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Abstract. In this paper we consider the existence and stability of multi-spike solu-
tions to the fractional Gierer-Meinhardt model with periodic boundary conditions.

In particular we rigorously prove the existence of symmetric and asymmetric two-

spike solutions using a Lyapunov-Schmidt reduction. The linear stability of these
two-spike solutions is then rigorously analyzed and found to be determined by the

eigenvalues of a certain 2 × 2 matrix. Our rigorous results are complemented by
formal calculations of N -spike solutions using the method of matched asymptotic

expansions. In addition, we explicitly consider examples of one- and two-spike

solutions for which we numerically calculate their relevant existence and stability
thresholds. By considering a one-spike solution we determine that the introduction

of fractional diffusion for the activator or inhibitor will respectively destabilize or

stabilize a single spike solution with respect to oscillatory instabilities. Furthermore,
when considering two-spike solutions we find that the range of parameter values

for which asymmetric two-spike solutions exist and for which symmetric two-spike
solutions are stable with respect to competition instabilities is expanded with the in-

troduction of fractional inhibitor diffusivity. However our calculations indicate that

asymmetric two-spike solutions are always linearly unstable.

AMS subject classifications: 35R11, 35B32, 60K50, 35B25

Key words: Gierer-Meinhardt system, eigenvalue, stability, fractional Laplacian, localized solu-

tion.

1. Introduction

The Gierer-Meinhardt (GM) model is a prototypical activator-inhibitor reaction-
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diffusion system that has, since its introduction by Gierer and Meinhardt in 1972 [5],

been the focus of numerous mathematical studies. In the singularly perturbed limit for

which the activator has an asymptotically small diffusivity the GM model is known to

exhibit localized solutions in which the activator concentrates at a discrete collection

of points and is otherwise exponentially small. The analysis, both rigorous and formal,

of the existence, structure, and linear stability of such localized solutions has been the

focus of numerous studies over the last two decades (see the book [32]). The GM model

in a one-dimensional domain has been particularly well studied using both rigorous

PDE methods [28, 31] as well as formal asymptotic methods [13, 26]. More recent

extensions to the classical one-dimensional GM model have considered the effects of

precursors [15,34], bulk-membrane-coupling [7], and anomalous diffusion [20,21,33].

It is the latter of these extensions which motivates the following paper which focuses

on extending the results obtained in [20, 33] for the fractional one-dimensional GM

model.

The analysis of localized solutions to the GM model fits more broadly into the study

of pattern formation in reaction-diffusion systems. Such reaction-diffusion systems

have widespread applicability in the modelling of biological phenomena for which dis-

tinct agents diffuse while simultaneously undergoing prescribed reaction kinetics (see

the classic textbook by Murray [19]). While these models have typically assumed a nor-

mal (or Brownian) diffusion process for which the mean-squared-displacement (MSD)

is proportional to the elapsed time, a growing body of literature has considered the

alternative of anomalous diffusion which may be better suited for biological processes

in complex environments [18, 23, 24] (see also [1, Section 7.1]). In contrast to nor-

mal diffusion, for anomalous diffusion the MSD and time are related by the power law

MSD ∝ (time)α where an exponent satisfying α > 1 or α < 1 corresponds to superdif-

fusion or subdiffusion respectively. Studies of reaction-diffusion systems with subdif-

fusion and superdiffusion suggest that anomalous diffusion can have a pronounced

impact on pattern formation (see [14] as well as [6] and the references therein). In

particular studies have shown that both superdiffusion and subdiffusion can reduce the

threshold for Turing instabilities when compared to the same systems with normal dif-

fusion [6,11]. Likewise it has been shown that the Hopf bifurcation threshold for spike

solutions to the GM model with normal diffusion for the inhibitor and superdiffusion,

mainly with Lévy flights, for the activator is decreased [20] whereas it is increased in

the case of subdiffusion for the inhibitor and normal diffusion for the activator [21].

In this paper we consider the existence and stability of localized multi-spike solu-

tions to the periodic one-dimensional GM model with Lévy flights for both the activator

and the inhibitor. In particular we consider the fractional Gierer-Meinhardt system with

periodic boundary conditions















ut + ε2s1(−∆)s1u+ u− u2

v
= 0 for x ∈ (−1, 1),

τvt +D(−∆)s2v + v − u2 = 0 for x ∈ (−1, 1),

u(x) = u(x+ 2), v(x) = v(x+ 2) for x ∈ R,

(1.1)
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where 0 < ε ≪ 1 and the parameters 0 < D < ∞ and τ ≥ 0 are independent of ε. We

assume the exponents satisfy 1
4 < s1 < 1 and 1

2 < s2 < 1. The (nonlocal) fractional

Laplacian (−∆)s replaces the classical Laplacian as the infinitesimal generator of the

underlying Lévy process for s < 1 and is defined for all 2-periodic functions by

(−∆)sφ(x) ≡ Cs

∫ ∞

−∞

φ(x)− φ(x̄)

|x− x̄|1+2s
dx̄ = Cs

∫ 1

−1

[

φ(x)− φ(x̄)
]

Ks(x− x̄)dx̄, (1.2a)

where

Cs ≡
22ssΓ(s+ 1/2)√

πΓ(1− s)
, Ks(z) ≡

1

|z|1+2s
+

∞
∑

j=1

(

1

|z + 2j|1+2s
+

1

|z − 2j|1+2s

)

, (1.2b)

and for which the equality in (1.2a) follows from the periodicity of φ(x). The sys-

tem (1.1) is a prototypical model in which we can study the interplay of short range

activation, long range inhibition, and intermittent periods of directed motion in the

underlying stochastic processes (i.e. Lévy flights). One of the goals of this paper is

to investigate the interplay of these three effects in the singularly perturbed limit for

which rigorous and formal methods can be used to obtain detailed descriptions of the

structure and stability of localized solutions. On a more technical note the properties of

certain relevant Green’s functions in this fractional case lead to a connection between

localized solutions in the classical Gierer-Meinhardt model in a different numbers of

spatial dimensions. We remark that the system (1.1) closely resembles the system con-

sidered in [20] with the primary difference being that we consider the effects of Lévy

flights for both the activator and the inhibitor.

Before outlining the structure of this paper we outline our contributions as follows.

Using a Lyapunov-Schmidt type reduction we rigorously prove the existence of sym-

metric and asymmetric two-spike steady solutions of (1.1) satisfying



















ε2s1(−∆)s1u+ u− u2

v
= 0 for x ∈ (−1, 1), (1.3a)

D(−∆)s2v + v − u2 = 0 for x ∈ (−1, 1), (1.3b)

u(x) = u(x+ 2), v(x) = v(x+ 2) for x ∈ R, (1.3c)

and determine their linear stability by considering the spectrum of certain 2 × 2 ma-

trices. In addition we use the method of matched asymptotic expansions to formally

construct N -spike quasi-equilibrium solutions and derive a system of ordinary differ-

ential equations governing their slow dynamics. We furthermore illustrate the effects

of anomalous diffusion on the stability of one- and two-spike solutions by calculating

thresholds for oscillatory and competition instabilities. In particular our results indi-

cate that Lévy flights for the activator and inhibitor have, respectively, a destabilizing

and stabilizing effect on the stability of single spike solutions. On the other hand we

demonstrate that the stability of symmetric two-spike solutions with respect to compe-

tition instabilities is independent of s and is stabilized when the inhibitor undergoes
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Lévy flights. Finally, we show that asymmetric two-spike solutions are always linearly

unstable with respect to competition instabilities.

The remainder of this paper is organized as follows. In Section 2 we outline the

key rigorous results established in this paper pertaining to the existence and stability

of two-spike solutions. Then in Section 3 we collect preliminary results which are used

in the subsequent sections. In Section 4 we use the method of matched asymptotic

expansions as well as full numerical simulations to illustrate the effects of fractional

diffusion on the structure and stability properties of one- and two-spike solutions. We

then provide proofs of the existence and stability results in Section 5 and Section 6

respectively. Finally, in Section 7 we make some concluding remarks.

2. Main results: existence and stability

In this section we state the main results of this paper, which include the existence of

two spike solutions (symmetric and asymmetric) to the steady problem of the fractional

Gierer-Meinhardt system and their stability. Instead of studying the system (1.3), we re-

place u(x) by cεu(x) and v(x) by cεv(x), and introduce the scaling x = εy for Eq. (1.3a).

Then we can write system (1.3) as



















(−∆)syu+ u− u2

v
= 0 for y ∈

(

−1
ε ,

1
ε

)

,

D(−∆)sv + v − cεu
2 = 0 for x ∈ (−1, 1),

u(εy) = u(εy + 2), v(x) = v(x+ 2) for x, y ∈ R

(2.1)

with

cε =

(

ε

∫

R

w2(y)dy

)−1

and w being the unique solution of

(−∆)sw + w − w2 = 0, w(x) = w(−x). (2.2)

From now on, we shall focus on Eq. (2.1) and provide its existence and stability results.

Remark 2.1. To simplify the presentation, in the proof of Theorems 2.1 and 2.2 we

have restricted our attention to the case s1 = s2 = s. The arguments can be also

applied for more general cases where s1 ∈ (14 , 1) and s2 ∈ (12 , 1).

In order to state the main results, we introduce the Green’s function associated to

the steady problem with periodic boundary and make three assumptions on the Green’s

function that will be used for the rigorous proof and stability analysis. For z ∈ (−1, 1),
let GD(x, z) be the function satisfying

{

D(−∆)sGD(x, z) +GD(x, z) = δ(x − z) for x ∈ (−1, 1),

GD(x, z) = GD(x+ 2, z) for x ∈ R,
(2.3)
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having the Fourier series expansion

GD(x, z) =
1

2

∞
∑

ℓ=−∞

eiℓπ(x−z)

1 +D(ℓπ)2s
=

1

2
+

∞
∑

ℓ=1

cos(ℓπ(x− z))

1 +D(ℓπ)2s
.

Let −1 < p01 < p02 < 1 be 2 points in (−1, 1) where the spikes concentrate. We

introduce several matrices for later use. For p = (p1, p2) ∈ (−1, 1)2 we let GD be the

2× 2 matrix with entries

(GD)ij = GD(pi, pj). (2.4)

Let us denote ∂
∂pi

as ∇pi . When i 6= j, we can define ∇piGD(pi, pj) in the classical way,

while if i = j, since GD(x, x) is a constant due to the periodic boundary condition, we

have ∇piGD(pi, pi) = 0. Next, we define the matrix associated with the first and second

derivatives of G as follows:

∇GD(p) =
(

∇piGD(pi, pj)
)

, ∇2GD(p) =
(

∇pi∇pjGD(pi, pj)
)

. (2.5)

We make the following two assumptions.

(H1) There exists a solution (ξ̂01 , ξ̂
0
2) of the following equation:

2
∑

j=1

GD

(

p0i , p
0
j

)(

ξ̂0j
)2

= ξ̂0i , i = 1, 2. (2.6)

(H2) 1
2 /∈ λ(B), where λ(B) is the set of eigenvalues of the 2× 2 matrix B with entries

(B)ij = GD

(

p0i , p
0
j

)

ξ̂0j . (2.7)

By the assumption (H2) and the implicit function theorem, for p = (p1, p2) near

p0 = (p01, p
0
2), there exists a unique solution ξ̂(p) = (ξ̂1(p), ξ̂2(p)) for the following

equation:
2
∑

j=1

GD(pi, pj)ξ̂
2
j = ξ̂i, i = 1, 2. (2.8)

We define the following vector field:

F (p) :=
(

F1(p), F2(p)
)

,

where

Fi(p) =
2
∑

j=1

∇piGD(pi, pj)ξ̂
2
j =

∑

j 6=i

∇piGD(pi, pj)ξ̂
2
j , i = 1, 2. (2.9)

Set

M(p) = ξ̂−1
i ∇pjFi(p). (2.10)

The final assumption concerns the vector field F (p).
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(H3) We assume that at p0 = (p01, p
0
2)

F (p0) = 0 and rank
(

M(p0)
)

= 1. (2.11)

Next, let us calculate M(p0). Particularly, we shall show that it admits a zero

eigenvalue. To compute the matrix M(p0), we have to derive the derivatives of ξ̂. It is

easy to see that ξ̂(p) is C1 in p and from (2.8) we can calculate

∇pj ξ̂i = 2

2
∑

l=1

GD(pi, pl)ξ̂l∇pj ξ̂l +

2
∑

l=1

∇pjGD(pi, pl)ξ̂
2
l

=























2

2
∑

l=1

GD(pi, pl)ξ̂l∇pj ξ̂l +∇pjGD(pi, pj)ξ̂
2
j , if i 6= j,

2

2
∑

l=1

GD(pi, pl)ξ̂l∇pj ξ̂l +

2
∑

l=1

∇pjGD(pi, pl)ξ̂
2
l , if i = j,

(2.12)

where we used ∂piGD(pi, pi) = 0. Therefore, if we denote the matrix

∇ξ =
(

∇pj ξ̂i
)

, (2.13)

we have

∇ξ(p) = (I − 2GDH)−1(∇GD)
TH2 +O

(

2
∑

j=1

|Fj(p)|
)

, (2.14)

where a superscript T denotes the transpose and where H is given by

H(p) =
(

ξ̂i(p)δij
)

. (2.15)

Let

Q = (qij) =

(

∇pi∇pjGD(p1, p2)
∑

l 6=i

ξ̂2l
ξ̂2i
δij

)

. (2.16)

We can compute M(p0) by using (2.12),

M(p0) = H−1
(

∇2GD +Q
)

H2 + 2H−1∇GDH
(

I − 2GDH
)−1(∇GD

)TH2, (2.17)

where AT means the transpose of A. Using (2.11), we can further simplify the matrix

M(p0) as the following:

M(p0) =

((

ξ̂01
)−1∇p1∇p1GD(p1, p2)

(

ξ̂02
)2 (

ξ̂01
)−1∇p2∇p1GD(p1, p2)

(

ξ̂02
)2

(

ξ̂02
)−1∇p1∇p2GD(p2, p1)

(

ξ̂01
)2 (

ξ̂02
)−1∇p2∇p2GD(p2, p1)

(

ξ̂01
)2

)

. (2.18)

It is easy to see that the summation of both rows is zero, thus M(p0) is singular and

admits a zero eigenvalue. While the left non-zero eigenvalue can be represented as

follows:

λM(p0) =
(

ξ̂01
)−1∇p1∇p1GD(p1, p2)

(

ξ̂02
)2

+
(

ξ̂02
)−1∇p2∇p2GD(p2, p1)

(

ξ̂01
)2
. (2.19)

Our first result is the following.
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Theorem 2.1. Assume that (H1) and (H3) are satisfied. Then for ε ≪ 1 the problem

(1.1) has a two-spike solution which concentrates at pε1, p
ε
2. In addition,

uε ∼ cε

2
∑

i=1

ξ̂0i w

(

x− pεi
ε

)

, vε(p
ε
i ) ∼ cε

∑

ξ̂0i , i = 1, 2,

and
(

pε1, p
ε
2

)

→
(

−1

2
,
1

2

)

as ε→ 0.

Remark 2.2. In Theorem 2.1 the spike height may be the same or different yielding,

respectively, symmetric and asymmetric two-spike solutions. In both cases the spike

locations must satisfy ∇pε1
GD(p

ε
1, p

ε
2) = 0 and by numerically evaluating the Green’s

function this implies that |pε1 − pε2| = 1. As described in more detail in Section 4.4 the

limiting system (2.8) can then be solved explicitly as

ξ01 = ξ02 =
1

GD(0, 0) +GD(1, 0)
, ξ01 =

z1
GD(0, 0)

, ξ02 =
z2

GD(0, 0)

for the symmetric and asymmetric cases respectively and where z1 and z2 are defined

in terms of θ = GD(1,0)
GD(0,0) in (4.13).

Finally, we study the stability of the 2-spikes solution constructed in Theorem 2.1.

Theorem 2.2. Assume that ε ≪ 1 and let (uε, vε) be the solutions constructed in Theo-

rem 2.1 and B be defined in (2.7).

1. If minσ∈λ(B) σ >
1
2 , then there exists τ0 such that (uε, vε) is linearly stable for 0 ≤

τ < τ0.

2. If minσ∈λ(B) σ < 1
2 , then there exists τ0 such that (uε, vε) is linearly unstable for

0 ≤ τ < τ0.

Remark 2.3. We shall prove Theorem 2.2 in Section 6. Generally we have to study

both large and small eigenvalue problems for the steady state. We shall see that the

matrix associated with the small eigenvalues is degenerate: one eigenvalue is zero due

to the translational invariance of the spike profiles. On the other hand, the other small

eigenvalue is always stable. The stability of the 2-spike solution therefore depends only

on the matrix B, which naturally appears in the study of large eigenvalue problem.

Remark 2.4. The rigorous existence proof and analysis of the large eigenvalues can

be extended to N > 2-spike solutions. However, in this case it is not clear how to

determine the sign of the eigenvalues of M(p) given by (2.10) and hence the linear

stability with respect to the small eigenvalues. For this reason we restrict our attention

to the case of N = 2 spike solutions for which the linear stability can be completely

rigorously determined.
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Remark 2.5. The restriction s1 > 1
4 arises in the NLEP stability proof. Specifically

this condition arises in the calculation following (A.15). It is not clear from our proof

whether the stability of the NLEP for γ > 1 can be extended for values of s1 ≤ 1
4 . On the

other hand the behaviour of the Green’s function satisfying (2.3) as x→ z is markedly

different if s2 >
1
2 , s2 = 1

2 , or s2 <
1
2 . The proceeding rigorous and formal analysis is

therefore restricted to the case of s2 >
1
2 .

3. Preliminaries

In this section we collect several key preliminary results needed for the existence

and stability proofs in Sections 5 and 6 as well as for the formal calculations in Sec-

tion 4.

Letting w be the ground state solution satisfying

{

(−∆)sw + w − w2 = 0 in R,

w(x) → 0 as |x| → ∞,
(3.1)

we have the following result [4] (also see [33, Proposition 4.1] and the references

therein).

Proposition 3.1. Eq. (3.1) admits a positive, radially symmetric solution satisfying the

following properties:

(a) There exists a positive constant bs depending only on s such that

w(x) =
bs

|x|1+2s

(

1 + o(1)
)

as |x| → ∞.

Moreover w′(x) < 0 for x > 0 and

w′(x) = −(1 + 2s)bs
x2+2s

(

1 + o(1)
)

as x→ ∞.

(b) Let L0 = (−∆)s + 1− 2w be the linearized operator. Then we have

Ker(L0) = span

{

∂w

∂x

}

.

(c) The eigenvalue problem

(−∆)sφ+ φ− 2wφ + αφ = 0

has a unique positive eigenvalue α > 0.

Next we consider the stability of a system of nonlocal eigenvalue problems (NLEPs).

We first establish the following result which we prove in Appendix A.
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Theorem 3.1. Consider the following nonlocal eigenvalue problem:

(−∆)sφ+ φ− 2wφ+ γ

∫

R

wφdx

(∫

R

w2dx

)−1

w2 + αφ = 0. (3.2)

(1) If γ < 1, then there is an eigenvalue α to (3.2) such that ℜ(α) > 0.

(2) If γ > 1 and s > 1
4 , then for any nonzero eigenvalue α of (3.2), we have

ℜ(α) ≤ −c0 < 0.

(3) If γ 6= 1 and α = 0, then φ = c0∂xw for some constant c0.

In our application to the case when τ > 0, we have to deal with the situation when

the coefficient γ is a function of τα. Letting γ = γ(τα) be a complex function of τα, we

suppose that

γ(0) ∈ R, |γ(τα)| ≤ C for αR ≥ 0, τ ≥ 0, (3.3)

where C is a generic constant independent of τ, α. Then we have the following result.

Theorem 3.2. Consider the following nonlocal eigenvalue problem:

(−∆)sφ+ φ− 2wφ + γ(τα)

∫

R

wφdx

(
∫

R

w2dx

)−1

w2 + αφ = 0, (3.4)

where γ(τα) satisfies (3.3). Then there is a small number τ0 > 0 such that for τ < τ0,

(1) if γ(0) < 1, then there is a positive eigenvalue to (3.4);

(2) if γ(0) > 1 and s > 1
4 , then for any nonzero eigenvalue α of (3.4), we have

ℜ(α) ≤ −c0 < 0.

Proof. The above theorem follows from Theorem 3.1 by a perturbation argument. To

make sure that the perturbation works, we have to show that if αR ≥ 0 and 0 < τ < 1,

then |α| ≤ C, where C is a generic constant (independent of τ). In fact, multiplying

(3.4) by φ̄ - the conjugate of φ - and integrating by parts, we obtain that

∫

R

(

∣

∣(−∆)
s
2φ
∣

∣

2
+ |φ|2 − 2w|φ|2

)

dx

= −α
∫

R

|φ|2 − γ(τα)

∫

R

wφdx

(
∫

R

w2dx

)−1 ∫

R

w2φdx. (3.5)

From the imaginary part of (3.5), we obtain that

|αI | ≤ C1|γ(τα)|,
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where α = αR +
√
−1αI and C1 is a positive constant (independent of τ). By assump-

tion (3.3), |γ(τα)| ≤ C and so |αI | ≤ C. Taking the real part of (3.5), we note that

the left-hand side of (3.5) is not smaller than C
∫

R
|φ|2dx for some C ∈ R, then we

obtain that αR ≤ C2 where C2 is a positive constant independent of τ > 0. There-

fore, |α| is uniformly bounded and hence a perturbation argument gives the desired

conclusion.

We now consider the following system of linear operators:

LΦ := (−∆)sΦ+ Φ− 2wΦ + 2B
(∫

R

wΦdx

)(∫

R

w2dx

)−1

w2, (3.6)

where B is given by (2.7) and

Φ := (φ1, φ2)
T ∈

(

H2s(R)
)2
.

The conjugate operator of L under the scalar product in L2(R) is

L∗Ψ := (−∆)sΨ+Ψ− 2wΨ + 2BT

(∫

R

w2Ψdx

)(∫

R

w2dx

)−1

w, (3.7)

where

Ψ := (ψ1, ψ2)
T ∈

(

H2s(R)
)2
.

We then have the following result.

Lemma 3.1. Assume that (H2) holds. Then

Ker(L) = Ker(L∗) = X0 ⊕X0, (3.8)

where X0 = Span{w′(x)}.

Proof. We first prove Ker(L) ⊂ X0 ⊕ X0. Suppose LΦ = 0. By the fact that GD is

symmetric and H(p) is a diagonal matrix, we can diagonalize B. Let

P−1BP = J ,

where P is an orthogonal matrix and J is a diagonal matrix, i.e.,

J =

(

σ1 0
0 σ2

)

with suitable real numbers σi, i = 1, 2. Defining Φ = P Φ̃ we have

(−∆)sΦ̃ + Φ̃− 2wΦ̃ + 2

(∫

R

w2dx

)−1(∫

R

wJ Φ̃dx

)

w2 = 0. (3.9)
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For i = 1, 2 we look at the i-th equation of system (3.9)

(−∆)sΦ̃i + Φ̃i − 2wΦ̃i + 2σi

(∫

R

w2dx

)−1(∫

R

wΦ̃idx

)

w2 = 0. (3.10)

By Theorem 3.1(3), Eq. (3.10) implies Φ̃i ∈ X0 since by condition (H2) we know that

2σi 6= 1.

We proceed similarly to prove Ker(L∗) ⊂ X0 ⊕ X0. Using σ(B) = σ(BT ) the i-th
equation of the diagonalized system is as follows:

(−∆)sΨ̃i + Ψ̃i − 2wΨ̃i + 2σi

(∫

R

w2dx

)−1(∫

R

w2Ψ̃idx

)

w = 0. (3.11)

Multiplying the above equation by w and integrating over the real line, we obtain

(1− 2σi)

∫

R

w2Ψ̃i = 0, (3.12)

which together with the fact that 2σi 6= 1 implies that

∫

R

w2Ψ̃i = 0, i = 1, 2.

Thus all the nonlocal terms vanish and we have L0Ψ̃i = 0 for i = 1, 2, which in turn

implies that Ψi ∈ X0 for i = 1, 2. On the other hand, it is obvious thatX0⊕X0 ⊂ Ker(L)
and X0 ⊕X0 ⊂ Ker(L∗). Therefore, we conclude that (3.8) holds.

Lemma 3.2. The operator L : (H2s(R))2 → (L2(R))2 is invertible if it is restricted as

follows:

L : (X0 ⊕X0)
⊥ ∩

(

H2s(R)
)2 → (X0 ⊕X0)

⊥ ∩
(

L2(R)
)2
.

Moreover, L−1 is bounded.

Proof. This follows from the Fredholm Alternatives Theorem and Lemma 3.1.

Finally we study the eigenvalue problem (see (3.6) for the definition of L)

LΦ+ αΦ = 0, (3.13)

for which we have the following lemma.

Lemma 3.3. Assume that all the eigenvalues of B are real. Then we have

(1) If 2minσ∈σ(B) σ > 1 then for any nonzero eigenvalue of (3.13) we have ℜ(α) ≤
−c0 < 0.

(2) If there exists σ ∈ σ(B) such that 2σ < 1, then there exists a positive eigenvalue of

(3.13).
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Proof. We first prove (1). Let (Φ, α) satisfy (3.13) and 2minσ∈σ(B) σ > 1. Suppose

αR ≥ 0 and α 6= 0. Similar to Lemma 3.2 we diagonalize (3.13)

(−∆)sΦ+ Φ− 2wΦ+ 2

(∫

R

w2dx

)−1(∫

R

wJΦ

)

w2 + αΦ = 0, (3.14)

and the i-th equation of system (3.14) becomes

(−∆)sΦi +Φi − 2wΦi + 2σi

(
∫

R

w2dx

)−1(∫

R

wΦi

)

w2 + αΦi = 0. (3.15)

The first conclusion follows by Theorem 3.1(2) and the fact that 2σi > 1. We conclude

that either Φ1 = Φ2 = 0 or α ≤ −c0 < 0. Since Φ does not vanish and α < 0, thus (1)

is proved.

Next we prove (2) and assume that 2σi < 1 for some σi ∈ σ(B). Then the equation

corresponding to σi becomes

(−∆)sΦi +Φi − 2wΦi + 2σi

(
∫

R

w2

)−1(∫

R

wΦidx

)

w2 + αΦi = 0.

By Theorem 3.1(1) we know that there exists an eigenvalue α0 > 0 and an eigenfunc-

tion Φ0 such that

L0Φ0 + 2σi

(∫

R

w2dx

)−1(∫

R

wΦ0dx

)

w2 + α0Φ0 = 0. (3.16)

Let us take Φi = Φ0 and Φj = 0 for j 6= i. Then (Φ, α0) satisfies (3.13) which estab-

lishes (2).

4. Formal analysis of N -spike equilibrium solutions and their linear
stability

Although the fractional Laplacian (−∆)s is nonlocal, the method of matched asymp-

totic expansions can nevertheless be used to construct leading order asymptotic approx-

imations to equilibrium solutions of (1.1). Indeed, assuming −1 < p1 < · · · < pN < 1
(N ≥ 1) are well separated in the sense that p1 + 1 = O(1), 1 − pN = O(1), and

|pi+1 − pi| = O(1) for all i = 1, . . . , N − 1 then it is clear from the definition (1.2b) that

Ks(pi + εy − pj − εȳ) =







O(1), j 6= i,

1

ε1+2s

1

|y − ȳ|1+2s
+O(1), j = i,

y, ȳ = O(1).

Moreover, for any bounded and periodic function φ(x) such that φ(x) ∼ Φ(y) for x =
pi + εy and y = O(1)

(−∆)sφ(x) ∼ ε−2s(−∆)sΦ+O(1),

(−∆)sΦ ≡ Cs

∫ ∞

−∞

Φ(y)− Φ(ȳ)

|y − ȳ|1+2s
dȳ,
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which effectively separates the inner region problems in the method of matched asymp-

totic expansions. In the remainder of this section we use the method of matched asymp-

totic expansions to formally construct multi-spike equilibrium solutions to (1.1) and

determine their linear stability.

4.1. Multi-spike solutions and their slow dynamics

With the separation of inner region problems as outlined above, the construction of

quasi-equilibrium solutions follows closely that for the classical case when s1 = s2 = 1
as detailed in [13]. In particular letting −1 < p1 < · · · < pN < 1 be given as above,

then we obtain the inner expansions

u ∼ ε−1
(

ξiws1(y) + o(1)
)

, v ∼ ε−1
(

ξi + o(1)
)

for x = pi + εy, y = O(1)

for each i = 1, . . . , N where ws1 satisfies the core problem (3.1) with s = s1 and ξi > 0
is an undetermined constant. Therefore for all −1 < x < 1

u(x) ∼ ε−1
N
∑

i=1

ξiws1

(

ε−1|x− pi|
)

+ o(ε−1), (4.1a)

where the corrections due to the algebraic decay of the core solution do not contribute

until O(ε2s1). Moreover, in the sense of distributions we calculate the limit u2 →
ε−1ωs1

∑N
j=1 ξ

2
j δ(x − pj) as ε → 0+ from which it follows that for all x such that |x −

pi| ≫ ε for all i = 1, . . . , N the inhibitor is given by

v ∼ ε−1ωs1

N
∑

j=1

ξ2jGD(x, pj) + o(ε−1), ωs1 ≡
∫ ∞

0
ws1(y)

2dy, (4.1b)

where GD(·, ·) is the Green’s function satisfying (2.3) with s = s2. Since v → ε−1(ξi +
o(1)) as x→ pi we obtain the nonlinear algebraic system

ξξξ − ωs1GDξξξ
2 = 0, (4.2a)

where

ξξξ = (ξ1, . . . , ξN )T , GD =
(

GD(pi, pj)
)N

i,j=1
. (4.2b)

If N = 2 we recover the system (2.6), and if N = 1 we obtain ξ1 = [ωs1GD(p1, p1)]
−1.

Given a fixed configuration −1 < p1 < · · · < pN < 1, the algebraic system (4.2)

can be solved for the unknown constants ξ1, . . . , ξN yielding quasi-equilibrium solution

to (1.1) given by (4.1). We emphasize that the resulting solutions is not, for arbitrary

spike locations, a stationary solution of (1.1). Indeed, while the solution (4.1) is sta-

tionary over an O(1) timescale the spike locations drift slowly over an O(ε−2) timescale

according to the system of differential equations (see Appendix D for details)

dpi
dt

= −ε2κs1ξ−1
i

∑

j 6=i

ξ2j∇piGD(pi, pj), κs1 ≡
∫∞
−∞w2

s1dy
∫∞
−∞w3

s1dy

3
∫∞
−∞ |dws1/dy|2dy

, (4.3)
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where ∇pi denotes the derivative with respect to the first argument and we remark

that this is to be solved concurrently with the algebraic system (4.2). In particular, if

−1 < p1 < · · · < pN < 1 are chosen so that
∑

j 6=i

ξ2j∇piGD(pi, pj) = 0 (4.4)

for all i = 1, . . . , N , then (4.1) is an equilibrium solution of (1.1). Theorem 2.1 and the

proof found in Section 5 rigorously establish the existence of the equilibrium solution

constructed in this section for N = 2.

4.2. Linear stability of multi-spike solutions

We now consider the linear stability of the N -spike equilibrium solutions con-

structed above which we denote by ue and ve. Substituting u = ue + eλtφ and v =
ve + eλtψ where |φ|, |ψ| ≪ 1 into (1.1) and linearizing we obtain

ε2s1(−∆)s1φ+ φ− 2v−1
e ueφ+ v−2

e u2eψ + λφ = 0, − 1 < x < 1, (4.5a)

D(−∆)s2ψ + ψ − 2ueφ+ τλψ = 0, − 1 < x < 1, (4.5b)

where we assume in addition that both φ and ψ are 2-periodic. We focus first on the case

where λ = O(1), the so-called large eigenvalues, and make a brief comment on the case

of small eigenvalues for which λ = O(ε2) at the end of this section. Proceeding with

the method of matched asymptotic expansions as in the previous section we deduce

that φ ∼ φi(y) + o(1) when x = pi + εy and y = O(1) for each i = 1, . . . , N . It

follows that φ ∼ ∑N
j=1 φj(ε

−1(x − pj)) + o(1) for all −1 < x < 1 and furthermore

ueφ → ∑N
j=1 ξj

∫∞
−∞ws1(y)φj(y)dyδ(x − pj) as ε → 0+ in the sense of distributions.

Substituting this into (4.5b) we deduce that

ψ(x) = 2
N
∑

j=1

ξj

∫ ∞

−∞
ws1(y)φj(y)dyG

λ
D(x, pj),

where Gλ
D(x, z) is the eigenvalue dependent Green’s function satisfying

D(−∆)s2Gλ
D + (1 + τλ)Gλ

D = δ(x − z), −1 < x, z < 1 (4.6)

with periodic boundary conditions. It follows that for x = pi + εy Eq. (4.5a) becomes

L0φi + 2w2
s1

N
∑

j=1

ξj

∫ ∞

−∞
ws1(y)φj(y)dyG

λ
D(pi, pj) + λφi = 0

for each i = 1, . . . , N where L0 is the linear operator of Proposition 3.1 with s = s1.
This system of equations is conveniently rewritten as the system of NLEPs

L0Φ+ 2w2
s1

∫∞
−∞ws1EλΦdy
∫∞
−∞w2

s1dy
+ λΦ = 0, (4.7a)
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where

Φ ≡







φ1(y)
...

φN (y)






, Eλ =







ξ̂1G
λ
D(p1, p1) · · · ξ̂NG

λ
D(p1, pN )

...
. . .

...

ξ̂1G
λ
D(pN , p1) · · · ξ̂NG

λ
D(pN , pN )






, ξ̂i = ωs1ξi. (4.7b)

Let pppλk and χλ
k be the eigenpairs of Eλ satisfying Eλpppλk = χλ

kppp
λ
k for each k = 0, 1, . . . , N−1.

We can further diagonalize (4.7a) by setting Φ = Φkppp
λ
k to get the decoupled system of

NLEPs

L0Φk + 2χλ
kw

2
s1

∫∞
−∞ws1Φkdy
∫∞
−∞w2

s1dy
+ λΦk = 0. (4.8)

An N -spike equilibrium solution is linearly stable with respect to the large eigenvalues

provided that all eigenvalues of (4.8) satisfy ℜ(λ) < 0 for all k = 0, . . . , N − 1. Finally,

we remark that the NLEP (4.8) can be further reduced to the algebraic equation

Ak(λ) ≡
1

χλ
k

+ Fs1(λ) = 0, Fs1(λ) ≡ 2

∫∞
−∞ws1(L0 + λ)−1w2

s1dy
∫∞
−∞w2

s1dy
, (4.9)

which will in general require the numerical evaluation of Fs1(λ).

The stability of a multi-spike equilibrium solution with respect to the small eigen-

values is closely related to the slow dynamics given by (4.3). In particular, whereas the

large eigenvalues correspond to amplitude instabilities occurring on an O(1) timescale,

the small eigenvalues are linked to the linear stability of the spike pattern with respect

to the slow dynamics (4.3) and therefore occur on an O(ε−2) timescale. In the case of

two-spike equilibrium solutions Theorem 2.2 rigorously establishes the linear stability

with respect to the large eigenvalues. On the other hand, as discussed in Section 6

two-spike equilibrium solutions are always linearly stable with respect to the small

eigenvalues. In the remainder of this section we consider explicitly the asymptotic

construction and linear stability of one- and two-spike solutions.

4.3. Example: symmetric N -spike solutions

By appropriately choosing the spike locations we can explicitly calculate an N -spike

solution that is symmetric in the sense that the local profile of each spike is identical.

Specifically, letting

pi = −1 +N−1(2i− 1), ξi = ξc ≡
(

ωs1

N−1
∑

k=0

GD(2N
−1k, 0)

)−1

(4.10)

for all i = 1, . . . , N , it is then straightforward to show that (4.2) is satisfied and the

spike locations are stationary solutions of the slow-dynamics (4.3). Since the resulting

matrix Eλ defined by (4.7b) is circulant and its eigenpairs are explicitly given by
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pppλk ≡
(

1, ei
2πk
N , · · · , ei

2π(N−1)k
N

)T
,

χλ
k =

N−1
∑

j=0

Hλ
j e

i 2πjk

N





N−1
∑

j=0

H0
j





−1

,

Hλ
k ≡ Gλ

D(2N
−1k, 0)

(4.11)

for each k = 0, . . . , N − 1.

For the remainder of this example we focus exclusively on the calculation of the

Hopf bifurcation threshold for a one-spike solution. In particular, by using the winding

number argument in [27], we seek conditions under which (4.9) with k = 0 admits an

unstable solution (i.e with ℜ(λ) > 0). Letting CR = {iλI | − R ≤ λI ≤ R} ∪ {Reiθ | −
π
2 ≤ θ ≤ π

2 } be traversed counterclockwise and noting that |χλ
0 | > 0 for all λ with

ℜ(λ) ≥ 0 whereas Fs1(λ) has a simple pole on the positive half-plane corresponding to

the principal eigenvalue of L0 we find that the number Z of unstable solutions to (4.9)

can be determined by
1

2πi
lim

R→∞

∮

CR

dA0/dλ

A0
dλ = Z − 1.

Noting that χλ
0 ∼ O(λ1/2s2−1) and therefore A0(λ) ∼ O(λ1−1/2s2) for |λ| ≫ 1 we

deduce that the change in argument of A0 over the semi-circle part of the contour is
(

1− 1
2s2

)

π from which it follows that

Z =
3

2
− 1

4s2
− 1

π
argA(iλI)

∣

∣

∞
λI=0

.

We note that argA(iλI) → 1
2(1− 1

2s2
) as λI → ∞ whereas A0(0) = −1 since L−1

0 w2
s1 =

−ws1. Furthermore, numerical evidence suggests that ℜA0(iλI) is monotone increasing

in λI and so there exists a unique value 0 < λ⋆I < ∞ such that ℜA0(iλ
⋆
I) = 0. It then

follows that either Z = 2 or Z = 0 depending on whether ℑA0(iλ
⋆
I) > 0 or ℑA0(iλ

⋆
I) <

0 respectively. The Hopf bifurcation threshold can thus be calculated by numerically

solving A0(iλI) = 0 for τ = τh(D, s1, s2) and λI = λh(D, s1, s2). By first considering

the limitD → ∞ for which χλ
0 → (1+τλ)−1 we calculate the Hopf bifurcation threshold

τ∞h (s1) and accompanying eigenvalue λ∞h (s1), both of which are independent of s2 and

are plotted in Fig. 1(a). In particular we observe that τ∞h is monotone increasing with

s1 and therefore the introduction of Lévy flights for the activator destabilizes the single

spike solution as previously observed in [20]. This behaviour persists for finite values

of D > 0 but we observe that the Hopf bifurcation threshold is monotone decreasing

with s2 and therefore introducing Lévy flights for the inhibitor stabilizes the single

spike solution. This behaviour is illustrated in Fig. 1(b) for which we plot the Hopf

bifurcation threshold as a function of D for select values of s1 and s2. We remark in

addition that the Hopf bifurcation’s dependence on the inhibitor diffusivity D remains

qualitative unchanged with the introduction of Lévy flights: τh(D, s1, s2) decreases

monotonically with D.
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(a) (b) (c)

Figure 1: Hopf bifurcation threshold for a one-spike solution in (a) the shadow limit D → ∞, and (b)
for finite D > 0 at select values of s1 = 0.4, 0.8 and s2 = 0.7, 0.9. (c) Single spike height obtained from
numerical simulations with parameters ε = 0.02, D = 2, and τ = 1.5 and exponent sets (s1, s2) = (0.8, 0.7),
(0.8, 0.9), and (0.4, 0.7) for the top, middle, and bottom plots respectively.

To illustrate the above observations, mainly the destabilization (resp. stabilization)

of the single-spike solution with decreasing s1 (resp. s2), we numerically solve (1.1)

starting with a single spike solution centred at p1 = 0 with ε = 0.02,D = 2, and

τ = 1.5 for three distinct pairs of exponents (s1, s2) = (0.8, 0.7), (0.8, 0.9), (0.4, 0.7). See

Appendix B for details on the numerical calculation. From the numerically calculated

threshold we find τh(2, 0.8, 0.7) ≈ 2.306, τh(2, 0.8, 0.9) ≈ 1.096, and τh(2, 0.4, 0.7) ≈
1.399 and therefore with τh = 1.5 we anticipate the single spike solution to be stable

for the first exponent set and unstable for the latter two. The plots of u(0, t) in Fig. 1(c)

support these predictions.

4.4. Example: symmetric and asymmetric two-spike solutions

When s1 = s2 = 1 it has been shown that the one-dimensional Gierer-Meinhardt

model may exhibit asymmetric solutions consisting of spikes with different heights [26,

31]. The gluing method for constructing such asymmetric N -spike solutions relies

crucially on the locality of the classical Laplace operator. However, since the fractional

Laplace operator (−∆)s is nonlocal for s < 1, we cannot use this gluing method to

construct asymmetric multi-spike solutions and we are therefore restricted to solving

the nonlinear algebraic system (4.2) directly. In this example we restrict our attention

to the case of N = 2 for which a complete characterization of all two-spike solutions

can be obtained directly from the algebraic system (4.2).

Assuming without loss of generality that −1 < p1 < p2 < 1, we first calculate from

(4.3) that
d(p2 − p1)

dt
= −ε2κs

ξ31 + ξ32
ξ1ξ2

G′
D

(

|p2 − p1|, 0
)

,

where G′
D(z, 0) = dGD(z,0)

dz . By numerically evaluating GD(z, 0) (see Appendix C) we

observe that it is monotone decreasing for 0 < z < 1, attains its global minimum at

z = 1, and is monotone increasing for 1 < z < 2. Any stationary solution of (4.3)
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(a) (b) (c)

Figure 2: (a) Bifurcation diagram showing the rescaled spike heights zi = ωs1GD(0, 0)ξi versus θ. Solid
(resp. dashed) lines indicate the resulting two-spike solution is linearly stable (resp. unstable) with respect
to competition instabilities. (b) The competition instability threshold for a symmetric two-spike solution.
(c) Spike heights at x = −0.5 (solid blue) and x = 0.5 (solid orange) obtained from numerical simulations
with initial condition consisting of a symmetric two-spike solution and with parameter values of s1 = 0.8,
ε = 0.02, τ = 0.05, and D = 1.2D2(s2) where s2 = 0.9 (top), 0.8 (middle), and 0.7 (bottom). The dashed
orange line indicates the (common) spike height obtained with the same parameters but withD = 0.8D2(s2).

must therefore satisfy p2 − p1 = 1 and furthermore any such solution is linearly stable

with respect to the slow-dynamics with the exception of having a neutral eigenvalue

corresponding to translational invariance. Defining

z1 ≡ ωs1GD(0, 0)ξ1, z2 ≡ ωs1GD(1, 0)ξ2, θ ≡ GD(1, 0)

GD(0, 0)
,

the algebraic system (4.2) can be rewritten as

z1 − z21 − θz22 = 0, z2 − θz21 − z22 = 0. (4.12)

This system always admits the symmetric solution for which z1 = z2 = zc where zc =
(1 + θ)−1 recovering the result from the previous example for N = 2. One the other

hand, assuming z1 6= z2 we may subtract the first equation from the second to obtain

z2 = (1 − θ)−1 − z1. Substituting this expression for z2 back into the first equation in

(4.12) yields a quadratic in z1 which is readily solved to obtain

z1 =
1/2

1− θ

(

1 +

√

1− 3θ

1 + θ

)

, z2 =
1/2

1− θ

(

1−
√

1− 3θ

1 + θ

)

. (4.13)

We immediately deduce that an asymmetric two-spike solution exists if an only if θ < 1
3

and we obtain the bifurcation diagram shown in Fig. 2(a). Interestingly, the structure of

two-spike solutions depends only on the ratio θ depending only on D and the inhibitor

exponent s2.

We conclude this section by considering the linear stability of two-spike solutions

with respect to competition instabilities, neglecting the possibility of Hopf bifurcations

by assuming that τ is sufficiently small. In view of (4.8) and Theorem 3.1 it suffices to
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consider the eigenvalues of

E0 =
(

z1 θz2
θz1 z2

)

.

When z1 = z2 = zc it is easy to see that E0 has eigenvectors ppp0 = (1, 1) and ppp1 = (1,−1)

with corresponding eigenvalues χ0
0 = 1 and χ0

1 = (1−θ)
(1+θ) . Since χ0

0 >
1
2 by Theorem 3.1

the k = 0 mode is always linearly stable. On the other hand the k = 1 mode is stable

if and only if χ0
1 >

1
2 and in particular the symmetric solution is linearly stable when

θ < 1
3 and unstable otherwise. Finally, when z1 and z2 are given by (4.13) it can be

shown that the eigenvalues of E0 are given by

χ0
0 =

1/2

1− θ

(

1 +

√

4θ2 − 3θ + 1

1 + θ

)

, χ0
1 =

1/2

1− θ

(

1−
√

4θ2 − 3θ + 1

1 + θ

)

,

from which we deduce that χ0
0 > 1 and χ0

1 <
3−

√
3

4 < 1
2 for all 0 < θ < 1

3 . There-

fore by Theorem 3.1 the k = 1 mode is linearly unstable. In Fig. 2(a) we indicate the

values of θ where the two-spike solution is linearly stable (resp. unstable) with re-

spect to competition instabilities by solid (resp. dashed) curves. By numerically solving

θ = 1
3 for D as a function of s2 we can calculate the competition instability thresh-

old D = D2(s2) for the symmetric two-spike solution and this is shown in Fig. 2(b).

Interestingly, the competition instability threshold is independent of the exponent s1.
On the other hand, similarly to the case of a single spike solution there will be an

s1 dependence for the Hopf bifurcation thresholds but this will be qualitatively simi-

lar to that found for the single spike solution and for this reason we do not explored

this further here. In Fig. 2(c) we illustrate the onset of competition instabilities when

s1 = 0.8, ε = 0.02, τ = 0.05, and for values of s2 = 0.9, 0.8, 0.7 and D = 1.2 × D2(s2)
by performing full numerical simulations of (1.1) (see Appendix B for details). We

remark that the accuracy of the leading order approximation to the competition insta-

bility calculated above grows increasingly inaccurate as s2 → 0.5 for a fixed value of

ε > 0. Indeed, as described in more detail in the derivation of the slow dynamics found

in Appendix D, the first order correction to the quasi-equilibrium solution is O(ε2s2−1)
and this tends to O(1) as s2 → 1

2 . When s2 = 1
2 the Green’s function is known to have

a logarithmic singularity (see [33, Lemma 2.2.]) and we anticipate that the method

of matched asymptotic expansions will lead to an asymptotic expansion in powers of

ν = − 1
log ε as is often the case for singularly perturbed reaction-diffusion systems in

two-dimensions [2,16].

5. Rigorous proof of the existence results

In this section we shall prove the existence theorem, i.e., Theorem 2.1. We divide

the discussion into three sections. In first subsection, we give an approximate solution.

Then we apply the classical Lyapunov-Schmidt reduction method to reduce the infinite

dimensional problem to a finite dimensional problem in second subsection. In last

subsection we solve the finite dimensional problem and thereby prove the Theorem 2.1.
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5.1. Study of the approximate solutions

Let −1 < p01 < p02 < 1 be two points satisfying the assumptions (H1)-(H3). Let

ξ̂0 = (ξ̂01 , ξ̂
0
2) be the solution of (2.6) and let p0 = (p01, p

0
2). We shall construct an

approximate solution to (2.1) which concentrates near these 2 points.

Let −1 < p1 < p2 < 1 be such that p = (p1, p2) ∈ Bε2s−1(p0). Set

r0 =
1

10
min

{

p01 + 1, 1− p02,
1

2

∣

∣p01 − p02
∣

∣

}

and define a cut-off function χ(x) such that χ(x) = 1 for |x| < 1 and χ(x) = 0 for

|x| > 2. Letting

wi(y) = w
(

y − pi
ε

)

χ

(

εy − pi
r0

)

, (5.1)

where w is the ground state solution of (3.1), it is then straightforward to check that

(−∆)sywi(y) + wi(y)− w2
i (y) = h.o.t., (5.2)

where h.o.t. refers to terms of order ε1+2s in L2(−1
ε ,

1
ε ). Let ξ̂(p) = (ξ̂1, ξ̂2) be defined

as in (H1). Fix any function u ∈ H2s(−1
ε ,

1
ε ) and let T [u] be the solution of

{

D(−∆)sT [u] + T [u]− cεu
2 = 0, x ∈ (−1, 1),

T [u](x) = T [u](x+ 2), x ∈ R,
(5.3)

where

cε =

(

ε

∫

R

w2(y)dy

)−1

. (5.4)

Letting p ∈ Bε2s−1(p0) we define

wε,p =

2
∑

i=1

ξ̂iwi(y)

and using (5.3), we compute

τi := T [wε,p](pi)

= εcε

∫ 1
ε

− 1
ε

GD(pi, εy)w
2
ε,p(y)dy = εcε

2
∑

j=1

ξ̂2j

∫ 1
ε

− 1
ε

GD(pi, εy)w
2
j (y)dy

= εcε

2
∑

j=1

ξ̂2j

(

GD(pi, pj)

∫

R

w2(y)dy

)

+ Pi =

2
∑

j=1

GD(pi, pj)ξ̂
2
j + Pi, (5.5)

where GD(x, y) is defined in (2.3) and Pi is a number with order ε2s−1. Thus, we have

obtained the following system of equations:

τi =
2
∑

j=1

GD(pi, pj)ξ̂
2
j + Pi. (5.6)
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According to the assumption (H1)-(H3) and the implicit function theorem, we have the

above equation has a unique solution

τi = ξ̂i + ϑi, i = 1, 2, ϑi = O(ε2s−1).

Hence,

T [wε,p](pi) = ξ̂i +O(ε2s−1).

Now for x = pi + εz we calculate

T [wε,p](x)− T [wε,p](pi)

= cε

∫ 1

−1

[

GD(x, ζ)−GD(pi, ζ)
]

w2
ε,p

(

ζ

ε

)

dζ

= cεξ̂
2
i

∫ 1

−1

[

GD(x, ζ)−GD(pi, ζ)
]

w2
i

(

ζ

ε

)

dζ

+ cε
∑

j 6=i

ξ̂2j

∫ 1

−1

[

GD(x, ζ)−GD(pi, ζ)
]

w2
j

(

ζ

ε

)

dζ

= cεεξ̂
2
i

∫

R

[

GD(εy − εz)−GD(εy)
]

w2(y)dy

+ cε
∑

j 6=i

ξ̂2j

∫ 1

−1

[

GD(x, ζ)−GD(pi, ζ)
]

w2
j

(

ζ

ε

)

dζ + h.o.t.

= Pi(z) + ε
∑

j 6=i

(

ξ̂2j z∇piGD(pi, pj) +O(εz2)
)

+ h.o.t., (5.7)

where

Pi(z) = cεεξ̂
2
i

∫

R

[

GD(εy − εz) −GD(εy)
]

w2(y)dy

is an even function and of order ε2s−1.

Next we define

S[u] := (−∆)syu+ u− u2

T [u]
, (5.8)

for which we calculate

S[wε,p](y) = (−∆)sywε,p + wε,p − w2
ε,p

T [wε,p]
(5.9)

=

2
∑

j=1

ξ̂jχ

(

εy − pj
r0

)

(−∆)sw
(

y − pj
ε

)

+

2
∑

j=1

ξ̂jwj −
w2
ε,p

T [wε,p]
+ h.o.t.

=











2
∑

j=1

ξ̂jw
2
j −

(

2
∑

j=1
ξ̂jwj

)2

T [wε,p]











+ h.o.t. = E1 + E2 + h.o.t. in L2

(

−1

ε
,
1

ε

)

,
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where

E1 =

2
∑

j=1

ξ̂jw
2
j −

(

2
∑

j=1
ξ̂jwj

)2

T [wε,p](pi)
, E2 =

(

2
∑

j=1
ξ̂jwj

)2

T [wε,p](pi)
−

(

2
∑

j=1
ξ̂jwj

)2

T [wε,p](x)
.

Using (5.6) we calculate

E1 =

2
∑

j=1

ξ̂jw
2
j −

(

2
∑

j=1
ξ̂jwj

)2

T [wε,p](pi)
=

2
∑

j=1

(

ξ̂j −
ξ̂2j

ξ̂i + ϑi

)

w2
j = O(ε2s−1)

2
∑

j=1

w2
j ,

and therefore

‖E1‖L2(− 1
ε
, 1
ε
) = O(ε2s−1). (5.10)

In addition since x is close to pi we see that E1 can be decomposed into two parts: one

part of order ε2s−1 and symmetric in x − pi, and the other part of order ε. Next we

calculate

E2 =

2
∑

j=1

(ξ̂jwj)
2

(T [wε,p](pi))2
(

T [wε,p](x) − T [wε,p](pi)
)

×
(

1 +

∞
∑

n=1

(

T [wε,p](pi)− T [wε,p](x)

T [wε,p](pi)

)n
)

=

2
∑

j=1

(ξ̂jwj)
2

(T [wε,p](pi))2
Pi(z)

(

1 +

∞
∑

n=1

(

− Pi(z)

T [wε,p](pi)

)n
)

+ ε

2
∑

j=1

(ξ̂jwj)
2

T [wε,p](pi)

∑

l 6=i

ξ̂2l z∇piGD(pi, pl) + h.o.t.

= E21 + E22 + h.o.t., (5.11)

where E21 = O(ε2s−1) is symmetric in x − pi, i = 1, 2, and ‖E22‖L2(− 1
ε
, 1
ε
) = O(ε). We

have thus established the following lemma.

Lemma 5.1. For x = pi + εz, |εz| < r0, we have the decomposition for S[wε,p](x),

S[wε,p] = S1,1 + S1,2,

where

S1,1(z) = εw2
i

∑

l 6=i

ξ̂2l z∇piG(pi, pl) + h.o.t.,

S1,2(z) =
(ξ̂iwi)

2

(T [wε,p](pi))2
Ri(z) + h.o.t.,

and Ri(z) is even in z and ‖S1,2‖L2(− 1
ε
, 1
ε
) ≤ Cε2s−1. Furthermore,

S[wε,p] = h.o.t. for |x− pi| ≥ r0, i = 1, 2.
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5.2. The Lyapunov-Schmidt reduction method

In this subsection, we use the Lyapunov-Schmidt reduction method to solve the

problem

S[wε,p + φ] =
2
∑

j=1

cj
∂wj

∂y
(5.12)

for real constants cj and a perturbation φ ∈ H2s(−1
ε ,

1
ε ) which is small in the corre-

sponding norm. To proceed, we first need to study the linearized operator

L̃ε,pφ := S′
ε[wε,p]φ = (−∆)syφ+ φ− 2

wε,p

T [wε,p]
φ+

w2
ε,p

(T [wε,p])2
(

T ′[wε,p]φ
)

.

For a given function φ ∈ L2(−1
ε ,

1
ε ) we introduce T ′[wε,p]φ as the unique solution of

{

D(−∆)s
(

T ′[wε,p]φ
)

+ T ′[wε,p]φ− 2cεwε,pφ = 0, x ∈ (−1, 1),
(

T ′[wε,p]φ
)

(x) =
(

T ′[wε,p]φ
)

(x+ 2), x ∈ R.
(5.13)

The approximate kernel and co-kernel are respectively defined by

Kε,p := Span

{

∂wj

∂y

∣

∣

∣ j = 1, 2

}

⊂ H2s

(

−1

ε
,
1

ε

)

,

Cε,p := Span

{

∂wj

∂y

∣

∣

∣
j = 1, 2

}

⊂ L2

(

−1

ε
,
1

ε

)

.

From the definition of the linear operator L in (3.6) we recall that by Lemma 3.2 we

know that

L : (X0 ⊕X0)
⊥ ∩

(

H2s(R)
)2 → (X0 ⊕X0)

⊥ ∩
(

L2(R)
)2

is invertible with a bounded inverse. We shall see that the linear operator L is a limit

of the operator L̃ε,p as ε→ 0. First we introduce the projection π⊥ε,p : L2(−1
ε ,

1
ε ) → C⊥

ε,p

and study the operator Lε,p := π⊥ε,p ◦ L̃ε,p. Letting ε → 0 we shall show that Lε,p :

K⊥
ε,p → C⊥

ε,p is invertible with a bounded inverse provided ε is small enough. This

result is contained in the following proposition.

Proposition 5.1. There exists positive constants ε, δ, C such that for all ε ∈ (0, ε), (p1, p2)
∈ (−1, 1)2 with min(|1 + p1|, |1− p2|, |p1 − p2|) > δ,

‖Lε,pφ‖L2(− 1
ε
, 1
ε
) ≥ C‖φ‖H2s(− 1

ε
, 1
ε
).

Furthermore, the map

Lε,p : K⊥
ε,p → C⊥

ε,p (5.14)

is surjective.
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Proof. The proof follows the standard method of Lyapunov-Schmidt reduction which

was also used in [9, 10, 29–31]. Suppose the proposition is not true. Then there exist

sequences {εk}, {pk}, φk satisfying εk → 0 as k → ∞, pk ∈ (−1, 1)2, min(|1 + pk1 |, |1−
pk2|, |pk1 − pk2|) > δ, and φk = φεk ∈ K⊥

εk,pk for all k ≥ 1 such that

‖φk‖H2s(− 1
ε
, 1
ε
) = 1, ‖Lεk,pkφk‖L2(− 1

ε
, 1
ε
) → 0 as k → ∞. (5.15)

We define φki , i = 1, 2 and φk3 as follows:

φki (y) = φk(y)χ

(

εy − pi
r0

)

, i = 1, 2,

φk3(y) = φk(y)−
2
∑

i=1

φki (y), y ∈
(

−1

ε
,
1

ε

)

.

(5.16)

Although each φki is defined only in (−1
ε ,

1
ε ), by a standard result they can be extended

to R such that their norms in H2s(R) are still bounded by a constant independent of ε
and p for ε small enough. In the following we shall study the corresponding problem in

R. To simplify our notation, we keep the same notation for the extension. Since {φki } is

bounded in H2s
loc(R), it has a weak limit in H2s

loc(R) and therefore also a strong limit in

L2
loc(R) and L∞

loc(R). We denote the limit by φi. Then Φ = (φ1, φ2)
T solves the system

LΦ = 0.

By Lemma 3.1, Φ ∈ Ker(L) = X0 ⊕X0. Since φk ⊥ K⊥
εk,pk , by taking k → ∞ we get

Φ ∈ (X0 ⊕X0)
⊥ and therefore Φ = 0.

By elliptic estimates we get ‖φki ‖H2s(R) → 0 as k → ∞ for i = 1, 2. Furthermore,

φk3 → φ3 in H2s(R), where φ3 solves

(−∆)sφ+ φ = 0 in R. (5.17)

Therefore, we conclude φ3 = 0 and ‖φk3‖H2s(R) → 0 as k → +∞. This contradicts

‖φk‖H2s(− 1
εk

, 1
εk

) = 1. To complete the proof of Proposition 5.1, we just need to show

that the operator conjugate to Lε,p (denoted by L∗
ε,p) is injective from K⊥

ε,p to C⊥
ε,p.

Note that L∗
ε,p = πε,p ◦ L̃∗

ε,p with

L̃∗
ε,pψ = (−∆)syψ + ψ − 2

wε,p

T [wε,p]
ψ + T ′[wε,p]

(

w2
ε,p

(T [wε,p])2
ψ

)

.

The proof for L∗
ε,p follows exactly the same as the one of Lε,p and we omit the details.

Now we are in position to solve the problem

π⊥ε,p ◦ Sε(wε,p + φ) = 0. (5.18)
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Since Lε,p |K⊥
ε,p

is invertible (call the inverse L−1
ε,p) we can rewrite the above problem

as

φ = −
(

L−1
ε,p ◦ π⊥ε,p ◦ Sε(wε,p)

)

−
(

L−1
ε,p ◦ π⊥ε,p ◦Nε,p(φ)

)

≡Mε,p(φ), (5.19)

where

Nε,p(φ) = Sε(wε,p + φ)− Sε(wε,p)− S′
ε(wε,p)φ

and the operator Mε,p is defined by φ ∈ H2s(−1
ε ,

1
ε ). We are going to show that the

operator Mε,p is a contraction map on

Bε,σ :=

{

φ ∈ H2s

(

−1

ε
,
1

ε

)

∣

∣

∣
‖φε‖H2s(− 1

ε
, 1
ε
) < σ

}

(5.20)

if σ and ε are small enough. We have by the discussion in last section and Proposi-

tion 5.1 that

‖Mε,p(φ)‖H2s(− 1
ε
, 1
ε )

≤ C
(

∥

∥π⊥ε,p ◦Nε,p(φ)
∥

∥

L2(− 1
ε
, 1
ε
)
+
∥

∥π⊥ε,p ◦ Sε(wε,p)
∥

∥

L2(− 1
ε
, 1
ε
)

)

≤ C
(

c(σ)σ + ε2s−1
)

, (5.21)

where C > 0 is a constant independent of σ > 0, ε > 0 and c(σ) → 0 as σ → 0.

Similarly we show that

‖Mε,p(φ1)−Mε,p(φ2)‖H2s(− 1
ε
, 1
ε
) ≤ C

(

c(σ)σ
)

‖φ1 − φ2‖H2s(− 1
ε
, 1
ε
),

where c(σ) → 0 as σ → 0. If we choose σ = εα for α ≤ 2s−1 and ε > 0 sufficiently small

then Mε,p is a contraction map on Bε,σ. The existence then follows by the standard

fixed point theorem and φε,p is a solution to (5.19). We thus proved

Lemma 5.2. There exists ε > 0, δ > 0 such that for every pair of ε,p with 0 < ε < ε,p ∈
(−1, 1)2, and

min
{

1 + p1, 1− p2, |p1 − p2|
}

> δ,

there is a unique φε,p ∈ K⊥
ε,p satisfying Sε(wε,p + φε,p) ∈ Cε,p. Furthermore, we have the

estimate

‖φε,p‖H2s(− 1
ε
, 1
ε
) ≤ Cεα

for any α ≤ 2s− 1.

More refined estimates for φε,p are needed. We recall from the discussion in last

section that S[wε,p] can be decomposed into the two parts S1,1 and S1,2 if x is close

to the center of spike, where S1,1 is in leading order an odd function and S1,2 is in

leading order an evenly symmetric function. We can similarly decompose φε,p as in the

following lemma.

Lemma 5.3. Let φε,p be defined in Lemma 5.2. Then for x = pi + εz, |εz| < δ, i = 1, 2,

we have the decomposition

φε,p = φε,p,1 + φε,p,2, (5.22)
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where φε,p,2 is an even function in z which satisfies

φε,p,2 = O(ε2s−1) in H2s

(

−1

ε
,
1

ε

)

, (5.23)

and

φε,p,1 = O(ε) in H2s

(

−1

ε
,
1

ε

)

. (5.24)

Proof. We first solve

S[wε,p + φε,p,2]− S[wε,p]+

2
∑

j=1

S1,2

(

y − pj
ε

)

∈ Cε,p (5.25)

for φε,p,2 ∈ K⊥
ε,p. Then we solve

S[wε,p + φε,p,2 + φε,p,1]− S[wε,p + φε,p,2]+

2
∑

j=1

S1,1

(

y − pj
ε

)

∈ Cε,p, (5.26)

for φε,p,1 ∈ K⊥
ε,p. Using the same proof as in Proposition 5.1, both equations (5.25) and

(5.26) have unique solution provided ε≪ 1. By uniqueness, φε,p = φε,p,1 + φε,p,2, and

it is easy to see that φε,p,1 and φε,p,2 have the required properties.

5.3. The reduced problem

In this subsection, we solve the reduced problem which finishes the proof of The-

orem 2.1. By Proposition 5.1 for every p ∈ Bε2s−1(p0) there exists a unique solution

φε,p ∈ K⊥
ε,p such that

S[wε,p + φε,p] ∈ Cε,p. (5.27)

To complete the proof of Theorem 2.1 we need to determine pε = (pε1, p
ε
2) near p0 such

that S[wε,p+φε,p] ⊥ Cε,p, which in turn implies that S[wε,p +φε,p] = 0. To this end, let

Wε :=
(

Wε,1(p),Wε,2(p)
)

: Bε2s−1(p0) → R
2,

where

Wε,i(p) := ε−1

∫ 1
ε

− 1
ε

S[wε,p + φε,p]
∂wi

∂y
dy, i = 1, 2.

Then Wε(p) is a map which is continuous in p and our problem is reduced to finding

a zero of the vector field Wε(p). Let us now calculate Wε(p)

Wε,i(p) = ε−1

∫ 1
ε

− 1
ε

Sε[wε,p + φε,p]
∂wi

∂y
dy
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= ε−1

∫ 1
ε

− 1
ε

[

(−∆)s(wε,p + φε,p) + (wε,p + φε,p)−
(wε,p + φε,p)

2

T [wε,p] + ψε,p

]

∂wi

∂y
dy

= ε−1

∫ 1
ε

− 1
ε

[

(−∆)s(wε,p + φε,p) + (wε,p + φε,p)−
(wε,p + φε,p)

2

T [wε,p]

]

∂wi

∂y
dy

− ε−1

∫ 1
ε

− 1
ε

[

(wε,p + φε,p)
2

T [wε,p] + ψε,p
− (wε,p + φε,p)

2

T [wε,p]

]

∂wi

∂y
dy

= I1 + I2, (5.28)

where I1, I2 are defined by the last equality and ψε,p satisfies

D(−∆)sψε,p + ψε,p − 2cεwε,pφε,p − cεφ
2
ε,p = 0. (5.29)

For I1, we have by Lemma 5.3

I1 = ε−1

(

∫ 1
ε

− 1
ε

[

(−∆)s(wε,p + φε,p) + (wε,p + φε,p)−
(wε,p + φε,p)

2

T [wε,p](pi)

]

∂wi

∂y
dy (5.30)

+

∫ 1
ε

− 1
ε

(wε,p + φε,p)
2

(T [wε,p](pi))2
(

T [wε,p](pi + εy)− T [wε,p](pi)
)∂wi

∂y
dy

)

+O(ε2s−1)

= ε−1

(

∫ 1
ε

− 1
ε

[

(−∆)s(ξ̂iwi + φε,p) + (ξ̂iwi + φε,p)−
(ξ̂iwi + φε,p)

2

T [wε,p](pi)

]

∂wi

∂y
dy

)

+ ε−1

(

∫ 1
ε

− 1
ε

(ξ̂iwi + φε,p,2)
2

(T [wε,p](pi))2
(

T [wε,p](pi + εy)− T [wε,p](pi)
)∂wi

∂y
dy

)

+O(ε2s−1).

Note that, by Lemma 5.3, we have

∫ 1
ε

− 1
ε

[

(−∆)sφε,p + φε,p − 2wiφε,p
]∂wi

∂y
dy

=

∫ 1
ε

− 1
ε

φε,p,1
∂

∂y

(

(−∆)swi + wi −w2
i

)

dy +O(ε1+2s) = O(ε1+2s), (5.31)

and
∫ 1

ε

− 1
ε

φ2ε,p
∂wi

∂y
dy = 2

∫ 1
ε

− 1
ε

φε,p,1φε,p,2
∂wi

∂y
dy + h.o.t. = O(ε2s). (5.32)

Now by Lemma 5.3 and Eqs. (5.30) and (5.31) we have

I1 = ε−1

∫ 1
ε

− 1
ε

w2
i

(

T [wε,p](pi + εz)− T [wε,p](pi)
)∂wi

∂y
dy +O(ε2s−1)

= ε−1

∫ 1
ε

− 1
ε

w2
i

(

Pi(z) + ε
∑

j 6=i

ξ̂2j z∇piGD(pi, pj)

)

∂wi

∂y
dy +O(ε2s−1)
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= −1

3

∫

R

w3(y)dy
∑

j 6=i

ξ̂2j∇piGD(pi, pj) +O(ε2s−1). (5.33)

Similarly, we calculate

I2 = ε−1

∫ 1
ε

− 1
ε

[

(wε,p + φε,p)
2

T [wε,p] + ψε,p
− (wε,p + φε,p)

2

T [wε,p]

]

∂wi

∂y
dy

= −ε−1

∫ 1
ε

− 1
ε

(wε,p + φε,p)
2

(T [wε,p])2
ψε,p

∂wi

∂y
dy +O(ε2s−1)

= −ε−1ξ̂i

∫ 1
ε

− 1
ε

1

3

∂w3

∂y

(

ψε,p − ψε,p(pi)
)

dy +O(ε2s−1). (5.34)

Since ψε,p satisfies (5.29), a similar argument to that used in Lemma 5.3 gives

ψε,p(pi + εz)− ψε,p(pi)

= cε

∫ 1

−1

(

GD(pi + εz, ζ)−GD(pi, ζ)
)

(

2wε,p

(

ζ

ε

)

φε,p

(

ζ

ε

)

+ φ2ε,p

(

ζ

ε

))

dζ

= o

(

ε
∑

j 6=i

ξ̂2j z∇piGD(pi, pj)

)

+ P̂i(z) + h.o.t., (5.35)

where P̂i(z) is an even function in z = y− pi
ε . Substituting (5.35) into (5.34) we obtain

that

I2 = o

(

∑

j 6=i

ξ̂2j∇piGD(pi, pj)

)

+ o(ε2s−1). (5.36)

Combining the estimates for I1 and I2, we obtain

Wε,i(p) = −1

3

∫

R

w3(y)dy
∑

j 6=i

ξ̂2j∇piGD(pi, pj)
(

1 + o(1)
)

+O(ε2s−1)

= −1

3
Fi(p)

∫

R

w3(y)dy +O(ε2s−1), (5.37)

where Fi(p) is defined in (2.9). From (H3) we have F (p0) = 0 and from numerical

calculations of the Green’s function we deduce that p02 − p01 = 1. By symmetry we con-

clude that if there exists p = (p1, p2) such that either one of Wε,1(p) = 0 or Wε,2(p) = 0
then Wε(p) = 0. For Wε,i we have

Wε,i(p) = −1

3

∫

R

w3(y)dy
(

(

p1 − p01
)

ξ̂22∇p1∇p1GD

(

p01, p
0
2

)

+
(

p2 − p02
)

ξ̂22∇p2∇p1GD

(

p01, p
0
2

)

)

+O
(

|p− p0|2 + ε2s−1
)

.
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By assumption (H3) we have ∇p1∇p1GD(p
0
1, p

0
2) 6= 0. As a consequence, we can apply

Brouwer’s fixed point theorem to show that for ε ≪ 1 there exists a point pε such that

Wε(p
ε) = 0 and pε ∈ Bε2s−1(p0). Thus we have proved the following proposition

Proposition 5.2. For ε sufficiently small there exist points pε with pε → p0 such that

Wε(p
ε) = 0.

Proof of Theorem 2.1. By above proposition, there exists pε → p0 such thatWε(p
ε) =

0. In other words, S[wε,pε+φε,pε ] = 0. Let uε = cε(wε,pε+φε,pε), vε = cεT [wε,pε+φε,pε ].
By the Maximum principle, uε > 0 and vε > 0. Moreover (uε, vε) satisfies all the

properties of Theorem 2.1.

6. Rigorous proof of the stability analysis

The linear stability of the two-spike solution constructed above is determined by

two classes of eigenvalues: the large and small eigenvalues satisfying λε = O(1) and

λε → 0 as ε → 0 respectively. In the following two subsections we consider each case

separately.

6.1. Stability analysis: large eigenvalues

In this subsection, we consider the stability of the steady state (uε, vε) constructed

in Theorem 2.1. Linearizing around the equilibrium states,

u = uε + φε(x)e
λεt, v = vε + ψεe

λεt = T [uε] + ψεe
λεt, (6.1)

and substituting the result into (GM) we deduce the following eigenvalue problem:







(−∆)syφε + φε − 2
uε
T [uε]

φε +
u2ε

(T [uε])2
ψε + λεφε = 0, (6.2a)

D(−∆)sψε + ψε − 2cεuεφε + τλεψε = 0, (6.2b)

where λε is some complex number. In this section, we study the large eigenvalues, i.e.

those for which we may assume that there exists c > 0 such that |λε| ≥ c > 0 for ε
small. If ℜ(λε) < −c then we are done (since these eigenvalues are always stable) and

we therefore assume that ℜ(λε) ≥ −c. For a subsequence ε → 0 and λε → λ0 we shall

derive a limiting NLEP satisfied by λ0.

We first present the case τ = 0. In the end, we shall explain how we proceed when

τ > 0 is sufficiently small. By Eq. (6.2b), we have ψε = T ′[uε](φε). Let us assume that

‖φε‖H2s(− 1
ε
, 1
ε
) = 1 and we cut off φε as follows:

φε,i(y) = φε(y)χ

(

εy − pεi
r0

)

, (6.3)
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where χ(x) is a given in (5.1) of Section 5. Using Lemma 5.3 together with ℜ(λε) ≥ −c,
the asymptotic expansion of uε given in Theorem 2.1, and the algebraic decay of w
given in Proposition 3.1, we get that

φε =

2
∑

i=1

φε,i + h.o.t. in H2s

(

−1

ε
,
1

ε

)

. (6.4)

Then by standard procedure we extend φε,i to a function defined on R such that

‖φε,i‖H2s(R) ≤ C‖φε,i‖H2s(− 1
ε
, 1
ε
), i = 1, 2. (6.5)

Without loss of generality, we may assume that ‖φε‖H2s(R) = 1 and by taking a sub-

sequence of ε, we may also assume that φε,i → φi strongly as ε → 0 in L2 ∩ L∞ for

i = 1, 2, on compact subsets of R. Therefore we also have

wφε,i → wφi as ε→ 0, strongly in L∞(R). (6.6)

It is known that

ψε(x) = cε

∫ 1

−1
GD(x, ζ)uε

(

ζ

ε

)

φε

(

ζ

ε

)

dζ. (6.7)

Now we use the expansion of uε to calculate the value of ψε at x = pεi for each i = 1, 2

ψε(p
ε
i ) = 2cε

∫ 1

−1
GD(p

ε
i , ζ)

2
∑

j=1

ξ̂jw

(

ζ − pεj
ε

)

χ

(

εζ − pj
r0

)

φε

(

ζ

ε

)

dζ + h.o.t.

= 2εcε

2
∑

j=1

ξ̂jGD(pi, pj)

∫

R

wφjdy + oε(1). (6.8)

Substituting (6.8) into Eq. (6.2a) and letting ε→ 0, we obtain the nonlocal eigenvalue

problem

(−∆)sφi + φi − 2wφi + 2

(
∫

R

w2(y)dy

)−1
(

∫

R

2
∑

j=1

ξ̂jGD(pi, pj)wφjdy

)

w2

+ λ0φi = 0, i = 1, 2. (6.9)

We can rewrite (6.9) in matrix form as

(−∆)sΦ+ Φ− 2wΦ + 2

(∫

R

w2(y)dy

)−1(∫

R

wBΦdy
)

w2 + λ0Φ = 0, (6.10)

where B is the matrix introduced in (2.7) and Φ = (φ1, φ2)
T ∈ (H2s(R))2. We then

have the following conclusion
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Theorem 6.1. Let λε be an eigenvalue of (6.2) such that ℜ(λε) > −c for some c > 0.

(1) Suppose that for suitable sequence εn → 0 we have λεn → λ0 6= 0. Then λ0 is an

eigenvalue of the problem given in (6.9).

(2) Let λ0 6= 0 with ℜ(λ0) > 0 be an eigenvalue of the problem given in (6.9). Then for

ε sufficiently small, there is an eigenvalue λε of (6.1) with λε → λ0 as ε→ 0.

Proof. The proof of (1) follows from a similar asymptotic analysis to that used in

Section 5.

To prove part (2) of Theorem 6.1 we follow the argument given in [3, Section 2].

We assume that λ0 6= 0 is an eigenvalue of problem (6.9) with ℜ(λ0) > 0 and we first

note that from the equation for ψε, we can express ψε in terms of φε as in (6.7). Then

we rewrite Eq. (6.2) as

φε = −Rε(λε)

[

2
uεφε
vε

− u2ε
v2ε
ψε

]

,

where Rε(λε) is the inverse of (−∆)s + (1+ λε) in H2s(R) and ψε = T ′
ε[uε](φε) is given

in Eq. (6.2b). The key observation is that Rε(λε) is a Fredholm type operator if ε is

sufficiently small. The rest of the argument follows as in [3].

By diagonalizing B we see that the eigenvalue problem (6.10) can be reduced to

the nonlocal eigenvalue problems

(−∆)sφ̂i + φ̂i − 2wφ̂i + 2σi

∫

R
wφ̂idy

∫

R
w2dy

w2 + λ0φ̂i = 0, φ̂i ∈ H2s(R), i = 1, 2, (6.11)

where σ1 and σ2 are the two eigenvalues of B.

We now study the stability of (6.2) for large eigenvalues explicitly. Suppose that

2 min
σ∈λ(B)

σ < 1. (6.12)

Then by Theorem 3.1(1) there exists an unstable eigenvalue of (6.10) and there-

fore by Theorem 6.1 there exists an eigenvalue λε of (6.2) such that ℜ(λε) > c0 for

some positive number c0. This implies that (uε, vε) is unstable. On the other hand if

2minσ∈λ(B) σ > 1 then by Theorem 3.1(2) any nonzero eigenvalue λ0 is stable. There-

fore by Theorem 6.1 for ε small enough all nonzero eigenvalues λε of (6.2) for which

|λε| ≥ c > 0 holds, satisfy ℜ(λε) ≤ −c < 0 for ε small enough.

Finally we comment that when τ 6= 0 and τ is small. We shall apply the results of

Theorem 3.2. In this case, the matrix B will have to be replaced by the matrix Bτλε

which depends on τε. In particular the Green’s function GD is replaced by the Green’s

function Gλ
D satisfying

D(−∆)sGλ
D + (1 + τλε)G

λ
D = δz, Gλ

D(x+ 2, z) = Gλ
D(x, z). (6.13)

It is then easy to check that the eigenvalues of Bτλε
satisfy the same properties as those

of B provided that τ is sufficiently small.



32 D. Gomez, J. Wei and W. Yang

6.2. Stability analysis: small eigenvalues

We now study the eigenvalue problem (6.2) with respect to small eigenvalues.

Namely, we assume that λε → 0 as ε→ 0. Let

ūε = wε,pε + φε,pε , v̄ε = T [wε,pε + φε,pε ], (6.14)

where pε = (pε1, p
ε
2). After rescaling, the eigenvalue problem (6.2) becomes







(−∆)syφε + φε −
2ūε
v̄ε
φε +

ū2ε
v̄2ε
ψε + λεφε = 0,

D(−∆)sψε + ψε − 2cεūεφε + τλεψε = 0,

(6.15)

where cε is given by (5.4). We take τ = 0 for simplicity. As τλε ≪ 1 the results in this

section are also valid for τ finite, this is due to the fact that the small eigenvalue are of

the order O(ε2), we shall prove it in this subsection.

We cut off ūε as follows:

ũε,i(y) = χ

(

εy − pεi
r0

)

ūε(y), i = 1, 2, (6.16)

where χ(x) and r0 are given in Section 5. Similarly to the Section 5 we define

Kε,p,new := Span
{

ũ′ε,i | i = 1, 2
}

⊂ H2s

(

−1

ε
,
1

ε

)

,

Cε,p,new := Span
{

ũ′ε,i | i = 1, 2
}

⊂ L2

(

−1

ε
,
1

ε

)

.

Then it is easy to see that

ūε(y) =

2
∑

i=1

ũε,i(y) + h.o.t. . (6.17)

Note that

ũε,i(y) ∼ ξ̂iw

(

y − pεi
ε

)

in H2s(−1, 1)

and ũε,i satisfies

(−∆)sũε,i + ũε,i −
ũ2ε,i
v̄ε

+ h.o.t. = 0. (6.18)

Thus ũ′ε,i :=
dũε,i

dy satisfies

(−∆)syũ
′
ε,i + ũ′ε,i − 2

ũε,i
v̄ε
ũ′ε,i + ε

ũ2ε,i
v̄2ε

v̄′ε + h.o.t. = 0, (6.19)
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and we have

ũ′ε,i = ξ̂i
∂w

∂y

(

y − pεi
ε

)

(

1 + o(1)
)

.

Let us now decompose

φε =

2
∑

i=1

aεi ũ
′
ε,i + φ⊥ε , (6.20)

where aεi are complex numbers and φ⊥ε ⊥ Kε. Similarly, we can decompose

ψε =

2
∑

i=1

aεiψε,i + ψ⊥
ε , (6.21)

where ψε,i satisfies

D(−∆)sψε,i + ψε,i − 2cεūεũ
′
ε,i = 0, i = 1, 2, (6.22)

and ψ⊥
ε satisfies

D(−∆)sψ⊥
ε + ψ⊥

ε − 2cεūεφ
⊥
ε = 0. (6.23)

We impose periodic boundary conditions on both of these equations.

Suppose that ‖φε‖
H2s(− 1

ε , 1ε ) = 1. Then |aεi | ≤ C since

aεi =

∫ 1
ε

− 1
ε

φε
∂ũε,i
∂y

dy

(

ξ̂2i

∫

R

w2dy

)−1

+ o(1).

Substituting the decompositions of φε and ψε into (6.15) we have

(−∆)syφ
⊥
ε + φ⊥ε − 2ūε

v̄ε
φ⊥ε +

ū2ε
v̄2ε
ψ⊥
ε + λεφ

⊥
ε − ε

2
∑

i=1

aεi

(

ũ2ε,i
v̄2ε

v̄′ε −
1

ε

ū2ε
v̄2ε
ψε,i

)

+ h.o.t. = −λε
2
∑

i=1

aεi ũ
′
ε,i. (6.24)

Let us first compute

J0 := ε

2
∑

i=1

aεi

(

ũ2ε,i
v̄2ε

v̄′ε −
1

ε

ū2ε
v̄2ε
ψε,i

)

= ε
2
∑

i=1

aεi

(

ũ2ε,i
v̄2ε

(

v̄′ε −
1

ε
ψε,i

)

)

−
2
∑

i=1

aεi
∑

j 6=i

ũ2ε,j
v̄2ε

ψε,i + h.o.t.

= ε
2
∑

i=1

aεi
ũ2ε,i
v̄2ε

(

−1

ε
ψε,i + v̄′ε

)

−
2
∑

i=1

∑

j 6=i

aεjψε,j

ũ2ε,i
v̄2ε

+ h.o.t. .
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We rewrite J0 as follows

J0 = −ε
2
∑

i=1

2
∑

j=1

aεj
ũ2ε,i
v̄2ε

(

1

ε
ψε,j − v̄′εδij

)

+ h.o.t. . (6.25)

Let us also set

L̃εφ
⊥
ε := −(−∆)syφ

⊥
ε − φ⊥ε + 2

ūε
v̄ε
φ⊥ε − ū2ε

v̄2ε
ψ⊥
ε (6.26)

and

aε :=
(

aε1, a
ε
2

)T
. (6.27)

Multiplying both sides of (6.24) by ũ′ε,l and integrating over
(

−1
ε ,

1
ε

)

, we obtain

r.h.s. = −λε
2
∑

i=1

aεi

∫ 1
ε

− 1
ε

ũ′ε,iũ
′
ε,ldy = −λεaεl ξ̂2l

∫

R

(

w′(y)
)2
dy
(

1 +O(ε2s+1)
)

, (6.28)

and

l.h.s. =

(

2
∑

i=1

2
∑

j=1

aεj

∫ 1
ε

− 1
ε

ũ2ε,i
v̄2ε

(

ψε,j − εv̄′εδij
)

ũ′ε,ldy

+

∫ 1
ε

− 1
ε

ũ2ε,l
v̄2ε
ψ⊥
ε ũ

′
ε,ldy − ε

∫ 1
ε

− 1
ε

ũ2ε,l
v̄2ε
v̄′εφ

⊥
ε dx

)

(

1 + o(1)
)

=
(

J1,l + J2,l + J3,l)(1 + o(1)
)

, (6.29)

where Ji,l, i = 1, 2, 3, are defined by the last inequality.

We define the vectors

Ji = (Ji,1, Ji,2)
T , i = 1, 2, 3. (6.30)

To give estimates on each Ji, i = 1, 2, 3 we need the following three lemmas.

Lemma 6.1. We have
(

ψε,j − εv̄′εδji
)(

pεi
)

= −ε∇GT
DH2 + o(ε). (6.31)

Proof. Note that for i 6= j, we have

(

ψε,j − εv̄′εδji
)(

pεi
)

= ψε,j

(

pεi
)

= 2cε

∫ 1

−1
GD

(

pεi , ζ
)

ūεũ
′
ε,jdζ

= −εξ̂2j∇pεj
GD

(

pεi , p
ε
j

)

+O(ε1+2s). (6.32)

Next we compute ψε,i − v̄′ε near pεi

v̄ε(x) = cε

∫ 1

−1
GD(x, ζ)ū

2

(

ζ

ε

)

dζ

= εcε

∫ ∞

−∞
GD(x, εz)ũ

2
ε,i(z)dz + cε

∑

j 6=i

∫ 1

−1
GD(x, ζ)ũ

2
ε,j

(

ζ

ε

)

dζ +O(ε1+2s).
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So

v̄′ε(x) = εcε

∫ ∞

−∞
∇xGD(x, εz)ũ

2
ε,i(z)dz + cε

∑

j 6=i

∫ 1

−1
∇xGD(x, ζ)ũ

2
ε,j

(

ζ

ε

)

dζ

+O(ε1+2s).

Thus

ψε,i(x)− εv̄′ε(x) = 2εcε

∫ ∞

−∞
GD(x, εz)ũε,iũ

′
ε,idz − ε2cε

∫ ∞

−∞
∇xGD(x, εz)ũ

2
ε,i(z)dz

− εcε
∑

j 6=i

∫ 1

−1
∇xGD(x, ζ)ũ

2
ε,j

(

ζ

ε

)

dζ +O(ε1+2s).

Therefore, we have

ψε,i

(

pεi
)

− εv̄′ε
(

pεi
)

= 2εcε

∫ ∞

−∞
GD

(

pεi , εz
)

ũε,iũ
′
ε,idz − ε2cε

∫ ∞

−∞
∇pεi

GD

(

pεi , εz
)

ũ2ε,i(z)dz

− ε2cε
∑

j 6=i

∫ ∞

−∞
∇pεi

GD

(

pεi , εz
)

ũ2ε,j(z)dz +O(ε1+2s)

= −2εξ̂2i ∇pεi
GD

(

pεi , p
ε
i

)

− ε
∑

j 6=i

ξ̂2j∇pεi
GD

(

pεi , p
ε
j

)

+O(ε2s)

= −εξ̂2i∇pεi
GD

(

pεi , p
ε
i

)

+O(ε2s). (6.33)

Eq. (6.31) then follows from solving (6.32) and (6.33).

Lemma 6.2. Let qji be defined as in (2.16). Then we have

(

ψε,i − εv̄′εδji
)(

pεj + εz
)

−
(

ψε,i − εv̄′εδji
)(

pεj
)

= −ε2z
(

∇pεj
∇pεi

GD

(

pεj, p
ε
i

)

+ qjiδji

)

ξ̂2i + o(ε2). (6.34)

We next study the asymptotic expansion of φ⊥ε . Let us first define

φ1ε,i =
2
∑

j=1

∇pεi
ξ̂jw

(

y −
pεj
ε

)

, φ1ε := −ε
2
∑

i=1

aεiφ
1
ε,i. (6.35)

Then we have the following lemma.

Lemma 6.3. Let ε be sufficiently small. Then

∥

∥φ⊥ε − φ1ε
∥

∥

H2s(− 1
ε
, 1
ε
)
= o(ε). (6.36)
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Proof. We first derive a relation between ψ⊥
ε and φ⊥ε . Note that similar to the proof

of Proposition 5.1, L̃ε is invertible from K⊥
ε,p,new to C⊥

ε,p,new. By Lemma 6.1 and the fact

that L̃ε is invertible, we deduce that

∥

∥φ⊥ε
∥

∥

H2s(− 1
ε
, 1
ε
)
= O(ε). (6.37)

Let us decompose

φ̃ε,i =
φ⊥ε
ε
χ

(

εy − pεi
r0

)

. (6.38)

Then

φ⊥ε = ε

2
∑

i=1

φ̃ε,i + h.o.t. . (6.39)

Suppose that

φ̃ε,i → φi in H1

(

−1

ε
,
1

ε

)

. (6.40)

By the equation for ψ⊥
ε (similar to the proof of Lemma 6.1)

ψ⊥
ε

(

pεi
)

= 2εcε

2
∑

j=1

∫ 1

−1
GD

(

pεi , z
)

ūεφ̃ε,j(z)dz + o(ε)

= 2ε

2
∑

j=1

GD

(

pεi , p
ε
j

)

ξ̂j

∫

R
wφjdx

∫

R
w2dx

+ o(ε), (6.41)

and therefore
(

ψ⊥
ε (p

ε
1), ψ

⊥
ε (p

ε
2)
)T

= 2εGDH
∫

R
wΦ0dx

∫

R
w2dx

+ o(ε), (6.42)

where Φ0 = (φ1, φ2)
T . Substituting (6.42) into (6.24) and using Lemma 6.1, we have

that Φ0 satisfies

(−∆)sΦ0 +Φ0 − 2wΦ0 + 2GDH
∫

R
wΦ0dx

∫

R
w2dx

w2 − (∇GD)
TH2a0w2 = 0, (6.43)

where

a0 = lim
ε→0

aε = lim
ε→0

(

aε1, a
ε
2

)T
.

Thus

Φ0 = − (I − 2GDH)−1 (∇GD)
TH2a0w = −P(∇GD)

TH2a0w, (6.44)

where

P = (I − 2GDH)−1.
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Now we compare Φ0 with φ1ε. By definition,

φ1ε = −ε
2
∑

j=1

2
∑

i=1

aεi∇pεi
ξ̂jw

(

y −
pεj
ε

)

. (6.45)

On the other hand,

φ⊥ε = ε
2
∑

i=1

φ̃ε,i + h.o.t. = ε
2
∑

i=1

φi

(

y − pεi
ε

)

+ o(ε). (6.46)

The lemma is proved by using (6.44) and comparing (6.45) and (6.46).

From Lemma 6.3 we have that

(

ψ⊥
ε (p

ε
1), ψ

⊥
ε (p

ε
2)
)T

= −2εGDHP(∇GD)
TH2a0 + o(ε) (6.47)

and

ψ⊥
ε

(

pεi + εz
)

− ψ⊥
ε

(

pεi
)

= 2ε2z

2
∑

j=1

∇pεi
GD

(

pεi , p
ε
j

)

ξ̂j

∫

R
wφjdx

∫

R
w2dx

+ o(ε2). (6.48)

With the above three lemmas we can now derive the following results concerning

the three terms J1,J2,J3 defined in (6.30).

Lemma 6.4. Let GD,H,Q, and aε be given by (2.4), (2.15), (2.16), (6.27) respectively.

Then

J1 = c1ε
2H(∇2GD +Q)H2aε + o(ε2), (6.49a)

J2 = 2c1ε
2H∇GDHP(∇GD)

TH2aε + o(ε2), (6.49b)

J3 = o(ε2),

where c1 =
1
3

∫

R
w3dy.

Proof. The computation of J1 follows from Lemma 6.2. In fact since v̄′ε = o(1)

J1,l =
2
∑

j=1

aεj

∫ 1
ε

− 1
ε

ũ2ε,l
v̄2ε

(

ψε,j − εv̄′εδjl
)

ũ′ε,ldy

=

2
∑

j=1

aεj

∫ 1
ε

− 1
ε

ũ2ε,l
v̄2ε

(

[

ψε,j(y)− εv̄′ε(y)δjl
]

−
[

ψε,j(p
ε
l )− εv̄′ε(p

ε
l )δjl

]

)

ũ′ε,ldy + o(ε2)

= −ε2ξ̂l
∫

R

(

yw2w′(y)
)

dy

2
∑

j=1

aεj

(

∇pε
l
∇pεj

GD

(

pεl , p
ε
j

)

+ qljδlj

)

ξ̂2j + o(ε2)

= c1ε
2ξ̂l

2
∑

j=1

aεj

(

∇pε
l
∇pεj

GD

(

pεl , p
ε
j

)

+ qljδlj

)

ξ̂2j + o(ε2), (6.50)



38 D. Gomez, J. Wei and W. Yang

which, by Lemma 6.1, proves estimate (6.49a). The estimate for J2 follows from

J2,l =

∫ 1
ε

− 1
ε

ũ2ε,l
v̄2ε
ψ⊥
ε ũ

′
ε,ldy

=

∫ 1
ε

− 1
ε

ũ2ε,l
v̄2ε
ψ⊥
ε

(

pεl
)

ũ′ε,ldy +
∫ 1

ε

− 1
ε

ũ2ε,l
v̄2ε

(

ψ⊥
ε (x)− ψ⊥

ε (p
ε
l )
)

ũ′ε,ldy

=

∫ 1
ε

− 1
ε

ũ2ε,l
v̄2ε

(

ψ⊥
ε (x)− ψ⊥

ε (p
ε
l )
)

ũ′ε,ldx+ o(ε2), (6.51)

together with (6.44), (6.47), (6.48). The estimate on J3,l follows from Lemma 6.3, the

fact that v̄ε(p
ε
l ) = ξ̂l +O(ε2s−1) at pεl and the leading order of v̄′ε(p

ε
l + εy)− v̄′ε(p

ε
l ) is an

odd function of order ε.

We can now provide an estimate on the small eigenvalue. From Lemma 6.4 we

have

J1 + J2 + J3 = c1ε
2H
(

(∇2GD +Q)H2 + 2∇GDHP(∇GD)
TH2

)

aε + o(ε2)

= c1ε
2H2M(pε)aε + o(ε2),

and therefore by combining (6.28) and (6.29), we obtain

c1ε
2H2M(pε)aε + o(ε2) = −λεH2aε

∫

R

(

w′(y)
)2
dy
(

1 + o(1)
)

. (6.52)

From this equation we see that

λε = −ε2c2λM(p0)

(

1 + o(1)
)

,

where c2 is a positive constant and λM(p0) is the non-zero left eigenvalue of M(p0)
given in (2.19). In Appendix C we derive a quickly converging series expression for

the Green’s function for which we can interchanging summation and differentiation to

calculate its second derivatives. Numerical calculations then indicate that ∂2xGD(x, 0) >
0 at x = 1 and using (2.19) we therefore deduce that the non-zero left eigenvalue of

M(p0) is positive. The small λε is therefore negative (stable) so that the two spike

pattern is linearly stable with respect to the small eigenvalues. In particular, linear

stability is determined solely by the eigenvalues of B and the proof of Theorem 2.2 is

therefore complete.

7. Conclusion and open problems

In this paper we have proven the existence and rigorously analyzed the stability

of both symmetric and asymmetric two spike equilibrium solutions of the fractional

one-dimensional Gierer-Meinhardt system (1.1) with periodic boundary conditions. In

addition, by using a combination of formal asymptotic and numerical methods we have
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calculated asymptotic approximations for N -spike quasi-equilibrium solutions and de-

rived a system of ODEs governing their slow dynamics on an O(ε−2) timescale as well

as a system of NLEPs governing their linear stability on an O(1) timescale. Our findings

indicate that a single spike solution may be destabilized or stabilized with respect to

oscillatory instabilities by decreasing the fractional exponents for the activator, s1, or

inhibitor, s2, respectively. On the other hand we found that decreasing the fractional

exponent for the inhibitor, s2, has a stabilizing effect on the stability of symmetric two-

spike solutions with respect to competition instabilities. Finally we determined that

asymmetric two-spike solutions are always linearly unstable with respect to competi-

tion instabilities. In all one- and two-spike cases we found that the equilibrium spike

patterns are linearly stable with respect to the slow dynamics and that this is a conse-

quence of the choice of periodic boundary conditions.

We conclude this section with an outline of open problems and directions for future

research. The first open problem is to prove the existence and to provide a complete

classification of all N -spike equilibrium solutions to the fractional one-dimensional

Gierer-Meinhardt model. In particular a key question is whether, as in the classi-

cal Gierer-Meinhardt model [31], asymmetric N -spike solutions are generated by se-

quences of spikes of two types. Second, in this paper we have chosen to use periodic

boundary conditions to reduce the technical difficulties typically encountered when

implementing Dirichlet or Neumann boundary conditions (see [17]). However, we be-

lieve our results can be extended to these more general cases by appropriately modify-

ing the relevant Green’s function satisfying (2.3) with Dirichlet or Neumann boundary

conditions as well as by extending our analysis to provide regularity estimates at the

boundaries x = ±1. Another interesting direction for future research is to investigate

the behaviour of solutions to the fractional GM model in the D ≪ 1 regimes for which

the classical GM model is known to exhibit distinct behaviour such as spike splitting

and clustering. Finally a detailed analysis, either rigorous or formal, of localized so-

lutions for different reaction-kinetics as well as in higher-dimensional domains would

be a fruitful direction of future research. Indeed the analysis of localized solutions to

the classical Gierer-Meinhardt model is markedly different in one-, two-, and three-

dimensions [8, 13, 29] due, at least in part, to the different singular behaviour of the

related Green’s functions and we suspect that this will also be the case for the higher-

dimensional analogues of (1.1).

Appendix A. The nonlocal eigenvalue problem

In this section, we prove Theorem 3.1. We consider the eigenvalue problem

(−∆)sφ+ φ− 2wφ + γ

∫

R
wφdx

∫

R
w2dx

+ αφ = 0, φ ∈ H2s(R). (A.1)

Our aim is to show that the above eigenvalue problem has an eigenvalue with real part

when γ ∈ (0, 1) and the real part of the eigenvalue is always negative if γ > 1 and

s > 1
4 .
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Before we give the proof of Theorem 3.1, we first present the following result.

Proposition A.1 ([4]). The eigenvalue problem

(−∆)sφ+ φ− 2wφ + µφ = 0 in R, φ ∈ H2s(R) (A.2)

admits the following set of eigenvalues:

µ1 > 0, µ2 = 0, µ3 < 0, . . . . (A.3)

Moreover, the eigenfunction corresponding to µ1 is radial and of constant sign.

Proof of Theorem 3.1(1). The original problem is equivalent to finding a positive

zero root of the function F(α) defined by

F(α) =

∫

R

w2dx+ γ

∫

R

w(L0 + α)−1w2dx,

where

L0φ = (−∆)sφ+ φ− 2wφ.

By the above proposition, L0 has a unique eigenvalue µ1 > 0 with an eigenfunction of

constant sign. We now consider F(α) in the interval (0, µ1). Since L−1
0 w2 = −w, we

deduce that

F(0) = (1− γ)

∫

R

w2dx > 0, (A.4)

provided γ < 1. Next, as α→ µ−1 , we have that

∫

R

w(L0 + α)−1w2dx→ −∞. (A.5)

Hence, we get from (A.5) that

(α) → −∞ as α→ µ−1
1 , (A.6)

when γ ∈ (0, 1). By (A.4), (A.6) and the continuity of (α), we can find a α0 ∈ (0, µ1)
such that f(α0) = 0 whenever γ ∈ (0, 1).

Next, we shall study (A.1) when γ > 1. We shall prove that the real part of the

eigenvalue is negative in any case. To this end, we introduce some notation and make

some preparations. Set

Lφ := L0φ+ γ

∫

R
wφdx

∫

R
w2dx

w2, φ ∈ H2s(R). (A.7)

According to the definition of L, we can easily see that L is not self-adjoint. Let

X0 := ker{L0} = Span

{

∂w

∂x

}

.
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Then

L0w = −w2, L0

(

w +
1

2s
x · ∇w

)

= −w. (A.8)

Hence,

∫

R

(

L−1
0 w

)

wdx =

∫

R

(

− 1

2s
x · ∇w − w

)

wdx =
1− 4s

4s

∫

R

w2dx, (A.9)

and
∫

R

(

L−1
0 w

)

w2dx = −
∫

R

L−1
0 wL0wdx = −

∫

R

w2dx. (A.10)

Before we give the proof of Theorem 3.1. We present the following important

lemma.

Lemma A.1. Let L1 be an operator defined by

L1φ = L0φ+

∫

R
wφdx

∫

R
w2dx

w2 +

∫

R
w2φdx

∫

R
w2dx

w −
∫

R
w3dx

∫

R
wφdx

(∫

R
w2dx

)2 w. (A.11)

Then we have

(1) L1 is self-adjoint and the kernel of L1 (denoted by X1) is Span{w, ∂w
∂x }.

(2) There exists a positive constant a1 > 0 such that

L1(φ, φ) :=

∫

R

(

∣

∣(−∆)
s
2φ
∣

∣

2
+ φ2 − 2wφ2

)

dx+ 2

∫

R
wφdx

∫

R
w2φdx

∫

R
w2dx

−
∫

R
w3dx

(∫

R
wφdx

)2

(∫

R
w2dx

)2

≥ a1d
2
L2(R)(φ,X1) (A.12)

for all φ ∈ H2s(R), where dL2(R) means the distance in L2-norm.

Proof. By (A.12), L1 is self-adjoint. It is easy to see that w, ∂w∂y ∈ Ker{L1}. On the

other hand, if φ ∈ Ker{L1}, then by Proposition A.1

L0φ = −c1(φ)w − c2(φ)w
2 = c1(φ)L0

(

w +
1

2s
x · ∇w

)

+ c2(φ)L0(w),

where

c1(φ) =

∫

R
w2φdx

∫

R
w2dx

−
∫

R
w3dx

∫

R
wφdx

(∫

R
w2dx

)2 , c2(φ) =

∫

R
wφdx

∫

R
w2dx

.

Hence,

φ− c1(φ)

(

w +
1

2s
x · ∇w

)

− c2(φ)w ∈ Ker{L0}. (A.13)



42 D. Gomez, J. Wei and W. Yang

Note that

c1(φ) = c1(φ)

∫

R
w2(w + (x/2s) · ∇w)dx

∫

R
w2dx

− c1(φ)

∫

R
w3dx

∫

R
w(w + (x/2s) · ∇w)dx
(∫

R
w2dx

)2

= c1(φ)− c1(φ)

(

1− 1

4s

)

∫

R
w3dx

∫

R
w2dx

by (A.9) and (A.10). This implies that c1(φ) = 0 for s > 1
4 . By (A.13) and Proposi-

tion A.1, we prove the first conclusion.

It remains to prove (2). Suppose it is not true. Then by the first conclusion there

exists (α, φ) such that (i) α is real and positive, (ii) φ ⊥ w, φ ⊥ ∂w
∂x , (iii) L1(φ)+αφ = 0.

We shall show the above conclusion is not possible. From (ii) and (iii) we have

(L0 + α)φ+

∫

R
w2φdx

∫

R
w2dx

w = 0. (A.14)

First we claim that
∫

R
w2φ 6= 0. In fact if

∫

R
w2φ = 0, then −α < 0 is an eigenvalue

of L0. By Proposition A.1, −α = µ1 and φ has constant sign. This contradicts with the

fact that φ ⊥ w. Therefore −α 6= µ1, 0 and hence L0 + α is invertible in X⊥
0 . So (A.14)

implies

φ = −
∫

R
w2φdx
∫

R
w2

(L0 + α)−1w.

Thus
∫

R

w2φdx = −
∫

R
w2φdx

∫

R
w2dx

∫

R

(

(L0 + α)−1w
)

w2dx,

which implies

∫

R

w2dx = −
∫

R

(

(L0 + α)−1w
)

w2dx =

∫

R

(

(L0 + α
)−1

w)
(

(L0 + α)w − αw
)

dx,

hence
∫

R

(

(L0 + α)−1w
)

wdx = 0. (A.15)

Let

h1(α) =

∫

R

(

(L0 + α)−1w
)

wdx,

then

h1(0) =

∫

R

(

L−1
0 w

)

wdx = −
∫

R

(

w +
1

2s
x · ∇w

)

w =

(

1

4s
− 1

)
∫

R

w2dx < 0,

due to s > 1
4 . Moreover,
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h′1(α) = −
∫

R

(L0 + α)−2ww = −
∫

R

(

(L0 + α)−1w
)2
dx < 0.

This shows that h1(α) < 0 for all α ∈ (0, µ1). Clearly, h1(α) > 0 for all α ∈ (µ1,∞)
since limα→+∞ h1(α) = 0. This is a contradiction to (A.15) and we finish the proof.

Proof of Theorem 3.1(2)-(3). We now finish the proof of Theorem 3.1(2) and (3).

First, we prove (2). Let α0 = αR + iαI and φ = φR + iφI . Since α0 6= 0, we can choose

φ ⊥ ker{L0}. Then we can obtain two equations



















L0φR + γ

∫

R
wφRdx

∫

R
w2dx

w2 = −αRφR + αIφI , (A.16a)

L0φI + γ

∫

R
wφIdx

∫

R
w2dx

w2 = −αRφI − αIφR. (A.16b)

Multiplying Eq. (A.16b) by φR and Eq. (A.16b) by φI and adding them together, we

obtain

− αR

∫

R

(

φ2R + φ2I
)

dx

= L1(φR, φR) + L1(φI , φI) +

∫

R
w3dx

(∫

R
w2dx

)2

[

(
∫

R

wφRdx

)2

+

(
∫

R

wφIdx

)2
]

+ (γ − 2)

(∫

R

wφRdx

∫

R

w2φRdx+

∫

R

wφIdx

∫

R

w2φIdx

)(∫

R

w2dx

)−1

. (A.17)

Multiplying Eqs. (A.16) by w and adding together, we get

∫

R

w2φRdx− γ

∫

R
wφRdx

∫

R
w2dx

∫

R

w3dx = αR

∫

R

wφRdx− αI

∫

R

wφIdx, (A.18a)

∫

R

w2φIdx− γ

∫

R
wφIdx

∫

R
w2dx

∫

R

w3dx = αR

∫

R

wφIdx+ αI

∫

R

wφRdx. (A.18b)

We multiply Eq. (A.18a) by
∫

R
wφRdx and Eq. (A.18b) by

∫

R
wφIdx and add them

together, we obtain

∫

R

wφRdx

∫

R

w2φRdx+

∫

R

wφIdx

∫

R

w2φIdx

=

(

αR + γ

∫

R
w3dx

∫

R
w2dx

)

(

(
∫

R

wφRdx

)2

+

(
∫

R

wφIdx

)2
)

. (A.19)

Therefore, we have

− αR

∫

R

(

φ2R + φ2I
)

dx = L1(φR, φR) + L1(φI , φI)
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+

∫

R
w3dx

(
∫

R
w2dx)2

[

(
∫

R

wφRdx

)2

+

(
∫

R

wφIdx

)2
]

+ (γ − 2)

(

αR + γ

∫

R
w3dx

∫

R
w2dx

)

(
∫

R
wφRdx)

2 + (
∫

R
wφIdx)

2dx
∫

R
w2dx

. (A.20)

Set

φR = cRw + φ⊥R, φ⊥R ⊥ X1,

φI = cIw + φ⊥I , φ⊥I ⊥ X1.

Then
∫

R

wφRdx = cR

∫

R

w2dx,

∫

R

wφIdx = cI

∫

R

w2dx,

and

d2L2(R)(φR,X1) =
∥

∥φ⊥R
∥

∥

2

L2 , d2L2(R)(φI ,X1) =
∥

∥φ⊥I
∥

∥

2

L2 .

By some simple computations we have

L1(φR, φR) + L1(φI , φI) + αR(γ − 1)
(

c2R + c2I
)

∫

R

w2dx

+
(

c2R + c2I
)

(γ − 1)2
∫

R

w3dx+ αR

(

∥

∥φ⊥R
∥

∥

2

L2 +
∥

∥φ⊥I
∥

∥

2

L2

)

= 0.

By Lemma A.1,

αR(γ − 1)
(

c2R + c2I
)

∫

R

w2dx+ (γ − 1)2
(

c2R + c2I
)

∫

R

w3dx

+ αR

(

∥

∥φ⊥R
∥

∥

2

L2 +
∥

∥φ⊥I
∥

∥

2

L2

)

≤ 0.

Since γ > 1, we have αR < 0, which proves Theorem 3.1(2).

It remains to prove the last conclusion. Since φ satisfies

(−∆)sφ+ φ− 2wφ + γ

∫

R
wφdx

∫

R
w2dx

w2 = 0. (A.21)

Then L0φ = −c3(φ)w2, where

c3(φ) = γ

∫

R
wφdx

∫

R
w2dx

.

Hence, φ− c3(φ)w ∈ Ker{L0}. Thus

c3(φ)γ = γ

∫

R
wφdx

∫

R
w2dx

= c3(φ). (A.22)

So if γ 6= 1, we get c3(φ) = 0. Then φ ∈ Ker{L0} and we complete the proof.
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Appendix B. Overview of numerical calculations

In this section we briefly outline the numerical calculation of solutions to the core

problem (3.1) and the time-dependent fractional GM system with periodic boundary

conditions (1.1). In both cases we use the finite difference-quadrature discretization

for the fractional Laplacian with piecewise linear interpolants developed by Huang

and Oberman [12]. When discretizing (3.1) we approximate the fractional Laplacian

on a truncated domain using the far-field behaviour presented in Proposition 3.1 to

capture the nonlocal behaviour outside the truncated domain. On the other hand,

when spatially discretizing (1.1) we use the spatial periodicity of the system to sim-

plify the expression for the discrete fractional Laplacian. Time stepping of the spatially

discretized system is then performed using a second-order semi-implicit backwards dif-

ference scheme [25]. In the remainder of this section we provide additional details for

both of these cases.

First we consider the numerical calculation of solutions to the core problem (3.1).

Since the domain for (3.1) is −∞ < y < ∞ we need to both truncate and then dis-

cretize the truncated domain to obtain a numerical calculation. Outside of the trun-

cated domain we use the far-field behaviour from Proposition 3.1 to impose a Dirichlet

boundary condition. Specifically, letting L > 0 we approximate solutions to (3.1) by

solving the truncated problem

(−∆)sU + U − U2 = 0, |y| < L, U(y) = U(L)(L/y)1+2s, |y| ≥ L,

where we have replaced bs with U(L)L1+2s since we do not yet know the value of

bs. To account for the nonlocal contributions outside of the truncated domain we

discretize a computational domain that extends beyond the truncated domain. Specif-

ically we discretize the computational domain −2L ≤ y ≤ 2L by letting yi = ih for

i = −2N, . . . , 2N where h = L
N . Seeking symmetric solutions we impose Ui = U|i|

for all i = −2N, . . . , 2N which reduces the unknown values to U0, . . . , UN . Note in

addition that Ui = ( L
y|i|

)1+2sUN for all |i| > N . The fractional Laplacian can then be

approximated by (see [12, Section 5])

(−∆)sU(yi) ≈ (−∆h)
sUi

=

2N
∑

j=−2N

(Ui − U|i−j|)wj + CIIUi − CIII
i UN , i = 0, . . . , N, (B.1)

where the first term accounts for integration inside of the truncated domain and

wj =
Cs

2s(2s − 1)h2s

×
{

21−2s − 2 + (1− s)−1s, j = ±1,

|j + 1|1−2s − 2|j|1−2s + |j − 1|1−2s, otherwise,
(j = ±1,±2, . . .), (B.2)
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where we note that the value of w0 is never needed in the discretization. Note that these

weights require that s 6= 1
2 but a simple modification is needed for s = 1

2 (see [12, Sec-

tion 3] for details). The remaining two terms CII and CIII
i account for contributions

outside of the computational domain and are respectively given by

CII =
Cs

s(2L)2s
,

CIII
i =

CsL
2s+1

(4s + 1)(2L)4s+1

(

2F 1

(

2s+ 1, 4s + 1; 4s + 2,
yi
2L

)

+ 2F 1

(

2s+ 1, 4s + 1; 4s + 2,− yi
2L

)

)

,

where 2F 1 is the Gaussian hypergeometric function.

With the above discretization it is then possible to approximate solutions to (3.1)

by solving the nonlinear algebraic system (B.1) for the N + 1 unknowns U0, . . . , UN .

To numerically solve this nonlinear system we use the fsolve function in the Python

3.6.8 SciPy library. Our initial guess for the nonlinear solver is obtained by numerical

continuation in s starting with s = 1
2 for which the exact solution ws =

2
1+y2

is known.

In this way we may numerically calculate the core solution for an arbitrary value of s
and in Fig. 3(a) we plot the resulting core solutions for select values of s where we

have used N = 2000 for the spatial discretization. From these solutions we may also

extract the value of the far-field decay coefficient bs and this is plotted in Fig. 3(b). We

conclude by remarking that no nontrivial solution to the core problem (3.1) exists for

s ≤ 1
6 (see for example [4]) and our numerical computations failed to yield solutions

for s ≈ 0.2 and below because of this.

Turning now to the numerical solution of (1.1) we discretize the interval −1 < x <
1 into N uniformly distributed points given by xi = −1 + 2ih for i = 0, . . . , N − 1

(a) (b)

Figure 3: (a) Sample plots of numerically computed solutions to the core problem (3.1). (b) Far-field decay
coefficient bs in the core problem (3.1).



Fractional GM System in 1D 47

where h = 1
N . Assuming that φ(x) is a 2-periodic function on −1 < x < 1 and letting

φi ≡ φ(xi) for each i = 0, . . . , N − 1 we calculate (see [12, Eq. (FLh)])

(−∆)sφ(xi) ≈ (−∆h)
sφi =

∞
∑

j=−∞
(φi − φi−j)wj =

N−1
∑

j=0

Wi−j(φi − φj), (B.3)

where the final equality follows from the periodicity of φ and where

Wσ ≡ wσ +

∞
∑

k=1

(wσ+Nk + wσ−Nk)

with each weight wi, i ∈ Z being given by (B.2). In our numerical calculations we

truncate the sum after 500 terms. From (B.3) it is then straightforward to deduce the

entries of the matrix (−∆h)
s which we remark is dense in contrast to the tridiagonal

matrix obtained by applying a finite-difference approximation to the one-dimensional

Laplacian. With this spatial discretization we can then approximate (1.1) with the

2N -dimensional system of ODEs

dΦ

dt
+AΦ+N (Φ) = 0, (B.4)

where

Φ(t) =
(

u0(t), . . . , uN−1(t), v0(t), . . . , vN−1(t)
)T
,

A = diag
(

ε2s1(−∆h)
s1 , τ−1D(−∆h)

s2
)

,

and N (Φ) is the 2N -dimensional array that accounts for the nonlinearities in (1.1). To

integrate (B.4) we employ a second-order semi-implicit backwards difference scheme

(2-SBDF) [25] that uses second-order backward difference time-stepping for the frac-

tional Laplace term and explicit (forward) time-stepping for the nonlinear term. Specif-

ically, given a time-step size ∆t > 0 and denoting by Φn = Φ(tn) where tn = n∆t the

2-SBDF scheme becomes

(3I − 2∆tA)Φn+1 = 4Φn −Φn−1 + 4∆tN (Φn)− 2∆tN (Φn−1), (B.5)

where I is the 2N × 2N identity matrix. Given an initial condition Φ0 (based on

the asymptotic approximations of Section 4) we also need Φ1 to initiate time-stepping

with 2-SBDF. We calculate Φ1 by using a first-order semi-implicit backwards difference

scheme (1-SBDF) [25] given by

(I −∆tA)Φn+1 = Φn +∆tN (Φn) (B.6)

with which we perform five time steps with a step size that is one-fifth that used in our

main 2-SBDF scheme. Throughout the numerical simulations of (1.1) in Sections 4.3

and 4.4 we used a mesh consisting of N = 2000 points and a time-step size of ∆t =
0.001.
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Appendix C. A rapidly converging series for the fractional Green’s
function

In this section we provide a quickly converging series expansion of the Green’s

function GD(x, z) satisfying (2.3). In particular, by adding and subtracting appropriate

multiples of |x−z|2s−1 and |x−z|4s−1 as outlined below we obtain the series expansion

GD(x, z) = as

(

|x− z|2s−1 − 1

2s

)

− cs

(

|x− z|4s−1 − 1

4s

)

− 1

2

(

(2s − 1)as − (4s − 1)cs
)

(

|x− z|2 − 1

3

)

+
1

2
+

1

D3

∞
∑

n=1

(

1 +
1

D(nπ)2s

)−1 cosnπ|x− z|
(nπ)6s

+ 2
∞
∑

n=1

(

csbn
(nπ)4s

− asan
(nπ)2s

)

cosnπ|x− z|, (C.1)

where

as = − 2

πD
sΓ(−2s) sin(πs), cs ≡ − 4

πD2
sΓ(−4s) sin(2πs), (C.2)

and

an = (2s − 1)(2s − 2)

∫ ∞

nπ
x2s−3 cos xdx, (C.3)

bn = −(4s − 1)(4s − 2)(4s − 3)

(

(−1)n(nπ)4s−4 + (4s− 4)

∫ ∞

nπ
x4s−5 cos xdx

)

. (C.4)

The key reason for considering this expansion is that the coefficients of cosnπ|x −
z| converge to zero sufficiently fast to allow the order of summation and second-

differentiation to be interchanged. In particular using (C.1) we can numerically cal-

culate that ∂2xGD(x, 0) is strictly positive at x = 1.

To derive (C.1) we use integration by parts to calculate the coefficients in the Fourier

series

|x|β−1 =
1

β
+ 2

∞
∑

n=1

cn,β
(πn)β

cosnπx, cn,β =

∫ nπ

0
xβ−1 cosxdx, (C.5)

where β = 2s ∈ (1, 2) or β = 4s ∈ (2, 4). Specifically we calculate

cn,2s = −(2s− 1)

∫ nπ

0
x2s−2 sinxdx

= −(2s− 1)

∫ ∞

0
x2s−2 sinxdx+ (2s − 1)

∫ ∞

nπ
x2s−2 sinxdx

= −(2s− 1)

∫ ∞

0
x2s−2 sinxdx+ (−1)n(2s − 1)(nπ)2s−2 + an
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for β = 2s and

cn,4s = (4s − 1)(4s − 2)(4s − 3)

∫ ∞

0
x4s−4 sinxdx

+ (−1)n(4s − 1)(nπ)4s−2 + bn

for β = 4s and where an and bn are defined by (C.3). The definite integrals appearing

in cn,2s and cn,4s can then be written in terms of as and cs respectively by using the

integral representation of the Gamma function

∫ ∞

0
xz−1 sinxdx = Γ(z) sin

(πz

2

)

for −1 < ℜ(z) < 1 together with the reflection formula

zΓ(z)Γ(−z) = − π

sinπz

for all z /∈ Z (see [22, Eqs. (5.9.7), (5.5.3)] respectively).

Appendix D. Derivation of the slow dynamics

In this appendix we outline the derivation of the system of ODEs (4.3) governing the

slow dynamics of the multi-spike quasi-equilibrium solutions considered in Section 4.1.

Letting x = xi + εy with y = O(1) we obtain (4.1b) together with (C.1) (with s = s2)

v ∼ ε−1ωs1

(

N
∑

j=1

ξ2jGD(xi, xj) + as2ξ
2
i ε

2s2−1|y|2s2−1 + εbiy +O(εmin{2,4s2−1})

)

, (D.1)

where bi ≡
∑

j 6=i ξ
2
j∇xi

GD(xi, xj). It follows that the first order correction term in the

inner expansion must be O(ε2s2−1) and in particular for x = xi + εy and y = O(1)

u ∼ ε−1
(

ξiws1(y) + ε2s2−1Ui1 + o(ε2s2−1)
)

,

v ∼ ε−1
(

ξi + ε2s2−1Vi1 + o(ε2s2−1)
)

.

By repeatedly using the method of matched asymptotic expansions we determine that

the fractional power ε2s2−1 initiates a chain of corrections at powers of ε that are multi-

ples of 2s2−1. In particular for each i = 1, . . . , N the inner expansion when x = xi+εy
with y = O(1) takes the form

u ∼ ε−1

(

ξiws1(y) +

kmax−1
∑

k=1

εk(2s2−1)Uik + εUikmax + o(ε)

)

, (D.2)

v ∼ ε−1

(

ξi +
kmax−1
∑

k=1

εk(2s2−1)Vik + εVikmax + o(ε)

)

, (D.3)
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where kmax is the smallest integer such that kmax(2s2 − 1) ≥ 1. Importantly, since

Vik ∼ Ck|y|2s2−1 as |y| → ∞ for 1 ≤ k < kmax each of these corrections are even in y.

On the other hand when k = kmax we have the far-field behaviour

Vikmax ∼ ωs1biy + δ1,kmax(2s2−1)Ckmax |y|2s2−1, |y| → ∞, (D.4)

where δi,j is the discrete Kronecker delta function. Therefore we can write Vikmax =
ωs1biy + V e

ikmax
where V e

ikmax
is an even function in y. Assuming that each xi = xi(t)

and substituting (D.2) into (1.1) with x = xi + εy we obtain

− 1

ε
ξi
dws1

dy

dxi
dt

+

kmax−1
∑

k=1

εk(2s2−1)L0Uik + εL0Uikmax +Nε

+ εw2
s1

(

ωs1biy + V e
ikmax

)

+ o(ε) = 0, (D.5)

where Nε is an even function of y that consists of the residual nonlinear combinations

of Uik and Vik for 1 ≤ k < kmax. Recalling that
dws1
dy spans the kernel of L0 we impose

a solvability condition on (D.5) by multiplying it with
dws1
dy and integrating to obtain

dxi
dt

= ε2
ωs1bi

∫∞
−∞w2

s1(dws1/dy)ydy

ξi
∫∞
−∞ |dws1/dy|2dy

= −ε2
ωs1

∫∞
−∞w3

s1

3ξi
∫∞
−∞ |dws1/dy|2dy

bi,

where we have used integration by parts to obtain the second equality. This establishes

(4.3).

References

[1] P. BRESSLOFF, Stochastic Processes in Cell Biology, in: Interdisciplinary Applied Mathemat-

ics, Springer International Publishing, 2014.
[2] W. CHEN AND M. J. WARD, The stability and dynamics of localized spot patterns in the

two-dimensional Gray-Scott model, SIAM J. Appl. Dyn. Syst. 10 (2011), 582–666.

[3] E. N. DANCER, On stability and Hopf bifurcations for chemotaxis systems, Methods Appl.
Anal. 8(2) (2001), 245–256.

[4] R. L. FRANK AND E. LENZMANN, Uniqueness of non-linear ground states for fractional Lapla-

cians in R, Acta Math. 210 (2013), 261–318.

[5] A. GIERER AND H. MEINHARDT, A theory of biological pattern formation, Kybernetik 12

(1972), 30–39.
[6] A. A. GOLOVIN, B. J. MATKOWSKY, AND V. A. VOLPERT, Turing pattern formation in the

brusselator model with superdiffusion, SIAM J. Appl. Math. 69(1) (2008), 251–22.

[7] D. GOMEZ, M. J. WARD, AND J. WEI, The linear stability of symmetric spike patterns for

a bulk-membrane coupled Gierer-Meinhardt model, SIAM J. Appl. Dyn. Syst. 18 (2019),

729–768.
[8] D. GOMEZ, M. J. WARD, AND J. WEI, An asymptotic analysis of localized three-dimensional

spot patterns for the gierer–meinhardt model: Existence, linear stability, and slow dynamics,

SIAM J. Appl. Math. 81 (2021), 378–406.



Fractional GM System in 1D 51

[9] C. GUI AND J. WEI, Multiple interior peak solutions for some singularly perturbed Neumann
problems, J. Differential Equations 158 (1999), 1–27.

[10] C. GUI, J. WEI, AND M. WINTER, Multiple boundary peak solutions for some singularly

perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 47–
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