Applying the DM statistic to the heteroskedasticity-adjusted loss differential {ΔLt∕𝜎t}, we obtain the first
of our new DM-type statistics, which is infeasible at this stage due to the assumed knowledge of 𝜎(.):

DM′ =
√

n
n−1 ∑T

t=R+1
ΔLt
𝜎t√

Ω̂
(

ΔL
𝜎

) , (3)

where Ω̂
(

ΔL
𝜎

)
denotes the HAC estimator (2) evaluated using xt = ΔLt

𝜎t
, that is, an estimator of the variance of

n−1∕2 ∑T
t=R+1

ΔLt
𝜎t

.
Alternatively, as noted in Diebold (2015a), the DM statistic can be viewed as a HAC standard error-corrected t statistic

for testing H0 ∶ c = 0 in the following regression:

ΔLt = c + 𝜀t,

where 𝜀t is a heterogeneous dependent error sequence satisfying E(𝜀t) = 0. Under Assumption 2, we also have that
Var(𝜀t) = Var(ΔLt) = 𝜎2

t , hence on making a weighted least squares (WLS) transformation of the above regression, we
have

ΔLt

𝜎t
= c 1

𝜎t
+ vt, (4)

and the new ‘error’ series {vt} = {𝜀t∕𝜎t} satisfies E(vt) = 0 and Var(vt) = 1. Notice that (4) is a regression model of the
series {ΔLt∕𝜎t} on a regressor {1∕𝜎t}. Using a standard sandwich-form Wald-type statistic for testing the restriction c = 0
in the regression (4), after some simple algebra, we obtain our second DM-type infeasible statistic

DM∗ =
√

n
n−1 ∑T

t=R+1
ΔLt
𝜎2

t√
Ω̂
(

ΔL
𝜎2

) , (5)

where Ω̂
(

ΔL
𝜎2

)
denotes the HAC estimator (2) evaluated using xt =

ΔLt
𝜎2

t
. Notice that our HAC estimator in the denominator

is constructed under the null c = 0.

3.2 Feasible heteroskedasticity-adjusted statistics

In practice, we require feasible versions of the infeasible statistics (3) and (5), which depend on the unknown quantity 𝜎t.
To this end, we propose estimating 𝜎t using the following nonparametric estimator for the function 𝜎2(𝜏), 𝜏 ∈ [0, 1]:

𝜎̂2(𝜏) =
T∑

𝑗=R+1
w𝜏,𝑗ΔL2

𝑗 , (6)

where w𝜏,𝑗 = K
(

( 𝑗−R)∕n−𝜏
h

)
∕
∑T
𝑗=R+1 K

(
( 𝑗−R)∕n−𝜏

h

)
with K(.) a kernel function and h the bandwidth. Notice that the kernel

function K(.) and the bandwidth parameter h are distinct from the kernel function k(.) and the lag truncation parameter
b in (2). The corresponding estimator 𝜎̂2

t , t = R + 1, … ,T, is given by 𝜎̂2
t = 𝜎̂2((t − R)∕n) and 𝜎̂t =

√
𝜎̂2

t .
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The feasible version of the DM′ statistic (3) then becomes

DM′ =
√

n
n−1 ∑T

t=R+1
ΔLt
𝜎̂t√

Ω̂
(

ΔL
𝜎̂

) , (7)

where Ω̂
(

ΔL
𝜎̂

)
denotes the HAC estimator (2) evaluated using xt =

ΔLt
𝜎̂t

. Note that although the HAC estimator Ω̂
(

ΔL
𝜎̂

)
takes the standard form (see, e.g., De Jong & Davidson, 2000), it is actually applied to a series that has been adjusted by
the nonparametrically estimated 𝜎̂t. Therefore, its statistical properties are unknown and need to be established as part
of our analysis.

Analogously, the feasible version of the DM∗ statistic (5) is given by

DM∗ =
√

n
n−1 ∑T

t=R+1
ΔLt
𝜎̂2

t√
Ω̂
(

ΔL
𝜎̂2

) ,

where Ω̂
(

ΔL
𝜎̂2

)
denotes the HAC estimator (2) evaluated using xt =

ΔLt
𝜎̂2

t
.

Next, we derive the asymptotic null distributions of the two new feasible statistics DM′ and DM∗, for which we make
the following further assumptions:

Assumption 3. The forecast methods are based on the rolling window scheme with fixed window sizes wi satisfying
wi ≤ w̄ <∞, i = 1, 2.

Assumption 4. The volatility function 𝜎(.) is continuously differentiable. It is uniformly bounded by a constant M
on [0, 1] and ∫ 1

0 𝜎(𝜏)d𝜏 < ∞.

Assumption 5. The kernel function k(.) is symmetric, satisfies |k(.)| ⩽ 1 and k(0) = 1 and is continuous at zero
and almost everywhere else. The kernel function also satisfies ∫ ∞

−∞ |k(x)|dx < ∞ and ∫ ∞
−∞ |𝜙k(x)|dx < ∞, where

𝜙k(x) = (2𝜋)−1 ∫ ∞
−∞ k(𝑦)e−ix𝑦d𝑦.

Assumption 6. The lag truncation parameter b satisfies b → ∞ and n−1∕2b → 0 as n → ∞.

Assumption 7. The kernel function K(.) ∶ R → R
+ is bounded, Lipschitz continuous and satisfies ∫ ∞

−∞ K(x)dx > 0,
∫ ∞
−∞ |K(x)x|dx < ∞, ∫ ∞

−∞ |K(x)|dx < ∞, xK(x) → 0 as x → ∞, and ∫ ∞
−∞ |𝜙K(x)|dx < ∞, where 𝜙K(x) =

(2𝜋)−1 ∫ ∞
−∞ K(𝑦)e−ix𝑦d𝑦. K is differentiable, with K′(.) bounded over R, and ∫ ∞

−∞ |𝜙K′ (x)|dx < ∞, where 𝜙K′ (x) =
(2𝜋)−1 ∫ ∞

−∞ K′(𝑦)e−ix𝑦d𝑦.

Assumption 8. The bandwidth h satisfies h → 0 and nh4 → ∞ as n → ∞.

Our Assumption 3 only admits a rolling window scheme, thereby excluding a recursive estimation scheme. This is com-
parable with GW's corresponding assumptions in view of the discussion in McCracken (2020). Assumption 4 imposes a
smoothness condition for the unconditional volatility function; the commonly used logistic smooth transition function
and trend function for unconditional volatility both satisfy Assumption 4. Notice that the smoothness assumption does
not necessarily imply slow and gradual changes in the unconditional volatility function. For example, a logistic transition
function with a large speed parameter permits very rapid volatility changes, while still satisfying Assumption 4.1 Assump-
tions 5 and 6 are largely from De Jong and Davidson (2000) and are needed for consistent estimation of the long-run

1We conjecture that it is possible to extend our theory to allow for a finite number of discontinuities in the volatility function, by utilising and adapting
the proof strategy in Xu and Phillips (2008), Cavaliere et al. (2022) and Boswijk and Zu (2022). However, such an extension is out of the scope of this
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variances. Our Assumption 6 is stronger than that used in De Jong and Davidson (2000)2; this is needed to prove the
validity of our HAC estimators involving adjustments made by the nonparametric estimator 𝜎̂t.

In the following theorem, the asymptotic distributions of the statistics are established under the null hypothesis.

Theorem 1.

a. Under Assumptions 1–8, and assuming also that Var
(

n−1∕2 ∑T
t=R+1

ΔLt
𝜎t

)
> 0 and Var

(
n−1∕2 ∑T

t=R+1
ΔLt
𝜎2

t

)
> 0 for

large n, and E(|ΔLt|2r) <∞ for all R + 1 ⩽ t ⩽ T, then under H0, as n → ∞,

DM′ d
−→N(0, 1), DM∗ d

−→N(0, 1).

b. Under Assumptions 1–8, and assuming also that Var
(

n−1∕2 ∑T
t=R+1 ΔLt

)
> 0 for large n, and E(|ΔLt|r) < ∞ for all

R + 1 ⩽ t ⩽ T, then under H0, as n → ∞,

DM
d
−→N(0, 1).

The result for DM is the same as that in Theorem 4 of GW, but we make a slightly less stringent moment assumption
E(|ΔLt|r) <∞ here as GW require E(|ΔLt|2r) < ∞.

4 LOCAL ASYMPTOTIC POWER ANALYSIS

To study the power performance of the tests, in this section, we look at their asymptotic powers under the local alternative
hypothesis H1, where we apply the relevant Pitman drift to c:

H1 ∶ E(ΔLt) =
c√
n

(8)

where, without loss of generality, we consider c > 0.3 The limits of our new DM-type statistics DM′ and DM∗, and also
the original DM statistic DM, under the local alternative (8), are given in the following theorem.

Theorem 2.

a. Under Assumptions 1–8, denoting 𝜉2
n = Var

(
n−1∕2 ∑T

t=R+1
ΔLt
𝜎t

)
and 𝜁2

n = Var
(

n−1∕2 ∑T
t=R+1

ΔLt
𝜎2

t

)
, then

lim
n→∞

𝜉2
n = 𝜉2, lim

n→∞
𝜁2

n = 𝜁2,

where 𝜉2 and 𝜁2 are finite. Further, if 𝜉2
n > 0 and 𝜁2

n > 0 for large n, and E(|ΔLt|2r) < ∞ for all R + 1 ⩽ t ⩽ T, then
under the local alternative H1 of (8), as n → ∞,

DM′ d
−→ c
𝜉 ∫

1

0

1
𝜎(𝜏)

d𝜏 + N(0, 1), DM∗ d
−→ c
𝜁 ∫

1

0

1
𝜎2(𝜏)

d𝜏 + N(0, 1).

b. Under Assumptions 1–8, denoting 𝜓2
n = Var

(
n−1∕2 ∑T

t=R+1 ΔLt

)
, then

lim
n→∞

𝜓2
n = 𝜓2,

paper and thus left for future research. Instead, we provide some additional Monte Carlo simulation evidence that the performance of our tests is not
affected when the volatility function is discontinuous—see Appendix S1 for details.
2The condition imposed on the lag truncation parameter in De Jong and Davidson (2000) translates to n−1b → 0 if their near-epoch dependent array
assumption is specialised to our 𝛼-mixing case.
3Clark and McCracken (2015) also consider a local alternative hypothesis when comparing equal forecast accuracy between nested models.
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where 𝜓2 is finite. Further, if 𝜓2
n > 0 for large n, and E(|ΔLt|r) < ∞ for all R + 1 ⩽ t ⩽ T, then under the local

alternative H1 of (8), as n → ∞,

DM
d
−→ c
𝜓

+ N(0, 1).

In this theorem, we first note that under our mixing conditions, the long-run variances 𝜉2, 𝜁2 and 𝜓2 are finite. This
allows us to obtain analytical expressions for the limiting local alternative distributions of the test statistics. Note also that
the local asymptotic distribution of DM is a new result.

From the results of Theorem 2, we see that under the local alternative model (8), the limit distributions of the DM′,
DM∗ and DM statistics have different location shifts relative to their common standard normal limit null distribution.
Because the magnitude of the location shift dictates the local asymptotic powers of the tests, it is informative to compare
the relative location shift magnitudes.

Under the current set of assumptions, it is not straightforward to directly compare the magnitudes of the different
location shifts. However, in the case when the sequence {(ΔLt−cn−1∕2)∕𝜎t} is covariance stationary, we can derive explicit
expressions for 𝜉2, 𝜁2 and 𝜓2 and the relationships between them. From the derived relationships, we can further show
that there is a fixed order between the magnitudes of the three location shifts. This is detailed in the following proposition.
Note that the sequence {(ΔLt − cn−1∕2)∕𝜎t} already has a constant mean 0 and variance 1 under our assumptions; hence,
the restriction that the sequence is covariance stationary only additionally imposes that the covariance structure does not
change over time.

Proposition 1. Under the conditions of Theorem 2 and under the local alternative H1 of (8), if the sequence {(ΔLt −
cn−1∕2)∕𝜎t}, t = R + 1, … ,T, is covariance stationary with lth-order autocovariance 𝛾l, then its long-run variance,
𝛾0 + 2

∑∞
l=1 𝛾l, is finite. Further, as n → ∞,

𝜉2 = 𝛾0 + 2
∞∑

l=1
𝛾l, 𝜓

2 = 𝜉2 ∫
1

0
𝜎2(𝜏)d𝜏, 𝜁2 = 𝜉2 ∫

1

0

1
𝜎2(𝜏)

d𝜏.

Denoting the location shifts for DM′, DM∗ and DM in Theorem 2 by LDM′ , LDM∗ and LDM, respectively, then

LDM′ = c
𝜉 ∫

1

0

1
𝜎(𝜏)

d𝜏, LDM∗ = c
𝜉

√
∫

1

0

1
𝜎2(𝜏)

d𝜏, LDM = c
𝜉

1√
∫ 1

0 𝜎
2(𝜏)d𝜏

, (9)

and
LDM∗ ⩾ LDM′ ⩾ LDM ,

with the equalities holding when the 𝜎(.) function is a constant.

The implication of Proposition 1 is that when {(ΔLt − cn−1∕2)∕𝜎t} is covariance stationary, a power ranking exists
between the tests under the local alternatives when unconditional heteroskedasticity exists, with the DM∗ test being the
most powerful, followed by DM′, and DM being the least powerful.

Based on the result of Proposition 1, we now proceed to evaluate numerically the local asymptotic powers of the different
tests for a range of volatility specifications, in order to illustrate the relative performance of the tests. We consider the
following four representative volatility functions for 𝜎(.):

(i) Constant volatility: 𝜎(𝜏) = 𝜎1 ∀𝜏.
(ii) Smooth transition in volatility from 𝜎1 to 𝜎2:

𝜎(𝜏) = 𝜎1 +
𝜎2 − 𝜎1

1 + exp{−30(𝜏 − 0.4)}
.

(iii) Smooth transition in volatility from 𝜎2 to 𝜎1:

𝜎(𝜏) = 𝜎2 +
𝜎1 − 𝜎2

1 + exp{−30(𝜏 − 0.4)}
.

(iv) Smooth double transition in volatility from 𝜎2 to 𝜎1 to 𝜎2:

HARVEY ET AL. 857
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𝜎(𝜏) = 𝜎2 +
𝜎1 − 𝜎2

1 + exp{−30(𝜏 − 0.25)}
+ 𝜎2 − 𝜎1

1 + exp{−30(𝜏 − 0.75)}
.

Here, we adopt the logistic function to model smooth transitions in volatility, and initially, we set 𝜎1 = 1 and 𝜎2 = 1∕5,
so that, for example, (ii) comprises a smooth transition from 1 to 1/5 with transition speed 30 and transition mid-point
0.4. Figure 1 gives plots of the four volatility functions. Using these 𝜎(𝜏) functions, we evaluate the local asymptotic power
of the tests using the offset representations in (9) for a grid of c values ranging from 0 to 4 with step size 0.1 (c = 0
representing the null). The integrals in (9) are calculated by numerical approximation involving 10,000 discretised steps,
and we set 𝜉 =

√
2.696, motivated by the ARMA(1,1) specification adopted in the finite sample simulations that follow

in the next section. For a given c, 𝜉 and 𝜎(𝜏) function, the offsets in (9) can be calculated, and the local asymptotic powers
of the tests evaluated using the cumulative distribution function of the normal distribution.

Figure 2 presents the local power results for two-sided nominal 0.05-level tests for the four volatility functions. In panel
(a), the local power curves of DM′, DM∗ and DM coincide, because the offsets reduce to c

𝜉
for all three tests. Note that

this implies no loss of power through using the heteroskedasticity-adjusted DM′ and DM∗ tests relative to DM. In panels
(b)–(d), substantial differences are observed between the three local power profiles, and a similar pattern is observed
across all three volatility functions. In line with the result in Proposition 1, we see that DM has the lowest powers of the
three tests under heteroskedasticity. The new tests DM′ and DM∗ offer considerable power gains relative to DM through
their direct accounting of the heteroskedastic features of the loss function. Between DM′ and DM∗, the power differences
are more modest, but DM∗ dominates DM′ in terms of power, again in line with Proposition 1.

In order to compare the local powers across different magnitudes of volatility change, we next present plots of the
local powers of two-sided nominal 0.05-level tests across a range of 𝜎2 values, for the same three time-varying volatility
functions (ii), (iii), and (iv) above. Specifically, we consider 𝜎2 = 1∕x for x = {5, 4.9, … , 1}, and to aid comparison across
the different tests, we calibrate c for a given value of 𝜎2 so that the power of DM is equal to 0.50, that is, for each 𝜎2, we

FIGURE 1 Volatility function specifications.
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FIGURE 2 Local asymptotic powers of two-sided nominal 0.05-level tests: .

set c = 1.96𝜉
√

∫ 1
0 𝜎

2(𝜏)d𝜏 so that LDM = 1.96. The results are given in Figure 3, and it is clear that the power differences
between the different tests become more exaggerated as the magnitude of the volatility change increases. The powers of
the tests coincide when𝜎2 = 1 because in that case, no volatility change occurs, but then as𝜎2 decreases towards the largest
change considered (1/5), the power gains of DM′ and DM∗ over DM quickly become evident, with marked differences in
power levels apparent even for relatively small changes in volatility. Overall, the limiting power results suggest a valuable
role for the new tests, and DM∗ in particular, when heteroskedasticity is present in the forecast evaluation sample.

While the GW framework focuses on evaluating forecasting methods using a rolling window model estimation scheme,
the original DM forecast evaluation framework abstracts from forecast models and imposes assumptions directly on the
loss differential series. It is straightforward to translate our asymptotic treatment of the DM and newly proposed statistics
DM′ and DM∗ to this case: we would simply impose Assumption 1 on {ΔLt} ≡ {L(𝑦t+q, 𝑓1t) −L(𝑦t+q, 𝑓2t)} instead of {Wt}
(note that Assumption 3 then becomes irrelevant). Our results in Theorems 1 and 2 would continue to apply, and under
the additional conditions of Proposition 1, the same local asymptotic power rankings of the tests would arise. Hence,
while our primary analysis is set within the GW framework, the central results are equally applicable to the DM forecast
comparison environment.

5 FINITE SAMPLE SIMULATIONS

In this section, we perform Monte Carlo simulations to study the finite sample performance of the DM′, DM∗ and DM
tests. Under the null hypothesis, we directly simulate ΔLt = 𝜎tzt, while under the local alternative, we simulate ΔLt =
cn−1∕2 +𝜎tzt for t = 1, … ,n with n = {100,200, 400} and the same grid of c values considered in the previous section. For
zt, we use the following normalised stationary invertible ARMA(1,1) specification:

HARVEY ET AL. 859

 10991255, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.3050 by D

avid H
arvey - U

niversity O
f N

ottingham
 , W

iley O
nline L

ibrary on [15/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FIGURE 3 Local asymptotic powers of two-sided nominal 0.05-level tests, c calibrated across 𝜎2: .

zt =
ut√

Var(ut)
, ut = 0.3ut−1 + 𝜀t + 0.5𝜀t−1, 𝜀t ∼ IIDN(0, 1).

Here, zt is normalised to have unit variance, so the loss differential ΔLt has variance 𝜎2
t . Note that for this process, the

long-run variance of zt is 𝜉2 = 2.696; hence, our specification for zt is consistent with the setting for 𝜉 used in the local
asymptotic power calculations above. For 𝜎t, we use the same four volatility specifications as in the previous section,
focusing on the case 𝜎2 = 1∕5 and discretising 𝜎(𝜏) as 𝜎(t∕n) in the obvious way. Using these data generating processes
(DGPs) ensures that our finite sample analysis will be directly comparable with our preceding local asymptotic work.

For the nonparametric estimator 𝜎̂2(.), we use the Gaussian kernel throughout. For the bandwidth h, we use a
cross-validation method. Given the dependent nature of the zt series, the classical leave-one-out cross-validation pro-
cedure performs poorly, often leading to a (left) boundary solution and thereby selecting a very small bandwidth. This
phenomenon is well known in the statistics literature, and Hardle and Vieu (1992) (see also Chu & Marron, 1991; Hart &
Vieu, 1990; Tong & Yao, 1998) propose instead using leave 2l + 1 out cross-validation to deal with the dependence. That
is, in addition to giving zero weight to the current observation t, it also assigns zero weight to l observations before and
after time t, to compute a leave 2l + 1 out estimator for time t, which is then further used to evaluate the leave 2l + 1
out cross-validation criterion function. We apply this criterion to select h using l = 2, using a 100 point grid of possible h
values over the range 5∕n to 0.5, as this was found to provide good bandwidth selection. For the long-run variance esti-
mators Ω̂(.), we use a Bartlett kernel with lag truncation parameter b = ⌊1.2n1∕3⌋, with n1∕3 being the optimal rate for the
Bartlett kernel, as discussed in Andrews (1991). Figures 4–6 present results for the sizes and powers of two-sided nominal
0.05-level tests for n = 100, 200 and 400, respectively, using 10,000 replications.

The stand-out feature from Figures 4–6 is that the patterns of power behaviour bear a very close resemblance to the
corresponding local asymptotic results in Figure 2, and a clear movement towards the limit results is seen as the sample
size n increases. When c = 0, we observe very little in the way of finite sample size distortion, even for the smallest sample
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FIGURE 4 Finite sample powers of two-sided nominal 0.05-level tests, n = 100: .

size n = 100, implying that the feasible DM′ and DM∗ tests behave reliably under the null in finite samples, along with
DM. For c > 0, the power gains of DM′ and DM∗ over DM observed in the asymptotic context are seen to carry over
into finite samples, with substantial gains again available under heteroskedasticity. Moreover, DM∗ dominates in terms
of power in all the finite samples considered. These results confirm the usefulness of the new heteroskedasticity-adjusted
procedures in delivering more powerful tests for equal forecast accuracy.4

6 DISCUSSIONS AND EXTENSIONS

6.1 Comparing forecasting models

West (1996) and West and McCracken (1998) consider a closely related problem of testing equal performance between
forecasting models. In particular, their analysis, adapted to our context, focuses on testing for a zero mean of the loss
differential

{ΔLt(𝛽∗)}T
t=R+1 ≡ {L(𝑦t+q, 𝑓1t(𝛽∗1 )) − L(𝑦t+q, 𝑓2t(𝛽∗2 ))}

T
t=R+1,

where 𝛽∗ = (𝛽∗′1 , 𝛽
∗′
2 )′ with 𝛽∗1 and 𝛽∗2 the pseudo-true values of the forecasting models, obtained by projecting the DGP

on the two considered models, respectively. Note that the forecasts 𝑓1t(𝛽∗1 ) and 𝑓2t(𝛽∗2 ) depend on data at time t or earlier.
Because the hypothesis concerns the pseudo-true models (characterised by the model specification and the pseudo-true

4In Appendix S1, we also provide additional finite sample simulation evidence to illustrate the size robustness and power properties of the procedures
when (i) conditional heteroskedasticity is present in the data and (ii) instantaneous level shifts occur in the volatility function. We find that the size
remains close to the nominal level, and the power rankings of the tests are similar to those reported in this section.
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FIGURE 5 Finite sample powers of two-sided nominal 0.05-level tests, n = 200: .

parameter values), it is interpreted as a hypothesis for the equality of forecasting performance of the two models. In
contrast to the GW approach, where the comparison of forecasting methods includes the effect of both model specifi-
cation and model parameter estimation, the West-type hypothesis considers the model specification part only. The two
approaches can be complementary; for example, in the case that we find a difference in the forecasting performance of
two forecast methods using a GW approach, testing a West-type hypothesis can help us in further understanding whether
the difference comes from the models being used, excluding the effects of the parameter estimation uncertainty.

To test the West-type hypothesis that E(ΔLt(𝛽∗)) = 0 in our heteroskedastic setting, we could consider extending our new
statistics along the same lines as West (1996) and West and McCracken (1998). First, consider the infeasible statistic (3)
where 𝜎t is treated as known. Let the model estimates be denoted by 𝛽t =

(
𝛽′1t, 𝛽

′
2t
)′, where these estimates are obtained

from a fixed, rolling window or recursive estimation scheme. It is straightforward to see that one can make a West-type
Taylor expansion of the average

n−1
T∑

t=R+1

ΔLt(𝛽t)
𝜎t

,

around the loss differential evaluated at the pseudo-true value 𝛽∗, leading to the following West-type asymptotic null
distribution result under a set of high-level assumptions for the parametric estimation stage, and assuming stationarity
in the data:

n−1∕2
T∑

t=R+1

ΔLt(𝛽t)
𝜎t

d
−→N(0,Ω𝜎),

where Ω𝜎 = S1𝜎 + Π1
(

F𝜎BS′
2𝜎 + S2𝜎B′F′

𝜎

)
+ Π2F𝜎V𝛽F′

𝜎 . Here, S1𝜎 is the long-run variance of ΔLt(𝛽∗)∕𝜎t, S2𝜎 is the
long-run cross-covariance matrix between ΔLt(𝛽∗)∕𝜎t and the moment function used for parameter estimation and
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FIGURE 6 Finite sample powers of two-sided nominal 0.05-level tests, n = 400: .

F𝜎 = E
(
𝜕{ΔLt(𝛽∗)∕𝜎t}

𝜕𝛽

)
. The remaining terms are the same as in West (1996) and West and McCracken (1998) as they only

involve the parametric estimation stage: V𝛽 denotes the limiting variance–covariance matrix of the parameter estimator,
B is the inverse of the limit of the Hessian matrix associated with the moment function used to estimate the model and
Π1 and Π2 are constants, the values of which depend on which of the fixed, rolling window or recursive schemes are
employed for model estimation. Further, note that the West (1996) framework already accommodates possible estima-
tion methods that are robust to any heteroskedasticity in the model estimation stage; hence, no further heteroskedasticity
adjustment would be needed in that part of the environment.

In practice, using our nonparametric estimator 𝜎̂t, a variant of DM′ in (7) could be constructed to compare forecast
models usingΔLt

(
𝛽t
)

in place ofΔLt and replacing Ω̂
(

ΔL
𝜎̂

)
with an estimate ofΩ𝜎 based onΔLt

(
𝛽t
)
∕𝜎̂t. A variant of DM∗

could also be considered in a similar manner. Of course, the introduction of the estimator 𝜎̂t would require a non-trivial
development of the West-type theory, because the potential effects of using 𝜎̂t instead of 𝜎t would need to be evaluated.
We leave such an extension for future research.

6.2 Time-varying loss differential mean

In this paper, we consider a constant mean model E(ΔLt) = c for the loss differential series and test the hypothesis H0 ∶ c =
0 against H1 ∶ c ≠ 0. The constant mean is a maintained assumption under both the null and the alternative hypotheses.
Here, we make a distinction between the model and the assumption we make on the model, which characterises the
framework in which we perform our tests, and the hypotheses we wish to test within this framework. The stationary testing
framework considered by DM and West (1996) also implies a constant mean for the loss differential series.

HARVEY ET AL. 863
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Although the assumption of a constant mean is widely made in practical applications, as evidenced by the popularity
of the DM and West tests, there are certainly cases where a time-varying mean might be more relevant. Consider forecast
evaluation testing within a model where the loss differential has a time-varying mean:

E(ΔLt) = ct. (10)

In this context, the equal performance hypothesis between the two forecasts becomes

H0 ∶ ct = 0, t = R + 1, … ,T. (11)

Testing (11) within model (10) has been the main subject of more recent research in the forecast evaluation literature.
For example, Odendahl et al. (2023) consider testing the null hypothesis (11) against the alternative that the relative
performance is state dependent.5 Earlier, Giacomini and Rossi (2010) proposed use of a local relative forecast performance
measure, adopting a fluctuation type statistic to test the null hypothesis (11), and subsequently track changes in relative
forecast performance when the null is rejected. Rossi and Sekhposyan (2010) also apply the Giacomini and Rossi (2010)
test to study the relative performance of forecasts from various economic models.

A fact that is perhaps less well documented is that GW were actually the first to consider testing the hypothesis (11)
in the time-varying mean model (10). The unconditional test of GW proposes use of the DM test statistic to test the null
hypothesis (11). Amisano and Giacomini (2007) apply the same unconditional test to the problem of evaluating density
forecasts.

It is important to note that once a more general model of the form (10) is entertained, the parameter space under con-
sideration is substantially enlarged relative to the constant mean model. In the constant mean case, interest focuses on
whether c = 0 within a one-dimensional real parameter space c ∈ R, while in the time-varying mean model (10), the
approach of GW is to test if (cR+1, … , cT) is a zero vector within an n-dimensional real parameter space (cR+1, … , cT) ∈
R

n, which will become infinite-dimensional as n → ∞. When this null hypothesis is violated, there are many possi-
bilities for the behaviour of the ct, and the DM statistic may not have power against all possible departures from the
null. For example, consider the case where ct ≠ 0 (for at least some t = R + 1, … ,T) but the average loss differential
n−1 ∑T

t=R+1 ct = 0. This is certainly a deviation from the null hypothesis (11), but the DM statistic, the construction of
which is based on the average of loss differentials, will be unlikely to have power because the average loss differential
is zero. Hence, when two different forecasts perform equally on average, this is unlikely to be detected by the uncondi-
tional test of GW (this is referred to as a power ‘blind spot’ in the terminology of Li et al., 2022). This is perhaps why GW
only establish consistency for their unconditional test under a non-exhaustive alternative hypothesis of different average
forecast performance, leaving other possible deviations from their null hypothesis unstudied.

The two DM-type statistics proposed in this paper are based on the unconditional volatility (or variance)
function-reweighted average of the loss differential series, that is, n−1 ∑T

t=R+1 ct∕𝜎t

(
or n−1 ∑T

t=R+1 ct∕𝜎2
t

)
. In a

homoskedastic setting, if used to test the hypothesis (11) in a time-varying mean model, these statistics will have sim-
ilar properties to the DM statistic, as outlined above, and therefore also lack power against an alternative of the form
n−1 ∑T

t=R+1 ct = 0. In a heteroskedastic environment, however, the behaviour of the new statistics DM′ and DM∗ diverges
from that of DM, and hence, there are different regions of the alternative hypothesis parameter space where the new
statistics will have power and different regions where ‘blind spots’ may exist. For example, it would be expected that
the new tests will lack power against alternatives to (11) for which n−1 ∑T

t=R+1 ct∕𝜎t = 0
(

or n−1 ∑T
t=R+1 ct∕𝜎2

t = 0
)

, but

they may well have power against the alternative where n−1 ∑T
t=R+1 ct = 0, in contrast to the DM statistic. Therefore, the

two new DM-type statistics that we propose could be viewed as complementary to DM (i.e., to the GW unconditional
test), removing some of the ‘blind spots’ where their test lacks power. In fact, any DM-type statistic computed from a
non-trivially ‘reweighted’ original loss differential series could be used for this purpose. One only has to be careful with
the interpretation of a rejection observed using such reweighted test statistics: for example, in the context of a time-varying
mean model with heteroskedasticity, a rejection of (11) within model (10) by our new statistics can only be interpreted
as ‘a difference in performance at some point(s) in time’, rather than ‘a certain forecast is better or worse’, as the signs
of the statistics, being based on n−1 ∑T

t=R+1 ct∕𝜎t or n−1 ∑T
t=R+1 ct∕𝜎2

t , do not carry relevant information about the average

5The Odendahl et al. (2023) framework is general and can also be used to test state-dependence for forecast errors and other moments of losses.
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relative performance between two forecasts, i.e. the sign of n−1 ∑T
t=R+1 ct. Note that such differences in the signs of the

statistics do not occur in the constant mean model E(ΔLt) = c, which is the primary focus of our paper, because then
sign

(
n−1 ∑T

t=R+1 c∕𝜎t

)
= sign

(
n−1 ∑T

t=R+1 c∕𝜎2
t

)
= sign(c).

6.3 Comparing multiple forecasts

In our main exposition, we consider evaluating two forecasts. In Appendix S1, we discuss issues surrounding extensions
of our analysis to a setting where multiple forecasts are compared with a common benchmark forecast.

7 EMPIRICAL ILLUSTRATION

To illustrate the potential benefits of the new testing procedure, we consider an empirical example of comparing exchange
rate forecasts. The performance of competing forecasts of changes in exchange rates has been a topic of extensive study in
the literature; see, for example, Rossi (2013) for a comprehensive review. A common finding from such work, beginning
with Meese and Rogoff (1983), is that the random walk ‘no change’ forecast typically outperforms predictors based on
economic models. In line with a similar application in DM, we consider evaluating the accuracy of two sets of exchange
rate forecasts. The first forecast, denoted 𝑓1t, is the prediction implicit in the 3-month forward rate, that is, the difference
between the 3-month forward rate and the spot rate. The second forecast, denoted 𝑓2t, is the no change forecast implied
by a random walk model. The variable to be predicted is the q-month change in the dollar/sterling exchange rate, with
the forecasts 𝑓1t and 𝑓2t made on a monthly basis from 1979:1–2020:12 at four horizons: q = 1, 3, 6 and 12. During the
period under consideration, the United Kingdom started with a managed floating exchange rate system, before joining

FIGURE 7 Loss differential for q-month-ahead dollar/sterling exchange rate change forecasts (forward–random walk): squared error loss.

HARVEY ET AL. 865

 10991255, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.3050 by D

avid H
arvey - U

niversity O
f N

ottingham
 , W

iley O
nline L

ibrary on [15/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the ERM in October 1990. The United Kingdom subsequently left the ERM after two years in September 1992, after which
a floating exchange rate system was adopted. Denoting the q-month-ahead forecast errors by e1,t+q and e2,t+q, we assess
whether there is evidence against equal accuracy for the two sets of forecasts, using two loss measures: (i) squared error
loss, that is, ΔLt = e2

1,t+q − e2
2,t+q, and (ii) absolute error loss, that is, ΔLt = ||e1,t+q|| − ||e2,t+q||. Data are obtained from the

Bank of England's website.
In applying the DM, DM′ and DM∗ tests, the kernel function and lag truncation parameter used in the long-run variance

estimator are the same as in the Monte Carlo simulations in Section 4, that is, we use the Bartlett kernel for k(.) with
b = ⌊1.2n1∕3⌋. For the nonparametric variance estimator, we again use the Gaussian kernel for K(.) and determine h by
leave 2l+ 1 out cross-validation. Here we use l = 20 and a 100 point grid of possible h values over an interval of width 0.1,
this interval being chosen from initial inspection over a wider range to locate a region where the cross-validation function
appears convex.

In Figures 7 and 8, we show the loss differential series over time for the two loss measures and the four forecast horizons.
It is clear that, in all cases, the loss differential series exhibit changes in volatility over the sample period, most noticeably
following the United Kingdom's departure from the ERM in September 1992, with a considerable decrease in volatility
clearly apparent in the post-ERM part of the sample period. The dashed line on each plot separates the full sample period
into two parts: forecasts made over the period 1979:1–1992:12 and forecasts made over the period 1993:1–2020:12, with
the split point chosen to be a few months after the ERM departure. Within each sub-sample period, changes in volatility
are again apparent, suggesting heteroskedasticity is a feature of these loss differentials in both the pre-ERM and post-ERM
periods, in addition to differences in volatility between the two periods.

We first consider the results under the squared error loss measure. The values of the test statistics, the associated
(two-sided) p-values, based on the N(0, 1) distribution, and the selected bandwidth h are given in Table 1. For the full
sample period in Panel A, there is very little evidence against the equal accuracy null hypothesis, regardless of which test

FIGURE 8 Loss differential for q-month-ahead dollar/sterling exchange rate change forecasts (forward–random walk): absolute error loss.
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TABLE 1 Application of tests to q-month-ahead dollar/sterling exchange
rate change forecasts (forward–random walk): squared error loss.

q DM DM′ DM∗ h
Panel A. 1979:1–2020:12

1 1.745 (0.081) 1.697 (0.090) 1.632 (0.103) 0.291
3 1.350 (0.177) 1.182 (0.237) 0.953 (0.341) 0.300
6 1.087 (0.277) 0.825 (0.410) 0.511 (0.609) 0.300
12 0.714 (0.476) 0.440 (0.660) 0.125 (0.901) 0.272

Panel B. 1979:1–1992:12
1 1.615 (0.106) 2.201 (0.028) 2.497 (0.013) 0.136
3 1.344 (0.179) 2.274 (0.023) 2.640 (0.008) 0.106
6 1.305 (0.192) 2.291 (0.022) 2.732 (0.006) 0.102
12 0.890 (0.373) 1.500 (0.134) 2.016 (0.044) 0.134

Panel C. 1993:1–2020:12
1 0.892 (0.373) 1.016 (0.310) 1.051 (0.293) 0.168
3 0.177 (0.859) 0.512 (0.609) 0.916 (0.360) 0.172
6 −0.276 (0.783) −0.020 (0.984) 0.356 (0.722) 0.187
12 −0.096 (0.924) 0.276 (0.783) 0.820 (0.412) 0.180

Note: p-values are given in parentheses.

TABLE 2 Application of tests to q-month-ahead dollar/sterling exchange
rate change forecasts (forward–random walk): absolute error loss.

q DM DM′ DM∗ h
Panel A. 1979:1–2020:12

1 1.815 (0.070) 1.764 (0.078) 1.627 (0.104) 0.261
3 2.373 (0.018) 2.224 (0.026) 1.893 (0.058) 0.261
6 2.681 (0.007) 2.429 (0.015) 1.974 (0.048) 0.265
12 0.980 (0.327) 0.873 (0.383) 0.725 (0.468) 0.262

Panel B. 1979:1–1992:12
1 1.731 (0.084) 2.160 (0.031) 2.305 (0.021) 0.065
3 2.231 (0.026) 2.828 (0.005) 3.070 (0.002) 0.054
6 2.617 (0.009) 3.143 (0.002) 3.195 (0.001) 0.063
12 0.680 (0.496) 1.516 (0.130) 2.124 (0.034) 0.066

Panel C. 1993:1–2020:12
1 0.500 (0.617) 0.563 (0.574) 0.685 (0.493) 0.151
3 0.861 (0.389) 0.833 (0.405) 0.761 (0.447) 0.144
6 0.979 (0.327) 0.883 (0.377) 0.728 (0.466) 0.137
12 0.870 (0.384) 0.836 (0.403) 0.775 (0.438) 0.151

Note: p-values are given in parentheses

is considered. This is true across the different forecast horizons, except for q = 1 where there is modest evidence at the
0.10 level that the random walk forecast has greater accuracy than the forward rate forecast according to both DM and
DM′, with DM∗ also very close to rejection at this significance level.

In addition to evaluating the forecasts over the full sample period, we also consider the two sub-sample periods
1979:1–1992:12 and 1993:1–2020:12, given the contrasting behaviour of the loss differentials between these pre- and
post-ERM departure periods. Panel B provides the results for the pre-1993 period, and here, we find a noticeable differ-
ence between the different tests. While DM fails to reject the null of equal accuracy for all four horizons, we find that the
new tests provide considerably more evidence in favour of the alternative. Specifically, DM′ rejects the null at (less than)
the 0.05 level when q = 1, 3 and 6, while DM∗ rejects at around the 0.01 level in these three horizons and also at the 0.05
level for q = 12. This suggests that once tests are used that potentially offer greater power in the presence of heteroskedas-
ticity in the loss differential, evidence is uncovered to indicate a systematic accuracy gain of the random walk forecasts
relative to those based on the forward rate. The pattern of rejection/non-rejection across the different tests is in line with
what we might expect from our asymptotic and finite sample Monte Carlo analysis, where we showed that DM′ and DM∗

can offer greater levels of power than DM under heteroskedasticity. We also note that a stronger rejection of the null is
associated with DM∗ than for DM′, again as would be expected from our earlier analysis.

For the post-1993 period in Panel C, all tests indicate no evidence against the null at any forecast horizon. This suggests
that, in contrast to the pre-1993 period, the mean squared forecast errors of the two sets of forecasts are equal in this
later period of time. It appears, then, that the United Kingdom's departure from the ERM had a substantial effect on the
relative predictive accuracy of these competitor forecasts.
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Next, we consider the case of absolute error loss, with Table 2 reporting the results in the same format as Table 1. For
the full sample, Panel A shows that more evidence exists in favour of the superiority of random walk forecasts when
considering absolute error loss compared with squared error loss. While results for q = 1 and q = 12 are similar across
the two loss measures, we now observe rejections of the null by all three tests at conventional significance levels for q = 3
and 6. For the earlier pre-ERM sub-sample, results in Panel B show that all three tests now reject for q = 1 , 3 and 6, but,
as was seen in Panel B of Table 1, the p-values decrease as we move from DM to DM′ to DM∗, with rejections obtained
at lower significance levels for the new DM′ and DM∗ tests than for DM, particularly for q = 1 and 3. When q = 12, the
same pattern of rejections is obtained as in Panel B of Table 1, with rejection indicated by the DM∗ test alone. Finally, for
the later post-ERM sub-sample, Panel C shows no rejections of the null by any test, in line with the corresponding results
for squared error loss.

Overall, our results show fairly clearly that the random walk forecasts outperform the forward rate forecasts in the
pre-ERM period, while the different forecasts appear to have equal accuracy following the change induced by the United
Kingdom's ERM departure. The evidence for the random walk forecast superiority in the earlier period is delivered most
forcefully by the newly proposed DM′ and DM∗ tests, with no evidence provided by DM under squared error loss, and
more limited evidence under absolute error loss. The rejections obtained from the DM′ and DM∗ tests are fairly consistent
across both loss measures and are obtained for all forecast horizons by DM∗ and all except the longest horizon by DM′.

8 CONCLUSION

In this paper, we have considered the effects of heteroskedasticity on statistical tests for equal forecast accuracy. We pro-
posed two new DM-type tests which explicitly take account of heteroskedasticity through nonparametric estimation of the
volatility function. For a quite general class of loss differential series, the heteroskedasticity-adjusted tests we proposed
are able to deliver (often substantially) higher levels of power relative to the unmodified DM test when heteroskedasticity
is present in the loss differential, while retaining the same levels of power as the original test under homoskedasticity. We
demonstrated these features theoretically using a local asymptotic power analysis of the new and original tests. Monte
Carlo simulations confirmed a close association between the finite sample and local limit results, implying that our mod-
ified tests should work well in empirical settings. This was supported through an empirical illustration using forecasts of
changes in the dollar/sterling exchange rate, with the new tests providing greater evidence of differences in the accuracy
of competing forecasts than the original DM test. The new procedures should therefore make a valuable addition to the
suite of forecast evaluation tests available to practitioners, specifically offering the potential for more reliable detection of
departures from the equal accuracy null when heteroskedasticity is a feature of the loss differential.
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