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Abstract

In [4], Guan, Murugan and Wei established the equivalence of the classical Helmholtz equation with 
a “fractional Helmholtz” equation in which the Laplacian operator is replaced by the nonlocal fractional 
Laplacian operator. More general equivalence results are obtained for symbols which are complete Bern-
stein and satisfy additional regularity conditions. In this work we introduce a novel and general set-up for 
this Helmholtz equivalence problem. We show that under very mild and easy-to-check conditions on the 
Fourier multiplier, the general Helmholtz equation can be effectively reduced to a localization statement on 
the support of the symbol.
© 2024 Elsevier Inc. All rights reserved.

1. Introduction

A classical problem in mathematical physics is to find eigen-pairs to the linear problem 
Af = λf where A is a linear operator (bounded or unbounded) acting on some general func-

tion spaces. If A = −�, where � = ∑
i

∂2

∂xi
2 with various boundary conditions, this becomes 
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the standard Helmholtz equation. The Helmholtz equation appears ubiquitously in physical and 
engineering applications such as acoustic radiation, heat conduction, propagation of water waves 
etc. In the context of heat or wave equations, the classical Helmholtz system naturally arises 
as the time-independent eigen-pair form when one employs the traditional separation of vari-
able method. Recently in [6] a scalar fractional Helmholtz type equation is derived from the 
Maxwell’s equations by incorporating nonlocal long range effects. In this connection a proto-
typical version of the fractional Helmholtz equation amounts to taking A = (−�)s for some 
s > 0. A first subtle mathematical issue is to understand the limit transitions s → 1 (harmonic) 
or s → n ∈N (poly-harmonic) in various normed functional spaces. Another circle of questions, 
recently initiated in the work of Guan, Murugan and Wei [4], is concerned with the deep connec-
tion between the classical Helmholtz equation and the fractional ones, namely (taking λ = 1):

{f : −�f = f } vs {g : (−�)sg = g}; (1.1)

or more generally

{f : −�f = f } vs {g : �(−�)g = �(1)g}; (1.2)

where �(−�) is a suitable Dirichlet-to-Neumann operator corresponding to a suitable harmonic 
extension problem involving the symbol �(ξ2).

In [4], by deeply exploiting the harmonic extension technique, Guan, Murugan and Wei es-
tablished the following set of rigidity type results:

(1) If 0 < s < 2, d = 1, u ∈ L∞(R) satisfies �su = u, then1 u(x) = c1 cosx + c2 sinx.
(2) If 0 < s ≤ 2, d ≥ 2, u ∈ C∞(Rd) ∩ L∞(Rd) satisfies �su = u and lim|x|→∞u(x) = 0, then 

−�u = u.
(3) If m ∈ N , d ≥ 2, u ∈ C∞(Rd) ∩ L∞(Rd) satisfies (−�)mu = u if and only if −�u = u.
(4) Consider d ≥ 2 and �(−�)u = �(1)u in Rd where � is a complete Bernstein func-

tion. Assume u(x) → 0 as |x| → ∞. Consider the associated extension problem: ũ ∈
H 1

loc(R
d+1+ , a(t)) solves⎧⎪⎪⎨⎪⎪⎩

∇t,x · (a(t)∇t,x ũ) = 0, on Rd+1+ ;
lim
t→0

a(t)∂tu = −cn,a�(−�)u, on Rd ;
lim
t→0

ũ = u;

where one assumes the weight a(t) for �(−�) is A2 and obeys a(t) ∼ tα for t � 1 and 
|α| < 1. Under the above conditions, one has

u ∈ L∞(Rd) with u(∞) = 0 solves �(−�)u = �(1)u in Rd if and only if −�u = u in Rd .

(1.3)

As was somewhat hinted earlier, the proof in [4] hinges on the machinery of harmonic ex-
tension which poses various subtle technical restrictions. For example, in dimensions d ≥ 2, one 

1 The case d = 1 was first obtained by Fall and Weth in [3].
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needs to impose the decay condition u(x) → 0 as |x| → ∞ for the fractional Helmholtz problem 
(−�)su = u, 0 < s < 2. Besides, some additional asymptotic conditions need to be imposed on 
the weight function a(t) for the Bernstein Helmholtz problem. In recent [2], we removed the de-
cay condition and established the equivalency of classical Helmholtz equation and the fractional 
Helmholtz equation corresponding to the operator (−�)s , 0 < s < 2. However, the proof in [2]
hinges on the special form of the operator (−�)s which has no obvious bearing on the general 
case.

In this work we shall remove all these aforementioned technical restrictions by developing a 
novel and general set up for this Helmholtz equivalence problem. We shall consider the general 
problem

�(−�)u = �(1)u in S′(Rd), (1.4)

where u ∈ L∞(Rd).
We make the following technical assumptions on the function � : [0, ∞) → R:

(a) Smoothness and mild growth at z = ∞. We assume � ∈ C([0, ∞)) ∩ C∞((0, ∞)), and all 
derivatives of � are polynomially bounded as z → ∞: namely for some z0 ≥ 2, it holds that 
for all k ≥ 0,

|∂k�(z)| ≤ C�,k,z0z
nk , ∀ z ≥ z0, (1.5)

where C�,k,z0 > 0 is a constant depending only on (�, k, z0), and nk depends on k.
(b) Mild singularity at z = 0. For some 0 < ε0 ≤ 1

2 ,

d+1∑
j=0

ε0∫
0

|z|j |(∂j
z �)(z)| · dz

z
< ∞. (1.6)

Here note that in (1.6), the condition for j = 0 reads as 
∫ ε0

0 |�(z)|z−1dz < ∞. This implies 
�(0) = 0 by continuity of �.

(c) Smooth uni-valence at z = 1. We assume �′(1) �= 0 and �(t) �= �(1) for any t ∈ (0, 1) ∪
(1, ∞).

Remark 1.1. A prototypical � satisfying conditions (a)-(c) is �(z) = zs with s > 0. This corre-
sponds to the usual fractional Laplacian case. Other nontrivial examples are:

�(z) = (m2 + z)
s
2 − m, s > 0;

�(z) = z
1
2 tanh(z

1
2 );

�(z) = z
1
2 (tanh(z

1
2 ))−1.

The Fourier symbols |ξ | tanh(|ξ |), |ξ |(tanh(|ξ |))−1 play important roles in the Dirichlet to Neu-
mann map theory in connection with linear water waves.
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One should note that for x > 0:

d

dx

(
tanhx

x

)
= − tanhx

x2 + 1

x cosh2 x
= 1

x2cosh2 x

(
x − 1

2
sinh(2x)

)
< 0.

Thus h(x) = x
tanhx

is strictly increasing.

Remark 1.2. Interestingly a class of nonlocal Helmholtz problems with nonlocal “completely 
Bernstein” symbols are also treated in recent [5] (see also [1]).

Concerning (1.4), an immediate subtle technical issue is to ensure �(−�)u ∈ S ′(Rd) for 
u ∈ L∞(Rd). The next proposition clarifies this point. We first examine the action of �(−�) on 
test functions which are Schwartz.

Proposition 1.1. Suppose � ∈ C([0, ∞)) ∩C∞((0, ∞)) satisfies the conditions (a)–(c). For ψ ∈
S(Rd), define

̂�(−�)ψ(ξ) = �(|ξ |2)ψ̂(ξ), ξ ∈Rd .

Then �(−�)ψ ∈ L1(Rd) and for some integers k1 ≥ 0, k2 ≥ 0,

‖�(−�)ψ‖L1
x(Rd ) ≤ Cd,k1,k2,�

∑
|α|≤k2

‖(1 + |x|2)k1∂αψ‖L∞
x (Rd ),

where Cd,k1,k2,� > 0 is a constant depending only on (d , k1, k2, �).

The proof of Proposition 1.1 is given in Section 2.
Thanks to Proposition 1.1, for u ∈ L∞

x (Rd) we can define �(−�)u ∈ S ′(Rd) as an element 
in S′(Rd) via the following(

�(−�)u
)
(ϕ) =

∫
Rd

u�(−�)ϕdx, ∀ϕ ∈ S(Rd). (1.7)

Alternatively and equivalently, we extend the usual L2-pairing of Schwartz functions (see 
(1.20)) to S ′(Rd)-S(Rd) pairing as the following (below z denotes the usual complex conjugate 
for z ∈ C) :

〈�(−�)u,ψ〉 :=
∫
Rd

u(x)(�(−�)ψ)(x)dx, ∀ψ ∈ S(Rd). (1.8)

In particular we have the estimate

|〈�(−�)u,ψ〉| � ‖u‖L∞
x (Rd )

∑
|α|≤k2

‖(1 + |x|2)k1∂αψ‖L∞
x (Rd ).

Thus in its natural weak formulation, (1.4) reads as:
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u ∈ L∞
x (Rd) satisfies 〈u,�(−�)ψ〉 = 〈u,�(1)ψ〉, ∀ψ ∈ S(Rd) and � satisfies (a)–(c).

(1.9)

Remark 1.3. The main difference between (1.7) and (1.8) is that the former is linear in the test 
function ϕ whereas the latter is conjugate linear in the test function ψ .

Remark 1.4. To put things into perspective, one should note that in general it is a subtle issue 
to define the action of fractional Laplacian on a general tempered distribution u, since the frac-
tional Laplacian multiplier does not preserve the Schwartz space. What we basically show is that 
for fractional Laplacian operators and slightly more general symbols, one can start by carefully 
defining the action of the fractional operator on the Schwartz function, show that the correspond-
ing norm depends only on the weighted Sobolev norm of the test function; then in a natural way 
one can define for (say) bounded function u, the corresponding tempered distribution (−�)su. 
The only place where Fourier transform enter, is in the action of the symbol on the Schwartz test 
functions.

The main result of this paper is the following.

Theorem 1.1 (Classification of general Helmholtz, case �′(1) �= 0). Let d ≥ 1. Suppose u ∈
L∞(Rd) solves the problem (1.9). Then the following hold:

(1) supp(̂u) ⊂ K = {ξ : ξ = 0 or |ξ | = 1}. More precisely we have

〈̂u,φ〉 = 0, ∀φ ∈ C∞
c (Rd \ K). (1.10)

(2) If �(1) �= 0, then supp(̂u) ⊂ {ξ : |ξ | = 1}, and

〈̂u,φ〉 = 0, ∀φ ∈ C∞
c (Rd \ {ξ : |ξ | = 1}). (1.11)

Furthermore we have in this case,〈
u,F−1

(
(|ξ |2 − 1)ψ(ξ)

)〉
= 0, ∀ψ ∈ S(Rd). (1.12)

Remark 1.5. Since û is compactly supported, the function u can be identified as a C∞(Rd)

function thanks to Paley-Wiener. Moreover in the case �(1) �= 0, we conclude that u solves the 
classical Helmholtz equation, namely

−�u = u in Rd .

In Section 4 of this paper, we shall show that our theorem above already covers the general 
Bernstein Helmholtz case in [4]. As was already mentioned, the conditions on the symbol �(z)

is already quite general and easy-to-check in practice.
On the other hand, as the avid reader may notice, the condition �′(1) �= 0 may appear a bit 

restrictive. As a matter of fact, one can also consider a slightly more non-degenerate condition. 
That is, we assume �(1) �= 0, and for some j0 ≥ 1, it holds that
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dj

dzj
�(z)

∣∣∣
z=1

=: �(j)(1) = 0, 1 ≤ j ≤ j0 − 1, and �(j0)(1) �= 0.

If j0 = 1, we simply require �′(1) �= 0. For j0 ≥ 2, �(j0)(1) is the first nonzero coefficient 
after �′(1) = 0. As we shall show momentarily, under this general condition the corresponding 
localization statement takes a slightly different form, namely: the Helmholtz equation

�(−�)u = �(1)u

can be effectively reduced to

(−� − 1)j0u = 0.

For the sake of completeness, we now record the aforementioned slightly more general tech-
nical assumptions on the function � : [0, ∞) → R as follows

(c1) Smoothness and mild growth at z = ∞. We assume � ∈ C([0, ∞)) ∩ C∞((0, ∞)), and all 
derivatives of � are polynomially bounded as z → ∞: namely for some z0 ≥ 2, it holds 
that for all k ≥ 0,

|∂k�(z)| ≤ C�,k,z0z
nk , ∀ z ≥ z0, (1.13)

where C�,k,z0 > 0 is a constant depending only on (�, k, z0), and nk depends on k.
(c2) Mild singularity at z = 0. For some 0 < ε0 ≤ 1

2 ,

d+1∑
j=0

ε0∫
0

|z|j |(∂j
z �)(z)| · dz

z
< ∞. (1.14)

(c3) Non-degeneracy at z = 1. We assume �(1) �= 0 and �(t) �= �(1) for any t ∈ (0, 1) ∪
(1, ∞). Furthermore we assume for some integer j0 ≥ 1, it holds that

�(j)(1) = 0, 1 ≤ j ≤ j0 − 1, and �(j0)(1) �= 0. (1.15)

If j0 = 1, we simply require �′(1) �= 0.

Theorem 1.2 (Classification of general Helmholtz, case �(j0)(1) �= 0). Let d ≥ 1. Suppose u ∈
L∞(Rd) solves the equation

〈u,�(−�)ψ〉 = 〈u,�(1)ψ〉, ∀ψ ∈ S(Rd); (1.16)

where � : [0, ∞) → R satisfies the conditions (c1)–(c3) (as specified in (1.13)–(1.15)). Then the 
following hold.

We have supp(̂u) ⊂ {ξ : |ξ | = 1}, and

〈̂u,φ〉 = 0, ∀φ ∈ C∞
c (Rd \ {ξ : |ξ | = 1}). (1.17)
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Furthermore we have in this case (below j0 is the same integer as in (1.15)),〈
u,F−1

(
(|ξ |2 − 1)j0ψ(ξ)

)〉
= 0, ∀ψ ∈ S(Rd). (1.18)

In yet other words, u ∈ L∞(Rd) can be identified as a C∞ function and

(−� − 1)j0u = 0. (1.19)

In the following subsection we fix some notation used throughout this paper.

Notation

For any two nonnegative quantities X and Y , we write X � Y or Y � X if X ≤ CY for some 
harmless constant C > 0. We write X � Y or Y � X if X ≤ cY for some sufficiently small 
constant c > 0. The needed smallness of the constant c is usually clear from the context.

We denote by S(Rd) = S(Rd → C) the usual space of complex-valued Schwartz functions 
and S ′(Rd) the space of tempered distributions.

For u ∈ S(Rd), we adopt the following convention for Fourier transform:

(Fu)(ξ) = û(ξ) =
∫
Rd

u(y)e−iy·ξ dy and u(x) = 1

(2π)d

∫
Rd

û(ξ)eiξ ·xdξ =: (F−1û)(x).

Let s > 0. For u ∈ S(Rd), d ≥ 1, the fractional Laplacian �su = (−�)
s
2 u is defined via Fourier 

transform as

�̂su(ξ) = |ξ |s û(ξ), ξ ∈ Rd .

For f1 : Rd → C, f2 : Rd → C, f1, f2 Schwartz, we denote the usual L2 pairing:

〈f1, f2〉 :=
∫
Rd

f1(x)f2(x)dx, (1.20)

where z denotes the usual complex conjugate of z ∈ C. The usual Plancherel formula reads

〈f̂1, f̂2〉 = (2π)d〈f1, f2〉.

If we denote f3 = f̂2, then f2 = F−1(f3). Thus for f1, f3 ∈ S(Rd), it holds that

〈f̂1, f3〉 = (2π)d〈f1,F−1(f3)〉.
More generally for tempered distribution u, we have

〈̂u,φ〉 = (2π)d〈u,F−1(φ)〉, ∀φ ∈ S(Rd).
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2. Proof of Proposition 1.1

Proof of Proposition 1.1. We begin by noting that in the regime t � 1, the function �(t) along 
with its derivatives grow at most polynomially. Let χ|ξ |�1 be a smooth cut-off function localized 
to the regime |ξ | � 1. Since ψ̂ ∈ S(Rd), it is not difficult to check that F−1(�(|ξ |2)χ|ξ |�1ψ̂) ∈
L1

x(R
d) and

‖F−1(�(|ξ |2)χ|ξ |�1ψ̂)‖L1
x(Rd ) �

∑
|α|≤k2

‖(1 + |x|2)k1∂αψ‖L∞(Rd ), (2.1)

where k1 ≥ 0, k2 ≥ 0 are integers.
It suffices for us to examine the piece

β(x) =
∫
Rd

χ(ξ)�(|ξ |2)ψ̂(ξ)eiξ ·xdξ, (2.2)

where χ ∈ C∞
c (Rd) is a radial bump function localized to {ξ : |ξ | � 1}. Clearly

‖β‖L1
x(Rd ) � ‖β1‖L1

x(Rd )‖ψ‖L1
x(Rd ), (2.3)

where

β1(x) =
∫
Rd

χ(ξ)�(|ξ |2)eiξ ·xdξ. (2.4)

Thus to finish the proof of Proposition 1.1, we only need to prove the next proposition. �
Proposition 2.1. Let ε0 be a small positive number such that χ is supported in {x ∈ Rd | |x| ≤
ε0}. Then we have

∥∥∥F−1
(
�(|ξ |2)χ(ξ)

)∥∥∥
L1

x(Rd )
�

d+1∑
j=0

ε0∫
0

|z|j |(∂j
z �)(z)| · dz

z
. (2.5)

Proof of Proposition 2.1. The case for dimension d = 1 is left to the reader as an exercise.
We now consider for example for d = 3, denoting r = |x| ≥ r0 � 1 and ρ = |ξ |, we have 

(below we slightly abuse the notation and still denote χ(ρ) = χ(ξ))
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|β1(x)| �
∣∣∣ ε0∫

0

χ(ρ)�(ρ2)
sinρr

ρr
ρ2dρ

∣∣∣
�

∣∣∣ ε0∫
0

χ(ρ)χ1(rρ)�(ρ2)
sinρr

ρr
ρ2dρ

︸ ︷︷ ︸
=:I1(r)

∣∣∣ +
∣∣∣ ε0∫

0

χ(ρ)(1 − χ1(rρ))�(ρ2)
sinρr

ρr
ρ2dρ

︸ ︷︷ ︸
=:I2(r)

∣∣∣.
(2.6)

In the above χ1 ∈ C∞
c (R) is an even function such that χ1(z) = 1 for |z| ≤ 0.9 and χ1(z) = 0 for 

|z| ≥ 1. Clearly

∞∫
r0

|I1(r)|r2dr �
ε0∫

0

χ(ρ)|�(ρ2)|ρ2
( ∫
r�ρ−1

r2dr
)
dρ �

ε0∫
0

|�(ρ2)|dρ
ρ

�
ε2

0∫
0

|�(z)|z−1dz.

(2.7)
On the other hand,

I2(r) = 1

r

ε0∫
0

ρχ(ρ)(1 − χ1(rρ))�(ρ2) sin(ρr)dρ. (2.8)

By using successive integration by parts, we have

|I2(r)| � 1

r4

ε0∫
0

∣∣∣ d3

dρ3

(
ρχ(ρ)(1 − χ1(rρ))�(ρ2)

)∣∣∣dρ. (2.9)

Thus

∞∫
r0

|I2(r)|r2dr � R.H.S. of (2.5). (2.10)

Adding the estimates for I1(r) and I2(r), we obtain the proof for the case d = 3.
For the general case d ≥ 2, we only need to work with the expression

∞∫
r0

∣∣∣ ε0∫
0

χ(ρ)�(ρ2)Fd(ρr)ρd−1dρ

∣∣∣rd−1dr, (2.11)

where

Fd(λ) =
∫

Sd−1

eiλe1·ωdσ(ω).
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In Subsection 2.1, we collect some standard material on the Bessel functions and some needed 
auxiliary estimates on the function Fd(λ).

The regime ρr � 1 is clearly under control, i.e.

∞∫
r0

∣∣∣ ε0∫
0

χ(ρ)�(ρ2)Fd(ρr)χrρ�1ρ
d−1dρ

∣∣∣rd−1dr �
ε0∫

0

ρ−1χ(ρ)|�(ρ2)|dρ �
ε2

0∫
0

|�(z)|z−1dz.

(2.12)

On the other hand, for λ = ρr � 1, we note that by (2.18) and taking K large∣∣∣Fd(λ) − finitely many terms of the form λ−αeiλ
∣∣∣� λ−K.

Clearly the error term is under control:

∞∫
r0

ε0∫
0

χ(ρ)|�(ρ2)|(rρ)−Kχrρ�1ρ
d−1dρrd−1dr �

ε0∫
0

χ(ρ)|�(ρ2)|dρ
ρ

�
ε2

0∫
0

|�(z)|z−1dz.

(2.13)

It remains to treat the terms

∞∫
r0

∣∣∣ ε0∫
0

χ(ρ)�(ρ2)(rρ)−αeirρχrρ�1ρ
d−1dρ

∣∣∣rd−1dr. (2.14)

One can perform successive integration by parts in much the same way as in (2.9). We omit the 
details. �
2.1. Bessel functions and auxiliary estimates for the function Fd(λ)

For ν > − 1
2 , we recall the following formula for the standard Bessel function Jν

Jν(λ) = 1

2ν�(ν + 1
2 )

√
π

λν

1∫
−1

eiλt (1 − t2)ν− 1
2 dt, λ > 0. (2.15)

We shall need the well-known asymptotic formula for Jν(λ) (see [7, Section 17.5] or [9]): here 
we assume ν ≥ 0, λ � 1, then

Jν(λ) ∼
(

2

πλ

) 1
2 (

cosωλ

∞∑
k=0

(−1)k
a2k(ν)

λ2k
− sinωλ

∞∑
k=0

(−1)k
a2k+1(ν)

λ2k+1

)
, (2.16)

where
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ωλ = λ − 1

2
νπ − 1

4
π, and ak(ν) = (4ν2 − 1)(4ν2 − 32) · · · (4ν2 − (2k − 1)2)

k!8k
.

In particular, for any integer K ≥ 1, we have∣∣∣∣∣∣Jν(λ) − λ− 1
2 cosλ

K∑
j=0

αj,νλ
−j − λ− 1

2 sinλ

K∑
j=0

βj,νλ
−j

∣∣∣∣∣∣ ≤ CK,νλ
−K− 3

2 , ∀λ ≥ 10,

(2.17)

where CK,ν > 0 depends on (K , ν), and αj,ν , βj,ν are computable coefficients.
Consider dimension d ≥ 2 and denote by dσ = dσ(ω) the standard spherical measure on the 

unit-sphere Sd−1 = {ω ∈Rd : |ω| = 1}. Denote e1 = (1, 0, · · · , 0)T . Then for λ > 0,

Fd(λ) =
∫

Sd−1

eiλω·e1dσ(ω) = c
(1)
d

π∫
0

eiλ cosφ1 sind−2 φ1dφ1

= c
(2)
d

1∫
−1

eiλt (1 − t2)
d−3

2 dt = c
(3)
d λ− d−2

2 Jd−2
2

(λ),

where c(1)
d > 0, c(2)

d > 0, c(3)
d > 0 are constants depending only on the dimension d .

By (2.17), we obtain (below aj,d , bj,d are coefficients) for any integer K ≥ 1

∣∣∣∣∣∣Fd(λ) − λ− d−1
2 cosλ

K∑
j=0

aj,dλ−j − λ− d−1
2 sinλ

K∑
j=0

bj,dλ−j

∣∣∣∣∣∣ ≤ C̃K,dλ−K− d+1
2 , ∀λ ≥ 10,

(2.18)

where C̃K,d > 0 depends only on (K , d).

3. Proof of Theorem 1.1 and Theorem 1.2

To prove Theorem 1.1, we only need to prove the following theorem.

Theorem 3.1. Let � satisfy the conditions (a)–(c) (see (1.5)–(1.6)). Suppose u ∈ L∞(Rd) and 
satisfy 〈

u, F−1
(
(�(|ξ |2) − �(1))φ(ξ)

)〉
= 0, ∀φ ∈ S(Rd). (3.1)

Then the following hold:

(1) supp(̂u) ⊂ K = {ξ : ξ = 0 or |ξ | = 1}. More precisely we have

〈̂u,φ〉 = 0, ∀φ ∈ C∞
c (Rd \ K). (3.2)
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(2) If �(1) �= 0, then supp(̂u) ⊂ {ξ : |ξ | = 1}, and

〈̂u,φ〉 = 0, ∀φ ∈ C∞
c (Rd \ {ξ : |ξ | = 1}). (3.3)

Furthermore we have in this case,〈
u,F−1

(
(|ξ |2 − 1)ψ(ξ)

)〉
= 0, ∀ψ ∈ S(Rd). (3.4)

Proof. We sketch the details.
(1) Consider φ ∈ C∞

c (Rd \ {ξ = 0 or |ξ | = 1}). Clearly we have the decomposition

φ = φ1 + φ2,

where φ1 ∈ C∞
c ({ξ : 0 < |ξ | < 1}) and φ2 ∈ C∞

c ({ξ : |ξ | > 1}). With no loss we may assume 
that φ1 ∈ C∞

c ({ξ : δ1 < |ξ | < 1 − δ1}) and φ2 ∈ C∞
c ({ξ : 1 + δ1 < |ξ | < 1

δ1
}) for some δ1 > 0

sufficiently small. This assumption is harmless since φ1 and φ2 are both compactly supported.
By our assumption (c) on the function �, we have

sup
δ1<|ξ |<1−δ1

or 1+δ1<|ξ |< 1
δ1

1

|�(|ξ |2) − �(1)| � 1. (3.5)

This is because � is smooth and �(t) �= �(1) for any t ∈ (0, 1) ∪ (1, ∞).
It is then not difficult to check that

φ1(ξ)

�(|ξ |2) − �(1)
∈ C∞

c ({ξ : 0 < |ξ | < 1}), φ2(ξ)

�(|ξ |2) − �(1)
∈ C∞

c ({ξ : |ξ | > 1}).

Then

〈̂u,φ1〉 =
〈̂
u, (�(|ξ |2) − �(1)) · φ1(ξ)

�(|ξ |2) − �(1)

〉
= 0;

〈̂u,φ2〉 =
〈̂
u, (�(|ξ |2) − �(1)) · φ2(ξ)

�(|ξ |2) − �(1)

〉
= 0.

Thus (3.2) holds.
(2). The case �(1) �= 0. Choose χ ∈ C∞

c (Rd) such that χ(z) = 1 for |z| ≤ 1
2 and χ(z) = 0 for 

|z| ≥ 1. Clearly〈
u,F−1

(
(�(|ξ |2) − �(1))χ

(
ξ

ε

)
ψ(ξ)

)〉
= 0; (by (3.1))

lim
ε→0

〈
u,F−1

(
�(|ξ |2)χ

(
ξ

ε

)
ψ(ξ)

)〉
= 0; (by Proposition 2.1)

lim
ε→0

〈
u,F−1

(
|ξ |2χ

(
ξ

ε

)
ψ(ξ)

)〉
= 0. (obvious)
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A suitable linear combination of the above yields (here we use �(1) �= 0)

lim
ε→0

〈
u,F−1

(
(|ξ |2 − 1)χ

(
ξ

ε

)
ψ(ξ)

)〉
= 0.

On the other hand, it is not difficult to check that

lim
ε→0

〈
u,F−1

(
(|ξ |2 − 1)(1 − χ(εξ))ψ(ξ)

)〉
= 0.

Note that 
(

1 − χ
(

ξ
ε

))
(1 − χ(εξ)) = 1 − χ(εξ). Thus

lim
ε→0

〈
u,F−1

(
(|ξ |2 − 1)

(
1 − χ

(
ξ

ε

))
(1 − χ(εξ))ψ(ξ)

)〉
= 0. (3.6)

We now only need to check for each small ε > 0 the identity〈
u,F−1

(
(|ξ |2 − 1)

(
1 − χ

(
ξ

ε

))
χ(εξ)ψ(ξ)︸ ︷︷ ︸

ψε

)〉
= 0. (3.7)

Observe that ψε ∈ C∞
c and

(|ξ |2 − 1)ψε(ξ) = (�(|ξ |2) − �(1)) · |ξ |2 − 1

�(|ξ |2) − �(1)
ψε(ξ)︸ ︷︷ ︸

∈ C∞
c (Rd )

. (3.8)

Here we use the crucial assumption (c) on �, namely: 1) near |ξ | = 1, �′(1) �= 0; 2) away from 
|ξ | = 1 (and in a compact neighborhood of |ξ | = 1), |�(|ξ |2) − �(1)| � 1. These two facts yield 

that |ξ |2−1
�(|ξ |2)−�(1)

can be defined as a smooth function in the whole neighborhood of |ξ | = 1.
Thus (3.7) holds and we have〈

u,F−1
(
(|ξ |2 − 1)ψ(ξ)

)〉
= 0, ∀ψ ∈ S(Rd). (3.9)

The statement (3.3) can be proved along similar lines. We omit the details. �
Proof of Theorem 1.2. The main modification is in (3.8):

(|ξ |2 − 1)j0ψε(ξ) = (�(|ξ |2) − �(1)) · (|ξ |2 − 1)j0

�(|ξ |2) − �(1)
ψε(ξ)︸ ︷︷ ︸

∈ C∞
c (Rd )

. (3.10)

Clearly the result follows. �
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4. Connection with the Bernstein Helmholtz case in [4]

We now show that in the more general Bernstein Helmholtz case introduced in [4], the condi-
tions on �(λ) in [4] are stronger than our conditions on the function �(λ).

Recall that in [4], one assumes that �(λ) is a complete Bernstein function, and in the corre-
sponding harmonic extension problem, the weight function a(t) ∈ A2 (in particular a is locally 
integrable) and satisfies a(t) ∼ tα for t � 1 where |α| < 1.

We shall show that in [4], as long as � is complete Bernstein, a is weakly integrable, a(t) ∼ tα

for t � 1 where |α| < 1, then such � will satisfy our conditions (a)–(c) (see (1.5)–(1.6)) with 
the property �(1) �= 0.

1) Since �(·) : [0, ∞) → [0, ∞) is complete Bernstein, we have

�(λ) = c1 + c2λ +
∫

(0,∞)

λ

λ + s

m(ds)

s
, (4.1)

for some constants c1 ≥ 0, c2 ≥ 0, and the nonnegative measure m satisfies∫
(0,∞)

1

1 + s

m(ds)

s
< ∞. (4.2)

Clearly � ∈ C∞((0, ∞)) ∩ C([0, ∞)). It is easy to check that (1.5) holds.
2) We check (1.6). Although in general the exact profile of the Krein correspondence � ↔ a is 

hard to determine, we can work out the asymptotic information via the quadratic form inequality 
(cf. Theorem II of [8], note that the convention of Fourier transform therein differs from ours by 
a constant): namely

∞∫
0

∫
R

a(t)(|∂tu|2 + |∂xu|2)dxdt ≥ const ·
∫
R

�(|ξ |2)|f̂ (ξ)|2dξ, (4.3)

where u(0, x) = f (x). Note that the equality (with sharp constants) is achieved when u is a 
suitable harmonic extension of f .

Setting ̂u(t, ξ) = e−t |ξ |f̂ (ξ), we obtain

∫
R

( ∞∫
0

a(t)e−2t |ξ |dt
)
|ξ |2|f̂ (ξ)|2dξ �

∫
R

�(|ξ |2)|f̂ (ξ)|2dξ. (4.4)

Since by assumption a(t) ∼ tα for t � 1 and |α| < 1, we have (below R0 � 1 is the constant for 
which a(t) ∼ tα when t ≥ R0)

R0∫
0

a(t)dt

∫
R

|ξ |2|f̂ (ξ)|2dξ +
∫
R

|ξ |1−α|f̂ (ξ)|2dξ �
∫
R

�(|ξ |2)|f̂ (ξ)|2dξ. (4.5)
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Since by assumption a is locally integrable, we have 
∫ R0

0 a(t)dt � 1. Since |α| < 1, we have 
for all f̂ with support in {ξ : |ξ | < 1},∫

|ξ |<1

|ξ |1−α|f̂ (ξ)|2dξ �
∫

|ξ |<1

�(|ξ |2)|f̂ (ξ)|2dξ. (4.6)

By choosing suitable f̂ (ξ) ∼ |ξ |−1+δ (2δ > α) when |ξ | � 1, we obtain∫
|ξ |�1

�(|ξ |2)|ξ |−2+2δdξ � 1.

Here we note that α < 1, and we can choose 2δ = 1 − η for some η > 0 sufficiently small. This 
easily implies

ε0∫
0

|�(z)||z|−1dz � 1.

Note that here we actually proved c1 = 0 in (4.1). By (4.1), we have for λ > 0,

�(λ) = c1 + c2λ +
∫

(0,∞)

(
1 − s

λ + s

)
m(ds)

s
; (4.7)

�′(λ) = c2 +
∫

(0,∞)

s

(λ + s)2

m(ds)

s
; (4.8)

λ|�′(λ)| ≤ c2λ +
∫

(0,∞)

λ

λ + s

s

λ + s

m(ds)

s
≤ �(λ). (4.9)

Similar estimates hold for higher derivatives. Thus (1.6) holds.
3). We check the uni-valence of � at �(1). First we show �(1) �= 0. By (4.1), we have

�(1) = c1 + c2 +
∫

(0,∞)

1

1 + s

m(ds)

s
. (4.10)

If �(1) = 0, then c1 = c2 = 0, and 
∫
(0,∞)

1
1+s

m(ds)
s

= 0. It follows that � ≡ 0 which contradicts 
to the assumption that a(t) ∼ tα for t � 1.

Next we show �′(1) �= 0. Suppose �′(1) = 0. By (4.8), we obtain

c2 = 0,

∫
(0,∞)

1

(1 + s)2 m(ds) = 0. (4.11)

By using Lebesgue monotone convergence, we have
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∫
(0,∞)

1

(1 + s)

m(ds)

s
= lim

ε→0+

∫
(ε,∞)

1

1 + s

m(ds)

s
= 0.

This implies that � ≡ c1 = �(0) = 0. Thus we rule out this possibility and conclude �′(1) �= 0.
Finally we observe that �′(1) �= 0 and � ∈ C∞((0, ∞)). Clearly � is strictly monotone near 

λ = 1. By monotonicity we have for δ1 > 0 sufficiently small,

max
0≤λ≤1−δ1

�(λ) ≤ �(1 − δ1) < �(1), �(1) < �(1 + δ1) ≤ �(λ), ∀λ ≥ 1 + δ1. (4.12)

Thus � satisfies our condition (c).
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