Education and Information Technologies
https://doi.org/10.1007/510639-024-12597-z

®

Check for
updates

Understanding undergraduates’ computational thinking
processes: Evidence from an integrated analysis
of discourse in pair programming

Ruijie Zhou'2® - Yangyang Li'?® . Xiuling He'*® . Chunlian Jiang?
Jing Fang™2® - Yue Li'2

Received: 3 November 2023 / Accepted: 19 February 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Computational thinking (CT), as one of the key skills in the twenty-first century, has
been integrated into educational programming as an important learning goal. This
study aims to explore CT processes involved in pair programming with the support
of visual flow design. Thirty freshmen participated, working in pairs to solve two pro-
gramming problems. Their discourses were recorded, transcribed, and coded based
on a CT framework encompassing cognitive, practical, and social perspectives. Both
quantitative and qualitative methods were applied to analyze the data. In particular,
Epistemic Network Analysis (ENA) was applied to explore the patterns of their CT
processes. The findings revealed that social perspectives emerged the most frequently
in all pairs’ discourses. The high-level groups (HLGs) focused more on practical and
social perspectives whereas the low-level groups (LLGs) emphasized more on cogni-
tive perspectives. The ENA networks revealed that social perspectives mostly centered
around cognitive perspectives for all pairs with CT process patterns in HLGs crossing
the three perspectives more frequently. In addition, HLGs exhibited a more compli-
cated and developmental trend in solving the two problems, while LLGs displayed a
relatively similar CT pattern. The current study provides insights into the design and
implementation of collaborative learning activities in educational programming.

Keywords Computational thinking - Discourse analysis - Educational
programming - Pair programming

1 Introduction

Computational thinking (CT) has become an essential application skill and mode of
thinking that students from primary to college levels must possess (Tang et al., 2020;
Zhang & Nouri, 2019) in the internet era. CT involves solving problems, designing
systems, and understanding human behavior, by drawing on the concepts fundamental

Extended author information available on the last page of the article

Published online: 19 March 2024 @ Springer

http://orcid.org/0009-0008-4431-7030
http://orcid.org/0000-0001-5361-5058
http://orcid.org/0000-0001-7880-8710
http://orcid.org/0000-0002-2740-1870
http://orcid.org/0000-0002-9244-5896
http://orcid.org/0009-0009-8692-3087
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-024-12597-z&domain=pdf

Education and Information Technologies

to computer science (Wing, 2006, p.33). It is generally developed through computer
programming education (Lye & Koh, 2014; Tikva & Tambouris, 2021).

Researchers have studied CT processes from cognitive, practical, and social per-
spectives. First, it involves the use of a set of cognitive skills including abstraction,
algorithms, and systemic thinking that is developed and utilized in problem solv-
ing (Lai & Wong, 2022; Wing, 2011). Second, it involves the practice of breaking
down complex problems into smaller parts, modeling them, designing algorithms,
coding-testing-and-debugging, and running the program to obtain the solutions to
the problems (Wing, 2006). Third, CT is developed in a social environment with
guidance and help from teachers or peers (Vygotsky & Cole, 1978), and its char-
acteristics extend beyond computational knowledge and skills (Wu et al., 2019).
Brennan and Resnick (2012) proposed a three-dimension model (e.g., computational
concepts, practice, and perspectives) to describe the CT processes of young people
(8-17 years old). Their model was validated within a Scratch environment, a visual
programming environment empowering novice programmers to conceptualize and
create their stories and games. This model offers valuable insights for describing CT
processes in the context of educational programming. However, whether the model
is applicable in a broader educational programming context needs further investiga-
tion. The current study will extend the framework to further explore the interactions
among the cognitive, practical, and social perspectives in an educational program-
ming environment at the university level.

Collaborative programming, including pair programming, has been shown to
have a positive impact on the development of CT skills (Echeverria et al., 2019; Lai
& Wong, 2022; Wei et al., 2021). This approach presents considerable advantages in
algorithm design and code review (Wang et al., 2012), contributing to improvements
in students’ academic achievements and CT (Lai & Wong, 2022; Wei et al., 2021).
How the cognitive, practical, and social perspectives in pair programming interact
with each other to make a better performance, in particular, the differences between
high-level groups and low-level groups, will be studied in the current research.

Both qualitative and quantitative methods are used to describe students’ CT pro-
cesses. Qualitative methods were used to identify a specific or several distinct CT pro-
cesses a particular group of students has. Quantitative methods were used to investigate
the frequencies of various CT processes in complex problem-solving processes and to
compare the differences in behavior patterns of different groups of students. Consider-
ing the complex and evolving nature of CT, there is a need for analytical methodologies
that uncover the interactivity, interdependence, and temporal process features (Rolim
et al., 2019). In recent years, Epistemic Network Analysis (ENA) has been used to cap-
ture the temporal and dynamic characteristics of problem-solving processes (Siddiq &
Scherer, 2017). As a method of learning analytics, ENA enables both quantitative and
qualitative analysis of CT processes, given its inherent potential to reveal interactivity
and temporal processes in collective problem solving (Swiecki et al., 2020). The current
study will use ENA together with the traditional qualitative and quantitative methods to
reveal the mechanisms of CT processes in order to gain a deeper understanding of com-
plex problem solving in programming (Israel et al., 2015).

In summary, this study aims to integrate ENA with the traditional qualitative and
quantitative methods to study the CT processes of learners during pair programming

@ Springer

Education and Information Technologies

from three perspectives and further explore the differences in the CT processes of
groups at different performance levels. This study will help us to gain a better under-
standing of the interaction of CT processes involved in pair programming and the
differences between groups at different performance levels, which will help us to
provide better guidance to students with difficulties in educational programming.

2 Literature review

This section presents an overview of the relevant literature on CT, CT skills in edu-
cational programming, pair programming, and models for describing CT processes.

2.1 Computational thinking

The concept of computational thinking originated from computer science and has
been extended to science, technology, engineering, and mathematics (STEM) areas
(Mohaghegh & McCauley, 2016). Papert (1980) seemed to be the first to use the
term CT, indicating that the use of computers could enhance thinking capabilities
and change the pattern of knowledge acquisition. Papert (1993, 1996) further devel-
oped the idea emphasizing that CT allowed children to construct meaningful objects
through computers. To respond to the need for the development of digital technolo-
gies and computational sciences and their wide applications in various fields, CT is
a fundamental skill not only for computer scientists (Wing, 2006). As the definition
in Wing’s (2011) work, indicating that CT is the thought processes involved in for-
mulating problems and their solutions so that the solutions are represented in a form
that can be effectively carried out by an information-processing agent (p.1). After that,
many definitions have been proposed (CSTA & ISTE, 2011; Grover et al., 2015; Selby
& Woollard, 2013; Weintrop et al., 2016). Those definitions converge on the consen-
sus that CT is a way of thinking for problem solving (Lodi, 2020). The concept of
CT has been extended to refer to problem-solving processes involving some core prin-
ciples from computer science (e.g. abstraction and algorithm design, decomposition,
etc.) (Mohaghegh & McCauley, 2016). CT was rooted in computer science, which
now has become an important component of 21st-century skills (Davies et al., 2011;
Mohaghegh & McCauley, 2016; Wing, 2006, 2008). CT, the skills to conceptualize
and draw abstractions from data sets, and model problems computationally, is taken
as one of the ten future work skills (Davies et al., 2011). CT is also listed as one of the
learning objectives of STEM-related courses (International Society for Technology in
Education (ISTE), 2015; National Research Council, 2012). For example, in Frame-
work for k-12 Science Education (National Research Council, 2012), Using mathemat-
ics and CT is one of the eight scientific and engineering practices for science educa-
tion in the USA. In the current study, we shall create a collaborative problem-solving
environment in programming to develop the CT skills of undergraduate students. That
is to say, CT reflects problem-solving processes in programming, echoing the defini-
tion proposed by Wing (2011). We thus intend to employ this concept, framing CT as
the thinking process of problem solving in the context of educational programming.

@ Springer

Education and Information Technologies

A variety of methods have been used to measure CT in the context of gen-
eral education and subject domains. In the context of general education, CT tests
(Dagiené & Futschek, 2008; Dagien¢ & Stupuriené, 2016) and self-reported ques-
tionnaires and scales (Korkmaz et al., 2017; Yagci, 2019) were used. For example,
Bebras Contest, a competition for pupils to apply CT to the formulation of problem
solutions (Dagiené & Futschek, 2008; Dagiené & Stupuriené¢, 2016). Korkmaz et al.,
(2017) developed a scale as a summative tool to determine the levels of computa-
tional thinking skills (CTS) of students. In the subject domains, mainly in computer
sciences, CT tests (Roman-Gonzélez, et al., 2017) and programming tasks/activi-
ties (Lui et al., 2020; Werner et al., 2012) were generally used. For example, in the
study of Roman-Gonzélez et al. (2017), a Computational Thinking Test (CTt) with
28 multiple-choice items was designed to measure the basic programming abili-
ties of students at Sth to 10th grade levels. In the study of Werner et al. (2012),
Fairy Assessment as Alice Program with three tasks was developed to measure
algorithmic thinking, abstraction and modeling aspects of students at the ages of
10-14 years. With the development of IT technologies, digital portfolios were used
to capture students’ development of CT skills by documenting their learning trajec-
tories in creating an electronic textile mural project (Lui et al., 2020). In the current
study, our primary focus is on CT processes within programming. In particular, we
shall use two programming tasks to measure undergraduate students’ CT skills with
their discourses and behaviors recorded using screen recording software.

2.2 CT skills in educational programming

Programming provides a conducive learning environment for students’ development
of CT skills for its unique advantages in logic operations, algorithm design, and rea-
soning application (Garcia-Pefialvo & Mendes, 2018; Hsu et al., 2018). Therefore,
many educators in computer sciences consider programming as the most suitable
subject for fostering students’ CT (e.g., Buitrago Florez et al., 2017; Garcia-Pefialvo
& Mendes, 2018). Diverse approaches have been proposed to facilitate programming
and CT skills (Bers et al., 2014), such as robot-based programming (Atmatzidou
& Demetriadis, 2016; Bers et al., 2014; Harvey, 1997) and algorithm-visualization
programming (Brennan & Resnick, 2012; Hundhausen et al., 2002). Text-based pro-
gramming is primarily a way of programming to improve CT (Bai et al., 2021; Sun
& Zhou, 2023), and some existing studies explored ways to facilitate educational
programming (Cheah, 2020; Dale & Weems, 2014; Fang et al., 2022). Dale and
Weems (2014) divided programming into the problem-solving phase and the imple-
mentation phase. Student needs to first identify the concept of programming and
data structure to generate solutions by developing algorithms in the problem-solving
phase, which contributes to the coding process in the implementation phase (Cheah,
2020). The problem-solving phase was further classified into problem identification
and flow definition stages, and the implementation phase was further classified into
coding and testing stages. The PFCT (problem identification, flow definition, cod-
ing, and testing) approach was commonly used to teach programming (Budny et al.,
2002), and its effectiveness in fostering students’ CT skills has been demonstrated

@ Springer

Education and Information Technologies

in the studies of Buitrago Florez et al. (2017) and Fang et al. (2022). Another use-
ful model for fostering CT in programming is the cognitive apprenticeship (Collins
et al., 1991), an instructional strategy that has also been successfully used in pro-
gramming teaching (Lee, 2011). It comprises modeling, coaching and scaffolding,
articulation, reflection, and exploration (Hopcan et al., 2022). Via cognitive appren-
ticeship, the application of metacognitive skills can reveal cognitive processes and
promote reflection during programming (Collins et al., 1991; Plonka et al., 2015).
We shall combine the cognitive apprenticeship model with the PFCT approach to
design a four-stage process, including problem identification, visual flow design,
coding, testing and debugging, and sharing and reflecting.

Flow design determines the solution to the problem and reveals the CT process
during programming. Visual flow design scaffolding plays a vital role in algorithm
design, bridging the gap between concepts and practice (Charntaweekhun & Wang-
siripitak, 2006; Nassi & Shneiderman, 1973; Threekunprapa & Yasri, 2020; Zhang
et al., 2021). This scaffolding can help students better understand programming
terms, and represent programming logic visually to simulate the dynamic process
of programming from a global perspective (Salleh, et al., 2018; Zhang et al., 2021).
Consequently, this promotes problem-solving skills and enables participants to
break down complex problems into sub-problems, develop algorithms for each sub-
problem, and then integrate them into a program (Fang, et al., 2022). Visual flow
design will be used in this study to support problem decomposition and formulate
solutions for complex programming problems, indirectly supporting students’” CT
development.

2.3 Pair programming

Pair programming, derived from cooperative learning theory, is a learning method
in educational programming that involves two individuals working together to
design algorithms, write code, run tests, and develop software for solving problems
(Wei et al., 2021). In pair programming, each member plays a distinct role. One
acts as the "driver" controlling the process of program design and is responsible for
program development and implementation. The other acts as the "navigator" who
monitors the driver to identify problems, defines possible strategies, and checks for
errors (Hopcan et al., 2022). Often their roles might switch at a specific time when
completing a part of the project (Tsan et al., 2020).

Previous studies have demonstrated that pair programming offers great advan-
tages in checking code errors (Wang, et al., 2012), improving problem-solving qual-
ity (Demir & Seferoglu, 2021), enhancing students’ CT abilities (Wei et al., 2021),
and increasing self-efficiency (Hannay et al., 2009). Pair programming allows partic-
ipants to freely express themselves by connecting, colliding, and integrating differ-
ent ideas. This leads to a deeper reflection on the knowledge and enhances high-level
thinking abilities (Asunda, 2018; Chiu, 2020). Consequently, pair programming
plays a positive role in solving problems through social interactions that help learn-
ers enhance their CT abilities. While collaborative learning is often employed for
its benefits, it is argued that positive learning outcomes are not always guaranteed

@ Springer

Education and Information Technologies

(Kreijns et al., 2003; Li et al., 2023). Specifically, the particular methods within
collaborative learning that result in superior academic performance are worthy of
deeper exploration. Existing studies (e.g., Wei et al., 2021), highlighting the positive
relationship between pair programming and CT outcomes, primarily focused on the
outcomes of CT and not on the processes that lead to them. Therefore, it is neces-
sary to explore the relationship between CT processes involved in pair programming
and academic performance.

2.4 Models for describing CT processes

In educational programming, several models have been proposed to describe CT
processes. One of the most widely used theoretical frameworks of CT was devel-
oped by Brennan and Resnick (2012). In their models, there were three dimensions
of CT: computational concepts, computational practices, and computational per-
spectives. Computational concepts refer to the concepts employed in programming,
which might include sequences, loops, parallelism, events, conditionals, operators,
and data. Computational practices refer to the practices designers develop as they
program, for example, being incremental and iterative, testing and debugging, reus-
ing and remixing, abstracting and modularizing, etc. Computational perspectives
refer to the perspectives programmers form about the world around them and about
themselves such as expressing, connecting and questioning. The model proposed
by Brennan and Resnick (2012) was widely used (Saez-Lopez et al., 2016; Wu
et al., 2019; Zhong et al., 2016). On the other hand, Chao (2016) used the log data
recorded during students’ computational problem-solving processes and described
their activities in a sequence of designing, composing, and testing processes. Stu-
dents’ activities in the designing process were represented as computational design,
which included problem decomposition, abutment composition, and nesting compo-
sition. Students’ activities in the composing and testing processes were represented
as computational practice, which includes sequence, selection, simple iteration,
nested iteration, and testing. Students’ performance was measured from two aspects
(i.e., goal attainment and program size). These two models have notably prioritized
programming practices. In the latter model, computational design is linked with the
process of abstracting and modularizing within the computational practice featured
in the former model. Furthermore, the latter model’s practice demonstrates con-
siderable consistency with the computational concepts and practices of the former.
Nevertheless, a critical divergence is highlighted by the distinction that the former
model accentuates the perspectives within programming, while the latter distinctly
underscores programming performance.

However, these models focused on the cognitive and practical perspectives
of CT, and more researchers believed that social perspectives should be consid-
ered for CT. Kafai (2016) considered CT to social perspective should be reframed
as computational participation, indicating moving beyond tools and code to com-
munity and context. Lai and Wong’s (2022) meta-analysis showed the essence of
CT skills in collaborative computational problem-solving from cognitive, social,
and affective perspectives. Considering the context of connecting with others, the

@ Springer

Education and Information Technologies

three-dimensional CT framework by Brennan and Resnick (2012) was utilized in a
collaborative programming environment to explore the CT processes from cogni-
tive, practical and social perspectives.

2.5 Research questions

This study aims to investigate the CT processes of students engaged in pair pro-
gramming and to describe the differences in CT processes between different aca-
demic performance groups, in particular between high-level groups (HLGs) and
low-level groups (LLGs). Specifically, this study aims to address the following
research questions:

e RQI: What is the frequency distribution of CT processes involved in pair pro-
gramming, and to what extent do the processes differ between HLGs and LLGs?

e RQ2: What is the relationship among CT processes involved in pair program-
ming among all groups, and to what extent do the relationships differ between
HLGs and LLGs?

e RQ3: How do the CT processes differ between HLGs and LLGs in different
problem-solving scenarios during pair programming?

3 Method
3.1 Research context

The study was carried out in the course entitled "C Programming Language Experi-
ment" in the Spring of 2022, lasting for three weeks at a university in central China.
The objectives of the course include: (a) To master the basic knowledge of C pro-
gramming language and the basic methods for computer software design; (b) To
learn the basic thinking skills of using the computer to solve real-world problems
and abilities to test and modify programs; and (c) To develop students’ CT abili-
ties. Implementing this programming course is critical for fostering CT skills—a
premise that aligns with our study’s goal of exploring CT processes within program-
ming. This study was conducted in the middle of the course after four sessions that
provided an overview of the basic C programming environment and programming
knowledge.

3.2 Participants

Thirty first-year undergraduate students (15 females and 15 males) majoring in Artifi-
cial Intelligence and Data Science volunteered to participate in the study. Their partici-
pation in this course is compulsory, aligning with the specialized training goal aimed
at enhancing CT skills. Before this study, they had already completed two college
mathematics courses (i.e., calculus and linear algebra) and a course entitled Compu-
tational Thinking). They were divided into 15 groups after taking into consideration

@ Springer

Education and Information Technologies

their performance in the three courses, and their performance in the first four sessions
of the course. Each student’s score ranged from 0 to 400, with a set value of 100 attrib-
uted to three prerequisite courses and the prior performance in the course. In order to
ensure homogeneity between pairs, two teaching assistants computed the scores, sub-
sequently categorizing students based on the cumulative score of their CT skills. The
fifteen groups were coded as G1, G2, ..., and G15.

3.3 Learning environment

The study was conducted in a computer lab. Each student was equipped with one com-
puter that could provide Xiaoya, a teaching and learning platform. In addition, three
learning tools including ProcessOn, Code::Blocks, and EV screen recording were also
provided to them.

Xiaoya (http://www.ai-augmented.com/) was independently developed by the
research team to provide intelligent teaching and learning services for teachers and
students in the university (He et al., 2023; Zhang et al., 2023). The teacher could
upload all the course materials to Xiaoya and manage coursework and assignments
submitted by his/her students. In this study, one member of a group submitted their
flowchart and program code to Xiaoya after they finished their programming tasks.
In addition, students were required to review other groups’ programming work and
reflect on their experience in pair programming and collaborative learning in Xiaoya
as part of their coursework.

ProcessOn (https://www.processon.com/) is an online platform that can be used to
draw flowcharts. It includes almost all the flowblock components that students might
use in its toolbar. Students could just drag them into the working area to construct their
flowchart in their programming processes.

Code::Blocks is a software that provides learners with an environment for program-
ming. Students can do coding, testing, debugging, and finally use the program to solve
the problems in their assignment. It has been used by the software designers (Soto &
Figueroa, 2018).

EV screen recording, which can be downloaded freely from https://www.ieway.cn/,
is a software that can be used to record students’ discourse and track their behaviors in
pair programming. This kind of data will be used to analyze the CT processes of each
group.

In summary, the platform Xiaoya, along with the first two tools (i.e., ProcessOn and
Code::Blocks) provides support for students to accomplish CT tasks. Moreover, the EV
screen recording feature contributes to documenting the participants’ CT processes in
the programming tasks.

3.4 Project tasks and procedure

Participants worked in pairs to write programs for solving the two tasks (i.e., the Diet
Problem and the Kaprekar Problem) shown in Fig. 1. In the programming process,
they need to use their knowledge of loop nesting and comparison sorting algorithms,
respectively. Such practical application fosters the development of their CT skills.

@ Springer

http://www.ai-augmented.com/
https://www.processon.com/
https://www.ieway.cn/

Education and Information Technologies

The current study lasted for three weeks. In the first week, students were taught the
principles of pair programming and motivated to engage in interactive communication,
including equal dialogue, being open-minded, attentive listening, mutual respect, and
encouraging others. The trainer also held a question-and-answer session to ensure that
all students understood the requirements. Each pair was also given 15 min to practice.

In the second and third weeks, each pair worked on one of the tasks shown in
Fig. 1 following a four-stage process (Fang et al., 2022; Hopcan et al., 2022). The
four stages are:

a) Problem identification. Students read the problem and determined what was the
input and what was the output.

b) Visual flow design. Students decomposed the problem into several sub-problems
and used ProcessOn to draw their flowchart to visualize the algorithm for solving
the problem.

¢) Coding, testing, and debugging. Students coded based on the flowchart drawn
in the previous stage and tested the code. If the code could not run properly, a
debugging process would be conducted to refine the code until the problem was
resolved. This stage was done in Code::Blocks.

d) Share and reflect. After completing the task, students were guided to do peer
evaluation and select exemplary flow designs and program codes for sharing.
Finally, they also needed to reflect on their thinking to consolidate their learning.

Each group needed to submit their flowchart, their programs, and reflections to
Xiaoya at the end of the 2nd to 4th stages, respectively. Throughout the whole pro-
cess, the teacher and her teaching assistants acted as guides, offering individual sup-
port to learners who encountered challenges.

4 Data collection and analysis

The collected data encompass group performance data and the discourse data cap-
tured via EV screen recording.

Diet Problem:
A girl is restricted to 900 calories per meal because she is on a diet. The main food is a 160-calorie noodle, and the side food includes a 40-calorie orange, a
50-calorie watermelon, one side food, and the total number of servings is no more than 10. The output of the program is the number of servings of noodles,
oranges, watermelon, and vegetand an 80-calorie vegetable. Program the girl to calculate how to choose the food for a meal so that the total number of
calories is 900 and the total number of servings is at least one main food and ables that the girl eats each day, and all possible solutions in the order
"number of servings of noodles, oranges, watermelon, and vegetable.

Kaprekar Problem:

For any four-digit number, as long as the digits in each digit are not identical, there is a pattern as follows:

[1] arrange the four digits that make up the four-digit number from largest to smallest to obtain the largest four-digit number made up of these four digits;

[2] arrange the four digits that make up the four-digit number from smallest to largest to obtain the smallest four-digit number made up of these four digits
(if the four digits contain zeroes, the smallest four-digit number obtained is less than four digits);

[3] find the difference between these two numbers to obtain a new four-digit number (the higher digit zeroes are retained). Repeating the above process,
the final result is always 6174, a number known as the Kabrek constant. Write a function to verify the above Kaprekar operation. You are required to first

enter a four-digit number and then output the result of each step of the operation until you finally output 6174.

Fig. 1 The two tasks

@ Springer

Education and Information Technologies

Group performance was assessed based on the flowchart and program code they
submitted to Xiaoya. The flowchart was scored in the following four aspects (Charn-
taweekhun & Wangsiripitak, 2006; Su et al., 2022):

(a) Integrity. It refers to the completeness of the flowchart structure which should
include the essential parts of a flowchart (McCormick & Ross, 1990; Xiao &
Yu, 2017), such as begin-end symbols, additional symbols, and concepts fun-
damental to a viable problem solution (Nassi & Shneiderman, 1973).

(b) Rationality. It refers to two aspects: 1) the appropriateness of selected program-
ming symbols (e.g. process symbol, flow line, decision symbol, connector sym-
bol, start & stop symbol, input symbol, and subroutine symbol) for the given
problem, and 2) successful execution of the flow to obtain the correct solution
(Charntaweekhun & Wangsiripitak, 2006).

(c) Normalization. It refers to two aspects: 1) legibility of the content and clear
presentation of the execution process. Supplementary annotations are allowed
to improve clarity, and 2) the flow line is to be connected chronologically from
left to right and from top to bottom with connecting lines designed to minimize
overlap (Charntaweekhun & Wangsiripitak, 2006).

(d) Creativity. It signifies the ability to generate diverse and innovative designs for
problem solving using new variables and perspectives (Smith & Browne, 1993).

Through the discussion with the expert with more than 20 years of teaching expe-
rience, the total score was set at 40, with scores of 8, 16, 8, and 8 for each dimension
based on their importance levels.

The program code was scored in the following aspects (Fang et al., 2022; Olsen
et al., 2020):

(a) Accuracy. It refers to the absence of grammatical mistakes in syntax and logic
for problem-solving procedures (Fang et al., 2022; Rahman & Nordin, 2007).

(b) Identifiers naming. It refers to the reasonable naming of the variables or func-
tions that adhere to established naming conventions (Fang et al., 2022).

(c) Coding style. It refers to the readability and expressiveness of the code, includ-
ing code indent and code comments (Charntaweekhun & Wangsiripitak, 2006;
Fang et al., 2022).

(d) Execution. It refers to the successful execution of the program and careful evalu-
ation and verification of the output to ensure that it adheres to the specifications
outlined in the question prompt of the problem (Olsen et al., 2020).

Similarly, the total score was set at 60, with scores of 20, 10, 10, and 20 for each
dimension after the various facts weighing.

The total score for each group was the sum of the scores they received for their
flowchart and program code. These scores were then used to classify the groups into
high-level groups (HLGs), low-level groups (LLGs), and intermediate-level groups,
in a ratio of 2:2:6 (Sun et al., 2022; Zhang et al., 2022).

@ Springer

Education and Information Technologies

The scoring was conducted by peer groups and checked by the instructor who
taught this course. The peer groups were randomly assigned and required to fol-
low the assessment criteria outlined above to provide feedback to the author group.
The author group then assessed the reasonableness of the scores they received. The
teacher carefully monitored the scoring process and resolved any conflicts between
the author group and the peer group. A final score was determined for each group.
We evaluated the participants’ satisfaction rate with the scoring procedures after the
experiment. The acceptability measure stood at 4.85 out of a possible 5, indicating
that the majority of participants held a favorable view of their scoring experiences.

Each pair’s working process and their discourse were captured using EV screen
recording. Each group engaged in solving one problem was taken as a discourse
dataset, therefore there was a total of 30 datasets. Their discourse was recorded,
transcribed, and analyzed using NVivo and ENA to describe and compare the CT
processes of HLGs and LLGs involved in pair programming.

An integrated analysis approach was used to analyze the discourse datasets
from both quantitative and qualitative perspectives (Fig. 2). The integrated analy-
sis method allows us to holistically investigate and understand discourses in col-
laborative learning (Ouyang et al., 2023). It consisted of three layers, including CT
categories (quantitative), CT patterns (both quantitative and qualitative), as well as
the microlevel sequence of CT (qualitative) involved in pair programming. The first
layer describes CT processes from a statistical perspective, while the second layer
portrays chronologically linked CT processes via ENA. The third layer, examined
qualitatively, pinpoints specific or multiple unique CT processes evident within stu-
dent pairs.

In the first layer, the frequencies of CT processes representing cognitive, practical,
and social processes were taken by each group and all the groups were counted. The
data analysis was conducted in two steps. The first step was to segment each dataset into
different utterances using Nvivo and then code based on the coding scheme shown in
Table 1. In the initial coding phase, two discourse datasets (one for Problem 1 and one
for Problem 2) were randomly selected and coded. The coding scheme of Brennan and
Resnick (2012) was thoroughly reviewed, discussed, and modified to ensure its appro-
priateness and consistency. We considered the categories of computational perspectives
of Brennan and Resnick (2012) from the social perspectives within the context of pair
programming, redefined the code of Abstracting & modularizing based on the visual

‘ An integrated analysis |

| Quantitative Analysis ‘ ‘ Qualitative Analysis ‘
- 1 L ' 1
Descriptive statistics of CT Network of CT processes
processes » Mean network of all groups Microlevel of CT process patterns

> Overall frequency distribution » Subtraction network between HLGs and » General pattern of CT processes
» Differences between HLGs and LLGs » Differences between HLGs and

LLGs » Differences in solving the two problems LLGs
O Coding and counting O ENA and visualization

Fig.2 The analytical framework

@ Springer

Education and Information Technologies

flow design stage, and struck out several codes (e.g., parallelism, events, reusing and
remixing) that were not found in the current study. After reaching a consensus, the first
and second authors independently coded 10% of the entire dataset based on the modi-
fied coding scheme. The Cohen’s kappa between the two coders was 0.83. The discrep-
ancies were thoroughly discussed and resolved. After that, the first author continued
coding the remaining data. The examples included in the last column of Table 1 are
examples translated from Chinese. G1-P1-36’ indicates that the transcription was from
Group 1 in solving the first problem starting at 36’.

In the second layer, this study investigated the network of CT processes of all the
groups and a comparison of the CT process networks of different performance groups
by examining the epistemic structure of code co-occurrence. ENA was utilized to dem-
onstrate the accumulation of connections between codes and represent them in dynamic
network models (Shaffer et al., 2016). To capture, visualize, and quantitatively compare
patterns of learning activities across various conditions (Csanadi et al., 2018), an ENA
Webkit (epistemicnetwork.org) (Marquart et al., 2018) was utilized. ENA plots were
demonstrated to identify and quantify the chronological associations among CT pro-
cesses in the network model. There are three essential concepts in ENA, i.e., code, unit
of analysis, and stanza. Code pertained to a set of conceptual elements, and their inter-
actions served as the focus of analysis. The unit of analysis pertained to the objects of
ENA, such as gender groups, achievement groups, and so forth. Lastly, stanza referred
to the scope of co-occurrence of cognitive elements. The co-occurrence data was rep-
resented by ENA as an adjacency matrix and visualized through normalization, dimen-
sion reduction, and singular value decomposition to reveal the relationship among
the cognitive elements over a two-dimensional space. In the current study, the three
dimensions of CT were codes, groups and a combination of several groups at high- or
low-performing levels as the unit of analysis, and four discourses as a stanza window,
respectively.

In the third layer, three episodes were identified and analyzed qualitatively to dem-
onstrate the microlevel attributes of CT process patterns as in the study of Borreguero
Zuloaga and De Marco (2021). The first episode was selected to demonstrate a general pat-
tern of CT processes for all the groups, whereas the last two episodes were selected to dem-
onstrate the patterns of CT processes of high- and low-performing groups, respectively.

5 Results

The report of the results includes four sections. The first section deals with the cat-
egorization of HLGs and LLGs based on their total scores obtained in flowchart
designing and program coding. The second section presents the frequency distribu-
tion of CT processes and the differences between HLGs and LLGs, which are the
answers to the first research question. The third section reports the ENA results and
qualitative analysis of three episodes, which are the answers to the second research
question. The last section reports the differences in CT process patterns between
HLGs and LLGs when solving the two problems, which are the answers to the third
research question.

@ Springer

Education and Information Technologies

210 ‘1010 Yora SUISeInodua ‘seapr s IoYI0

(.ST-7d-¥D) 01 Tenba siyy s Jeym ‘yn Sunerooidde ‘djoy Surpraoid pue Sun{eds uo 9JeIOqe[[0d SUSPNS £I0S Sunoouuo)
o(.£p-td-€19) worqoxd sty ur uon plIom ay) Jo Kirpear
-ouny 2y} J0J PAPAU SI J[Y JOPEIY B JBY) JUIY) NOK Op “IOAO I YUIY) S[{ 9Y) PUB SWIILIOS[JO SUONBIIWI| PUL SIIUEPIOJE A} SSNISIP SIUPNIS 790§ Suruonsang)
(.£2-7d-7D) 1 uo areredo pue 1yutod € ppe jsnw 219 ‘us1sop mop ‘seyoeoidde
om ‘1ojowrered [enjoe oY) YIIM J[NSAI SWES YY) QAJIYOE 0] JUBM M J] SurAjos-wo[qold uo smara Jo/pue seapl J1oy) ssaidxa sjuopnly [90S§ Surssardxg
saandads.iad (p1o0g
(.21-7d-LD) swuyios[e urJos pue SUIYdIEIs padu am 0s)sa3Ie| syred Jo[[ews JO SUONI[[0 IAY1230) Sun
07 JSO[[BWS WOIJ 1I0S 0} UMOP, dUO PUE ‘ISI[[BWS 0] IsaSIe] WOIJ 1108 -ind £q a8xe] Sunyiowos prinq pue waqoid ay) Jo uonezifendedouod Surzr
01 dn, ouo ‘suonouny om) 21inbax 0] SWAds J] 'BIPI SIY} INO A1) UBD 9A\ Iy} U0 paseq swpLiose Jo odA) ajerrdordde oyy ouruioiep syuopnys geld -Ie[npour 29 Sunoensqy
9poo snotaaxd 1oy AJipowr Afeuy pue ‘oyerrdordde jou arom synsar
Q) J1 oyewr Y31 Aoy} SIOLID YY) N0 2INIY 0) A1) ‘paureIqo synsax
(.S¢-7d-vD) suaddey jeym 29s pue Jr uni s o7 Y Jo sseudjerdordde oy yooyd ‘padofaadp Aoy opoo oy) uni syjuepnls geid SurSSnqap 29 Sunsa,
(.8¢-1d-2D)
SoN[eA [BNIUT S} WOIJ UO JAOW UBD A “() O J3S I SIAYIO [[B wo[qoid e SUIAJOS UT SEIPI MAU puk ‘saoudLIadXa Iy} “Yoeqpad)
A[IyM T 03395 SI B }asIno oy} Jy “ureSe wejqoid ay) ySnoiy) o3 s o] uo paseq uSisop [eniur ay) Surkjipowr £q A1y Ioyjoue AYEW SJUIPN)S [eI UoneIN|
sad122ds.1ad [po1ovig
(.01-1d-6D) 0 Jo dnfea
© PouSISse aIe SIAYIO [[B J[IYM ‘| JO an[eA B pAUSIsse SI & 195In0) 1y sonfea Sunepdn pue ‘SurAdLnal ‘3urIols soAjoAul IR GS0D 'lRQ
(.7€-1d-7D) K110y suorssaidxo Surns pue ‘[eorsof
Aq pardninw g snpd L1x1s paipuny auo Aq pardninw y st wns Y], ‘Teonewdyyew uo paurioyrad are suone[ndiuew Surns pue dPWNN 30D siojerodQ
SUONIPUOD JUIIP JOPUN SAUWOIINO JUD
(.£€-1d-€1D) 1 pud Isn[‘paysnes Jou SI UOHIPUOD 3Y} J| -IOPIP SMO[[E YIIYM ‘SUOIIPUOD UTLIISD UO PISEq APEW AIOM SUOISIO £50D) S[euonIpuO)
(.£2-1d-1D) uonera [euy ay) 103je dooy 9y Jo N0 J1Xd O, sown} o[dnnuw oouonbas swes oY) Juruuni Joj WSIURYIRW Y 730D sdoo
(.9¢-1d-1D) dis stp Toindwos
Je suonnjos a[qrssod [[e Jo 1s1] & Indino [[im wAsAs ay) ‘Apuanbasqng a1 £Q PaINOAX? 2q Ued Jey) suononnsul/sdols [enpiAlpur Jo sauRs - 30D saouanbag
saanadsiad aanuso)
Srdurexy aAnensn[| uondiosag sepo) suoIsuWI

so[dwexa pue owayds SuIpod Ay, | djqeL

pringer

As

Education and Information Technologies

5.1 Group performance in flowchart designing and program coding

The total scores were used to classify all the groups into HLGs, LLGs, and inter-
mediate-level groups. The range of the total score is from 0 to 200 in the two prob-
lems solving. Based on the ratio of the number of groups mentioned above, groups
1 (total score: 198), 4 (total score: 186), and 6 (total score: 180) were classified as
HLGs, while groups 3 (total score: 95), 13 (total score: 95), and 12 (total score: 90)
were classified as LLGs. A comparison between the HLGs and LLGs was conducted
to determine the differences in CT processes involved in programming between
HLGs and LLGs.

5.2 Frequency distribution of CT processes revealed from discourses in pair
programming

5.2.1 The overall frequency distribution of CT processes

Table 2 presents the numbers and percentages of different CT processes in the dis-
courses of all the groups. A total of 6,790 utterances were recorded with social
perspectives accounting for the largest proportion (58.95%), followed by cognitive
perspectives (34.42%), and practical perspectives the least (6.63%). Most of the dis-
courses (93.37%) were related to social and cognitive perspectives. In the cognitive
perspective, data, conditionals, and operators emerged as the most frequent codes,
covering 11.69%, 7.10%, and 6.82% of total utterances, respectively. From the prac-
tical perspective, abstracting & modularizing was the most frequent (2.78%) while
testing & debugging was the least (1.74%) of total utterances. From the social per-
spective, connecting and expressing were the most frequent, accounting for 31.34%
and 23.25% of the total utterances, respectively.

Similar patterns of CT processes in discourses were observed in solving the
two problems, their frequencies from the highest to the lowest were in the order
of of social, cognitive, and practical perspectives. As expected several discrepan-
cies happened in the cognitive perspective due to the differences in the require-
ment of the two problems. Aforementioned students needed to use their knowl-
edge of loop nesting in solving the Diet Problem, discourses in the conditional,
data, and operators categories were the most frequent. While they needed to use
their knowledge of comparison sorting in solving the Kaprekar Problem, dis-
courses in the data, operators, and sequences were the most frequent.

5.2.2 Differences in the frequency distribution of CT processes between HLGs
and LLGs

Table 3 displays the numbers and percentages of different CT processes in discourses
of HLGs and LLGs. A significant difference was found in the distribution of CT
processes between HLGs and LLGs (X2=76.79, df=2, p<0.001). The HLGs had
higher percentages of discourses in social (60.67% vs. 56.46%, Z=2.59, p<0.05) and

@ Springer

Education and Information Technologies

Table2 Number (%) of different CT processes in discourses of all groups

Dimensions Code Diet Problem Kaprekar Problem Total
No. (%) No. (%) No. (%)
Cognitive perspectives
Sequences Cogl 117 (3.92) 211 (5.54) 328 (4.83)
Loops Cog2 109 (3.65) 161 (4.23) 270 (3.98)
Conditionals Cog3 292 (9.79) 190 (4.99) 482 (7.10)
Operators Cog4 203 (6.80) 260 (6.83) 463 (6.82)
Data Cog5 265 (8.88) 529 (13.90) 794 (11.69)
Sub-total 986 (33.05) 1351 (35.49) 2337 (34.42)
Practical perspectives
Iteration Pral 46 (1.54) 97 (2.55) 143 (2.11)
Testing & debugging Pra2 40 (1.34) 78 (2.05) 118 (1.74)
Abstracting & modularizing Pra3 110 (3.69) 79 (2.08) 189 (2.78)
Sub-total 196 (6.57) 254 (6.67) 450 (6.63)
Social perspectives
Expressing Socl 654 (21.92) 925 (24.30) 1579 (23.25)
Questioning Soc2 180 (6.03) 116 (3.05) 296 (4.36)
Connecting Soc3 967 (32.42) 1161 (30.50) 2128 (31.34)
Sub-total 1801 (60.38) 2202 (57.84) 4003 (58.95)
Total 2983 (100) 3807 (100) 6790 (100)

practical perspectives (8.56% vs. 2.92%, Z="7.21, p<0.001) than the LLGs. whereas,
the LLGs (40.62%) had a higher percentage of discourses in cognitive perspec-
tive than the HLGs (30.77%) (Z=-6.23, p<0.001). The above comparison results
revealed that (a) the HLGs tended to solve problems more collaboratively; (b) the
HLGs took the practical perspectives important and talked more about it; and (c) the
LLGs made more effort to the identification of computational concepts, which is the
premise of forming flow design ideas and completing programming tasks correctly.

5.3 Network of CT processes in pair programming
5.3.1 Mean network of all groups

A mean network was generated by accumulating all group discourses. It shows not
only the CT processes categories identified in all group discourses, but also the con-
nections (co-occurrence relationship) between categories. The resulting network
model was then projected onto a two-dimensional graph, using X and Y axes to cap-
ture the significant characteristics of the network (Gasevié, et al., 2019; Sun, et al.,
2022). Figure 3 shows the mean network model of all group discourses projected.
We can observe that the CT processes related to cognitive perspectives are mostly
on the right side (e.g., Cogl, Cog2, Cog3, Cog4), with those related to social per-
spectives clustered on the left side (e.g., Socl, Soc2, Soc3). CT processes related to
practical perspectives are distributed across the X -axis.

@ Springer

Education and Information Technologies

Table 3 No. (%) of CT

sses b HLGs and Dimensions High-Level Groups Low-Level Groups
Ei)éesses etween S an (HLGs) LG
S
No % No %

Cognitive perspectives

Cogl 96 4.89 120 7.01
Cog2 53 2.70 74 4.32
Cog3 120 6.11 157 9.18
Cog4 138 7.03 126 7.36
Cog5 197 10.04 218 12.74
Total 604 30.77 695 40.62
Practical perspectives
Pral 52 2.65 4 0.23
Pra2 42 2.14 16 0.94
Pra3 74 3.77 30 1.75
Total 168 8.56 50 2.92
Social perspectives
Perl 399 20.33 387 22.62
Per2 101 5.15 94 5.49
Per3 691 35.20 485 28.35
Total 1191 60.67 966 56.46

As shown in Table 3, the biggest five nodes are Soc3, Socl, Cog5, Cog3, and
Cog4, which are consistent with the frequencies presented in Table 3.

The co-occurrence between connecting (Soc3) and expressing (Socl) is the most
significant, which seems to suggest that the two students in each pair tried to under-
stand each other through expressing and connecting. Similarly, the connection between
data (Cog5) and connecting (Soc3) and between data (CogS) and expressing (Socl) is
the second most significant which seems to reveal that the pairs tried to make sense
of the data in the problems through expressing and connecting. Finally, the connec-
tions between two social perspectives (Soc3 and Socl) and two cognitive perspectives
(Cog3 and Cog4) were also important for them to decide what computational knowl-
edge to use for solving the problem Among the connections between practical per-
spectives and the other two perspectives, the connection between abstracting & mod-
ularizing (Pra3) and connecting (Soc3) and expressing (Socl) is the highest, which
reveals that the pairs discussed more in the abstracting, decomposing, and modular-
izing processes. The connections among other CT process categories are very faint.

Visual flow design in computational problem-solving entails a process of prob-
lem decomposition and algorithm design, the core of which is abstraction and mod-
ularization concerning computational practices. In this regard, below (Episode 1)
shows G4’s discourse in solving the Diet Problem in the visual flow design stage.

S1: It can be implemented with loop nesting.

S2: Well, let’s draw the process.
S1: In the beginning, a is set to 1 while all others are set to 0.

@ Springer

Education and Information Technologies

o Pra2
°® Pra3
. Cog3
Soc1
Cog2
o9 @ Cog1
@
Soc2 ® Pral ® cogs
Soc3

.0095

Fig.3 Mean network of all groups

S2: And then can we judge?

S1: Yes, and then judge whether a is less than or equal to 5.

S2: If it is not less than or equal to 5, it is meaningless to output.

S1: Well, if it is, it will start to enter the loop.

S2:.When will they be output?

S1: Continue to judge that they meet this condition, and they will output.
S2: If they are not satisfied, where will they go back?

S1: Go around to this position.

The navigator, S1, first proposed the use of loop nesting (Cog2) to solve prob-
lems, and then S2, as the driver, agreed and suggested seeking the path of loop nest-
ing through flow design (Pra3). Next, S1 proceeded to define and initialize variables
(Cog5), and then S2 asked for the next step (Soc3). S1 replied positively and gave
steps of conditionals (Cog3), after that S2 expressed opinions on judgment results
(Socl). S1 agreed and expressed opinions on loops (Cog2), and S2 subsequently
asked for instructions on sequence (Cogl). S1 answered the questions on condition-
als (Cog3) and S2 asked for the end of the loops. S1 answered based on the scaffold-
ing and ultimately solved the problem of the return point.

5.3.2 Differences in the network of CT processes between HLGs and LLGs
ENA was applied to further compare the connections and interdependence of CT

processes between the HLGs and LLGs in coding for solving the two problems. Fig-
ure 4 shows the subtraction network of CT processes between the HLGs and LLGs,

@ Springer

Education and Information Technologies

ENA2
(34.3%)

ENA1
(26.4%)
Pral @ @ Cog1
Units: Level > Group B High-Level Groups (HLGs)
Conversation: Level > Group [Low-Level Groups (LLGs)

Fig. 4 ENA networks of computational thinking for the HLGs (red) and LLGs (blue)

showing the differences in the patterns of CT process connections between the two
clusters. The minimum edge weight was set as 0.13 to strike out the low correlation
between CT processes. The HLGs are represented by the red dots and the LLGs by
the blue dots. The red square represents the centroid (mean position of the projected
points) of HLGs, and the blue square represents the centroid of LLGs. The horizon-
tal axis of the ENA space (ENA1) depicted CT processes as the right side with the
computational concepts (e.g., Cogl, Cog3, Cog4, Cog5) and the left side with the
computational practices (e.g., Pral, Pra3) and perspectives (e.g., Soc3).

Mann Whitney U test was used to compare the distribution of projection points
between HLGs and LLGs in the ENA space (Swiecki et al., 2020). A significant dif-
ference (MDN =-1.50, N=3, U=9.00, p=0.10, r=—1.00) was found on the hori-
zontal axis (ENA1) of the ENA space at Alpha=0.05 level. The subtraction network
showed that the strong correlation in the HLGs primarily reflected practical and
social perspectives, while those in the LLGs mainly reflected cognitive perspectives.

Moreover, the discourse of the HLGs revealed higher correlations across the three
dimensions, especially between operators (Cog4) and connecting (Soc4) and iteration
(Pral), and between iferation (Pral) and expressing (Socl), which seems to suggest
that HLGs employed a more systematic approach, discussing more in theoretical con-
struction and practical testing. In contrast, the discourse of the LL.Gs exhibited stronger

@ Springer

Education and Information Technologies

associations between two cognitive perspectives (Cog3-Cog5), and between social and
cognitive perspectives (Soc1-Cog4/Cog5). The connections between practical perspec-
tives and others are very faint. It seems to reveal that LLGs committed to solving prob-
lems through communicating more on concept recognition. The connection coefficients
of the six lines in the ENA networks for both HLGs and LLGs are presented in Table 4.

To further reveal the differences in CT process patterns between HLGs and
LLGs, two sets of transcriptional examples were selected for analysis.

The following transcriptional example (Episode 2) illustrates the problem-solv-
ing process of group 4 (one of the HLGs) during the coding, testing, and debugging
stage for the Kaprekar Problem. S1 served as the navigator and suggested running the
program (Pra2), then S2 acted as the driver and compiled the program successfully
(Pra2). However, S1 found errors in the running result (Soc3), while S2 believed there
was an error in the sorting (Socl). The pair then proceeded to debug the program step
by step after S1 suggested (Pra2). Subsequently, S2 discovered problems with the code
(Socl), while S1 suggested finding problems through the flowchart (Pra3). When S2
expressed confusion about loops (Cog2), S1 provided a viewpoint (Socl). After S2
made modifications to the code and provided explanations (Pra2), and S1 added con-
ditionals (Cog3), the program was finally executed successfully (Pra2).

S1: Let’s try it.

S2: Wow, that’s right. Come in and have a look.
S1: Ah, what is this?

S2: Wrong sort.

S1: Let’s debug.

[Note] Students debug the program step by step
S2: The first three are all right, but they didn’t jump out
S1: Let’s see that if it is 6174, it will jump out
S2: Where will it jump from?

S1: Jump here as a semicolon.

S2: If it is satisfied, exit completely.

S1: If not, continue looping.

S2: Wow, we did it.

Episode 2 demonstrated that when program errors emerged during pair pro-
gramming, the students relied on flow design scaffolding to debug and successfully

Table 4 Connection coefficients

of the ENA networks of HLGs Connection HLGs LLGs

and LLGs Cog4-Soc3 (Operators-Connecting) 0.28 0.09
Cog4-Pral (Operators-Iteration) 0.13 -
Pral-Socl (Iteration-Expressing) 0.19 0.01
Cog3-Cog5 (Conditionals-Data) 0.17 0.28
Cog4-Socl (Operators-Expressing) 0.17 0.28
Cog5-Socl (Data-Expressing) 0.26 0.43

HLGs =High-Level Groups, LLGs =Low-Level Groups

@ Springer

Education and Information Technologies

identify and solve problems. Working collaboratively, they listened to each other’s
opinions and reached a consensus, demonstrating effective communication.

The following transcriptional example (Episode 3) depicts the problem-solving pro-
cess of group 14 (one of the LLGs) during the coding, testing, and debugging stage of
the Kaprekar Problem. S1 acted as the navigator and suggested running the program
(Pra2), while S2 acted as the driver, and ran the program unsuccessfully (Pra2). Subse-
quently, S1 suggested using loops for the output array (Socl) and S2 replied passively
(Soc3). When S1 suggested modifying the program (Socl), S2 became disheartened
by the presence of bugs (Socl). Although S1 later discovered problems in the func-
tion header files (Socl), S2 questioned her (Soc2). Despite S1 making suggestions
after answering questions (Soc3), S2 still ignored the errors and ran the program again
(Pra2). Unfortunately, the program still failed to run successfully.

S1: Let’s run it.

S2: It is wrong.

S1: It has to use a loop for the output array.

S2: Everything is troublesome after learning the loops.

S1: Try to comment on the previous one.

S2: Why was it always wrong?

S1: Wait, we didn’t have a function header file.

S2: Why did I use a header file?

S1: It’s necessary to use the header file for maximum function. Try it first.
S2: Why could annotated things still appear in the wrong places? No matter if
click again, it will run directly

S1: If not, continue looping.

S2: Wrong again.

[Note] Student failed to run the program until the end of the task

It appeared that the pair in Episode 3 relied on trial and error instead of following
conventional debugging operations to identify problems at different levels. However,
they were unable to come to a consensus and make effective corrections until after
completing the task, ultimately leading to the program’s failure.

5.4 Differences in CT patterns between HLGs and LLGs in solving the two
problems

ENA was further applied to draw the subtraction network between HLGs and LLGs
in pair programming for solving the Diet Problem (Fig. 5(a)) and the Kaprekar Prob-
lem (Fig. 5(b)).

Network(a) and Network(b) as shown in Fig. 5, independently reveal the CT pro-
jected points and their means in ENA space while solving two problems. Similar
to Fig. 4, set the minimum edge weight to 0.13, and the HLGs are represented by
red dots in the ENA network, while the LLGs are represented by blue dots. The red
square represents the centroid of the HLGs, while the blue square represents the
centroid of the LLGs. The horizontal axis (ENA1) of the ENA space depicted CT

@ Springer

Education and Information Technologies

as the right side with cognitive perspectives (e.g., Cog3, Cog4, Cog5), and the left
side with practical perspectives (e.g., Pral, Pra2, Pra3) during the Kaprekar Problem
solving. Whereas in the Diet Problem solving, the same axis was relatively weak in
depicting practical perspectives, The vertical axis (ENA2) of the ENA space distrib-
uted CT as the upward side with social perspectives (e.g., Socl, Soc2, Soc3).

The Mann—Whitney U test was used to compare the distribution difference of pro-
jection points between HLGs and LLGs in ENA space in solving the two problems.
The Alpha=0.05 level of the horizontal axis (ENA1) in the ENA space showed a
statistically significant difference both in the Diet Problem (MDN=-1.54, N=3,
U=9.00, p=0.10, r=-1.00) and Kaprekar Problem (MDN=-1.94, N=3, U=9.00,
p=0.10, r=-1.00).

In the Diet Problem, the discourse of the HLGs revealed higher correlations
between social and cognitive perspectives (Soc3-Cog3/Cog5) while LLGs showed
a close relationship between two cognitive perspectives (Cog3-Cog4), and between
cognitive and social perspectives (Cog4-Soc2). It showed that HLGs commit-
ted to discussing the concepts of conditionals and data to solve problems while
LLGs argued more about how to operate. In the Kaprekar Problem, the discourse
of the HLGs revealed higher correlations among the three dimensions, especially
between practical and cognitive perspectives (Pral-Cog4/Cog5), and between social
and practical perspectives (Socl-Pral/Pra2/Pra3, Soc3-Pra2), and between cog-
nitive and social perspectives (Cog4-Soc3). While LLGs merely showed a close
relationship between cognitive and social perspectives (Cog4-Socl, Cog5-Soc3).
Compared to the Diet Problem stage, the CT processes displayed a more system-
atic and holistic connection in the subtraction network between HLGs and LLGs
in solving the Kaprekar Problem. with complicated and developmental CT process
patterns. Specifically, the discourses of HLGs expanded more on practical perspec-
tives, with complicated and developmental CT process patterns. Meanwhile, LLGs
showed some differences in social perspective, mainly reflected in the strengthened

ENA2 ENA2
(30.9%) (30.2%)
L]
Cog4
° ’ o Pra2
o Pra3

[
ENA1 Soc3 ‘m® ENA1
(20.1%) Py Soc2 (34.3%)
Cog3
Cog5 Cog5
®
® []
(a) Diet Problem (b) Kaprekar Problem
Units: Level > Group W High-Level Groups (HLGs)
Conversation: Level > Group Low-Level Groups (LLGs)

Fig.5 Subtraction networks of CT between the HLGs (red) and LLGs (blue) in solving the two problems

@ Springer

Education and Information Technologies

relationships with connecting and expressing, and the weakened connection with
questioning, and their CT process patterns were relatively similar and fixed. The
connection coefficients of these ENA networks are shown in Table 5.

To further explain the difference thoroughly in the CT patterns between HLGs
and LLGs in pair programming, ENA was used to show the centroid of the CT pro-
cess between two groups in the ENA spaces from Diet Problem to Kaprekar Prob-
lem (see Fig. 6).

The centroid of the ENA network model refers to the median value of the network
and depends on the arithmetic mean value of the edge weight of the ENA network
model. In Fig. 6, the red dot represents the network centroid of HLGs, while the
blue dot represents the network centroid of the LLGs. In the ENA network space,
the centroid on the right side indicates stronger and more connection on the right
while the centroid on the left side indicates stronger and more connection on the left.

It can be seen from Fig. 6 that the centroids of HLGs are mainly on the left side
of the ENA network space, revealing more connections with practical and social
perspectives. The centroids of LLGs are mainly distributed on the right side, show-
ing more connections with cognitive perspectives. As shown in Fig. 6, development
paths and CT process patterns showed differences between HLGs and LLGs from

Table 5 Connection coefficients of the ENA networks in the HLGs and LLGs in solving the two prob-
lems

Task stages Connection HLGs LLGs

CT Processes for Solving the Diet Problem

Cog3-Soc3 (Conditionals- 0.32 0.13
Connecting)

Cog5-Soc3 (Data- Connecting) 0.25 0.11

Cog4-Soc2 (Operators-Ques- 0.01 0.14
tioning)

Cog3-Cog4 (Conditionals- 0.12 0.32
Operators)

CT processes for solving the Kaprekar Problem

Cog5-Pral (Data-Iteration) 0.21 0.02

Pral-Socl (Iteration-Express- 0.28 0.01
ing)

Pral-Cog4 (Iteration-Operators) 0.17 -

Pra2-Socl (Testing & Debug- 0.21 0.01
ging- Expressing)

Pra2-Soc3 (Testing & Debug- 0.17 0.03
ging-Connecting)

Pra3-Socl (Abstracting & 0.18 -
modularizing-Expressing)

Cog4-Soc3 (Operators-Con- 0.22 0.03
necting)

Cog4-Socl (Operators-Express- 0.13 0.49
ing)

Cog5-Soc3 (Data-Connecting) 0.18 0.58

HLGs =High-Level Groups, LLGs =Low-Level Groups

@ Springer

Education and Information Technologies

the Diet Problem stage to the Kaprekar Problem stage. HLGs began to maintain
active communication and ended with debugging and testing. On the contrary, LLGs
were committed to the elaboration of the computational concept but lacked practical
means to solve problems.

6 Discussion

The study collected students’ discourse data and employed an integrated analysis
approach from both quantitative and qualitative perspectives to reveal CT processes
in pair programming.

Firstly, statistical analysis was conducted to show the frequencies and distribution
of CT framework elements. On the whole, pairs interacted more frequently around
cognitive and social perspectives, leading to idea exchange and the formation of
computational perspectives. This finding is consistent with previous studies (Hopcan
et al., 2022; Satratzemi et al., 2021). Peer interaction was reflected in help-seeking
and feedback (Lopez-Pellisa et al., 2021), encouragement (Meier et al., 2007), and
error review (Satratzemi et al., 2021), highlighting the importance of collaborative
problem solving. Comparing HLGs and LLGs, significant differences in the fre-
quencies and distribution of practical and social perspectives emerged, with HLGs
performing higher than LLGs. This aligns with previous research demonstrating
that application courses emphasize problem solving and skill development through
practice-based learning (Sankaranarayanan et al., 2022). Collaborative interac-
tion, involving task factors and social attributes (Soller & Lesgold, 2007), aims to
solve problems and develop skills (Swiecki et al., 2020). Through communication,
members exchange information based on tasks, coordinate behaviors and ideas, and
construct knowledge (Yiicel & Usluel, 2016). Externalizing ideas with words can
further stimulate partners to rethink their ideas, identify reasoning problems (Kol-
loffel et al., 2011), and promote thinking development. Moreover, both the HLGs
and LLGs focused on the identification of concepts, which is a fundamental step in
problem solving. However, there were significant differences in the frequencies and
distribution of cognitive perspectives, with LLGs having a higher proportion than
HLGs. Similar results can be found in Zhang et al. (2022), showing that LLGs tend
to spend more time on basic issues during collaboration, hindering their ability to
transition to higher-level activities, and leading to low academic performance.

Second, the ENA network was utilized to reveal CT process patterns of all groups
and differences between HLGs and LLGs. The mean network diagram illustrated
CT process patterns in all groups, revealing that concepts related to conditionals,
operators, and data emerged frequently from communication and the expression of
perspectives, which are crucial to solving programming problems. Moreover, pairs
frequently used flow design scaffolding to sort out problem-solving models formed
by computational concepts and support clear communication in a schematic form.
This finding is consistent with previous studies (Ibrahim et al., 2018; Zhang et al.,
2021) indicating that visual flow design could help learners decompose tasks and
sharpen their programming problem-solving skills. However, the process was
closely related to connecting, indicating that pair communication mainly focused on

@ Springer

Education and Information Technologies

wo[qoid Jexaidey] 03 wo[qold 91 WOl SOTT Pue SOTH U} JO SPIonuad somiou YN 9 b4

(s977) sdnoug jereT-mo] @ UOISSS < [9AST :UOIJBSIDAUOYD

(s©7H) sdnoig jere-ybiH @ I UOISSOS < [9Ae7] :siun
wa|qo.id memamvﬁ.
6 wa|qold Jexaidey
st00e f e
/ A
160De / \
/ L00S
/ /
zZbone / g /
. ,,, €008 ‘\ Leld .
annoadsiad aanpubon | LBone —_ Q\ ® oappadsiad [eonoeld
/ / ®geiy
\\\
/ ®
/ we|qold 1e1q
/ Z00Se

weldoid 191q @

gboo @ aAloadsiad [e100s

(%6°65)
ZvN3

(%5°52)
LVYN3

pringer

f's

Education and Information Technologies

flow design. Despite pre-class skill training, students still experienced difficulties in
selecting and generating flowcharts for constructing problem-solving models. Pro-
gressive learning strategies are required to master this skill, as noted in previous
research (Zhang et al., 2021). The subtraction network of all groups revealed dif-
ferences in CT patterns between HLGs and LLGs. Our findings suggested a posi-
tive correlation between the comprehensive CT process patterns and high-quality
programming problem-solving outcomes. HLGs had stronger connections among
cognitive, practical, and social perspectives, while LLGs only had stronger connec-
tions between cognitive and social perspectives. Similar to the results of the pre-
vious study (Wu et al., 2019), HLGs exhibited a more systematic pattern of con-
cept identification, model construction, and iterative testing in pair communication,
while LLGs focused mainly on cognitive perspectives with little co-occurrence of
multiple sub-dimensions of CT. The reason might be that HLGs made work plans
at the beginning of solving problems and viewed programming stages as a whole.
In contrast, LLGs regarded programming stages as separate ones and lacked practi-
cal ability in idea integration, code review, and iterative testing. Moreover, a posi-
tive collaborative learning atmosphere is conducive to idea formation and problem
solving (Martin & Collie, 2019). The original discourse data that HLGs tended to
establish a positive collaborative learning atmosphere through equal dialogue, while
LLGs struggled to form a consensus regarding the key to solving the problem. As
not all students have the same learning abilities in group learning, creating an incen-
tivizing learning atmosphere is essential (Supena et al., 2021).

Third, the collaborative problem-solving process is characterized by periodicity
(Swiecki et al., 2020). By analyzing the differences in CT between HLGs and LLGs
during different programming tasks using ENA, it may be possible to identify the
reasons for the differences in collaborative performance (Zhang et al., 2022). Com-
pared to the Diet Problem, the differences in CT process patterns in practical per-
spectives were more prominent between HLGs and LLGs, with slight differences
in the connection of cognitive perspectives codes in the Kaprekar Problem. One
possible explanation is that case-based reflection promoted concept learning bet-
ter (Sankaranarayanan et al., 2022), After the first pairing, students were asked to
reflect on their learning activity. In the second pairing, HLGs directed more atten-
tion towards testing, debugging, and iteration after realizing the importance of prac-
tical testing in problem solving, while LLGs strengthened the interaction to reach
an agreement rather than mutual questioning. Therefore, teachers should guide
learners to reflect on the learning process after corresponding collaborative learning
tasks, to check the deficiencies and improve learning efficiency. Moreover, although
both HLGs and LLGs exhibited differences in the two problem-solving activities,
the different characteristics indicate their transformed CT process patterns. This is
in line with the conclusions of the existing literature, that is, HLGs adopted differ-
ent CT patterns in pair programming for the two problem-solving activities, with
complicated and developmental CT processes (Zhang et al., 2023), featuring mul-
tiple dimensions of CT more closely related and interactive. LLGs maintained rela-
tively fixed CT patterns with little co-occurrence of multiple dimensions of CT (Xu
et al., 2020). The reason might be attributed to the different meta-cognitive abilities
between HLGs and LLGs. HLGs concentrated on self-regulation through a more

@ Springer

Education and Information Technologies

integral perspective, making them better at monitoring the problem-solving pro-
cess. Conversely, LLGs focused on a single aspect of reflection, lacking overall self-
regulation ability. Echoing this finding, reflection is formed from a deep learning
approach (Ghanizadeh, 2017). Students with higher academic performance ponder
thoroughly, reflecting on the purpose and nature through problem-solving, rather
than simplistically handling tasks. Incorporating reflective learning strategies into
learning activities can help students enhance academic performance and encourage
deep learning (Tsingos et al., 2015).

7 Conclusion

This research provides valuable insights into undergraduates’ CT processes in
pair programming problem solving. The CT process patterns of HLGs and LLGs
were analyzed in detail, revealing the relationship between CT and academic per-
formance, and explaining differences at different problem-solving stages. This
work is essential in providing a theoretical explanation of CT processes that may
lead to good performance in programming. Methodologically, this study has
incorporated an integrated analysis approach from both quantitative and quali-
tative perspectives into group discourse analysis. This approach has enriched
the understanding of CT processes and their interaction relationship from three
dimensions, providing a comprehensive analysis of students’ CT development in
pair programming problem solving. In addition, the research results have impli-
cations for educational practice. The findings of CT process patterns provide a
reference for educators in programming education to design interventions aimed
at enhancing students’ CT.

Although this study provides insight into problem-solving and CT processes in
pair programming, there are some limitations. Firstly, the study was conducted in
the context of a university programming course, where the specific characteristics
and difficulties of the programming tasks and personalized guidance could have
influenced the CT mode. Therefore, the results of this study may only apply to simi-
lar research backgrounds. Secondly, the small sample size of only 30 students (15
pairs) may have led to the omission of some key CT patterns. In addition, although
students were grouped based on prior knowledge, other personality characteristics
such as gender, attitude, and cognitive style would inevitably affect CT process pat-
terns. Finally, the analysis of students’ CT based on discourse data is insufficient.
The use of behavior data from flow design and coding as an additional data source
could provide a more comprehensive evaluation of CT. However, the collabora-
tive editing platform employed in this study limited our access to such behavior
data. Future research could enhance credibility and expand the research results by
strengthening the investigation of specific subject tasks and student group character-
istics. It is also essential to conduct research in multiple programming courses and
expand the sample size to increase the validity of the findings. Moreover, collecting
other data sources, including discourse data, behavior data, and eye movement data,
would enable a comprehensive analysis of the nature of students’ CT processes in
programming learning.

@ Springer

Education and Information Technologies

Acknowledgements This research was supported by National Natural Science Foundation of China
(NSFC) for the Project “A Study on the Perception and Attribution Analysis of Learners’ Higher-Order
Thinking Activities” (No.: 62177023), and the project of the Faculty of Artificial Intelligence In Educa-
tion of Central China Normal University (No.: 2022XY014). We are grateful for the support from NSFC
and Central China Normal University. Any opinions expressed herein are those of the authors and do not
necessarily represent the funds’ views. We thank the teacher and students for their participation.

Author contribution Ruijie Zhou contributed the central idea, performed the research, analyzed most of
the data, and wrote the initial draft of the paper. Yangyang Li contributed to refining the ideas and carry-
ing out additional analyses. Xiuling He developed the idea for the study, formed overall research objec-
tives, and provided an implementable environment for experiments. Chunlian Jiang contributed to refin-
ing the ideas and finalizing this paper. Jing Fang contributed to refining the ideas. Yue Li contributed to
refining the ideas.

Data availability The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Declarations

Ethics statement All procedures performed in studies involving human participants were in accordance
with ethical standards. The study was approved by the Social Sciences and Humanities Research Ethics
Committee of Central China Normal University.

Conflict of interest The authors declare no conflicts of interest.

References

Asunda, P. A. (2018). Infusing computer science in engineering and technology education: An integrated STEM
perspective. The Journal of Technology Studies,44(1), 2—13. Retrieved March 9, 2024, from https://www.
jstor.org/stable/26730725

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through
educational robotics: A study on age and gender relevant differences. Robotics and Autonomous
Systems,75, 661-670. https://doi.org/10.1016/j.robot.2015.10.008

Bai, H., Wang, X., & Zhao, L. (2021). Effects of the problem-oriented learning model on middle school
students’ computational thinking skills in a python course. Frontiers in Psychology, 12. https://doi.
org/10.3389/fpsyg.2021.771221

Bers, M. U, Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinker-
ing: Exploration of an early childhood robotics curriculum. Computers & Education,72, 145-157.
https://doi.org/10.1016/j.compedu.2013.10.020

Borreguero Zuloaga, M., & De Marco, A. (2021). The role of immersion and non-immersion contexts in
L2 acquisition: A study based on the analysis of interactional discourse markers. Corpus Pragmat-
ics,5(1), 121-151. https://doi.org/10.1007/s41701-020-00093-x

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of
computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational
Research Association, 1, 25.

Budny, D., Lund, L., Vipperman, J., & Patzer, J. L. I. I. I. (2002). Four steps to teaching C programming.
32nd Annual Frontiers in Education, 2, F1G-18-F1G-22. https://doi.org/10.1109/FIE.2002.1158140

Buitrago Florez, F., Casallas, R., Hernandez, M., Reyes, A., Restrepo, S., & Danies, G. (2017). Changing
a generation’s way of thinking: Teaching computational thinking through programming. Review of
Educational Research,87(4), 834-860. https://doi.org/10.3102/0034654317710096

@ Springer

https://www.jstor.org/stable/26730725
https://www.jstor.org/stable/26730725
https://doi.org/10.1016/j.robot.2015.10.008
https://doi.org/10.3389/fpsyg.2021.771221
https://doi.org/10.3389/fpsyg.2021.771221
https://doi.org/10.1016/j.compedu.2013.10.020
https://doi.org/10.1007/s41701-020-00093-x
https://doi.org/10.1109/FIE.2002.1158140
https://doi.org/10.3102/0034654317710096

Education and Information Technologies

Chao, P.-Y. (2016). Exploring students’ computational practice, design and performance of problem-solv-
ing through a visual programming environment. Computers & Education,95, 202-215. https://doi.
org/10.1016/j.compedu.2016.01.010

Charntaweekhun, K., &Wangsiripitak, S. (2006). Visual programming using flowchart. 2006Interna-
tional Symposium on Communications and Information Technologies (pp. 1062—1065). https://doi.
org/10.1109/ISCIT.2006.339940

Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and learning of computer pro-
gramming: A literature review. Contemporary Educational Technology,12(2), ep272. https://doi.
org/10.30935/cedtech/8247

Chiu, C.-F. (2020). Facilitating K-12 teachers in ceating apps by visual programming and project-based
learning. International Journal of Emerging Technologies in Learning (iJET),15(01), 103—118.
https://doi.org/10.3991/ijet.v15i01.11013

Collins, A., Brown, J. S., & Holum, A. (1991). Cognitive apprenticeship: Making thinking visible. Amer-
ican Educator,15(3), 6-11.

Csanadi, A., Eagan, B., Kollar, I., Shaffer, D. W., & Fischer, F. (2018). When coding-and-counting is not
enough: Using epistemic network analysis (ENA) to analyze verbal data in CSCL research. Inter-
national Journal of Computer-Supported Collaborative Learning,13(4), 419-438. https://doi.org/
10.1007/s11412-018-9292-z

CSTA, & ISTE. (2011). Operational definition of computational thinking for K—12 education. Retrieved
February 14, 2023, from http://www.iste.org/docs/ct-documents/computational-thinking-opera
tional-definition-flyer.pdf

Dagien¢, V., & Futschek, G. (2008). Bebras international contest on informatics and computer literacy:
Criteria for good tasks. In R. T. Mittermeir & M. M. Systo (Eds.), Informatics Education—Sup-
porting Computational Thinking (Vol. 5090, pp. 19-30). Springer. https://doi.org/10.1007/
978-3-540-69924-8_2

Dagiené, V., & Stupuriené, G. (2016). Bebras—A sustainable community building model for the concept
based learning of informatics and computational thinking. Informatics in Education, 15(1), 25-44.
https://doi.org/10.15388/infedu.2016.02

Dale, N. B., & Weems, C. (2014). Programming and problem solving with C++ (sixth edition). Jones &
Bartlett Publishers.

Davies, A., Fidler, D., & Gorbis, M. (2011). Future Work Skills 2020. Institute for the Future for Univer-
sity of Phoenix Research Institute.

Demir, O., & Seferoglu, S. S. (2021). The effect of determining pair programming groups according
to various individual difference variables on group compatibility, flow, and coding performance.
Journal of Educational Computing Research,59(1), 41-70. https://doi.org/10.1177/0735633120
949787

Echeverria, L., Cobos, R., & Morales, M. (2019). Improving the students computational thinking skills
with collaborative learning techniques. IEEE Revista Iberoamericana De Tecnologias Del Aprendi-
zaje,14(4), 196-206. https://doi.org/10.1109/RITA.2019.2952299

Fang, J.-W., Shao, D., Hwang, G.-J., & Chang, S.-C. (2022). From critique to computational thinking:
A peer-assessment-supported problem identification, flow definition, coding, and testing approach
for computer programming instruction. Journal of Educational Computing Research,60(5), 1301—
1324. https://doi.org/10.1177/07356331211060470

Garcia-Pefialvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in pre-university
education. Computers in Human Behavior,80, 407—411. https://doi.org/10.1016/j.chb.2017.12.005

Gasevi¢, D., Joksimovié, S., Eagan, B. R., & Shaffer, D. W. (2019). SENS: Network analytics to com-
bine social and cognitive perspectives of collaborative learning. Computers in Human Behavior, 92,
562-577. https://doi.org/10.1016/j.chb.2018.07.003

Ghanizadeh, A. (2017). The interplay between reflective thinking, critical thinking, self-monitoring, and
academic achievement in higher education. Higher Education,74(1), 101-114. https://doi.org/10.
1007/s10734-016-0031-y

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science
course for middle school students. Computer Science Education,25(2), 199-237. https://doi.org/10.
1080/08993408.2015.1033142

Hannay, J. E., Dyba, T., Arisholm, E., & Sjgberg, D. L. (2009). The effectiveness of pair programming: A
meta-analysis. Information and Software Technology, 51(7), 1110-1122. https://doi.org/10.1016/j.
infso0f.2009.02.001

@ Springer

https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1109/ISCIT.2006.339940
https://doi.org/10.1109/ISCIT.2006.339940
https://doi.org/10.30935/cedtech/8247
https://doi.org/10.30935/cedtech/8247
https://doi.org/10.3991/ijet.v15i01.11013
https://doi.org/10.1007/s11412-018-9292-z
https://doi.org/10.1007/s11412-018-9292-z
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.15388/infedu.2016.02
https://doi.org/10.1177/0735633120949787
https://doi.org/10.1177/0735633120949787
https://doi.org/10.1109/RITA.2019.2952299
https://doi.org/10.1177/07356331211060470
https://doi.org/10.1016/j.chb.2017.12.005
https://doi.org/10.1016/j.chb.2018.07.003
https://doi.org/10.1007/s10734-016-0031-y
https://doi.org/10.1007/s10734-016-0031-y
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1016/j.infsof.2009.02.001
https://doi.org/10.1016/j.infsof.2009.02.001

Education and Information Technologies

Harvey, B. (1997). Computer science logo style: Symbolic computing (Vol. 1). MIT Press. Retrieved
March 9, 2024, from https://sc.panda321.com/extdomains/books.google.com/books/about/Compu
ter_Science_Logo_Style_Symbolic_com.htm]?hl=zh-CN&id=BmuqURW0G5UC

He, X., Fang, J., Cheng, H. N. H., Men, Q., & Li, Y. (2023). Investigating online learners’ knowledge
structure patterns by concept maps: A clustering analysis approach. Education and Information
Technologies. https://doi.org/10.1007/s10639-023-11633-8

Hopcan, S., Polat, E., & Albayrak, E. (2022). Collaborative behavior patterns of students in program-
ming instruction. Journal of Educational Computing Research,60(4), 1035-1062. https://doi.org/
10.1177/07356331211062260

Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach computational thinking:
Suggestions based on a review of the literature. Computers & Education,126, 296-310. https://doi.
org/10.1016/j.compedu.2018.07.004

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002). A meta-study of algorithm visualization effec-
tiveness. Journal of Visual Languages & Computing,13(3), 259-290. https://doi.org/10.1006/jvlc.
2002.0237

Ibrahim, N., Saifuzzin, N. F. S., Seman, A. A., Wahab, N. A., & Osman, A. (2018). Flowchart dis-
covery game for basic programming course (FlowGame). Journal of Applied and Fundamental
Sciences,10(1S), 1109—1122. https://doi.org/10.4314/jfas.v10ils.81

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners in
school-wide computational thinking: A cross-case qualitative analysis. Computers & Education,82,
263-279. https://doi.org/10.1016/j.compedu.2014.11.022

ISTE. (2015). CT Leadership toolkit. Retrieved March 9, 2024, from https://www.iste.org/standards/iste-
standards-for-computational-thinking

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12 education.
Communications of the ACM,59(8), 26-27. https://doi.org/10.1145/2955114

Kolloffel, B., Eysink, T. H. S., & de Jong, T. (2011). Comparing the effects of representational tools in
collaborative and individual inquiry learning. International Journal of Computer-Supported Col-
laborative Learning,6(2), 223-251. https://doi.org/10.1007/s11412-011-9110-3

Korkmaz, 0., Cakir, R., & Ozden, M. Y. (2017). A validity and reliability study of the computational
thinking scales (CTS). Computers in Human Behavior,72, 558-569. https://doi.org/10.1016/j.chb.
2017.01.005

Kreijns, K., Kirschner, P. A., & Jochems, W. (2003). Identifying the pitfalls for social interaction in
computer-supported collaborative learning environments: A review of the research. Computers in
Human Behavior,19(3), 335-353. https://doi.org/10.1016/S0747-5632(02)00057-2

Lai, X., & Wong, G. K. (2022). Collaborative versus individual problem solving in computational think-
ing through programming: A meta-analysis. British Journal of Educational Technology,53(1),
150-170. https://doi.org/10.1111/bjet. 13157

Lee, Y.-J. (2011). Empowering teachers to create educational software: A constructivist approach utiliz-
ing Etoys, pair programming and cognitive apprenticeship. Computers & Education,56(2), 527—
538. https://doi.org/10.1016/j.compedu.2010.09.018

Li, W, Liu, C.-Y., & Tseng, J. C. R. (2023). Effects of the interaction between metacognition teach-
ing and students’ learning achievement on students’ computational thinking, critical thinking,
and metacognition in collaborative programming learning. Education and Information Technolo-
gies,28(10), 12919-12943. https://doi.org/10.1007/s10639-023-11671-2

Lodi, M. (2020). Informatical Thinking. OLYMPIADS IN INFORMATICS, 113-132. https://doi.org/10.
15388/101.2020.09

Lopez-Pellisa, T., Rotger, N., & Rodriguez-Gallego, F. (2021). Collaborative writing at work: Peer feed-
back in a blended learning environment. Education and Information Technologies,26(1), 1293—
1310. https://doi.org/10.1007/s10639-020-10312-2

Lui, D., Walker, J. T., Hanna, S., Kafai, Y. B., Fields, D., & Jayathirtha, G. (2020). Communicating com-
putational concepts and practices within high school students’ portfolios of making electronic tex-
tiles. Interactive Learning Environments,28(3), 284-301. https://doi.org/10.1080/10494820.2019.
1612446

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior,41, 51-61. https://doi.org/10.
1016/j.chb.2014.09.012

Marquart, C. L., Hinojosa, C., Swiecki, Z., Eagan, B., & Shaffer, D. W. (2018). Epistemic network analy-
sis [Software] Version 1.6. 0. [Computer software]. epistemicnetwork. org.

@ Springer

https://sc.panda321.com/extdomains/books.google.com/books/about/Computer_Science_Logo_Style_Symbolic_com.html?hl=zh-CN&id=BmuqURW0G5UC
https://sc.panda321.com/extdomains/books.google.com/books/about/Computer_Science_Logo_Style_Symbolic_com.html?hl=zh-CN&id=BmuqURW0G5UC
https://doi.org/10.1007/s10639-023-11633-8
https://doi.org/10.1177/07356331211062260
https://doi.org/10.1177/07356331211062260
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1006/jvlc.2002.0237
https://doi.org/10.1006/jvlc.2002.0237
https://doi.org/10.4314/jfas.v10i1s.81
https://doi.org/10.1016/j.compedu.2014.11.022
https://www.iste.org/standards/iste-standards-for-computational-thinking
https://www.iste.org/standards/iste-standards-for-computational-thinking
https://doi.org/10.1145/2955114
https://doi.org/10.1007/s11412-011-9110-3
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1016/S0747-5632(02)00057-2
https://doi.org/10.1111/bjet.13157
https://doi.org/10.1016/j.compedu.2010.09.018
https://doi.org/10.1007/s10639-023-11671-2
https://doi.org/10.15388/ioi.2020.09
https://doi.org/10.15388/ioi.2020.09
https://doi.org/10.1007/s10639-020-10312-2
https://doi.org/10.1080/10494820.2019.1612446
https://doi.org/10.1080/10494820.2019.1612446
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1016/j.chb.2014.09.012

Education and Information Technologies

Martin, A. J., & Collie, R. J. (2019). Teacher—student relationships and students’ engagement in high
school: Does the number of negative and positive relationships with teachers matter? Journal of
Educational Psychology,111(5), 861-876. https://doi.org/10.1037/edu0000317

McCormick, D., & Ross, S. M. (1990). Effects of computer access and flowcharting on students’ atti-
tudes and performance in learning computer programming. Journal of Educational Computing
Research,6(2), 203-213. https://doi.org/10.2190/E3DQ-YN2T-7U0V-JQ5N

Meier, A., Spada, H., & Rummel, N. (2007). A rating scheme for assessing the quality of computer-
supported collaboration processes. International Journal of Computer-Supported Collaborative
Learning,2(1), 63-86. https://doi.org/10.1007/s11412-006-9005-x

Mohaghegh, M., & McCauley, M. (2016). Computational thinking: The skill set of the 21st century.
International Journal of Computer Science and Information Technologies,7(3), 1524-1530.
Retrieved March 9, 2024, from http://www.ijcsit.com/docs/Volume%207/vol7issue3/ijcsit2016
0703104.pdf

Nassi, I., & Shneiderman, B. (1973). Flowchart techniques for structured programming. ACM SIGPLAN
Notices,8(8), 12-26. https://doi.org/10.1145/953349.953350

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting con-
cepts, and core ideas. National Academies Press.

Olsen, J. K., Sharma, K., Rummel, N., & Aleven, V. (2020). Temporal analysis of multimodal data to
predict collaborative learning outcomes. British Journal of Educational Technology,51(5), 1527—
1547. https://doi.org/10.1111/bjet. 12982

Ouyang, F., Tang, Z., Cheng, M., & Chen, Z. (2023). Using an integrated discourse analysis approach to
analyze a group’s collaborative argumentation. Thinking Skills and Creativity,47, 101227. https://
doi.org/10.1016/j.tsc.2022.101227

Papert, S. A. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. BasicBooks.

Papert, S. (1996). An exploration in the space of mathematics educations. International Journal of Com-
puters for Mathematical Learning,1(1), 95-123. https://doi.org/10.1007/BF00191473

Plonka, L., Sharp, H., van der Linden, J., & Dittrich, Y. (2015). Knowledge transfer in pair programming:
An in-depth analysis. International Journal of Human-Computer Studies,73, 66-78. https://doi.
org/10.1016/j.ijhcs.2014.09.001

Rahman, K., & Nordin, M. J. (2007). A review on the static analysis approach in the automated program-
ming assessment systems. National Conference on Software Engineering and Computer Systems.

Rolim, V., Ferreira, R., Lins, R. D., & Gasevi¢, D. (2019). A network-based analytic approach to uncover-
ing the relationship between social and cognitive presences in communities of inquiry. The Internet
and Higher Education,42, 53-65. https://doi.org/10.1016/j.iheduc.2019.05.001

Roman-Gonzalez, M., Pérez-Gonzélez, J.-C., & Jiménez-Fernandez, C. (2017). Which cognitive abilities
underlie computational thinking? Criterion validity of the computational thinking test. Computers
in Human Behavior,72, 678—691. https://doi.org/10.1016/j.chb.2016.08.047

Saez-Lopez, J.-M., Roman-Gonzilez, M., & Véazquez-Cano, E. (2016). Visual programming languages
integrated across the curriculum in elementary school: A two year case study using “Scratch” in
five schools. Computers & Education,97, 129—141. https://doi.org/10.1016/j.compedu.2016.03.003

Salleh, S. M., Shukur, Z., & Judi, H. M. (2018). Scaffolding model for efficient programming learning
based on cognitive load theory. International Journal of Pure and Applied Mathematics, 118(7),
77-83. Retrieved March 9, 2024, from https://acadpubl.eu/jsi/2018-118-7-9/articles/7/10.pdf

Sankaranarayanan, S., Kandimalla, S. R., Bogart, C., Murray, R. C., Hilton, M., Sakr, M. F., & Rose, C.
P. (2022). Collaborative programming for work-relevant learning: Comparing programming prac-
tice with example-based reflection for student learning and transfer task performance. /[EEE Trans-
actions on Learning Technologies,15(5), 594—604. https://doi.org/10.1109/TLT.2022.3169121

Satratzemi, M., Xinogalos, S., Tsompanoudi, D., & Karamitopoulos, L. (2021). A two-year evaluation of
distributed pair programming assignments by undergraduate students. In T. Tsiatsos, S. Demetri-
adis, A. Mikropoulos, & V. Dagdilelis (Eds.), Research on E-Learning and ICT in Education (pp.
35-57). Springer International Publishing. https://doi.org/10.1007/978-3-030-64363-8_3

Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition. /8th Annual Conference
on Innovation and Technology in Computer Science Education. Retrieved March 9, 2024, from https:/
eprints.soton.ac.uk/356481/

Shaffer, D. W., Collier, W., & Ruis, A. R. (2016). A tutorial on epistemic network analysis: Analyzing the
structure of connections in cognitive, social, and interaction data. Journal of Learning Analytics,
3(3), 3. https://doi.org/10.18608/j1a.2016.33.3

@ Springer

https://doi.org/10.1037/edu0000317
https://doi.org/10.2190/E3DQ-YN2T-7U0V-JQ5N
https://doi.org/10.1007/s11412-006-9005-x
http://www.ijcsit.com/docs/Volume%207/vol7issue3/ijcsit20160703104.pdf
http://www.ijcsit.com/docs/Volume%207/vol7issue3/ijcsit20160703104.pdf
https://doi.org/10.1145/953349.953350
https://doi.org/10.1111/bjet.12982
https://doi.org/10.1016/j.tsc.2022.101227
https://doi.org/10.1016/j.tsc.2022.101227
https://doi.org/10.1007/BF00191473
https://doi.org/10.1016/j.ijhcs.2014.09.001
https://doi.org/10.1016/j.ijhcs.2014.09.001
https://doi.org/10.1016/j.iheduc.2019.05.001
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.compedu.2016.03.003
https://acadpubl.eu/jsi/2018-118-7-9/articles/7/10.pdf
https://doi.org/10.1109/TLT.2022.3169121
https://doi.org/10.1007/978-3-030-64363-8_3
https://eprints.soton.ac.uk/356481/
https://eprints.soton.ac.uk/356481/
https://doi.org/10.18608/jla.2016.33.3

Education and Information Technologies

Siddiq, F., & Scherer, R. (2017). Revealing the processes of students’ interaction with a novel collabora-
tive problem solving task: An in-depth analysis of think-aloud protocols. Computers in Human
Behavior, 76, 509-525. https://doi.org/10.1016/j.chb.2017.08.007

Smith, G. F., & Browne, G. J. (1993). Conceptual foundations of design problem solving. IEEE Transac-
tions on Systems, Man, and Cybernetics,23(5), 1209-1219. https://doi.org/10.1109/21.260655

Soller, A., & Lesgold, A. (2007). Modeling the process of collaborative learning. In H. U. Hoppe, H.
Ogata, & A. Soller (Eds.), The Role of Technology in CSCL (pp. 63-86). Springer US. https://doi.
org/10.1007/978-0-387-71136-2_5

Soto, M. S., & Figueroa, I. (2018). Heuristic evaluation of code::blocks as a tool for first year program-
ming courses. 37th International Conference of the Chilean Computer Science Society (SCCC),
1-8. https://doi.org/10.1109/SCCC.2018.8705158

Su, Q., Zhang, W., Wang, H., & Li, H. (2022). Research on project-based learning of information technology
curriculum for cultivating senior high school students’ computational thinking. China Academic Jour-
nal Electronic Publishing House, 43(8), 109—115+122. https://doi.org/10.13811/j.cnki.eer.2022.08.014

Sun, L., & Zhou, L. (2023). Does text-based programming improve K-12 students’ CT skills? Evidence
from a meta-analysis and synthesis of qualitative data in educational contexts. Thinking Skills and
Creativity,49, 101340. https://doi.org/10.1016/j.tsc.2023.101340

Sun, M., Wang, M., Wegerif, R., & Peng, J. (2022). How do students generate ideas together in scientific
creativity tasks through computer-based mind mapping? Computers & Education,176, 104359.
https://doi.org/10.1016/j.compedu.2021.104359

Supena, 1., Darmuki, A., & Hariyadi, A. (2021). The influence of 4C (constructive, critical, creativity,
collaborative) learning model on students’ learning outcomes. International Journal of Instruc-
tion, 14(3), 873-892. https://doi.org/10.29333/iji.2021.14351a

Swiecki, Z., Ruis, A. R., Farrell, C., & Shaffer, D. W. (2020). Assessing individual contributions to col-
laborative problem solving: A network analysis approach. Computers in Human Behavior,104,
105876. https://doi.org/10.1016/j.chb.2019.01.009

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic
review of empirical studies. Computers & Education,148, 103798. https://doi.org/10.1016/j.compe
du.2019.103798

Threekunprapa, A., & Yasri, P. (2020). Unplugged coding using flowblocks for promoting computational
thinking and programming among secondary school students. International Journal of Instruc-
tion,13(3), 207-222. https://doi.org/10.29333/iji.2020.13314a

Tikva, C., & Tambouris, E. (2021). Mapping computational thinking through programming in K-12 edu-
cation: A conceptual model based on a systematic literature Review. Computers & Education,162,
104083. https://doi.org/10.1016/j.compedu.2020.104083

Tsan, J., Vandenberg, J., Zakaria, Z., Wiggins, J. B., Webber, A. R., Bradbury, A., Lynch, C., Wiebe, E.,
& Boyer, K. E. (2020). A comparison of two pair programming configurations for upper elemen-
tary students. Proceedings of the 51st ACM Technical Symposium on Computer Science Education,
346-352. https://doi.org/10.1145/3328778.3366941

Tsingos, C., Bosnic-Anticevich, S., & Smith, L. (2015). Learning styles and approaches: Can reflective
strategies encourage deep learning? Currents in Pharmacy Teaching and Learning,7(4), 492-504.
https://doi.org/10.1016/j.cptl.2015.04.006

Vygotsky, L. S., & Cole, M. (1978). Mind in society: Development of higher psychological processes.
Harvard University Press. Retrieved March 9, 2024, from https://xs.zidianzhan.net/books/about/
Mind_in_Society.html?hl=zh-CN&id=RxjjUefze_oC

Wang, Y., Li, H., Feng, Y., Jiang, Y., & Liu, Y. (2012). Assessment of programming language learning
based on peer code review model: Implementation and experience report. Computers & Educa-
tion,59(2), 412-422. https://doi.org/10.1016/j.compedu.2012.01.007

Wei, X., Lin, L., Meng, N., Tan, W., & Kong, S. C. (2021). The effectiveness of partial pair programming
on elementary school students’ computational thinking skills and self-efficacy. Computers & Edu-
cation,160, 104023. https://doi.org/10.1016/j.compedu.2020.104023

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of Science Education and
Technology,25(1), 127-147. https://doi.org/10.1007/s10956-015-9581-5

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance assessment: Meas-
uring computational thinking in middle school. Proceedings of the 43rd ACM Technical Sympo-
sium on Computer Science Education, 215-220. https://doi.org/10.1145/2157136.2157200

@ Springer

https://doi.org/10.1016/j.chb.2017.08.007
https://doi.org/10.1109/21.260655
https://doi.org/10.1007/978-0-387-71136-2_5
https://doi.org/10.1007/978-0-387-71136-2_5
https://doi.org/10.1109/SCCC.2018.8705158
https://doi.org/10.13811/j.cnki.eer.2022.08.014
https://doi.org/10.1016/j.tsc.2023.101340
https://doi.org/10.1016/j.compedu.2021.104359
https://doi.org/10.29333/iji.2021.14351a
https://doi.org/10.1016/j.chb.2019.01.009
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.29333/iji.2020.13314a
https://doi.org/10.1016/j.compedu.2020.104083
https://doi.org/10.1145/3328778.3366941
https://doi.org/10.1016/j.cptl.2015.04.006
https://xs.zidianzhan.net/books/about/Mind_in_Society.html?hl=zh-CN&id=RxjjUefze_oC
https://xs.zidianzhan.net/books/about/Mind_in_Society.html?hl=zh-CN&id=RxjjUefze_oC
https://doi.org/10.1016/j.compedu.2012.01.007
https://doi.org/10.1016/j.compedu.2020.104023
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/2157136.2157200

Education and Information Technologies

Wing, J. M. (2006). Computational thinking. Communications of the ACM,49(3), 33-35. https://doi.org/
10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences.https://doi.org/10.1098/
rsta.2008.0118

Wing, J. M. (2011). Research notebook: Computational thinking—What and why? The Link Magazine, 6,
20-23. Retrieved March 9, 2024, from http://link.cs.cmu.edu/files/11-399_The_Link_Newsletter-3.
pdf

Wu, B, Hu, Y., Ruis, A. R., & Wang, M. (2019). Analysing computational thinking in collaborative pro-
gramming: A quantitative ethnography approach. Journal of Computer Assisted Learning,35(3),
421-434. https://doi.org/10.1111/jcal. 12348

Xiao, M., & Yu, X. (2017). A model of cultivating computational thinking based on visual programming.
International Conference of Educational Innovation through Technology (EITT),2017, 75-80.
https://doi.org/10.1109/EITT.2017.26

Xu, H., Huang, D., Leng, J., & Xu, X. (2020). Investigating the developmental trajectory of critical think-
ing in online discourse among college students: An epistemic network analysis. The Interdiscipli-
narity of the Learning Sciences,1, 509-512. Retrieved March 9, 2024, from https://repository.isls.
org//handle/1/6681.

Yagci, M. (2019). A valid and reliable tool for examining computational thinking skills. Education and
Information Technologies,24(1), 929-951. https://doi.org/10.1007/s10639-018-9801-8

Yiicel, U. A., & Usluel, Y. K. (2016). Knowledge building and the quantity, content and quality of the
interaction and participation of students in an online collaborative learning environment. Comput-
ers & Education,97, 31-48. https://doi.org/10.1016/j.compedu.2016.02.015

Zhang, J.-H., Meng, B., Zou, L.-C., Zhu, Y., & Hwang, G.-J. (2021). Progressive flowchart development
scaffolding to improve university students’ computational thinking and programming self-efficacy.
Interactive Learning Environments,31(6), 3792-3809. https://doi.org/10.1080/10494820.2021.
1943687

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in
K-9. Computers & Education,141, 103607. https://doi.org/10.1016/j.compedu.2019.103607

Zhang, S., Gao, Q., Sun, M., Cai, Z., Li, H., Tang, Y., & Liu, Q. (2022). Understanding student teachers’
collaborative problem solving: Insights from an epistemic network analysis (ENA). Computers &
Education,183, 104485. https://doi.org/10.1016/j.compedu.2022.104485

Zhang, S., Li, H., Wen, Y., Zhang, Y., Guo, T., & He, X. (2023). Exploration of a group assessment
model to foster student teachers’ critical thinking. Thinking Skills and Creativity,47, 101239.
https://doi.org/10.1016/j.tsc.2023.101239

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional integrated assess-
ment for computational thinking. Journal of Educational Computing Research,53(4), 562-590.
https://doi.org/10.1177/0735633115608444

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer

https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1098/rsta.2008.0118
http://link.cs.cmu.edu/files/11-399_The_Link_Newsletter-3.pdf
http://link.cs.cmu.edu/files/11-399_The_Link_Newsletter-3.pdf
https://doi.org/10.1111/jcal.12348
https://doi.org/10.1109/EITT.2017.26
https://repository.isls.org//handle/1/6681
https://repository.isls.org//handle/1/6681
https://doi.org/10.1007/s10639-018-9801-8
https://doi.org/10.1016/j.compedu.2016.02.015
https://doi.org/10.1080/10494820.2021.1943687
https://doi.org/10.1080/10494820.2021.1943687
https://doi.org/10.1016/j.compedu.2019.103607
https://doi.org/10.1016/j.compedu.2022.104485
https://doi.org/10.1016/j.tsc.2023.101239
https://doi.org/10.1177/0735633115608444

Education and Information Technologies

Authors and Affiliations

1,2

Ruijie Zhou'2® . Yangyang Li"?® - Xiuling He® . Chunlian Jiang®

Jing Fang'2® . Yue Li'2

P4 Xiuling He
xlhe@ccnu.edu.cn

P4 Chunlian Jiang
cljiang@um.edu.mo

Ruijie Zhou
zhouruijie @mails.ccnu.edu.cn

Yangyang Li
nercellyy @ccnu.edu.cn

Jing Fang
fangjing@ccnu.edu.cn

Yue Li
li_yue @mails.ccnu.edu.cn

National Engineering Research Center of Educational Big Data, Central China Normal
University, Wuhan 430079, China

Wuhan 430079, China

Faculty of Education, University of Macau, Macao, China

National Engineering Research Center for E-Learning, Central China Normal University,

@ Springer

http://orcid.org/0009-0008-4431-7030
http://orcid.org/0000-0001-5361-5058
http://orcid.org/0000-0001-7880-8710
http://orcid.org/0000-0002-2740-1870
http://orcid.org/0000-0002-9244-5896
http://orcid.org/0009-0009-8692-3087

	Understanding undergraduates’ computational thinking processes: Evidence from an integrated analysis of discourse in pair programming
	Abstract
	1 Introduction
	2 Literature review
	2.1 Computational thinking
	2.2 CT skills in educational programming
	2.3 Pair programming
	2.4 Models for describing CT processes
	2.5 Research questions

	3 Method
	3.1 Research context
	3.2 Participants
	3.3 Learning environment
	3.4 Project tasks and procedure

	4 Data collection and analysis
	5 Results
	5.1 Group performance in flowchart designing and program coding
	5.2 Frequency distribution of CT processes revealed from discourses in pair programming
	5.2.1 The overall frequency distribution of CT processes
	5.2.2 Differences in the frequency distribution of CT processes between HLGs and LLGs

	5.3 Network of CT processes in pair programming
	5.3.1 Mean network of all groups
	5.3.2 Differences in the network of CT processes between HLGs and LLGs

	5.4 Differences in CT patterns between HLGs and LLGs in solving the two problems

	6 Discussion
	7 Conclusion
	Acknowledgements
	References

