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A B S T R A C T   

Therapeutic antibodies are the largest class of biotherapeutics and have been successful in treating human 
diseases. However, the design and discovery of antibody drugs remains challenging and time-consuming. 
Recently, artificial intelligence technology has had an incredible impact on antibody design and discovery, 
resulting in significant advances in antibody discovery, optimization, and developability. This review summa-
rizes major machine learning (ML) methods and their applications for computational predictors of antibody 
structure and antigen interface/interaction, as well as the evaluation of antibody developability. Additionally, 
this review addresses the current status of ML-based therapeutic antibodies under preclinical and clinical phases. 
While many challenges remain, ML may offer a new therapeutic option for the future direction of fully 
computational antibody design.   

1. Introduction 

Monoclonal antibodies (mAbs) have become the leading products in 
the biopharmaceutical market over the past twenty years [1]. The mAbs 
have widely been used in treating human cancer, autoimmune diseases 
and infectious diseases [2–4]. The successful examples are 
anti-programmed death-1 (PD-1) and anti-cytotoxic T-lymphocy-
te-associated protein 4 (CTLA-4) mAbs that have significantly improved 
the survival of advanced non-small cell lung cancer (NSCLC) [5,6]. 
Additionally, multiple antibody-based therapeutic modalities, such as 
bispecific antibodies [7,8], antibody-drug conjugates [9,10], chimeric 
antigen receptors (CARs) [11,12], have shown potential in cancer 
treatment. However, there are many challenges in designing effective 
antibody drugs, including antibody discovery, optimization, develop-
ability, and antibody delivery to certain organs [13,14]. Traditional 
computational strategies have been used to optimize antibody affinity 
and bioactivity through energy calculation in combination with display 

library selection [15–17], but these approaches are often limited by the 
low reliability of free energy estimation and high experimental 
time-cost. Therefore, there is a need to develop novel in silico techniques 
for antibody discovery and engineering. 

Artificial intelligence (AI) techniques have already been widely used 
in various directions in biomedical developments[18–21]. Traditional 
machine learning (ML) and deep learning (DL) have played decisive 
roles in aiding to evaluate the efficacy of anti-PD-1 antibody immuno-
therapy for lymphoma [22], and 3D computational modeling and ML 
were used to provide accurate predictions for optimizing drug treat-
ments of different anti-angiogenic drugs on the treatment of solid tumors 
[23]. 

One of the major interests of AI in the biological pharmaceutical 
industry is the antibody design in the discovery, optimization, and 
developability evaluation, where the recent developments in ML and DL 
have opened up much broader avenues for therapeutic antibody design 
with implications for fully computational antibody design [24]. ML 
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models can predict antibody affinity and non-specific binding using the 
dataset of antibody libraries for high and low levels of affinity and 
non-specific binding, enabling the co-optimization of therapeutic anti-
body affinity and specificity to accelerate the development of highly 
potent antibody drugs[25]. 

This article introduces AI approaches commonly used in antibody 
design and critically reviews the major applications of AI in antibody 
design for discovery, optimization, and developability evaluation. In 
antibody design, important design parameters include paratope, 
epitope, affinity, and developability, all of which should be included and 
optimized simultaneously. In the following reviews, we analyze each 
parameter in individual sections to provide readers with a better 
understanding. 

2. Overview of machine learning methods for antibody design 

After decades of vigorous development, the meaning of AI has 
continued to expand, and it has become a general term encompassing 
artificial neural networks, ML, DL and other technologies [26–28]. 

Traditional ML primarily focuses on how to learn a prediction model. 
Data is typically represented as a set of features, which can take the form 
of continuous numerical values, discrete symbols, or other formats. 
These features are then fed into the prediction model, which outputs the 
prediction results. This type of ML can be categorized as shallow 
learning, as it does not involve feature learning, and its features are 
mainly extracted using artificial experience or feature conversion 
methods. The ML method can be roughly divided into three basic ele-
ments: model, learning criteria, and optimization algorithm. There are 
generally three main types of ML: supervised learning, semi-supervised 
learning, and unsupervised learning. Supervised learning generates a 
function through some existing input data and output data to map the 
input to the appropriate output. Unsupervised learning divides unla-
beled sample sets into several categories by using the internal relations 
between data. Semi-supervised learning uses both labeled and unlabeled 
data to generate appropriate functions. Support Vector Machine (SVM) 
[29] and Random Forest (RF) [30] are commonly used ML models. SVM 
is a generalized linear classifier that performs binary classification of 
data using supervised learning. Its decision boundary is a 
maximum-margin hyperplane for learning samples. For example, 
Daberdaku and Ferrari developed SVM for antibody interface prediction 
[31]. Their method outperformed other antigen-binding interface pre-
diction software including Paratome[32], Antibody i-Patch[33] and 
Parapred[34]. RF is an integrated algorithm (ensemble learning) that 
combines multiple weak classifiers to produce a final result that is voted 
or averaged. This approach results in high accuracy and generalization 
performance for the overall model. For example, Griffiths et al. used 
random forest predicting antibody properties[35]. The Random Forest 
Tree showed the best performance as compared to Logistic regression, 
K-Nearest Neighbor (KNN), SVM and Naïve Bayesian for membrane and 
soluble proteins, respectively. 

DL has been widely used in many scientific fields over the last 
decade. In 2020, there was an unprecedented breakthrough in DL due to 
the AlphaFold2 artificial intelligence system developed by Google’s 
DeepMind team, which achieved remarkable accuracy in the Interna-
tional Protein Structure Prediction Competition (CASP)[36]. Most of the 
prediction models produced were highly consistent with experimentally 
measured protein structure models, which has drawn worldwide 
attention and made AI technology highly anticipated by scientific 
researchers. 

Several common DL frameworks have been developed to facilitate 
the construction of DL models, such as Caffe [37], TensorFlow [38], 
Pytorch [39], Keras, MXNet [40], CNTK [41] (Table 1). 

Various deep neural network algorithms have been developed to 
process protein-related AI models (Fig. 1), and new algorithms are being 
proposed continuously. Common DL models include fully connected 
(FC) network structure, convolutional neural network (CNN), recurrent 

neural network (RNN), long short-term memory network (LSTM), 
autoencoder (AE), and graph neural network (GNN), among others. 
Each neural network has its own strengths and is suitable for different 
tasks. 

CNN is a multi-layer feedforward network that excels in image 
processing and recognition, especially for large images [42]. It consists 
of a convolutional layer, a pooling layer, and a fully connected layer. 
The convolution layer and pooling layer work together to form multiple 
convolution groups, extracting features layer by layer, and finally 
completing classification through several fully connected layers. The 
advantage of CNN is that it can extract dominant features from large 
dimension. For example， in order to get information from both 
sequential and spatial neighbors to understand more about the local 
environment of target amino acid residue in antibody-antigen complex, 
Lu et al. combined CNN and graph convolution networks (GCNs, see 
next paragraph) which describe special connections among contacting 
residues. Here CNN may provide global features hidden in local envi-
ronment. [43]. 

RNN is designed to describe the relationship between current output 
and previous input information. Each neuron performs the same task 
and is often used in machine translation, speech recognition, and text 
similarity tasks [44]. This feature fits amino acid sequence based pre-
diction well, as did in Parapred, a sequence-based probabilistic machine 
learning algorithm for paratope prediction [34]. Parapred used a 
recurrent neural network architecture to leverage features from both 
local residue neighbourhoods and across the entire sequence. 

LSTM is a temporal recurrent neural network that is suitable for 
processing and predicting important events with long intervals and de-
lays in time series, such as predicting diseases, click-through rates, and 
stocks [45]. Toshiaki et al. proposed a deep learning method based on 
long short-term memory with an attention mechanism to consider the 
characteristics of a whole antigen protein in addition to the target 
sequence. The proposed method achieves better accuracy compared 
with the conventional method in the experimental prediction of epitope 
regions using the data from the immune epitope database [46]. 

AE is mainly used for data compression by capturing the most critical 
factors that can represent the input information. It approximates the 
input content with the output content, preserving the essential charac-
teristics of the input [47]. Friedens et al. employed a deep learning 
approach utilizing variational autoencoders (VAEs) to model the un-
derlying process of B cell receptor (BCR) recombination and assume that 
the data generation follows a Gaussian mixture model (GMM) in latent 
space. This provides both a latent embedding and cluster labels that 
group similar sequences, thus enabling the discovery of a multitude of 
convergent, antigen-associated sequence patterns. Their work highlights 
to which extent convergence in antibody repertoires can occur and 
shows how deep learning can be applied for immunodiagnostics and 

Table1 
Comparison of different deep learning frameworks.  

Framework Release time and 
Developers 

Git star Underlying 
language 

Interface 
language 

Caffe 2014 
BVLC 

32900 + C+ + C+
+/Python/ 
Matlab 

TensorFlow 2015 
Google 

168000 
+

C+ +/Python C+
+/Python/ 
Java 

Pytorch 2017 
Facebook 

59400 + C/C+ +/ 
Python 

Python 

Keras 2015 
Google 

56300 + Python Python 

MXNet 2016 
DMLC 

20100 + C+ + C+
+/Python/R 

CNTK 2016 
Microsoft 

17200 + C+ + C+
+/Python/C/ 
Java  
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antibody discovery and engineering [48]. 
GNN is a framework for learning graph structure data. By formu-

lating certain strategies on the nodes and edges of the graph, GNN 
transforms graph structure data into a standard representation, which 
can be input into a variety of different neural networks for training [49]. 
It achieves excellent results in tasks such as node classification, edge 
information dissemination, and graph clustering. GNN is widely used in 
structure based protein interaction predictions, including 
antibody-antigen interaction[43]. It is natural to see GNN has been used 
in antibody sequence and structure co-design [50]. 

3. Antibody structure prediction and design 

Traditionally, homology modeling and energy-based methods have 
been the popular solutions for predicting protein structures. In protein 
structure design, one typically samples from known conformations or 
protein fragments, generates structures based on experimental data-
bases (such as PDB), mutates some residues to obtain a large number of 
candidate antibodies, and finally uses a scoring function to select the 
most promising protein or antibody structure. The protein folding 
principles learned from structures in the PDB database still guide the 
design process, and are useful for generating new protein structures by 
assembling continuous or discontinuous three-dimensional elements, as 
well as for the development and optimization of design energy functions 
used to rank candidate designs [51,52]. 

Recent advances in DL have led to the development of new methods 
for de novo protein design [53,54]. In 2022, Liu’s group combined 
SCUBA-driven stochastic dynamics (SD) simulations with the 
data-driven fixed-backbone amino acid sequence selection program 
ABACUS2 to design de novo proteins with new topological architectures 
and sequences that meet various design specifications [55]. In this 
model, a new statistical learning strategy is used, and the computational 
neural network is trained on more than 12,000 non-redundant natural 
PDB structures to guide the optimization of the main chain structure. 
The resulting high-dimensional correlation in the designable main chain 
structure can be described with high fidelity. Experimental validation of 
the crystal structures of nine de novo proteins demonstrated that four of 
them had novel, non-natural overall architectures. These results suggest 
that SCUBA+ABACUS2, alongside the state-of-the-art RosettaDesign 
method [56], is a useful method for de novo protein design. These ap-
proaches enable substantial expansion of the structural diversity and 
functionalities accessible to de novo protein design. More details on the 
development and typical design of de novo protein design can be found 
in a series of reviews by Baker’s group [57], DeGrado’s group[58], 
Woolfson’s group[59] and Kortemme’s group[60]. 

Antibody structure prediction is a special sub-area of protein 

structure prediction. Antibodies belong to the immunoglobulin protein 
superfamily (Igs). A basic immunoglobulin unit (Ig) monomer (150 kDa) 
has a similar "Y" shape, consisting of two light and two heavy chains 
joined by disulfide connections. Each light chain comprises two regions, 
each of which is made up of one variable region (VL) and one constant 
region (CL), while each heavy chain has one variable domain (VH) and 
three constant domains (CH1–3) [61]. The two antigen-binding frag-
ments (Fabs) are responsible for binding to the specific molecular target 
with high avidity, while the Fc region connects to immune receptors to 
activate effector actions. The variable sequences locate in the N-terminal 
half of the Fab arms and vary between antibodies to give them unique 
specificities. Each chain has three complementarity-determining region 
(CDR) loops that contain hypervariable sequences near the 
antigen-binding interface [62]. The length of these CDR loops has a 
significant impact on the nature of antigen binding. Among these six 
CDR regions, the CDR3 of the heavy chain has the largest diversity, with 
lengths varying from 4 to more than 20 residues. However, a survey of 
137 clinical-stage antibody therapeutics (CSTs) has shown that CST 
CDRH3 loops had a shorter median length compared to that of human 
VdH Ig sequences [63] (Fig. 2). 

Computational antibody design relies on accurate structural models 
of both the antibody and target antigen [64] [65]. However, predicting 
the structure of antibody CDRs, especially CDR-H3, remains challenging 
due to their highly diverse conformations. Several ab initio protocols, 
such as OptCDR[66], OptMAVEn[67], RosettaAntibodyDesign (RAbD) 
[68] and AbDesign[69], have been developed to design novel paratopes 
through four sequential steps: CDR generation, structure modelling, 
antibody-antigen docking, and binding energy evaluation. The first step 
is always the redesign of CDRs to enhance antibody stability and affinity 
by optimizing conformational and free energy changes in specific resi-
dues. RosettaAntibodyDesign (RAbD) can perform de novo antibody 
design from a nonbinding antibody and affinity maturation of an 
existing antibody [68]. It classifies the antibody into regions, including 
framework, the five canonical loops, and the HCDR3 loop, following the 
methodology in RAbD [70]. Recent progress using libraries of antibody 
loop conformations from the PDB has shown promise in creating stable 
antibodies with defined loop structure. Baran et al. developed a set of 
algorithms based on the skeleton structure and conservative sequence 
information of natural antibodies, which can design antibody sequences 
different from natural antibody sequences but with similar affinity and 
stability when combined with the Rosetta platform and experimental 
methods [71]. 

The exceptional performance of several leading AI algorithms such as 
AlphaFold2 or RoseTTAFold in predicting protein structures provides 
new approaches for generating protein structures [72–75]. However, 
accurately modeling the structure of antibody variable regions, 

Fig. 1. Schematic diagram showing various neural network architectures.  
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particularly CDR-H3, remains a challenge due to highly diverged se-
quences and a lack of evolution pattern. Recent progress has proposed 
some antibody design protocols to address these challenges, including 
DeepH3[76], DeepAb[77], ABlooper [78] and Nanonet[79], demon-
strating the power of ML techniques in antibody structural predictions. 

DeepH3 is a deep residual neural network trained to identify near- 
native CDR-H3 loops [76]. The training dataset for DeepH3 was 
extracted from SAbDab [80]. The output of DeepH3 was converted to 
geometric potentials and used to score poses generated by RAbD [81]. 
Compared to the standard Rosetta energy function, DeepH3 improved 
the average RMSD of prediction by 32.1% (1.4 Å). This work also 
revealed that inter-residue orientations are more effective discrimina-
tors for scoring CDR-H3 structures than distances. 

Although DeepH3 can predict CDR-H3 with high accuracy， 
rebuilding the entire region of the antibody variable is the ultimate goal. 
DeepSCAb (deep side-chain antibody) is a deep neural network that 
focuses on predicting both the backbone and side-chain conformations 
of an antibody variable fragment simultaneously and employs Rosetta to 
predict the full Fv structure [82]. The network comprises two modules: 
an inter-residue module for predicting backbone geometries like 

DeepH3 and a rotamer module for predicting side-chain dihedrals. The 
network required the antibody sequence as the input. After the input 
passes through two ResNet modules, the resulting tensors are converted 
to pairwise probability distributions over Cβ distance, d, the orientation 
dihedrals ω and θ, and the planar angle ϕ. The rotamer module obtains 
features from the inter-residue module, updates the d, ω, θ, and ϕ out-
puts, and adds them back into the inter-residue module. These rotamer 
probability distributions generated by DeepSCAb were utilized with 
Rosetta for structure realization and side-chain packing to predict full Fv 
structure. This method proves to be robust when the backbone is per-
turbed or deviates from the crystal structure. 

As mentioned above, DeepSCAb, and DeepH3 use inter-residue 
geometric potentials and adopt the energy minimization method to 
produce the final structure. In contrast, AbLooper utilizes end-to-end 
Equivariant Graph Neural Networks to predict CDR (all loops) struc-
tures [83]. Antibodies extracted from SAbDab were encoded into 
41-dimensional vectors, including amino acid type, atom type, and 
attribution of the variable region. AbLooper employed L1-loss, which 
comprises five terms, distances about the true and predicted inter-atom 
to encourage the conservation of distances between neighboring atoms 
in the backbone chain. The output from the five networks was then 
averaged to obtain a final prediction. The advantage of AbLooper is its 
ability to produce antibody models with high accuracy and less 
time-consuming. 

Pre-trained language model was demonstrated to be very effective 
for inference of full atomic-level protein structure[84]. Therefore, 
several antibody structure prediction methods have been developed in 
combination with antibody pre-trained language models. DeepAb is a 
method for reconstructing the entire antibody variable region using 
antibody pre-trained language model with recurrent neural network 
[77]. The input immunoglobulin sequences are represented using an 
RNN encoder-decoder model consisting of two LSTMs trained on a set of 
118,386 paired heavy and light chain sequences from the observed 
antibody space (OAS) [85]. The general structure prediction architec-
ture of DeepAb was based on DeepH3 with the addition of interpretable 
attention layers. On benchmarks of challenging, therapeutically 
important targets, DeepAb consistently generated more precise struc-
tures compared to alternatives based on grafting. Additionally, this 
approach offers an explanation for predictions of a CDR H3 loop and 
reveals several interactions with adjacent residues considered crucial for 
the structure. Inspired by the success of the DeepAb, Ruffolo developed 
IgFold for predicting antibody structures, using a pre-trained language 
model trained on 558 M natural antibody sequences followed by graph 
networks that directly predict backbone atom coordinates [86]. The 
method incorporates AntiBERTy, a transformer language model that 
generates embeddings for structure prediction [87]. Using these 
sequence embeddings, IgFold employs a series of transformer layers to 
directly predict atomic coordinates for protein backbone atoms. For 
each residue, IgFold also provides an estimate of prediction quality. The 
refinement of predictions and addition of side chains is done by Rosetta. 
This method stands out for its high speed, accuracy, and support for 
nanobody modeling. 

Nanobodies (Nb) have gained increasing attention as an important 
and popular therapeutic format [88]. However, due to the lack of a 
second immunoglobulin chain, the prediction of nanobodies differs 
slightly from paired antibodies. NanoNet is designed to directly produce 
the 3D coordinates of the backbone and Cβ atoms of the entire VH 
domain of nanobodies from a given sequence [89]. This method employs 
a CNN consisting of two 1D Residual Neural Networks. The variable 
domain of the training set, which consists of ~ 2,000 heavy chains of 
mAbs and nanobodies structures, is aligned using the MultiProt algo-
rithm with order-dependence and a distance threshold of 1.4 Å to enable 
the network to directly learn the VH domain 3D structure [90]. Since the 
structure prediction is accomplished within a single CNN network 
without structure relaxation, NanoNet can produce an Nb structure in 
just a few milliseconds, enabling accurate modeling of entire antibody 

Fig. 2. Comparison of the length distributions of CDRH3 (A) and CDRL3 (B) in 
137 clinical-stage antibody therapeutics (CSTs in red), 105,458 non-redundant 
human VdH Ig-seq CDR3s (in blue), and 551,193 non-redundant human VdH 
Ig-seq heavy chains (in green) 
Figures are reproduced from reference [63]，Copyright (2019) National 
Academy of Sciences. 
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repertoires from Next-generation sequencing experiments. 
Brennan developed ImmuneBuilder[91] to predict the structures of 

immune proteins with deep-learning method. ImmuneBuilder contained 
three deep learning models: ABodyBuilder2, NanoBodyBuilder2 and 
TCRBuilder2 which were trained to predict the structure of antibodies, 
nanobodies and T-Cell receptors. The ABodyBuilder2 was developed 
based on AlphaFold-Multimer and composed of four deep-learning 
models trained independently to predict antibody structures. The final 
prediction was the closest one to the average of the four predicted 
structures and utilized OpenMM to obtain the refined antibody struc-
ture. On a benchmark of 34 recently solved antibodies, ABodyBuilder2 
predicted CDR-H3 loops with lower RMSD than ABlooper and IgFold. 

In recent years, there has been growing interest in co-designs of 
antibody sequence and structure. Generative ML has emerged as a major 
driver in the computational design of antigen-specific mAbs. For 
instance, a lattice-based antibody-antigen binding simulation frame-
work incorporates various physiological antibody-binding parameters. 
This deep generative model, trained exclusively on antibody sequence 
data, can be used to design three-dimensional conformational epitope- 
specific antibodies that match or even surpass the training dataset in 
terms of affinity and developability parameter value variety [92]. 

4. Antibody-antigen interface/interaction prediction 

Predicting the antibody-antigen binding interface and binding af-
finity are crucial challenges in ML for antibody-antigen interactions. 
These tasks are also essential in antibody design, as they allow for the 
prediction of the paratope, epitope, and paratope-epitope interactions 
[93]. 

4.1. Antigen epitope prediction 

Antigen epitope prediction can be divided into two types: those done 
with the presence of antibodies and those done without. The former 
aims to identify the most probable epitopes of the antigen, while the 
latter aims to identify the epitope that a known antibody will bind to. 
Early epitope prediction methods used propensity scales like BcePred 
[94], ABCPred[95], and iBCE-EL[96] to infer residues of contiguous 
epitopes based on a few hundred linear epitopes. iBCE-EL an ensemble 
method that combined extremely randomized tree and gradient boost-
ing algorithms, used a combination of amino acid composition and 
physicochemical properties as input features to predict the class and 
probability values of a given peptide. SEMA [97], an AI model, used a 
transfer learning approach to predict epitopes based on the primary 
antigen sequence and tertiary structure. It fine-tuned a pretrained pro-
tein language model, ESM-1v, and an inverse folding model, ESM-IF1, to 
quantitatively predict antibody-antigen interaction features and distin-
guish between epitope and non-epitope residues. 

Linear epitopes account for about 10% of B-cell epitopes, while the 
remaining 90% are non-contiguous sequences and conformational [98]. 
As a result, some prediction methods, such as DiscoTope[99], SEPPA 
[100], and PEPITO[101], are trained on antibody-antigen structures and 
then identify the antigen structures using traditional geometric features 
like the number of neighbors according to different distance thresholds. 
BCEs, a DL prediction model [102], employed two parallel modules to 
extract features (local and global) from the antigen and identify B-cell 
epitopes. The local features of the target residue were captured using 
Graph Convolutional Networks (GCNs), while global information from 
the entire antigen sequence was extracted using Attention-Based Bidi-
rectional Long Short-Term Memory (Att-BLSTM) networks. This method 
declares incorporating the global features leads to improved prediction 
of BCEs. 

It is now widely accepted that epitopes of antigens can be located in 
nearly any surface accessible region recognized by an antibody [103]. 
Thus, an epitope can become functional or vice versa depending on the 
context of the antibody (a paratope). EpiPred [104] uses a combination 

of conformational matching of antibody-antigen structures and a spe-
cific antibody-antigen score to identify the epitope region. DLAB-Re 
[105] employs CNNs to improve the ranking of docks from the ZDock 
docking algorithm and, in combination with docking scores generated 
by ZDock, to predict antibody-antigen binding. 

4.2. Antibody Paratope Prediction 

The paratope, which is the region of the antibody that binds to the 
antigen, can improve the accuracy of antibody-antigen structure pre-
diction and increase the antibody affinity by targeting mutations on 
paratope residues. Most paratope residues are located within the CDR 
loops and are spatially close to each other. Unlike epitopes, each CDR’s 
paratope residue has its own preferential amino acid usage [106]. Par-
apred is a DL model that incorporates both local residue neighborhood 
information and overall sequence information [34]. It requires only a 
stretch of the amino acid sequence corresponding to a hypervariable 
region as input, without any information regarding the antigen. Para-
matome identifies consensus antigen-binding regions through structural 
alignments [32]. The server applies structural consensus regions from 
multiple structure alignments of a reference set of antibody-antigen 
complexes to identify antibody binding regions. AG-Fast-Parapred ad-
dresses Parapred’s limitations using self-attention convolutions [107]. 
This method significantly reduces computation time and moderately 
improves accuracy (AUC = 0.90) compared to Parapred (AUC = 0.88). 
PECAN is a unified DL-based framework that predicts binding interfaces 
on both antibodies and antigens [108]. It employs graph convolutions to 
aggregate properties across local regions in a protein, transfer learning 
to leverage this data as a prior for the specific case of antibody-antigen 
interactions, and an attention layer to explicitly encode the context of 
the partner. It demonstrated better performance in predicting epitopes 
by the paratope prediction networks compared to networks trained 
solely for epitope prediction. EPMP is a highly asymmetrical neural 
network for paratope (Para-EPMP) and epitope (Epi-EPMP) predictors 
[109]. Para-EPMP was designed to exploit paratope sequence as input 
features and followed by a graph structure to predict the paratope. 
Epi-EPMP was purely structural, and used distinct neural message 
passing architectures that are geared towards the specific aspects of 
paratope and epitope prediction and obtains significant improvements 
on both tasks. This method adopts separate neural message passing ar-
chitectures specifically designed for paratope and epitope prediction 
and demonstrates improvements in both tasks. 

4.3. Prediction of antibody-antigen interaction and binding affinity 

AI techniques, such as CNNs and GNNs, have found broad applica-
tions in various fields such as protein structure prediction, protein 
function prediction, genetic engineering, systems biology, and drug 
design. In this context, we will focus on the application of AI in protein- 
protein docking and de novo protein design. Protein docking methods 
aim to predict the overall quaternary structure of a protein complex 
from the tertiary structure of individual chains. Despite considerable 
progress in ab initio protein docking, selecting near-native models out of 
a large number of decoys remains a challenging task [110]. Reau et al. 
have developed DeepRank, which is a user-friendly, open-source, and 
configurable DL framework implemented in Python3 [111] (Fig. 3). 
DeepRank utilizes a customizable 3D CNN pipeline to learn interaction 
patterns specific to protein-protein interactions (PPIs) by mapping 
atomic and residue-level features to 3D grids. However, CNNs have 
limitations in processing data that are not in Euclidean space with a very 
regular structure, which is the case with PPIs. DeepRank-GNN, which 
utilizes graph representations and graph convolutions, was proposed by 
Reau et al. as a solution to this issue [112]. DeepRank-GNN has been 
shown to outperform five different software programs used to assess 
docking conformations, including DeepRank, DOVE from CNN, iScore, 
and the classical scoring function HADDOCK, with an AUC value of 0.68, 

G. Bai et al.                                                                                                                                                                                                                                      



Seminars in Cancer Biology 95 (2023) 13–24

18

which is the highest accuracy achieved [110]. 
The strength of interactions between an antibody and an antigen is 

referred to as the antibody binding affinity, which is an important factor 
in antibody research. In the past, traditional in-silico methods have been 
used to predict the binding affinity of antibody-antigen interactions 
based on the atom’s chemical properties, such as polarity and charge 
[113]. However, with the advent of DL, new approaches to predicting 
antibody binding affinity have been developed and successfully applied 
to antibody screening. High-throughput sequencing and display tech-
nologies have enabled the generation of sufficient sequence-only data to 
train DL models. With these antibody sequences, DL models can explore 
a wide sequence space and generate novel and improved antibody 
sequences. 

Ens-Grad is an ML method developed to design complementarity 
determining regions of antibodies with superior target affinities 
compared to candidates obtained from phage display panning experi-
ments [114]. This two-stage method models antibody affinity with an 
ensemble of neural networks trained with target phage display se-
quences. It then optimizes the sequence using gradient-based optimi-
zation. This approach allows Ens-Grad to generate sequences with 
greater enrichment than the training dataset, suggesting that the neural 
network model can provide efficient strategies for exploring promising 
subsets of sequence space for antibody design. In another study, Koi-
chiro Saka et al. employed a long short-term memory network (LSTM) to 
generate and prioritize antibodies for efficiently discovering antibody 
sequences with higher affinity with kynurenine [115]. They enriched 
the dataset of kynurenine binding sequences through phage display 
panning using a kynurenine-binding oriented human synthetic Fab li-
brary. The generated sequences exhibited over 1800-fold higher affinity 
than that of the parental clone. 

On the other hand, Kang and colleagues proposed a different 
approach for antibody maturation using GNNs and sequence data from 
the AB-Bind dataset, in contrast to methods utilizing high-throughput 
sequencing data [116,117]. The GNN-based modeling strategies inves-
tigated the contributions of interacting contacts (ICs) and 
non-interacting surfaces (NIS), as well as antibody-based features in 

predicting affinity. Different modeling designs were employed using 
Hag-Net GNN, resulting in satisfactory classification and regression 
performance in the AB-Bind dataset. 

5. Antibody developability evaluation 

Antibody drugs or candidates used for treatment must endure 
various challenges across production, transportation, storage, and 
administration. Consequently, comprehensive evaluation is a vital 
aspect of antibody development. The assessment of antibody develop-
ability generally follows a linear process that varies depending on the 
stage of antibody discovery. It encompasses numerous factors such as 
antibody solubility and aggregation, thermal unfolding, non-specific 
protein-protein interactions, charge heterogeneity, immunogenicity, 
pharmacokinetics, and toxicity [118]. In comparison to experimental 
methods, evaluation approaches powered by AI and machine learning 
offer the advantages of speed and cost-effectiveness. Here are several 
examples of developability evaluation driven by AI and ML. 

One study by Hashemi et al. utilized ML modeling to predict the 
solubility of a recombinant antibody fragment in four different E. coli 
strains. The study optimized the soluble production of a single-chain 
variable fragment (scFv) antibody by modeling it as a function of post- 
induction temperature, post-induction time, cell density of induction 
time, and inducer concentration. The predicted values obtained using an 
artificial neural network (ANN) were closer to the experimental results 
than those obtained using response surface methodology (RSM) [119]. 

In another study, molecular dynamics simulation and ML were 
combined to predict antibody aggregation and viscosity. The study used 
features obtained from molecular dynamics simulations of the full- 
length antibody and sequences for ML model construction. The classi-
fication model’s accuracy and the area under precision-recall curve in 
validation tests were 0.86 and 0.70, respectively. The best model was a 
logistic regression model with two features: the number of hydrophobic 
residues on the light chain variable region and net charges on the light 
chain variable region [120]. An earlier study also suggested that high 
viscosity is correlated with more hydrophilic and fewer hydrophobic 

Fig. 3. Overview of the DeepRank-CNN(top) and DeepRank-GNN(bottom) frameworks.  

G. Bai et al.                                                                                                                                                                                                                                      



Seminars in Cancer Biology 95 (2023) 13–24

19

residues in the Fv region [121]. 
Current AI-driven immunogenicity predictions often involve pre-

dicting antibody binding to B cell or T cell epitopes. Timothy P. Riley 
et al. developed a peptide/MHC structure simulation program and a 
peptide database containing immunogenic and non-immunogenic pep-
tides. They constructed an artificial neural network that utilizes this 
information to predict the immunogenicity of HLA-A2 binding [122]. 
This neural network model takes the three-dimensional model’s struc-
ture and energy characteristics as inputs and generates a score between 
0 and 1, indicating the confidence level in immunogenicity. Similarly, 
Karina Winterling et al. proposed a method to identify highly immu-
nogenic T cell epitopes by simulating changes in the amino acid 
sequence through computer modeling. This approach enables the pre-
diction and avoidance of recombinant FVIII (rFVIII) immunogenicity 
[123]. Alan M. Luu et al. demonstrated a convolutional neural network 
model that incorporates deep metric learning and multimodal learning. 
This model can identify the T cell receptor (TCR) associated with a given 
epitope from the TCR library and visualize the binding epitope [124]. 
Currently, the available dataset on TCR-ligands is limited. Dan Hudson 
aims to address the challenge of predicting TCR antigen specificity by 
fostering interdisciplinary collaborations to combine experimental data 
with AI and machine learning techniques [125]. The establishment of a 
reliable map linking TCRs to their homologous antigens through such 
efforts will undoubtedly greatly enhance computer-based immunoge-
nicity prediction and advance the field. 

When it comes to pharmacokinetic evaluation, ML offers evident 
advantages in analyzing diverse data types and large datasets [126]. By 
integrating traditional experimental models with machine learning 
methods, standardized datasets can be established, leading to reduced 
uncertainty, failure rates, and experimental costs. Moreover, this 
approach supports the ongoing efforts to minimize, enhance, and 
replace animal experiments. Zhou et al. demonstrated the feasibility of 
ML in constructing pharmacokinetic/pharmacodynamic (PK/PD) 
models [127]. They developed a PK/PD GRNN model with 6 input 
neurons, 23 hidden layer neurons, and one output neuron for Zingiberis 
Rhizoma. This model successfully investigated the impact of the con-
centration of active components from Zingiberis Rhizoma and Zingiberis 
Rhizoma Carbonisata on the pharmacodynamics. Hop et al. conducted a 
study showing that the GCN model exhibited excellent predictive per-
formance for properties such as pKa, clearance, and plasma protein 
binding [128]. Bies et al. employed the genetic algorithm (GA) method 
to construct a PK model and compared the modeling performance of GA 
with manual step-by-step selection using PK data from seven drugs. The 
results demonstrated that GA provided nearly equivalent or superior 
model fitting for pharmacokinetic data [129]. This study also represents 
an exploration of machine learning techniques in the field of population 
pharmacokinetics (PPK). 

6. Therapeutic antibodies discovery and optimization 

AI methods have been used to learn the coding and genetic sequences 
of all known proteins, and generate different structures and functions for 
proteins with specified therapeutic functions. However, creating func-
tional de novo proteins/antibodies that can be customized to achieve the 
desired function requires challenging protein design approaches. Such 
"purposefully-functional" de novo protein design requires a high level of 
control over the final design’s shape, size, and function, as well as prior 
knowledge or assumptions about the structure of the targeted functional 
site. While the de novo design of functional proteins remains an elusive 
landmark in the field, the combination of structural design, ML, and 
experiments has achieved several successes in therapeutic antibody 
discovery and optimization. During this process, mutation libraries, flow 
cytometry, and deep sequencing are usually used to generate data for 
training neural networks. In this section, we review AI-driven antibodies 
that have been described in peer-reviewed articles and conference ab-
stracts. The details of these antibodies are described below and 

summarized in Table 2. 
Cetuximab is a mAb approved for treating patients with colorectal 

cancer (mCRC). However, acquired resistance to cetuximab is mediated 
by mutations in the cetuximab epitope in the epidermal growth factor 
receptor (EGFR) ectodomain, hindering its clinical application. Zhuang 
et al. [128] successfully applied a structure-guided and phage-assisted 
evolution (SGAPAE) approach based on the Rosetta DL platform to 
direct the evolution of cetuximab [130]. They reversed acquired drug 
resistance conferred by EGFR ECD mutations in colorectal cancer. 

Mason et al. used DL to predict antigen specificity and identified 
optimized antibody variants from a massively diverse space of antibody 
sequences. In this study, deep-sequenced libraries of the therapeutic 
antibody trastuzumab (consisting of approximately 1 × 104 variants) 
were screened for specificity to HER2, and used as a training set to 
optimize a neural network. This network was then used to screen a 
computational library of approximately 1 × 108 trastuzumab variants 
and predict the HER2-specific subset (consisting of approximately 1 ×

106 variants). Experimental testing of 30 randomly selected variants 
verified the model’s accuracy [25]. 

Additionally, Sharrol Bachas et al. developed the Activity-specific 
Cell-Enrichment (ACE) assay, which generates high-throughput mea-
surements of trastuzumab binding affinities with HER2 for the training 
of deep contextual language models [131]. These trained models can 
accurately predict binding affinities of unseen antibody variants, 
enabling virtual screenings and augmenting the accessible sequence 
space by orders of magnitude. To improve developability and immu-
nogenicity properties, a genetic algorithm was developed to efficiently 
identify sequences with both strong binding affinity and high 
naturalness. 

Makowski and colleagues developed an ML model to optimize the 
affinity and specificity of antibodies. Their model employed a projector 
network, which generated a one-dimensional prediction for each protein 
sequence, and a final prediction layer used to predict the affinity and 
specificity of the antibody [132]. The projector network used Linear 
Discriminant Analysis function, and the network was trained using the 
Sparse Categorical Cross-entropy loss function and the ADAM optimizer. 
The dataset used to train the network was generated by sorting and deep 
sequencing a mutation antibody library that the researchers 
constructed. 

The researchers optimized the affinity and specificity of Emibetu-
zumab, an antibody that inhibits the MET signal pathway activation of 
both HGF-dependent and HGF-independent tumors by blocking the 
binding of MET and HGF [133]. Emibetuzumab is currently in phase II 
clinical trials for non-small cell lung cancer treatment [134]. 

In a similar vein, Jonathan Parkinson built an AI model called RESP 
to identify antibodies with high affinity and increased the KD value of 
Atezolizumab (Tecentriq), an antibody that targets PD -L1, by 17 times 
through RESPs [135]. The RESP model consists of four parts: an 
autoencoder model trained on over 3 million human B-cell receptor 
(BCR) sequences to simulate trends in fluorescence-activated cell sorting 
(FACS) data more accurately; a yeast display library of Atezolizumab 
mutants to provide affinity data and protein sequences; a Bayesian 
network using ordinal regression to predict the likelihood of a given 
sequence having a low Koff value; and a modified simulated annealing 
algorithm that developed a directed evolution algorithm, allowing the 
RESP model to explore sequences with high affinity that did not exist in 
the mutation library. 

AU-007, developed by Biolojic, is likely the first computationally 
designed human antibody to enter clinical development. It binds to the 
CD25-binding portion on IL-2, blocking the Treg expansion auto-
inhibitory loop and preventing IL-2 binding to the trimeric receptor. 
This indicates its unique therapeutic profile and potential as a novel 
cancer treatment [136]. The Biolojic platform utilizes ML algorithms 
trained by antigen-antibody pairs and billions of human somatic 
hypermutations to find a good template and predict mutation sites for 
improving affinity, humanness, stability, and developability. 
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Lim, Adler, and Johnson utilized microfluidics, yeast display, and 
deep sequencing to generate a panel of binder and non-binder antibody 
sequences to cancer immunotherapy targets PD-1 and CTLA-4. Then 
they trained convolutional neural network models to classify binders 
and non-binders using encoded antibody images. Their generative 
adversarial network models generated variable length CDR3 sequences 
resembling real sequences [137]. 

AbCellera Biologics Inc. and Eli Lilly and Company developed 
Bamlanivimab, a SARS-Cov-2 neutralizing antibody helped by ML based 
paired-chain antibody sequences prediction to select antibody gene from 
Next-generation sequencing (NGS) of B-cell, leading to finding of 440 
paired antibodies. [138]. 

IBIO-101 is an antibody developed by IBIO Inc using its AI model 
meso-scale engineered molecules (MEMs) and ML algorithms combined 
with empirical analysis of protein structure. MEMs use an engineered 
scaffold to preserve natural conformation and motion present in the 
target protein, leading to the discovery of epitope-selective antibodies. 
IBIO-101 has been shown to bind CD25 on Tregs cells without blocking 
the IL-2 signaling pathway associated with Teffs cells, thereby depleting 
immunosuppressive Treg cells and stimulating anti-tumor immunity. 
This antibody is currently in preclinical studies. 

Antibody-GAN, developed by Tileli Amimeur et al., is a platform for 
designing new antibodies using modified Wassertein-GANs trained with 
over 400,000 human antibody sequences to generate single-chain or 
double-chain antibody sequences [139]. Transfer learning can be used 
to encode key attributes of interest into the library, which can be used to 
find antibodies with interesting characteristics. This model was vali-
dated by the discovery of multiple candidate antibodies that specifically 

bind to the SARS-CoV-2 spike protein. 
Omburtamab, a monoclonal antibody known as 8H9, is currently 

under development as a therapeutic agent targeting B7-H3-expressing 
cells. It is intended for the treatment of embryonal tumors, carci-
nomas, sarcomas, and brain tumors. Naxitamab, a humanized anti-GD2 
monoclonal antibody referred to as 3F8, is also in development. It is 
being explored as a potential treatment for neuroblastoma, osteosar-
coma, and other GD2-positive cancers. Cheung and Zhao et al. intro-
duced a platform that utilizes in silico modeling for affinity maturation 
and epitope mapping of both 8H9 and 3F8 [15,17]. The affinity-matured 
humanized versions of 3F8 and 8H9 exhibited improved in vitro 
antibody-dependent cell-mediated cytotoxicity (ADCC) and demon-
strated high tumor uptake in mouse xenograft models when tested in 
vivo. 

7. Challenges and future perspectives 

Antibody therapy has emerged as an effective approach for cancer 
treatment, with the discovery of therapeutic antibodies relying on ani-
mal immunization, in vitro display methodologies (such as phage library 
display), and helped by AI [142]. The AI-driven antibody discovery 
model offers numerous advantages over traditional methods. Firstly, it 
allows for rapid identification of antibody sequences that bind to the 
target protein. Secondly, this approach has lower requirements for 
experimental instruments, making it more convenient to build or 
expand. Thirdly, high-throughput screening can be performed more 
efficiently and cost-effectively. 

Despite the benefits of AI-driven antibody discovery, there are still 

Table 2 
Summary for AI-driven therapeutic antibodies.   

Description Method Status References 

Antibody 
discovery 
platform 

Bamlanivimab, an antibody neutralizes SARS-Cov-2 ML based paired-chain antibody 
sequences prediction 

Approved by FDA with emergency use 
authorization (EUA) on 9 November 
2020, and revoked by FDA on April 16, 
2021 

[138] 

IBIO-101, an antibody binds CD25 on Tregs cells without 
blocking the IL-2 signaling pathway associated with Teffs 
cells, thereby depleting immunosuppressive Treg cells and 
stimulating anti-tumor immunity 

Meso-scale engineered molecules 
(MEMs) AI model 

Pre-clinical studies U.S. Patent No. 
11,545,238 

Several antibodies bind to SARS-CoV-2 spike proteins Antibody-GAN, trained by 4 
million light- and heavy-chain 
human antibody sequence 

Pre-clinical studies [139] 

AU-007, an antibody which binds the CD25-binding 
portion on IL-2, preventing the binding of IL-2 to the 
trimeric receptor while simultaneously blocking the Treg 
expansion autoinhibitory loop 

AI platform trained with antigen- 
antibody pairs and billions of 
human somatic hypermutations 

Phase 1/2 [136],[140] 

Generate variable length CDR3 sequences that resemble 
real sequences 

The adversarial network models 
trained by the data which 
generated by microfluidics, yeast 
display, and deep sequencing 

Pre-clinical studies [137] 

Antibody 
optimization 
platform 

Optimize Cetuximab to avoid the drug resistance conferred 
by EGFR ECD mutations 

Combined Rosetta deep learning 
platform with structure-guided 
and phage-assisted evolution 
(SGAPAE) 

Pre-clinical studies [130] 

Optimize Emibetuzumab with the affinity and specificity Mechanical learning neural 
network based on mutation library  

[132] 

Optimize Atezolizumab with 17 times KD increasement RESP model  [135] 
Identify optimized trastuzumab variants Neural network model trained by 

mutation library data  
[25] 

Seeking for sequences with high affinity and naturalness of 
trastuzumab variants by screening in silico 

Combined a deep contextual 
language model trained by 
Activity-specific Cell-Enrichment 
(ACE) assay data with a genetic 
algorithm  

[131] 

Optimize affinity of Omburtamab, an anti-CD276 antibody Docking simulations by ZDOCK 
and homology modeling by 
MODELLER  

[17,141] 

Optimize affinity of Naxitamab, an anti-GD2 antibody Docking simulations by 
ZDOCK and homology 
modeling by MODELLER 

Granted as Orphan Drug Designation 
(ODD) and Rare Pediatric Disease 
Designation (RPDD). 

[15]  
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challenges to overcome. To train accurate and effective models, a large 
amount of high-quality data is required, which can only be obtained 
through biological, physical, or chemical experiments [13]. However, 
data standardization has not been established, and collating and clean-
ing the published data for AI training can be time-consuming. Moreover, 
with the increasing demand for accurate protein simulation or molecular 
docking, the hash rate of computers may become a core challenge in the 
future. 

Currently, efforts are underway to standardize data and establish 
open-source databases, which could propel the development of antibody 
drugs to a new level. In the future, precision medicine AI models for 
patients with drug resistance gene mutations may become a reality. An 
efficient AI-driven antibody discovery model could also serve as a potent 
weapon against large-scale epidemic diseases, allowing for rapid drug 
discovery and efficient control of such diseases. 

Recently, OpenAI introduced multimodal large language model 
(LLM) GPT-4 which promoted us to look at the future of application of 
Natural Language Processing (NLP) methods in antibody design. 
Embedding antibody sequences in textual representation into vector 
space (vector representation) allows an implicit account for intrinsic 
biophysical properties[143]. Deep learning shows great potential in 
learning unobserved patterns from amino acid sequences that are rele-
vant to their structure and function. currently, the application of spec-
ified NLP models like ESMfold [84]. AntiBERTy [87] has already shown 
good potential in antibody related models. However, it is still need to see 
if the GPT-4 like LLM or antibody specified models are better suitable for 
actual antibody design. 

8. Conclusion 

Although the application of AI in antibody development is still in its 
early stages, there have been significant successes in general protein 
modeling, and the increasing number of antibody models indicates a 
strong trend towards using AI to improve the developability of bio-
therapeutics, reduce costs, and expand access [144]. In addition to tools 
with specific structural predictions, such as DeepH3 and DeepAb, more 
general platforms for antibody design, humanization, and humanness 
evaluation based on DL have emerged [145]. In the near future, 
AI-powered antibody prediction and design tools will have even more 
applications in cancer therapy and will continue to advance the field. 
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