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Unlike single grouping principle, cognitive neural mechanism underlying the dissociation across two or more grouping principles
is still unclear. In this study, a dimotif lattice paradigm that can adjust the strength of one grouping principle was used to inspect
how, when, and where the processing of two grouping principles (proximity and similarity) were carried out in human brain. Our
psychophysical findings demonstrated that similarity grouping effect was enhanced with reduced proximity effect when the grouping
cues of proximity and similarity were presented simultaneously. Meanwhile, EEG decoding was performed to reveal the specific
cognitive patterns involved in each principle by using time-resolved MVPA. More importantly, the onsets of dissociation between 2
grouping principles coincided within 3 time windows: the early-stage proximity-defined local visual element arrangement in middle
occipital cortex, the middle-stage processing for feature selection modulating low-level visual cortex such as inferior occipital cortex
and fusiform cortex, and the high-level cognitive integration to make decisions for specific grouping preference in the parietal areas.
In addition, it was discovered that the brain responses were highly correlated with behavioral grouping. Therefore, our study provides
direct evidence for a link between the human perceptual space of grouping decision-making and neural space of brain activation
patterns.
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Introduction
Perceptual grouping or organization depicts the process
on how the human brain aggregates meaningless local
sensory elements into meaningful global patterns. Inter-
estingly, perceptual grouping is based on the cognitive
mechanism associated with various principles, such as
proximity, similarity, good continuation, closure, and
common fate of visually ordered elements in our real-
world experience (Wertheimer 1922, 1923). In particular,
proximity and similarity as the earliest identified
principles are recognized as the most fundamental
processes of perceptual grouping (Wagemans et al. 2012).
Previous studies have inspected the dynamic signatures
and anatomical distributions associated with single
grouping principle in vision science. More importantly,
neuroimaging studies demonstrated that compared
with the ungrouped local elements in space, the single
perceptual grouping principle implicates an early visual
processing (Nikolaev et al. 2008). Meanwhile, it was
discovered that multiple brain activation regions were
involved in the processes of single grouping principle,
including areas V1 (Wannig et al. 2011; Stoll et al. 2020),
V2 (Merigan et al. 1993), the lateral occipital complex
(Fang et al. 2008; Murray et al. 2004) of the visual
cortex, the middle temporal cortex, the inferior parietal
cortex, and the prefrontal cortex (Seymour et al. 2008;
Carther-Krone et al. 2020).

To date, the underlying cognitive neural mechanism is
yet unclear when human beings simultaneously process
2 or more principles of perceptual grouping information
in a natural environment. Existing behavioral studies
illustrated that grouping effects were enhanced by the
cooperation of 2 grouping principles, whereas decreased
for competing case (Quinlan and Wilton 1998; Luna and
Montoro 2011). However, those behavioral findings were
mostly based on the descriptions of conscious experience
regarding the units that people naturally perceive rather
than manipulating these grouping principles in fine-
grained psychophysical settings. Therefore, it is very hard
to quantify the effects of 2 or more grouping principles
or detect the specific principle in operation by using
behavior data.

Interestingly, to reveal the neural correlates of differing
grouping principles, EEG studies based on univariate
analysis have been performed to differentiate the 2
grouping principles generated by independent stimuli.
For example, previous Electroencephalography (EEG)
studies (Han 2004; Han, Jiang, Mao, Humphreys and
Gu 2005) demonstrated that grouping by proximity,
relative to shape similarity, was consistently associated
with enhanced positive event-related potential (ERP)
component peaking around 100 ms after stimuli onset
over occipital electrodes (P100) and around 300 ms upon
central and parietal electrodes (P300). In addition, it
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was discovered that grouping by similarity relative to
proximity elicited a higher temporo-occipital negative
component N200. In contrast, EEG findings (Luna et al.
2016; Villalba-García et al. 2018) also exhibited a null
P100 effect to show the difference between proximity
and similarity grouping. This discrepancy in various
ERP studies might be attributed to the limitation of
the used phenomenological paradigm and univariate
analysis approach. In particular, only ERP components
showing significant difference between proximity and
similarity grouping were examined for these work,
whereas ERP signals that might be able to distinguish
different perceptual grouping states yet failed to reach a
significance were discarded (Cichy and Pantazis 2017).

To bridge the theoretical and methodological gap,
the present study aims at directly quantifying the
relationship between the 2 basic grouping principles
(proximity and similarity) by using a dimotif lattice
paradigm. Therefore, we hypothesize that the grouping
effects of two principles might be precisely quantified
when manipulating the strength of one grouping effect
and controlling the other. In addition, it is also assumed
that the dissociative processing between the 2 grouping
principles would be realized in various time windows,
implicating differing stages in both temporal and spatial
domains. To test the hypothesis, both psychophysical
and EEG data were recorded to inspect the precise
values of different perception between the proximity
and similarity grouping. More specifically, to resolve the
limitation of EEG univariate analysis, novel time-resolved
multivariate pattern analysis (MVPA) was carried out to
dissociate well the 2 grouping principles. This analysis
method is able to generate the interactions between
multiple channels/trials, so as to detect the subtle
changes in brain activation patterns associated with
proximity and similarity groupings. Additionally, source
estimation was also conducted to inspect how the neural
underpinnings underlying 2 grouping principles were
integrated in spatial domain. It is expected that this study
will be able to pave a new avenue for fully understanding
the mechanisms associated with human perceptual
space of grouping decision-making and neural space of
these brain response patterns.

Materials and methods
Participants
Thirty college students (19 males, mean age: 21.4 ±
2.8 years) from the University of Macau participated in
this experiment. All participants reported no histories
of neurological illness or mental disorders and were
right-handed with normal or corrected-to-normal vision.
Four participants (3 males and 1 female) were excluded
for further analysis due to not following the task
instructions (pressing the same button throughout the
whole test) or the large measurement noise (over 10%
EEG artifacts). Informed written consent was obtained
from each participant prior to the experiment. The

protocol for the present study was approved by the
Institutional Review Board of the University of Macau.

Dimotif lattice stimuli
Two categories of motifs (i.e. squares and discs, Kubovy
and Van Den Berg 2008) were used as visual stimuli
during the dimotif lattice task (Grünbaum and Shep-
hard 1987), which were able to quantify the interaction
between proximity and similarity grouping effects. The
arrangement of all motifs was constrained by 3 parame-
ters (a, b, and γ ), as demonstrated in Fig. 1A. Specifically,
a and b denote the distances of neighboring motifs along
the 2 main axes, which are perpendicular to each other.
All elements in either string of direction a consist of the
identical motifs, while adjacent strings include hetero-
geneous motifs. Yet, each element string in direction b
consists of alternating occurrences of the 2 motifs, whose
pattern remains the same across all strings. The last
parameter γ represents the angle between b axis and the
horizontal line (measured counterclockwise).

The orientation of the dimotif lattice patterns was
defined by the aspect ratio (AR = b

a ) and γ , given a fixed
a value. For the present design, a and γ were set to 1.5o

(visual angle) and 45o (stimuli orientation), respectively,
whereas AR was respectively chosen from 0.33, 0.50, 0.67,
0.83, 1.00, and 1.17, thus forming 6 dimotif lattice pat-
terns. The AR adjustment and local element difference
(squares and discs) were able to result in minor changes
in dot density and local surface difference, which further
caused the global luminance difference among each AR.
As a consequence, the maximum difference of average
luminance between AR = 1.17 and AR = 0.33 was by a
factor of 2.25. Interestingly, it has been shown that when
the luminance was up to a factor of 40, increased lumi-
nance of the stimulus can affect the amplitudes of ERP
components (Johannes et al. 1995). Additionally, previous
study using dot lattice paradigm explored the neural
mechanisms of proximity grouping, which also found
that no significant effect was driven by the small changes
in lattice luminance (Nikolaev et al. 2008). Therefore,
these evidence could justify that the significant results
in current study corresponding to the manipulation of
aspect ratio were not caused by the minor luminance
difference in demotif lattice patterns.

To access participants’ grouping preference and elimi-
nate participants’ bias to see the orientation of stimuli,
half trials in one condition of perceived orientation of
45o might be seen as a proximity, while 135o as the
similarity grouping preference. And the other half trials
in one condition of perceived orientation of 135o might be
seen as a proximity, while 45o as the similarity grouping
preference.

Procedures
Participants were seated 55 cm from the display with
a maximum visual angle of 25 × 25 degrees. Visual
stimuli were generated by a Dell 64 bit-based machine
(12G RAM) with an AMD Radeon HD graphics card
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Fig. 1. Experimental design and procedure. A) Visual stimuli consist of 6 types of dimotif lattice pattern with a coherent (45o or 135o) or ambiguous
global orientation, as a result of altered AR values (0.33, 0.50, 0.67, 0.83, 1.00, and 1.17). The calculation formula and diagram of AR were presented in
middle right. B) Timing and sequence of stimuli in an experimental trial. Participants were instructed to press “F” key with the left index finger for a
135o global perceived orientation and to press “J” key with the right index finger for a 45o perception.

running Psychtoolbox-3 software (www.psychtoolbox.
org) on Windows Professional 7. All motifs (squares and
discs) were presented with a diameter of 1o against
the gray background on a Dell P2312H monitor with
a resolution of 1024 × 768. The element-background
contrast was 150% (Weber contrast, c = (I − Ib)/Ib, in
which I and Ib were the luminance of the motifs and
the background, respectively). The whole pattern was
masked with a Gaussian mask (20o diameter), whose
center was a black point as fixation (0.5o diameter).
The point fixation was kept on the screen for the whole
test and participants were asked to fixate at it. For each
trial, a blank with the point fixation was presented for
500 ms, followed by a dimotif lattice pattern lasting for
500 ms with a jitter of 100 ms to decrease expectancy
effects. After the dimotif lattice disappeared, participants
would encounter a probe asking them to judge the
orientation of the previous pattern within 1400–1500 ms

(Fig. 1B). Participants were instructed to perform a two-
alternative forced choice (2AFC) for two orientations (45o

or 135o) by pressing the corresponding buttons labeled
in the keyboard. Each of the 6 dimotif lattice patterns
was presented for 80 times, thus making 480 trials in a
random order. Each participant completed three blocks
with 160 trials for each block.

Psychophysical analysis
Psychophysical performance was quantified as the
percentage of dimotif lattice pattern with a response of
135o (i.e. similarity grouping preference). Psychometric
functions were generated by fitting a cumulative Gaus-
sian sigmoid curve by using the Psignifit toolbox (ver-
sion 4, https://github.com/wichmann-lab/psignifit/wiki),
which implements the maximum-likelihood method for
parameter estimation and finds confidence intervals
by bias-corrected and accelerated bootstrap method
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(Schütt et al. 2016). The point of subjective equality (PSE)
for each participant was extracted from the horizontal
axis value corresponding to 0.5 on the vertical axis of
psychometric curve. The statistical visualization of PSEs
across participants was conducted by using the boxplot
function in MATLAB (Mathworks, Natick, MA, USA).

EEG recordings and preprocessing
Participants were seated in a sound-attenuated and
electrostatically shielded room during the experiment.
Continuous EEG data were recorded from a 64-channel
Biosemi Active Two EEG amplifier system (Biosemi,
Amsterdam, Netherlands) with Ag/AgCl scalp electrodes
placed according to the international 10–20 system on
an elastic cap. During the online acquisition, EEG data
were sampled at 2,048 Hz with a bandpass filter of 0.01–
200 Hz. The input impedance of all channels was kept
below 5 kΩ.

The EEG data were processed offline by using custom-
made scripts in MATLAB, the EEGLAB toolbox (Delorme
and Makeig 2004), and sLORETA software (Pascual-Mar-
qui 2002) for source analyses. After down-sampling the
data to 500 Hz, a built-in fourth-order Butterworth band-
pass filter was applied with cutoff frequencies between
0.15 and 40 Hz. Then, epochs lasting from 100 ms before
the stimuli onset to 500 ms afterward were extracted,
among which those with unique, non-stereotypic arti-
facts were discarded. Independent component analysis
was subsequently performed, and components repre-
senting common ocular or cardiac artifacts were visually
identified and removed for further analysis. Overall, less
than 10% of all trials were rejected. Finally, data were
re-referenced to the grand average of whole head. It
should be pointed out there that the orientation effect
generated by perceiving for 45o/135o proximity grouping
and 135o/45o similarity grouping would affect further
EEG analysis. Therefore, instead of separating into the 2
halves, the whole dataset of each condition was pooled
for further analysis.

Global electric field analysis
Modulations in the strength of the electric field at the
scalp were assessed by the global field power (GFP; Mur-
ray et al. 2008). GFP is calculated as the square root
of the averaged squared voltage value recorded at each
electrode, which can index the spatial standard deviation
of the electric field at the scalp. Larger GFP value denotes
stronger electric field. Differences in GFP waveform data
were analyzed as a function of time when the data
post stimulus onset were significantly different from the
baseline among 6 dimotif lattice conditions. GFP ampli-
tude was considered significant if it exceeded a 95% con-
fidence interval for at least 20 ms consecutively relative
to the baseline of 100-ms prestimulus. Subsequently, GFP
peaks were determined from the averaged GFP waveform
across participants.

Topographic modulations were identified using ran-
domization statistics applied to global map dissimilarity

measures (GMD; Murray et al. 2008). GMD is calculated as
the root mean square of the difference between strength-
normalized vectors. Differences in GMD values were also
analyzed as a function of time, using stimulus type as
a within-subject factor. The statistics of GMD were vali-
dated by a topographic ANOVA with 5,000 permutations
(P < 0.05). Notably, GMD is independent of field strength
and a significant GMD is indicative for different neural
generators across 6 dimotif lattice conditions. Significant
results of GMD were corrected by a duration threshold
(20 ms).

Multidimensional scaling and source estimation
Global electric field analysis demonstrated that the dis-
sociative information of 2 perceptual grouping was avail-
able in 3 time windows, while the GFP peaks at 108, 236,
and 310 ms corresponded to the latency of the P1/N1,
P2, and N3 in the visual stimuli-evoked potential, respec-
tively. To assess mean scalp field differences among 6
conditions and construct the representational distances
associated with proximity and similarity grouping pref-
erences in brain, multidimensional scaling (MDS) anal-
ysis was performed for each time window among all
conditions. The similarities of mean scalp fields among
conditions were firstly assessed by the covariance among
these maps. Then, 2D space that optimally represented
the entire matrix of covariances was spanned between
the first 2 eigenvectors. Furthermore, mean scalp fields
of each condition were projected as 2D coordinates and
then tested by calculating Euclidean distance among 6
AR conditions.

The neural sources of P1/N1, P2, and N3 were recon-
structed for the significant period of GMD around each
latency by using the sLORETA software, which provides
current density values of 6,239 voxels (5 × 5 × 5 mm reso-
lution), modeled in Montreal Neurologic Institute average
MRI brain (MNI152) (Mazziotta et al. 2001). This method
used a Laplacian-weighted minimum norm algorithm
with no priori assumption about a predefined number
of activated brain regions, thus constituting a more open
solution to the EEG inverse problem.

The group differences at each component were
examined by voxel-by-voxel single t-test statistics. T-test
thresholds were computed using the built-in program
of the sLORETA software. Correction for multiple com-
parisons was conducted by using a randomization test
of statistical nonparametric mapping (SnPM) with 5,000
randomizations.

Multivariate pattern analysis
MVPA reveals topographic weightings of EEG signals that
maximally distinguish perceptual grouping states within
a given time interval. Here, a linear classifier was used
based on L2-regularized logistic regression (Fan et al.
2008) to detect the optimal projections of the sensor
space for discriminating among 6 dimotif lattice pat-
terns (one-vs.-all decoding) or between 2 dimotif lattice
patterns (one-vs.-one decoding) at a specific time point
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(Fig. 5a). This allowed the assessment of how and when
the dissociation of perceptual information between prox-
imity and similarity was available in the stimulus-locked
EEG data. The timing of this availability was accessed by
using time-resolved decoding, in light of previous visual
MEG/EEG studies (Crouzet et al. 2015; Cauchoix et al.
2016).

The accuracy of the classifier (linear L2-regularized
logistic regression) fed with the multi-electrode single-
trial EEG signals was evaluated for each time point inde-
pendently. To verify the brain areas obtained from source
estimation and ensure the electrodes mostly contribut-
ing to perception grouping, all electrodes were enrolled
for one-versus-all decoding. And then, based on the find-
ings of one-versus-all decoding and source estimation,
11 electrodes (posterior electrodes including P1, Pz, P2,
PO7, PO3, POz, PO4, PO8, O1, OZ, and O2) were chosen for
one-versus-one decoding, which was able to increase the
signal-to-noise ratio and improve decoding performance.
For each time point, the performance of the classifier was
determined by using a Monte-Carlo cross-validation (CV)
procedure (n = 100), in which the entire data were ran-
domly partitioned into 10 portions including a training
set (90% of the trials) and a test set (the remaining 10%).
Here, the cost parameter C was used the default value
of 1 for all analysis. These time windows were centered
on and shifted from −100 to 500 ms relative to stimulus
onset on stimulus-locked data.

For each participant, decoding accuracy was approx-
imated according to the averaged performance across
CVs. Error bars in the analysis corresponded to the
nonparametric 95% confidence intervals of the mean
obtained via bootstrapping. For each time point and
CV, a measure of chance performance was obtained
by performing an identical classification analysis using
randomly permuted labels. At the single-subject level,
classification accuracy was considered above chance
when it was higher than classification accuracy obtained
from permuted labels (paired t-test, α = 0.05). The group
analysis was performed following the same procedure,
except that the group averages were computed across
single-subject averages. Correction for multiple compar-
isons was used for a time-cluster-based approach, in
which a time point was considered significant only when
it was a member of a cluster of at least 10 consecutively
significant time points (i.e. 20 ms).

Representational similarity analysis
Representational similarity analysis (RSA; Kriegeskorte
et al. 2008) was carried out based on the multiclass
decoding results. For multiclass decoding, classifiers
were trained to discriminate among 6 ARs of dimotif
lattice patterns, whose results were similar to the
participants’ psychophysical performance. This analysis
constructed a dynamic neural representational similar-
ity matrix (RSM) for each subject and time point. For
each time point, there was a 6 × 6 confusion matrix,
where each cell represented the proportion of trials.

Given one cell from the matrix, dimotif lattice pattern
X was presented and the classifier categorized the trial
as dimotif lattice pattern Y. These matrices denoted
the representation of neural space, in which dimotif
lattice pattern categories were coded, since they were
able to demonstrate which dimotif lattice pattern-
evoked neural patterns were similar. To construct the
behavioral RSM, the percentage results of dimotif lattice
stimuli were compared to each other and converted to
Euclidean distance metric. Then, the representational
similarity between dimotif lattice patterns was able to
be compared by calculating Pearson correlations. The
behavioral RSM was symmetrical along its diagonal, and
the off-diagonal areas indicated the representational
similarity across 6 dimotif lattice patterns. In particular,
this behavioral RSM could estimate the participants’
perceptual space to proximity or similarity grouping
preference. Furthermore, the Pearson correlation coef-
ficients were computed for each participant and each
time point separately across the 36 cells of the neural
and behavioral RSM. This correlation would therefore
provide an estimation of the representational similarity
of perceptual grouping in perceptual space and neural
space.

Results
Psychophysical results
Psychophysical performance was measured as the per-
centage of trials perceived as 135o (i.e. similarity prefer-
ence). The averaged percentage of behavioral responses
across all participants for each dimotif lattice pattern
(ARs from 0.33 to 1.17) was 7.62 ± 1.28%, 32.52 ± 2.67%,
53.75 ± 3.36%, 83.07 ± 2.12%, 91.97 ± 1.69%, and 95.88 ±
1.01%, respectively. Fitting the behavioral data using
psychometric functions, it was found that as the AR
increases, the percentage of similarity preference showed
an S-curve growth tendency (Fig. 2A). This finding illus-
trated that participants were inclined to group discrete
motifs into parallel strings in the direction a when the
distance between 2 motifs increased in the direction
b. The experimentally obtained PSEs were averaged
across all participants, yielding an AR of 0.601 ± 0.011
(Fig. 2B). This result suggested that subjectively equated
proximity effect of 2 perceptual grouping stimuli does
not guarantee similar effects in the visual system due to
the modulation of similarity effect.

Global electric field results
The neural dissociative processing of grouping prefer-
ence between proximity and similarity evoked a signif-
icant electrophysiological response starting from 84 ms
(GFP) relative to the prestimulus period (Fig. 3A). Accord-
ingly, the GFP showed that the earliest signal increase for
each dimotif lattice pattern (AR from 0.33 to 1.17) was
84, 90, 84, 86, 90, and 84 ms, respectively. Three GFP peaks
were identified among 6 dimotif lattice conditions at 108,
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Fig. 2. The fitted psychometric functions and averaged PSEs of all participants. A) Illustrations of behavioral response between proximity and similarity
grouping preferences among 6 dimotif lattice patterns. The cumulative Gaussian sigmoid curve was used to the fitted behavioral data with 95%
confidence intervals of individual participant (dotted line). The S-curve was averaged across all participants. B) Boxplot with whiskers representing PSEs.
The box extends from the 25th to 75th percentiles, while the whiskers extend from minimum to maximum values. The horizontal red line indicates the
mean of PSEs (n = 26). The PSEs indicate that the AR for participants has the same global perceived orientation for proximity and similarity grouping.

235, and 310 ms, corresponding to the visual stimulus-
evoked potentials P1/N1, P2, and N3, respectively. The sig-
nificant differences in topographical distribution of the
electric field independent of the electric field strength
(GMD; Ps < 0.05 lasting for 20 ms) revealed that the under-
lying neural generators varied between dimotif lattice
stimuli at the following 3 time windows. The first stage
started from 86 to 130 ms after stimulus onset with a
negative potential (N1) in medial occipital cortex and a
positive potential (P1) over bilateral occipital cortex. The
second time window implicated a positive distribution in
medial occipital cortex (P2) from 188 and 238 ms. The late
time window from 254 to 386 ms with a negative poten-
tial (N3) in frontal and parietal cortex corresponded to
a higher order cognitive processing (Fig. 3B). Meanwhile,
in light of GMD results, topographies between 6 dimotif
lattice stimuli showed a similar pattern regarding the 3
stages of differentiating 6 AR conditions by proximity and
similarity principles (86–130, 188–238, and 254–386 ms;
Fig. 3C).

MDS and source estimation results
To identify the brain representational distances and
activation patterns associated with proximity and
similarity grouping preferences, we calculated the MDS
and cortical generators of the stimulus-evoked responses
for dimotif lattice patterns at 3 time windows (86–130,
188–238, and 254–386 ms). The MDS findings indicated
that the initial representation of dimotif lattice patterns
in participants’ brain was arranged according to the
AR values (86–130 ms). Then, based on the visual
processing of elements’ features and spatial locations,
the representational distances of dimotif lattice patterns
were rearranged. Especially, the ARs of 0.67 and 0.83
were transformed to those close to the representation

of similarity grouping preference (i.e. AR = 1.00/1.17)
(188–238 ms). Finally, at the final stage of global
perceived orientation decision-making (254–386 ms), the
representational distances showed comparable patterns
to behavioral responses (Fig. 4A and B). In addition, brain
activation areas were detected that were associated with
the dissociative processing of grouping preferences. First,
the visual areas in cuneus and middle occipital gyrus
[Brodmann areas (BA) 17, 18, and 19] were engaged in
the early processing of spatial relationships between
local elements with a time window of 86–130 ms.
The attentional postperceptual operations employed
the inferior occipital gyrus and fusiform gyrus (BA 17,
18, 19), indexing the discrimination and selection of
stimuli features that were required for completing shape
similarity identification from 188 to 238 ms. At the third
stage (254–386 ms), the postcentral gyrus (BA 7) was
linked to the discrimination in confidence for perceptual
grouping decisions (Fig. 4C and Table 1).

Multiclass decoding and representational
similarity results
While the global electric field analysis failed to suffi-
ciently accommodate the discrimination in each dimotif
lattice pattern, the dimotif lattice pattern might contain
mixed proximity and similarity grouping preferences per
se. Alternatively, time-resolved MVPA was employed to
evaluate whether the single-trial, instantaneous topo-
graphical pattern of EEG activity carries the information
about proximity and similarity grouping preferences. In
the multiclass analysis, the grouping preference in prox-
imity and similarity principle was also decoded at 3 time
windows after stimulus onset at group level, which were
significant above chance level: 98–146 ms (t(25) = 4.202, P
< 0.001, 95% CI [0.996, 2.912]), 164–190 ms (t(25) = 4.230,
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Table 1. Brain regions showing significant differences across 3 time windows between max proximity vs. max similarity grouping
preference.

Time windows Brain areas BAs MNI coordinates Voxel peak values

X Y Z

86–130 ms Cuneus 17 20 −90 5 10.17
Middle occipital gyrus 18 25 −90 10 10.75

19 30 −95 15 10.38
188–238 ms Inferior occipital gyrus 17 −20 −95 −15 7.93

Fusiform gyrus 18 −25 −95 −20 8.19
19 −25 −85 −20 7.41

254–386 ms Postcentral gyrus 7 15 −65 65 7.45

Note. All brain regions were manifested with a threshold of P < 0.05.

P < 0.001, 95% CI [0.763, 2.211]), and 248–500 ms (t(25) =
6.710, P < 0.001, 95% CI [1.354, 2.553]). Specifically, those
statistics were generated from averaged classification
accuracies between normal label and random label dur-
ing the respective time windows and following-up paired
t-test comparisons. The results suggested a 3-stage pro-
cess of early, middle, and late perceptual grouping in the
human brain, which therefore provided sufficient and
accurate time-resolved information for discriminating
between grouping preferences in proximity and similar-
ity (Fig. 5B).

To further quantify the resemblance between behav-
ioral performance and brain responses, we explored the
representational similarity between subjective and neu-
ral perceptual grouping representations. Since the mul-
ticlass decoding results were consistent with behavioral
patterns, the dynamic association between participants’
perceptual space and neural space could be obtained.
Correlational analyses revealed that behavioral and neu-
ral integration were significantly correlated at 3-time
windows: 96–146 ms (t(25) = 8.734, P < 0.001, 95% CI [0.209,
0.338]), 150–198 ms (t(25) = 5.057, P < 0.001, 95% CI [0.109,
0.259]), and 212–500 ms (t(25) = 6.458, P < 0.001, 95%
CI [0.159, 0.309]) (Fig. 5C). This pattern was comparable
to the 3 stages at which the neuronal signal carried
information about grouping preference as indicated by
the multiclass analysis (Fig. 5B). This line of findings con-
firmed that the information used by the decoding classi-
fiers formed the basis of perceptual grouping decision-
making for each participant.

One-versus-one decoding results
To further examine how the global perceived orientation
varies across different stimuli patterns, we performed
one-versus-one classification for all paired dimotif lat-
tice patterns. As shown in Fig. 6, pairwise classifications
yielded significant accuracies above chance level at cer-
tain time points across the trials (Ps < 0.05 lasting for
>20 ms). Interestingly, the paired patterns between prox-
imity and similarity grouping indicated that as the AR
values increased, more significant components were dis-
criminated within the 3 time windows (Fig. 6 bule curves
for 0.33 vs. 0.67/0.83/1.00/1.17, and pink curves for 0.50
vs. 0.67/0.83/1.00/1.17), indicating that different brain

processing between proximity and similarity grouping
might influence perceptual grouping decision. However,
significant decoding performance was only found at the
early time window (108–140 ms for decoding 0.67 vs. 1.00,
108–142 ms for decoding 0.67 vs. 1.17, 86–124 ms for
decoding 0.83 vs. 1.17; Fig. 6 green and yellow curves)
between each discontinued similarity grouping condition
(Fig. 6 green and yellow curves). Yet, no significant effect
was detected between the adjacent AR values (Ps > 0.05;
Fig. 6).

Discussion
A whole picture of the dissociative processing between 2
perceptual grouping principles in humans was depicted
in both perceptual and neural domains in the current
study. First, psychophysical results revealed that as AR
values increased, more global perceived judgments for
similarity orientation were made. This pattern was in
line with the findings from Kubovy and Van Den Berg
(2008) and Wei et al. (2018), which showed that similarity
grouping effect was enhanced with decreased proximity
grouping effect when the 2 unstable grouping cues were
presented simultaneously.

In addition, regarding the global electric field differ-
ences among 6-stimulus patterns, the time point at
which perceptual grouping information was available
coincided with the latency of the first visual-evoked
response at around 90 ms. It suggested that perceptual
grouping information might initially be represented
by one of the most elementary features. In visual
system, the initial event-related response is associated
with the representation of visual features and a fast
category-selective activity, when the visual system is
highly optimized for the processing of natural scenes
(Wang et al. 2012; Kaneshiro et al. 2015). Existing EEG
studies have identified that the early component (P1)
was only associated with proximity-defined grouping
(Han 2004; Han, Jiang, Mao, Humphreys and Qin 2005).
In light of the comparable patterns generated, our
GFP results therefore extended this line of evidence by
demonstrating that the human brain might also initially
manifest a proximity preference with the presence of
both grouping cues. Importantly, GMDs confirmed the
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Fig. 3. Event-related responses to different ARs exhibited differences
in electric field strength and topographic distribution. A) GFP for each
AR pattern (averaged across participants). The time segments whose
GFP significantly differed from pre-stimulus baseline were marked with
colored straight lines for each AR pattern. Colored shaded areas were
denoted for 95% confidence interval. B) The time segments of signif-
icant GMD across 6 AR patterns were indicated in black bars. The
top row depicts the significant main effect of ARs, while the following
rows represent all significant pairwise comparison results across 6 ARs.
C) Topography among 6 AR patterns in 3 time windows (86–130, 188–238,
and 254–386 ms). For each topography, EEG signals were averaged across
time points within a specific time window. Color bar denotes the voltage
value (μV).

hypothesis for 3 time windows (86–130, 188–238, and
254–386 ms), indexing the processing of distinguishing
2 perceptual grouping principles. The current findings
further indicated that different subregions within
the parieto-occipital and fronto-parietal networks are
activated by proximity and similarity preference to

different extents across 3 time windows. It is noted that
these findings were compatible with different proposals
for the extensive network, which argued the frontal,
parietal, and occipital cortex were commonly engaged
in the processing of proximity and similarity grouping
(Han and Humphreys 2007; Seymour et al. 2008).

Furthermore, MDS and source estimation provided
a visualization of likely representational distance and
predominant sources in the human brain for the 3-
stage processing of grouping preference dissociation. The
discrimination primarily involves the middle occipital
cortex at an early stage (86–130 ms), the inferior occipital
cortex and fusiform cortex at middle-stage (188–238 ms),
and the parietal cortex at late stage (254–386 ms). These
areas have been widely recognized to be associated with
perceptual grouping processing in previous functional
neuroimaging studies. The middle occipital cortex in
cuneus, in particular, was linked to the proximity-defined
larger scale organization of discrete visual elements in
the visual field (Han, Jiang, Mao, Humphreys, Gu 2005a).
Our results validated the previous findings by using MDS
analysis, which showed that the pattern distances are
arranged consistently with the strength of proximity
effect in the early stage. Then, in the middle stage, a
stronger grouping-related activation was observed in
the inferior occipital and fusiform gyrus (BA 17, 18,
and 19). This pattern was consistent with fMRI studies
which specified the functional contribution of object
recognition (Joseph 2001; Sim et al. 2015). Furthermore,
MDS showed that the aspect ratios (AR = 0.67 and 0.83)
were closer to the similarity set, which were initially
closer to the proximity set. This might reflect a feedback
mechanism from the lateral occipital cortex, the inferior
occipital, and fusiform gyrus, to V1/V2 selecting the
object features and processing the object recognition
(Chen et al. 2021). Finally, the parietal cortex is considered
as the area for spatial attention (Kim et al. 2017; Grassi
et al. 2018) and more engagements were found during a
feature integration task (Shafritz et al. 2002; Freedman
and Ibos 2018). The current findings in late component
therefore implicated a further distinction between 2
grouping information and final decision-making based
on spatial attention and feature integration.

To identify the subtle temporal representation of
the dissociative processing across 3 time windows,
we trained classifiers on the data collected from
different grouping preference conditions, respectively.
The classifiers were then tested by looking at the
decoding performance and neural template across all
electrodes for each time point. Interestingly, the neural
response patterns obtained from multiclass MVPA of
EEG recordings corroborated results of global electric
field. With an early onset and relatively short peak,
the classification performance suggested that earlier
sources of dissociative information came from the
dynamic visual representations (Guo et al. 2019). For
each grouping preference pattern, significant decoding
performance between differing preferences could cover
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Fig. 4. The spatial layout of 6 ARs and EEG source estimation of proximity and similarity across 3 time windows. A) MDS provides a visual representation
that projects the distances among 6 AR conditions to examine the representational distances. B) Calculated Euclidean distance among 6 AR conditions
to offer statistical evidence of representational distances. C) Estimations of the neural sources in the dissociative processing of 2 grouping principles
underlying the stimulus-evoked responses, including the cuneus and middle occipital gyrus (BA 17, 18, and 19; 86–130 ms), the inferior occipital gyrus
and fusiform gyrus (BA 17, 18, and 19; 188–238 ms), and the postcentral gyrus (BA 7; 254–386 ms) (P < 0.05, single t-test).

more than one time segment. Interestingly, paired
comparisons were pronounced in the early time window
for the pairs of similarity grouping preference, while with
increased AR values, discriminated components within
the 3 time windows increased between the proximity
and similarity pairs. For the present study, increased
AR values were able to decrease the effect of proximity
grouping. Therefore, for all similarity pairs, significant
differences in the early time window indicated the
difference effect of proximity. The pattern manifested in

the early time window could corroborate the notion that
the distinct processing between 2 grouping principles
initially employed proximity to group the ordered and
discrete visual elements. Meanwhile, this line of finding
reflected the proximity-defined large-scale organization
(Han, Jiang, Mao, Humphreys and Gu 2005; Han, Jiang,
Mao, Humphreys and Qin 2005), even in the paired
conditions of similarity grouping preference. Importantly,
the late time window (>260 ms) reported in previous
EEG studies also elaborated the higher order cognitive
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Fig. 5. The procedure of MVPA and the visualization of multi-class decoding and RSA results. A) For a given participant and time point, a random sample
of 90% of the trials associated with 2 (one-vs-one classification) or 6 (multi-class decoding) conditions was used to train a classifier to discriminate
between brain responses (EEG scalp topography) ARs. Classification performance was then evaluated by using the remaining 10% of the trials. The
entire procedure was repeated for 100 CVs. B) Multi-class decoding: classifiers were trained at each time point among 6 ARs to reveal when ARs could be
dissociated from each other. C) RSA: behavioral representational similarity matrices were correlated with neural representational similarity matrices at
each time point to estimate the similarity between AR representations in perceptual space and neural space. Colored curves denote decoding accuracy
across participants [colored shaded area: bootstrapped 95% confidence interval; light gray shaded area: the period of significant decoding at the group
level (Ps < 0.05 lasting for >20 ms)].

function integrating perception to action (Deslandes
et al. 2005; Takacs et al. 2020). The current findings
further revealed that more cognitive resources were
engaged to discriminate differing stimuli and determine
global perceived orientation when distant AR values were
compared.

Finally, in light of the correlational results, percep-
tual and neural space converged after first stimulus-
evoked response (96–144 ms), demonstrating that the
distinguished perceptual grouping information encoded
in MVPA laid the basis for perceptual grouping decision-
making. The more similarly any 2 dimotif lattice patterns
were represented in MVPA, the more confused the partic-
ipants might feel in the process of perceptual grouping
decision-making. To our knowledge, our study is the first
to show that the subjective discriminability of perceptual

grouping principles is related to their neural dissimilarity,
thus manifesting a robust neural-perceptual mapping.

There are some caveats needing to be noted regard-
ing the present study. For visual stimuli, comparable
paradigms (demotif dot lattice) used in this study
indicated that both proximity and similarity grouping
preference simultaneously modulated participants’
responses and their brain representation. Therefore,
statistical analysis on one-versus-one perceptual pat-
terns, instead of directly on different perceptual pat-
terns for each grouping condition, was performed for
quantifying the effects of 2 perceptual groupings and
detecting the neural dissociation between proximity
and similarity from each paired condition. Additionally,
performing analysis on different perceptual patterns
for each grouping condition might also lead to dataset
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Fig. 6. One-versus-one decoding reveals that different ARs were represented by distinctive neural patterns. For one-versus-one decoding, classifiers were
trained at each time point to provide the time points which were different between paired ARs. Colored curves indicate decoding accuracy averaged
across participants [colored shaded area: bootstrapped 95% confidence interval; light gray shaded area: the period of significant decoding at the group
level (Ps < 0.05 lasting for >20 ms)]. Various colors were employed to denote differing comparisons.

imbalance. For example, the dataset of proximity
grouping preference includes more EEG data of small
AR values, which is much larger than those in the
data of similarity grouping, and vice reverse for EEG
data of large AR values. Further study can use the
paradigm such as Luna and Montoro (2011) to directly
compare proximity and similarity grouping. Although
these stimuli cannot manipulate grouping principles
in fine-grained psychophysical settings like the current
study, it may provide further evidence addressing when
and where the perceptual grouping occurs. Furthermore,
participants were instructed to focus on the fixation
point during experiments; however, eye movements may
still be a possible concern in current decoding study.
Further study can focus on these caveats to examine
whether they will perform as factors in perceptual
grouping research.

In summary, the present study was among the first to
apply MVPA to decode the processing of 2 perceptual
grouping information, particularly with an emphasis
on the representational similarity of perceptual space
and neural space. Notably, the psychophysical responses
reported here were in strong alignment with previous
behavioral studies and we further quantified the percep-
tion gap between proximity and similarity principles.
Our decoding results showed that the human visual
system dissociating 2 perceptual grouping information
is encoded at 3 stages of perceptual grouping. The
grouping starts with the proximity-defined arrangement

of local discrete visual elements in the middle occipital
cortex, followed by the feature selection and spatial
attention modulating 2 perceptual grouping cues in the
inferior occipital cortex and fusiform cortex. At last, it
ended with the higher cognitive integration for spatial
information and feature conjunction to determine the
decision-making in the parietal cortex. Thus, our findings
offer fundamental insights into the mental separation
of 2 perceptual grouping processing and its relation
to ultimate perceptual grouping-related decisions. We
anticipate that our methods and results will ignite
further investigations using time-resolved whole-brain
responses to understand other perceptual grouping
principles, which could also contribute to other sensory
perceptual grouping processing.
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