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Abstract
Although many methods have been developed to explore the function of cells by clustering high-dimensional (HD) single-
cell omics data, the inconspicuously differential expressions of biomarkers of proteins or genes across all cells disturb the 
cell cluster delineation and downstream analysis. Here, we introduce a hashing-based framework to improve the delineation 
of cell clusters, which is based on the hypothesis that one variable with no significant differences can be decomposed into 
more diversely latent variables to distinguish cells. By projecting the original data into a sparse HD space, fly and densefly 
hashing preprocessing retain the local structure of data, and improve the cluster delineation of existing clustering methods, 
such as PhenoGraph. Moreover, the analyses on mass cytometry dataset show that our hashing-based framework manages 
to unveil new hidden heterogeneities in cell clusters. The proposed framework promotes the utilization of cell biomarkers 
and enriches the biological findings by introducing more latent variables.

Keywords Cluster delineation · Hashing preprocessing · High dimensional · Single cell

Introduction

High-dimensional (HD) single-cell profile analyses, such as 
mass cytometry (CyTOF) (Good et al. 2018; Levine et al. 
2021; Quintelier et al. 2021; Spitzer et al. 2017; Tu et al. 
2019) and single-cell RNA sequencing (scRNA-seq) (Reid 
et al. 2018; Witt et al. 2019), provide extraordinary insights 
into the proteomics and genomics of single cells. Recent 
studies reveal new functional diversity and heterogeneity 
among cell populations through unbiased HD data analy-
ses (Aghaeepour et al. 2017; Denis et al. 2018; Van Unen 
et al. 2016), with the aid of recently developed informatics 

techniques including spanning-tree progression analysis of 
density-normalized events (SPADE) (Anchang et al. 2016), 
hierarchical stochastic neighbor embedding (HSNE) (van 
Unen et al. 2017), independent component analysis (ICA) 
(Jin et al. 2019), and single-cell interpretation via multiker-
nel learning (SIMLR) (Wang et al. 2017). Quality control 
(Kleinsteuber et al. 2016), gene selection (Tang et al. 2018), 
normalization (Finck et al. 2013), batch effects removal 
(Schuyler et al. 2019), and other preprocessing steps were 
frequently applied to control technical noise and improve 
the data quality. However, existing analysis methods com-
monly encounter with two inherent challenges. First, HD 
data often involves variables (markers of CyTOF data or 
genes of scRNA-seq data) whose expression values have 
no significant differences across all cells, which interferes 
with the process of cell clustering (Fig. 1a). Second, the 
large population of examined cells and their disturb variables 
lead to the vague cluster delineation, so that the cell clusters 
(i.e., cell populations) cannot be well visualized (Fig. 1a). 
These two inherent challenges appeal for new data process-
ing methods to improve cell clustering accuracy.

Herein, we present a hashing-based framework to 
improve the delineation of cell clusters. Assuming that the 
expression value of a marker shows no significant difference 
across all cells that may be caused by the high correlation 
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between this marker and all cells, we hypothesize that such 
high correlation tends to connect cells together rather than 
separate them. Therefore, unlike the commonly used dimen-
sionality reduction, we adopt dimensionality expansion strat-
egy to extend markers into more latent variables in virtue 
of a theory that a highly correlated vector can readily be 
decomposed into the linear combinations of several inde-
pendent vectors. These latent variables, which are merely 
highly associated with partial cells, promote the differentia-
tion of cell populations and simultaneously ensure the full 
utilization of marker information. In other words, the highly 
correlated variables with all cells can be regarded as the 
irrelevant variables with subpopulation, and these variables 
are further decomposed into several subpopulation-relevant 
latent variables.

Locality-sensitive hashing-based (LSH) method (Das-
gupta et al. 2017) can generate prolonged tags to decrease 
the influence of subpopulation-irrelevant variables. In addi-
tion, this method qualifies the property of preserving local 
data structures, that is to say, the neighborhood relationships 
of cells are basically unchanged via LSH preprocessing. By 
transferring the original input tags of single cells into pro-
longed sparse tags, it has been demonstrated that LSH-based 
method is compatible with many k-nearest neighbors (k-NN) 
based methods, such as SIMLR (Wang et al. 2017), locally 
linear embedding (LLE) (Roweis and Saul 2000), and t-SNE 
(Van der Maaten and Hinton 2008).

Herein, considering the superiority of LSH-based method 
and the computational cost, we introduce two variants of 
LSH into the framework for single-cell data preprocessing, 

Fig. 1  The motivation and overview of our hashing-based frame-
work. a The heatmap and tsne visualization of original and FHpre 
dataset. Variables with no significant differential expression across 
all cells in the original data disturb the cell cluster delineation (red 
and green box). After FHpre, the cells are more easily to cluster with 
clearer delineation (black circle). b The framework involves data 
projection and the down streaming analysis of local structure preser-
vation and cell clustering. After normalization for each cell profile, 
our framework projects the normalized cell profile into a high dimen-

sion sparse tags by a sparse, binary random projection matrix. Then, 
a WTA strategy or 0-threshold-based binarization representation is 
used to transform the dense vectors of single-cell profiles into sparse 
tags. Finally, cell clustering is performed on all sparse cell profiles. 
The characteristic of local structure preservation of our framework is 
also verified on all sparse cell profiles. c Our framework retains the 
relationship between cell profiles, where profiles of the same clus-
ter remain similar while the variations between different clusters are 
enhanced
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namely fly hashing (Dasgupta et al. 2017) preprocessing 
(FHpre) and densefly hashing preprocessing (dFHpre) (Chen 
et al. 2020). We validate the proposed framework through 
four aspects: first, we confirm that FHpre and dFHpre pre-
serve local structures and elongate inter-cluster distances 
with local F1 and Spearman’s correlation on four scRNA-seq 
and two CyTOF datasets (Supplementary Table S1, Supple-
mentary Note). Second, applying the proposed framework 
to existing clustering methods, such as PhenoGraph (Levine 
et al. 2015) and ACCENSE (Shekhar et al. 2014), we bench-
mark its delineating ability by visualizing cell clusters, and 
verify its clustering improvement by comparing with the 
ground truth. Third, we show that in two separate public 
CyTOF data sets, the framework unveils new heterogenei-
ties that are previously concealed. Lastly, we verify that the 
proposed framework is not only limited to single-cell data, 
but also can be scaled to computer vision data sets (MNIST 
and NORB, Supplementary Note). Our proposed framework 
offers a new platform revenue for the analysis of HD single-
cell data. Of note, under the proposed framework, FHpre 
and dFHpre are both efficient, compatible, and comprehen-
sible strategies that improve the clustering delineation of 
HD single-cell data.

Methods

Preliminaries

LSH

A hash function h ∶ R
d
→ R

m is locality-sensitive if for any 
two points p, q ∈ R

d , ��
[

h(p) = h(q)
]

= sim(p, q) , where 
sim(p, q) ∈ [0, 1] is a similarity function between the two 
input points (Dasgupta et al. 2017).

Simhashing

Simhashing was proposed to generate a binary hashing code 
for an original vector x (Charikar 2002). First, 20k (the hash-
ing dimension) random projection vectors, r1, r2,⋯ , r20k , are 
generated, where each element is uniformly sampled from 
a Gaussian distribution N(0, 1) . Then, the simhashing code 
for the ith component of the original vector x was defined as

According to the above definition, for the original cell-
marker or cell-gene expression matrix X ∈ R

n×m , the binary 
hashing by simhashing preprocessing (SHpre) was computed 
as

(1)h(x)i =

{

1, ifri ⋅ x ≥ 0,

0, ifri ⋅ x < 0.

where XSHpre denotes the matrix preprocessed by simhash-
ing, R =

[

r1r2 ⋯ r20k
]

∈ R
m×20k represents the random pro-

jection matrix.

Fly hashing

Similarly, fly hashing first projects the normalized input HD 
vectors (original tags) with a sparse, binary random projec-
tion matrix as follows (Dasgupta et al. 2017):

Here, KC is the fly hashing tags (n × 20k), PN represents 
the normalized input tags ( n × m ) and P is the projection 
matrix (m × 20k). P contains n × s% ( s% is the sampling 
ratio; s = 10 after optimization) entries of 1 randomly in 
each column while leaving other entries as 0. n represents 
the event counts and m is the number of variables. k is called 
hash length as k entries are remained after the winner-take-
all (WTA) (Yagnik et al. 2011) step. Longer hash length 
usually leads to better performance. Here, with consideration 
for trade-offs between performance and computational cost, 
we set k to 100 for MNIST and CyTOF data sets, 1000 for 
scRNA-seq data sets.

Afterwards, KC underwent a WTA step with Matlab 
code:

In this step, all entries with values smaller than the 95th 
percentile are set to 0 as a bionic process resembling the 
feedback inhibition from the anterior paired lateral (APL) 
neuron in the fruit fly olfactory circuit.

Densefly hashing

Densefly hashing first projects the normalized input HD vec-
tors (original tags) as fly hashing in Eq. (3), but KC under-
went a binarization transformation in dFHpre (Chen et al. 
2020):

In this step, all entries with values smaller than 0 are set 
to 0 and the remaining to 1 resembling the procedures in 
Simhashing. For fair comparison, the hashing length of dFH-
pre and SHpre is set to the same as FHpre. We set the hash-
ing length k for dFHpre and SHpre both to 100 for MNIST 
and CyTOF data sets, and 1000 for scRNA-seq data.

(2)XSHpre = X ⋅ R

(3)KC = PN × P.

prc = prctile(KC, 95, 2);

KC(KC < prc) = 0;

KC(KC < 0) = 0;

KC(KC ≥ 0) = 1;
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All parameters mentioned above are optimized after a 
trade-off or obtained directly from the previous research 
(Dasgupta et al. 2017).

Local  F1 score and distance of local structure

For each data set, a subset of 10,000 data points (or all data 
points if sample size is less than 10,000) was first randomly 
selected. Then, 1000 random query vectors were selected 
(100 random query vectors were selected for those data sets 
with less than 10,000 data points) from the subset and com-
pared their true versus predicted top y% nearest neighbors. 
Taken the original data Xn×t (i.e., true data) and FHpre data 
Yn×p (i.e., predicted) as examples, the randomly selected 
query vectors are denoted as qx1000×t and qy1000×p , and the 
corresponding remaining data are, respectively, denoted as 
x9000×t and y9000×p . For each row vector of qx1000×t , we com-
pute its true nearest neighbor based on cosine distance, while 
for each row vector of qy1000×p , we compute its top y% pre-
dicted nearest neighbors based on cosine distance. Then, the 
mean average precision (MAP) (Yue et al. 2013) is calcu-
lated based on the overlap ratio of the true nearest neighbor 
and the top y% predicted nearest neighbors. Conversely, the 
mean average recall (MAR) can be obtained by the ratio of 
the overlap between the top y% true nearest neighbors and 
the predicted nearest neighbor. Here we traversed y from 
2 to 10 with an interval 2. The Local F1 Score is defined 
as the harmonic average of MAP and MAR from 50 trials 
corresponding to different random projection matrices and 
queries, and the reciprocal of local F1 score is regarded as 
the local structure distance between input and output space. 
Local F1 score is a mutual metric, whose results from data 
set A to data set B would be the same vice versa. Therefore, 
the local structure distance is mutual as well, which is ben-
eficial to the comparison of the local structure similarity. 
The larger distance represents bigger differences between 
the true and predicted local structure. It is noteworthy that 
the local structure distance defined here is not additive; how-
ever, this does not hamper the similarity comparison of local 
structures.

Evaluation Index

To evaluate the performance of our proposed framework, 
we adopt the following six evaluation indexes to measure 
the clustering accuracy.

F‑measure

The weighted F-measure is defined as the weighted sum-
mary of Fi of each cluster over all clusters:

where ni denotes the number of cells of cluster i and N is 
the whole number of cells. Fi is the F-measure of cluster 
i , which is defined as the harmonic mean of precision and 
recall:

where Pi and Ri are the precision and recall of cluster i , 
respectively.

NMI

The normalized mutual information (NMI) is a widely used 
index to measure the similarity between the ground truth and 
the predicted result. The definition of NMI is formulated as

where k1 is the number of cell subpopulations of the ground 
truth, k2 is the number of cell subpopulations of the algo-
rithm, and m is the number of cells. The matrix M denotes 
the confusion matrix, where Mi. and M.j are the sum over 
the i-th row and the j-th column of confusion matrix, 
respectively.

Accuracy

The accuracy is defined as the ratio of correctly clustered 
cells in the whole cells, which measures the proportion of 
how many cells are correctly classified. Assumed there are 
N cells, g is the cell labels of the ground truth, and p is the 
cell labels from the proposed algorithm. Then, the accuracy 
is defined as

where we adopt the Hungarian assignment algorithm as the 
map function.

Davies–Bouldin and Calinski–Harabasz

Davies–Bouldin and Calinski–Harabasz are two indexes 
evaluating the essential cluster structure of data and not rely-
ing on any ground truth. Davies–Bouldin measures the intra-
cluster dispersion by averaging the distance between the data 
point and its corresponding centroid, while measures the 
inter-cluster dispersion by calculating the difference between 

F =
∑

i

ni

N
Fi,

Fi =
2PiRi

Pi + Ri

NMI(g, p) =

−2
∑k1

i=1

∑k2

j=1
Mij log

�

Mijm

Mi.M.j

�

∑k1

i=1
Mi. log

�

Mi.

m

�

+
∑k2

j=1
M.j log

�

M.j

m

� ,

Accuracy =
1

N

∑N

i=1
�
(

gi, map
(

pi
))

,
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the two corresponding centroids. Unlike Davies–Bouldin, 
Calinski–Harabasz uses the averaged sum of squared dis-
tances within each cluster to measure the intra-cluster dis-
persion, and it uses the sum of squared distances between 
each cluster centroid and a fixed centroid of all data to meas-
ure the inter-cluster dispersion. These two indexes can be 
directly calculated by the MATLAB built-in function with 
the profile data and cluster label as input.

Silhouette

The silhouette for each point measures the similarity of that 
point with points in its own cluster, when compared to points 
in other clusters. The silhouette value for point i is defined as

where ai is the average distance from the i-th point to the 
other points of cluster i , and bi is the minimum average dis-
tance from the i-th point to points in all different clusters. 
The value of silhouette ranges from − 1 to 1, and a higher 
value indicates a better match.

Baseline Methods

Our proposed framework mainly involved three parts: data 
projection, cell clustering and visualization. For data pro-
jection, we compared three LSH-based methods: fly hash-
ing (Dasgupta et al. 2017), densefly hashing (Chen et al. 
2020) and simhashing (Charikar 2002), and discussed their 
capability of preserving local structure. Moreover, princi-
pal component analysis (PCA) and ICA were introduced as 
baseline methods for scRNA-seq data preprocessing. For 
cell clustering, we considered PhenoGraph (Levine et al. 
2015) and ACCENSE (Shekhar et al. 2014), two commonly 
used single-cell classical clustering methods, as baseline 
clustering methods. Our framework improved the cluster-
ing accuracy, and additionally unveiled new heterogeneities 
in cell clusters. For the results visualization, we employed 
t-SNE and uniform manifold approximation and projection 
(UMAP) methods (Becht et al. 2019) as two baseline visu-
alization methods, and we demonstrated that our framework 
clarify the visual delineation of cell clusters. Our hashing-
based framework provides a new way to analyze single-cell 
data, which is compatible with many clustering methods.

Overview of the Proposed Hashing‑Based 
Framework

Cells are usually clustered based on their variables, and cells 
of intra-cluster have similar variable expressions, while cells 
of inter-cluster have diverse variable expressions. Therefore, 

Si =
bi − ai

max
(

ai, bi
) ,

variables with similar expression values across all cells will 
disturb the process of cell clustering and make vague deline-
ation of cell populations (Fig. 1a), such as variables CD133, 
CD14 and CD61 (Fig. 1a, green box), and they are highly 
correlated with all cells but not used to define any specific 
cell subpopulations. We considered such variables as sub-
population-irrelevant variables. In fact, these subpopulation-
irrelevant variables usually contain informative features to 
unveil the new heterogeneous function of cell populations. 
To promote the utilization of such informative variables, 
we decompose such variables into multiple irrelevant latent 
variables based on a mathematical theory that a vector can 
be decomposed into a linear combination of unrelated vec-
tors. In other words, the dimension of original data is fur-
ther extended to even higher dimension. Simultaneously, 
taking computational cost into consideration, we propose a 
hashing-based framework to analyze single-cell data, includ-
ing data preprocessing, local structure preservation and cell 
clustering (Fig. 1b).

The LSH family maps m-dimensional space into 
n-dimensional space while maintaining the local structures 
between the two spaces, specifically, the similarity within 
m-dimensional vectors (defined by distance metrics) remain 
identical in the n-dimensional space after mapping. Different 
from conventional hash projections that aim to avoid colli-
sions for quick access of stored data, LSH aggregates similar 
vectors while avoids collisions between dissimilar vectors, 
which facilitates the cell clustering. Our framework adopts 
two LSH-based methods, namely fly hashing and densefly 
hashing, to map single-cell data.

Specifically, single-cell profiles are first normalized for 
comparability. Then, a random projection expands the input 
vector to 20·k-dimension (k is the hash length) by multi-
plying the input vector with a randomly generated sparse, 
binary projection matrix. This projection randomly sums 
up an optimized percentage of entries in the input vector 
as a new entry in the output vector. To decrease the com-
putational cost, our framework adopts a strategy to further 
extract the sparse and expanded vector, such as a WTA 
process where entries below the 95th percentile are all set 
to zero while those above are retained in the final output 
vectors (fly hashing). Another strategy which binarizes the 
representation with a threshold of 0, where indices with val-
ues below 0 are set to 0, while the remaining are set to 1 
(densefly hashing). The resulting vectors retain the similar-
ity relationship between the same populations and enhance 
the heterogeneities between vectors of different populations 
(Fig. 1c). In this way, our framework generates prolonged 
tags that attenuate the effects of subpopulation-irrelevant 
variables and retains the most distinguishable variables. 
Taken the prolonged tags as input, our framework finally 
analyzes the local structure preservation and the clustering 
accuracy by FHpre and dFHpre.
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Results

Local Structure Preservation and Inter‑cluster 
Distance Elongation

To examine the preservation and elongation ability of our 
framework, we examined the pairwise distances and the 
similarity of neighborhood relationships between original 
and preprocessed data spaces, measured by Spearman’s 
correlation coefficient (R) and local F1 score, respectively. 
Here, we apply fly hashing and densefly hashing to pre-
process the original data in our framework (Fig. 2 and Sup-
plementary Fig. S1 and Fig. S2). For better comparison, 

simhashing algorithm is also incorporated and applied to 
preprocess the data (Supplementary Fig. S3).

Using Usoskin (Usoskin et al. 2015), Samusik (Samusik 
et al. 2016) and Levine (Levine et al. 2015) data sets as 
benchmarks, 10,000 data points (or all data points if sample 
size is less than 10,000) are randomly selected from each, 
leading to 49,995,000 sets of pairwise distances. These dis-
tances are clustered into 50 equal-width groups. For each 
group, it contains different number of distances, then we 
can calculate the median distance of each group and plot 
the boxplot for this group, these 50 boxplots are aligned 
based on the order of the median distance ranges from small 
to large, and the dashed line represents the line of equal-
ity (Fig. 2). The resulting median values of the boxplots 
form a crescent above the line of equality, which represents 

Fig. 2  Local structure preservation. a FHpre and b dFHpre preserve 
the local structure and elongates inter-cluster distances on three 
benchmark data sets. Box plots represent the changes of pairwise 
distances by FHpre (dFHpre). In each benchmark data set, 10,000 
data points (or all data points if sample size is less than 10,000) are 
randomly selected, leading to 49,995,000 sets of pairwise distances, 
which are clustered into 50 equal-width groups. After applying FHpre 
(dFHpre), the distribution of corresponding distances within each 

group is summarized with a box plot. The dashed line is the iden-
tity line; p and q represent example offsets post-FHpre at short and 
medium distances. R of distances smaller than the 10th percentile and 
local F1 score computed between the original and fly hashing (dense-
fly hashing) pairwise distances are reported. Values closer to 1 rep-
resent better preservation of local structure. The lower row graphs of 
(a and b) show the histogram of pairwise distance distributions. PD: 
pairwise distance
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larger changes in middle-range pairwise distances (q) than 
in short-range pairwise distances (p). Here, the middle-range 
pairwise distances (q) indicate the corresponding median 
distances distribute around 0.5, while the short-range pair-
wise distances (p) indicate the corresponding median dis-
tances distribute at the left bottom around 0. The data points 
of the same cluster have small pairwise distances, while the 
data points of different clusters have relatively large pair-
wise distances. Therefore, the short- and middle-range pair-
wise distances represent intra- and inter-cluster distances, 
respectively. In analyses, middle-range pairwise distances 
would interfere with clustering while short-range pairwise 
distances show less influence. Therefore, FHpre and dFH-
pre elongate inter-cluster distances while minimally increase 
intra-cluster distances.

R values and local F1 scores are calculated to investigate 
whether the minor increase of intra-cluster distances disturb 
local structures (Fig. 2). R of pairwise distances measures 
the consistency of the local neighborhood pre- and post-
FHpre (dFHpre). Examining different percentile of distances 
in the original and hashing pairwise space show the lev-
els of the distance preservation on different distance scales 
(Supplementary Fig. S4a, b, d). The R values for Usoskin, 
Samusik, and Levine data sets based on the overall pair-
wise distances of dFHpre are 0.99, 0.98 and 0.97 (Fig. 2), 
respectively, higher than that of both FHpre (0.96, 0.95, and 
0.92, respectively) and SHpre (0.86, 0.86, and 0.78, respec-
tively) (Supplementary Figs. S2 and S3). The R values of 
other benchmark data sets are reported in Supplementary 
Figs. S1–S3. The R values confirm that the sequence of local 
pairwise distances of FHpre and dFHpre are undisturbed.

We then quantify the similarity of neighborhood relation-
ships between data spaces, for both pre- and post-FHpre 
(dFHpre), using the local F1 score to compare the true ver-
sus predicted nearest neighbors of randomly selected query 
vectors. Specifically, for each query vector, the top 2% of 
true nearest neighbors in the input space are identified, then 
their corresponding top 2% nearest neighbors in the output 
space post-FHpre (dFHpre) are calculated and termed as 
the predicted nearest neighbors. According to the true and 
predicted nearest neighbors of each query vector, the average 
precisions value from 100 queries are calculated to provide 
a more comprehensive and mutual index for neighborhood 
similarity. Similarly, the local F1 scores of dFHpre calcu-
lated based on the Usoskin, Samusik, and Levine benchmark 
data sets are 0.98, 1.00, and 1.00 (Fig. 2), respectively, out-
performing that of FHpre (0.86, 0.99, and 0.98, respectively) 
and SHpre (0.48, 0.76, and 0.70, respectively) (Supplemen-
tary Figs. S2 and S3). This indicates that the neighborhood 
relationships are mainly retained by post-FHpre and post-
dFHpre. The local F1 scores of other data sets are reported 
in Supplementary Figs. S1–S3 and the local F1 score com-
puted using varying percentages of the nearest neighbors 

are reported in Supplementary Fig. S4c. The above results 
indicate that dFHpre excels in local structure preservation 
and inter-cluster distances elongation when compared with 
FHpre and SHpre.

Retaining the Local Structure with Various 
Noise Levels

To properly simulate the HD single-cell profiles and dem-
onstrate the restoration of local structure against noises, we 
employ the MNIST data set and augment it with increas-
ing levels of noise (Supplementary Fig. S5a). These noises 
are randomly cut down from online landscape pictures and 
normalized for comparability. First, we compare the visual 
differences between standard t-SNE, FHpre t-SNE, dFH-
pre t_SNE and SHpre t-SNE layouts (Supplementary Figs. 
S6a and S7). As the noise level increases, the delineations 
between clusters become ambiguous in both layouts. How-
ever, FHpre and dFHpre decrease the ambiguity, especially 
at background levels 0.5 and 0.6, where FHpre and dFHpre 
t-SNE layouts provide much clearer delineations between 
clusters.

We regard ACCENSE as the base clustering method and 
perform it on the 2D space generated by t-SNE. The cluster 
delineations of FHpre are more distinguishable throughout 
all noise levels compared with the ACCENSE results on 
standard t-SNE maps (Supplementary Fig. S6b). We use 
F-measure to quantify the clustering accuracy between the 
true versus predicted labels. At all noise levels, especially 
at high noise level (Fig. 3a), FHpre obviously improves the 
clustering performance. The highest boost is 0.22 at noise 
level 1, almost tripling the F-measure value (0.34 vs 0.12). 
We also evaluate the clustering quality with additional three 
indexes: Calinski–Harabasz index (Caliński and Harabasz 
1974) (the higher is better), Davies–Bouldin index (Davies 
and Bouldin 1979) (the lower is better), and silhouette coef-
ficient (Kaufman and Rousseeuw 2009) (the higher is better) 
(Fig. 3a). These indexes quantify the clustering quality by 
maximizing the homogeneity of intra-clusters and minimiz-
ing heterogeneity of inter-clusters. The results of these three 
indexes further strengthen that FHpre improves the quality 
of ACCENSE clustering especially at high noise level.

Considering FHpre as a feature extraction method, we 
apply FHpre, dFHpre, SHpre, PCA and ICA to preprocess 
the MNIST data set with different noise levels. Then, Phe-
noGraph is performed on the processed data sets, and the 
corresponding F-measures are calculated to evaluate the 
clustering. As expected, FHpre shows higher F-measure at 
all noise levels (Fig. 3b), which is in accordance with visual 
comparison results. We then calculate the local structure 
distances between FHpre, PCA, and ICA processed data 
sets with various noise levels and the data set with no noise 
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(denoted as the “true data set”) (Fig. 3c and d). The dis-
tances are normalized by the distances between data sets 
with various noise levels and the true data set. The normal-
ized distances demonstrate whether FHpre, PCA or ICA 
recover the local structure of true data set or further disturb 
it after the disturbance of artificial noise (Fig. 3c). Our result 
shows that after background level of 0.5, the FHpre curve 
descends below the identity line, which represents the ten-
dency to restore local structure. In comparison, the curves of 

PCA and ICA are above the identity line, which represents 
the tendency to disturb local structure. Afterwards, we cal-
culate the distances between data sets with various noise 
levels before and after FHpre, PCA, and ICA, respectively 
(Fig. 3d). The FHpre curve is above the identity line, rep-
resenting that a large modification on the data sets disturbs 
artificial noise. In comparison, the modification of PCA and 
ICA on the disturbed data sets is minimal. Generally, FHpre 
restores the local structure against perturbations of various 

Fig. 3  The framework retains the local structure with various noise 
levels. a Evaluation of ACCENSE clustering results on original and 
FHpre MNIST dataset with noise level ranging from 0 to 1. The four 
evaluation indexes are F-measure, Calinski–Harabasz index, Davies–
Bouldin index, and silhouette coefficient. b Comparisons of F-meas-
ure between different preprocessing methods with PhenoGraph as the 
clustering method. The component numbers of PCA and ICA take as 
100. c Normalized local structure distances between true data space 

(with no noise) and FHpre, PCA, or ICA generated data spaces. 
Curves below the dashed line indicate the restoration of local struc-
ture against noise. d Local structure distances between data spaces 
with various level of noise and FHpre, PCA, or ICA generated data 
spaces. Curves further from the dashed line indicate more modifica-
tion to data spaces with noise. e Comparisons of F-measure between 
different data sets with PhenoGraph as the clustering method. The 
component numbers of PCA and ICA are both 100
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noise levels (Supplementary Fig. S6b) and thus improves 
visual and quantitative analysis (Supplementary Fig. S5c).

In addition, we regard data sets with no artificial noise as 
true data set in the comparison as it is relatively closest to an 
ideal data set containing the least required variables for clus-
tering. It is noteworthy that even at noise level of 0, FHpre, 
PCA, and ICA modified the true data set to some extent 
(Fig. 3c and d). The reason is that the true data set is free of 
artificial noise; however, it retains the intrinsic noise, which 
is the intrinsic subpopulation-irrelevant variables. One of the 
purposes of feature selection methods is to reduce the influ-
ence of these intrinsic noise, so all preprocessing improved 
the F-measure of clustering at noise level of 0 (Fig. 3b).

Visual and Quantitative Comparison 
of Benchmark Data Sets

To examine the clustering performance of elongated inter-
cluster distances, we compare the dimension-reduction layouts 
and clustering accuracies of original with FHpre benchmark 
data sets. The t-SNE layouts (Fig. 4a–c) and UMAP layouts 

(Supplementary Fig. S8) of the benchmark data sets are pre-
sented for visual comparison. The color coding indicates the 
clustering label in accordance to the source data set. The short 
distances between clusters in t-SNE layout represent smaller 
distances between scatters associate with higher similarity 
among cells. FHpre does not significantly improve the layouts 
of MNIST and NORB  data sets (Fig. 4a) because of their very 
vague cluster delineations in t-SNE visualization. Although the 
improvements of cluster delineations are comparatively small 
and invisible for Levine and Samusik  data sets with a large 
number of cell clusters (Fig. 4b), FHpre makes scatters within 
the same subsets form clearer delineations in scRNA-seq data 
sets (Fig. 4c). Specifically, the circled scatters in the t-SNE lay-
outs of Usoskin and Zeisel data sets, which contain mixed cells 
from several subsets in original data, show enhanced separa-
tion after applying FHpre. The similar result is also observed 
in the UMAP layouts (Supplementary Fig. S8). Unlike t-SNE 
layout, in which long-range distances are not associated with 
similarity (because t-SNE employs Gaussian distribution in 
the HD space and t-distribution in the low-dimension space), 
UMAP retains the association between distances in the lay-
out and similarities of cells in both long- and short-range 

Fig. 4  Visual and quantitative 
comparison of benchmark data 
sets. The standard t-SNE and 
FHpre t-SNE layouts of a two 
image recognition data sets, b 
two CyTOF data sets and c four 
scRNA-seq data sets. The color 
coding indicates the true labels 
of subpopulation according 
to the source of each data set. 
Within a predefined distance, 
tighter scatters associate with 
higher similarity among cells. 
The circles and dashed lines 
denote better delineation 
between clusters post-FHpre
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distances. As a result, the changes of inter- or intra- cluster 
distances would have more influence on UMAP than on t-SNE 
layouts. In the UMAP layouts of benchmark data sets, espe-
cially MNIST, Kolod and Zeisel, the clusters form tighter 
groups and the distances between clusters are increased after 
applying FHpre (Supplementary Fig. S8). These results dem-
onstrate that FHpre increases the inter-cluster distances while 
its disturbance to intra-cluster distances is minimal.

In addition to visual comparison, we quantitatively compare 
the clustering accuracy for data set with various preprocessing. 
PhenoGraph is employed as the basic method for clustering 
because of its wide usage. Considering that PCA and ICA are 
commonly used to preprocess computer vision and scRNA-
seq data sets, they are also introduced to compare with FHpre, 
dFHpre and SHpre. PCA and ICA are not usually applied in 
CyTOF data sets because they are considered as dimension-
reduction methods, and the dimension of CyTOF data set is 
lower than that of computer vision and scRNA-seq data sets. 
First, we employ PhenoGraph on original data sets as well 
as data sets processed with FHpre, dFHpre, SHpre, PCA and 
ICA, generating six sets of predicted clustering labels. We then 
calculate F-measures between true labels and the six sets of 
predicted labels (Fig. 3e, representative visual comparisons 
displayed in Supplementary Fig. S9). In computer vision and 
scRNA-seq data sets, FHpre or dFHpre are of higher F-meas-
ure than others preprocessing, demonstrating improved clus-
tering accuracy of our proposed framework. For a more com-
prehensive and in-depth comparison, F-measures of the four 
benchmark scRNA-seq data sets using PCA (left panel) and 
ICA (right panel) with principle component numbers ranging 
from 50 to 300 is displayed in Supplementary Fig. S10. The 
F-measures of PCA and ICA preprocessing with optimized 
principle component numbers remain inferior to FHpre. How-
ever, FHpre and dFHpre show slight or even no significant 
improvements on CyTOF data sets. That is, a bimodal curve 
appears between intra- and inter- cluster pairwise distances 
(Fig. 2), indicating more and smaller intra-cluster distances 
compared to other data sets. This distribution is more likely to 
appear in data sets with tighter clusters, which is beneficial to 
PhenoGraph clustering. The evaluation indexes of Accuracy 
and NMI on eight data sets (four scRNA-seq, two CyTOF and 
two computer vision data sets) with various preprocessing pre-
sent similar performance with F-measure (Supplementary Fig. 
S11), which further verify the improvement of our framework 
for clustering.

Better Clustering Delineation of Our 
Proposed Framework

We employ two published CyTOF data sets (Horowitz et al. 
2013; Mrdjen et al. 2018) and demonstrate the delineation 
ability of FHpre for clusters with functional diversities 

(Fig. 5 and Supplementary Fig. S12). The improvements 
of clustering efficacy from FHpre are examined using the 
CyTOF data set provided by Dunja Mrdjen and colleagues 
(Mrdjen et al. 2018). In this data set, cells are obtained from 
the central nervous system of 8-week-old C57BL/6 mice 
and characterized with a 43-parameter antibody panel. Pro-
cessing and visualizing these cells with FHpre and t-SNE 
lead to four border-associated macrophage subsets and 
multiple dendritic cell subsets, which corroborates with 
published results. We find distinct distribution patterns of 
microglia subsets in standard t-SNE plot and FHpre t-SNE 
plot (Fig. 5a). We then obtain a detailed view of the pheno-
typic profile of microglia subsets (Fig. 5b). In the standard 
t-SNE layouts (Fig. 5b, upper panels), a group of subsets 
are crowded together with ambiguous delineation while a 
subset is distinctly separated from the group. The FHpre 
t-SNE layout reveals four microglia subsets based on dif-
ferential expression of CD90 and CD172 (Fig. 5c), namely 
subset 1  (CD90+CD172+), subset 2  (CD90+CD172−), sub-
set 3  (CD90−CD172+), and subset 4  (CD90−CD172−). As 
shown in Fig. 5b and c, the FHpre t-SNE layout reveals rela-
tively clearer delineation of four microglia cell subsets than 
standard t-SNE layout because the elongated inter-microglia 
cell subset distance of FHpre t-SNE layout. However, for the 
standard t-SNE, the three subsets of microglia are mixed 
together tightly, and they are difficult to distinguish. The 
median expression values of all markers in different micro-
glia subsets are summarized and compared to explore their 
detailed functional differences (Fig. 5d). FHpre can identify 
a heterogeneous subset 2, which exhibits distinct expression 
pattern (CCR2 + MerTK + Ter119 +). Together, these results 
show that microglia populations are heterogeneous and can 
be further divided into four subsets based on their distinct 
expression with the application of FHpre, which cannot be 
excavated in standard t-SNE visualization.

The performance of FHpre is also verified on another 
CyTOF data set comprising measurements of 36 markers 
for 20 PBMC samples with varying serology for cytomeg-
alovirus (CMV). Both standard t-SNE and FHpre t-SNE 
reveal that cells from both CMV + and CMV − samples are 
well-mixed across most regions of the t-SNE plot (Supple-
mentary Fig. S12a). Graphically, FHpre better delineates 
clinical associated clusters with functional diversity in the 
t-SNE plot. In summary, FHpre assists the visual analysis 
of CyTOF data sets by providing clear delineations of sub-
populations with functional diversities.

Discussion

With increasing multi-parametricity of modern single-cell 
techniques, such as CyTOF and scRNA-seq, so does poten-
tially uninformative and confounding variables overcrowd 
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neighborhoods, hindering distinct cluster delineation and 
impeding further clinical analysis (van Unen et al. 2017; 
Wang et al. 2017). Through FHpre and dFHpre, our pro-
posed hashing-based framework provides new solutions to 
these limitations.

FHpre and dFHpre employ a newly developed LSH pro-
jection method that reduces the computational cost and fur-
ther delineates dissimilar clusters. The merits of FHpre and 
dFHpre are examined with visual and quantitative results, 
which show its capability to further expand the horizon of 
computational tools for HD single-cell profile analysis. In 
addition to directly learning the structure of HD profiles, our 
pipeline manipulates the structure and aggrandizes the dis-
similarity between clusters with proper mathematical lem-
mas (Abnousi et al. 2018).

FHpre and dFHpre efficiently improve the neighbor-
hood clustering of input vectors with large dimensions, 
either around 50 (CyTOF) or more than 1000 (scRNA-
seq). Our results reveal that dFHpre shows slightly better 
performance in preserving local structure and equivalent 
capability of anti-interference against high noise levels 
than FHpre. Yet, both FHpre and dFHpre are superior to 
SHpre and non-preprocessing in improving cluster delin-
eation and enhancing PhenoGraph clustering accuracy. 
Compared FHpre with dFHpre, FHpre performs better 

than dFHpre on four scRNA-seq data sets, while dFH-
pre shows slightly higher F-measure than FHpre on two 
CyTOF data sets in improving the clustering accuracy on 
the basis of PhenoGraph. FHpre, dFHpre and SHpre are 
all compatible with extant k-NN-based clustering methods. 
Impressively, FHpre and dFHpre show unexpected per-
formances in preprocessing the Samusik data, which did 
not show straightforward improvements for PhenoGraph. 
This discrepancy may be attributed to the argument about 
the former gold standard of manually gated labels. Many 
researchers have been re-considering the labels as ‘biased’ 
(Aghaeepour et al. 2017; Li et al. 2017), however, other 
researchers insist on the merits of labels manually gated 
by experienced experts (Mrdjen et al. 2018). Under this 
circumstance, many researchers rely on other judgments 
such as identifying rare subpopulation (van Unen et al. 
2017), or achieving new subpopulations with high qual-
ity (Samusik et al. 2016). We agree on the performance 
of expert-gated labels; however, the lack of experienced 
experts also hinders the wider application of expert-gated 
labels. Here, we substantiate the ability of our framework 
by confirming published conclusions and unveiling cogent 
inferences that were previously concealed by insufficient 
preprocess. Especially when clinical information is acces-
sible, our framework is validated by associations with the 

Fig. 5  FHpre better delineates CyTOF data subsets. a 
Standard t-SNE and FHpre t-SNE visualization of cen-
tral nervous system data set. Microglia subsets (CD45loCD-
11bloF4/80 + CD64 + MeTK + Cx3CR1hiSiglec-H + CD88lo) are 
manually annotated in the black circles on the t-SNE maps. b Mag-
nified visualization of circled regions in (a). The color scale indi-
cates the expression of selected markers. c The microglia subsets 
are well dispersed and clustered in FHpre t-SNE layout. Specifi-
cally, CD90 + CD172 + , CD90 + CD72 − , CD90 − CD172 + , and 

CD90 − CD172 − subsets are color annotated. d A clustergram sum-
mary of the median expression intensity of cell markers expressed by 
the four subsets identified in c. Color represents arcsin5-transformed 
marker expression. The subset-determining markers are colored with 
red. In contrast to other subsets, subset 2 exhibit distinct expression 
pattern (CCR2 + MerTK + Ter119 +), explaining the separation of 
subset 2 in the standard t-SNE layout in (b). Subsets 1, 3, and 4 are 
nearly identical with varying amounts of MerTK
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granted ground truth, including the clinical labels such as 
CMV + .

Conclusion

In this study, we propose a hashing-based framework to 
improve the delineation of cell clusters and demonstrate 
the ability of our framework to achieve distinguishable 
clusters in a comprehensive collection of data sets, both 
simulated and experimental. Our framework can be appli-
cable to a variety of highly multi-parametric data sources, 
such as medical imaging. Furthermore, our framework 
provides a general pattern for HD single-cell analysis, and 
other state-of-art preprocessing and clustering methods 
can be seamlessly integrated into our framework. With 
these corroborations, we suggest a wider application of the 
proposed framework as a routine procedure for analyzing 
HD single-cell profiles.
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