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A B S T R A C T   

In this study, we analyse the inventory management strategy for perishables, where customer demands are 
assumed to arrive continuously and modelled by a drifted Brownian motion. We apply the well-known (s, S) 
continuous review inventory policy; in this policy, an order is placed to increase the inventory level to S as soon 
as it falls below s. Benefitted from highly developed transportation and logistics industries, it is reasonable to 
employ the zero-leadtime assumption in our model. In addition, a buyback contract is granted for the retailer to 
recover the loss from perishing. We illustrate the sales cycle through Markov renewal approach and derive 
closed-form formulas for long-run profit rates. To evaluate the optimal ordering policy which maximises the 
profit rate of the retailer, we first analyse the condition for accepting backorder and derive the optimal backorder 
level s as a function of S, and then solve for the global optimal (s, S) policy through numerical studies. Moreover, 
we develop a heuristic approach to approximate the optimal policy. Sensitivity analyses are conducted to reveal 
the effect of different parameters on system behaviour. The conclusions provide managerial insights for 
formulating inventory policies for perishables under Brownian demand.   

1. Introduction 

Inventory management under uncertain market environments plays 
a vital role in the performance of any firm. Nowadays, modern digital 
systems enable retailers to monitor their inventory in real-time. For a 
more balanced supply and demand, continuous review (s, S) policy is 
widely employed in real-world applications. In an (s, S) policy, when the 
inventory level reaches a lower bound s, the retailer immediately places 
an order to increase the inventory to a maximum level S. Generally, 
shops that are well stocked hold higher attraction and competitiveness, 
thus it is feasible to choose a positive s. However, in this study, we focus 
on the inventory control problem for perishable products, which have 
limited lifetimes. Representative examples of perishable products 
include food, drinks, and medical products, they are necessities for 
people and play an important role in the market. Expired products lose 
their usability and are no longer qualified for sale. A few ‘special 
products’, such as blood, also suffer from limited lifetimes. According to 
a nationwide survey on blood collection and utilisation conducted in the 
USA, 5.8% of all blood components processed for transfusion were 
outdated in 2004 (Whitaker and Sullivan, 2005). Due to such limited 

product lifetimes, an ineffective inventory management can result in 
high system costs. Usually, the expiration date must be labelled on the 
body of a product. As a result, in the retailing industry and specifically in 
supermarkets, it is frequently observed that, when choosing dairy or 
bakery products, customers are more inclined to select the latest item on 
the shelf because these products are considered to be fresher. Ideally, it 
is unwise to choose a positive lower bound s for perishable products, 
because when two batches of products are on sale simultaneously, the 
earlier ones are unlikely to be selected, which leads to an increase in 
perishing risk. When s equals zero, the retailer will immediately 
replenish when all the products are sold or perished. Moreover, a 
negative s indicates that backordering is allowed. Typically, there exists 
a constant cost for each order regardless of the costs associated with 
order quantity, such as the transportation and labour costs. When the 
inventory capacity is limited, retailers tend to backorder some demands 
to lengthen the ordering interval. 

The inventory of fluid products is a highly realistic problem with a 
wide range of applications, such as reservoirs, chemical agents and 
gasoline in gas stations. Traditional discrete arrival process usually as
sumes that customers arrive one after another with random inter-arrival 
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time, and the quantity of customer demands upon each arrival is a 
positive integer. However, for the aforementioned products, such 
discrete processes are inappropriate to describe the arrival of customer 
demands. Thus, continuous processes so that the total demand within 
any period of time is randomly distributed will be more relevant. 
Bombała and Michna (2012) studied an inventory system where the 
outflow is due to a Lévy process. Yao (2017) employed Brownian motion 
(also called Wiener process) to model the customer demands, which is a 
representative example of Lévy process. Under such assumption, the 
total demand during any time interval follows a normal distribution, 
whose parameters are determined by the length of the time interval and 
is independent of any previous events. In general, the Brownian motion 
is considerably suitable for modelling continuous random demands, and 
its interesting statistical properties bring convenience to the mathe
matical analysis. When demand arrival is described as a Brownian mo
tion, the Markov renewal process can be embedded to evaluate the 
performance measures of the system. The instant at which the inventory 
level reaches its lower bound is the regenerative point of the underlying 
process. Based on regenerative processes and the Markov renewal the
ory, a framework is proposed to compute the long-run profit rates and 
determine the optimal ordering policy. 

The supply contract is an important measure for retailers to maxi
mise their revenue (Cachon, 2003). To achieve an optimal supply chain 
performance, efficient mechanisms should be enforced between mem
bers of the supply chain. Such mechanisms include revenue sharing 
(Cachon and Lariviere, 2005), quantity flexible contract (Tsay, 1999), 
and sales rebate contracts (Taylor, 2002). In practice, it has been 
customary for retailers to return the goods that remain unsold due to 
expiration to the upstream companies. Hence, retailers tend to pay less 
attention to their ordering policy, because outdated items could simply 
be returned to the supplier; however, this places the supplier in a 
dilemma. Accordingly, the buyback mechanism (Pasternack, 1985) is 
widely applied, whereby the supplier offers a wholesale price which is 
higher than usual, but the retailer is allowed to return all or part of the 
unsold items to the supplier at the end of the selling season, gaining a 
predetermined full or partial refund per unit. Such contracts have been 
exploited extensively in various retail sectors where the supplier’s 
salvage value is greater than the retailer’s salvage value, for example, 
fashion apparels, computers and cosmetics. In this study, we consider a 
supply chain where the supplier provides perishable products to a 
retailer facing a market in which customers arrive continuously. The 
retailer places orders according to the (s, S) continuous review policy, 
and the supplier and retailer are bound by a buyback contract. We 
develop models to determine the optimal ordering strategy with regard 
to the long-run profit rates. From our conclusions, we glean some novel 
insights which are summarised as follows. 

Firstly, the optimal maximum inventory level S is mainly determined 
by customer arrival rate and product lifetime. To avoid the risk of 
suffering a heavy perishing loss, the optimal S is usually conservative, so 
that all the items in stock are expected to be sold out right before 
expiration. Secondly, the backorder policy depends on profit rates dur
ing the in-stock and out-of-stock status. When backorder is accepted, the 
optimal backorder level s can be uniquely represented by a function of S. 
Thirdly, when the buyback price is increasing, the retailer can retrive 
more from perished products, thus will order more from the supplier, 
but the profit rate is not increasing. That is because the major source of 
profit is always those products sold to customers, which is not affected 
by the buyback price. However, the supplier’s profit rate is significantly 
decreasing. Finally, most of the system parameters can exert effect on 
the retailer’s ordering policy. In particular, the maximum backorder 
level s is sensitive to a wider range of parameters, as compared with S. 
An itemised discussion is also presented based on sensitivity analyses. 

The remainder of this paper is organised as follows. Section 2 reviews 
the existing researches and highlights the novelty of this work. Section 3 
presents the model description and the sequence of events. In Section 4, 
a Markov renewal sales model is constructed, the cost and revenue 

functions are derived in stages. Based on the revenue rates, in Section 5, 
we first derive the optimal backorder level s analytically as a function of 
S, then find out the optimal (s, S) policy through numerical studies. We 
also provide a heuristic algorithm to approximate the optimal policy. 
After that, we discuss how the supplier’s buyback policy affect the re
tailer’s strategy in Section 6. Moreover, Section 7 reveals the impact of 
different parameters on the optimal ordering policy through sensitivity 
analyses. Finally, Section 8 concludes this paper. Proofs are relegated to 
the Appendix. 

2. Literature review 

Literature relevant to this study includes the design of (s, S) in
ventory policies for perishable items, the Brownian motion and 
continuous demand model, and the contracts between supplier and 
retailer. In this section, we discuss the novelty of our work in relation to 
existing literature. 

A tremendous amount of works have demonstrated the efficiency of 
the continuous review policy for inventory management. Traditional 
inventory models assume that customers arrive according to a Poisson 
process and each customer demands one unit of item. Liu (1990), in a 
study representative of the earliest literature on (s, S) policy, presented 
the stationary probability distribution of the inventory level and estab
lished a closed-form of the long-run expected cost function. Numerous 
researches have demonstrated the optimality of (s, S) policies under 
linear ordering cost. Scarf (1960) was the first to prove that in a periodic 
ordering problem, when the ordering cost is linear and holding and 
shortage costs are convex, the optimal policy is always the (s, S) type 
without any additional conditions. Iglehart (1963) further proved its 
optimality in the infinite horizon, and Sethi and Cheng (1997) repeated 
the results when the distribution of periodic demands is dependent on a 
Markov chain. Whats more, in recent years, Beyer et al. (2010) and Yao 
et al. (2015) revealed the optimality of (s, S)-type ordering policies 
under concave ordering costs and Markovian demand process. 
Muthuraman et al. (2015) draw the same conclusion for inventory sys
tem with stochastic lead times, and Perera et al. (2018) gained the same 
findings for a inventory model with renewal demand under some mild 
cost assumptions. Though the optimality of (s, S) policies is beyond the 
scope of our research, incorporating the same assumptions, we also re
gard it as a candidate of the optimal ordering strategy in our model. 
Subsequent investigations attempted different configurations and 
generated either closed-form solutions or estimations. Liu and Lian 
(1999) analysed (s, S) inventory models for perishables with a constant 
lifetime and general renewal demands by embedding a Markov process. 
Their model is extended to incorporate batch demands (Lian and Liu, 
2001). Additionally, there are many researches that comprised random 
lifetimes. Liu and Shi (1999) studied the (s, S) model for items with 
exponential lifetime. Gürler and Özkaya (2008) explored the (s, S) policy 
for perishables with general distributed lifetimes. Such models can be 
further complemented by considering a positive lead time (Liu and Lian, 
1999) or the lost sales (Baron et al., 2017). In the recent years, Kouki 
et al. (2016) discussed the application of (s, S) policy to multi-item in
ventory system. Barron (2019) studied continuous-review perishable 
inventory models allowing for random batch demand under backorders 
or lost sales. Barron and Baron (2020) investigated a continuous-review 
perishable inventory system under the (s, S) policy with random lead 
times and shelf lives under state-dependent Poisson demands. None
theless, most of the existing literatures focus on different constructions 
of customer behaviour and cost structures under discrete demand, while 
there is still a lack of research based on perishables with continuous 
demand processes. With regard to this, we consider the (s, S) policy for 
perishables under a drifted Brownian demand process. 

Continuous models have attracted increasing attention in recent 
years. In the field of operations management, a variety of continuous 
models have been designed to illustrate the change of variables with 
respect to time. Juneja and Shimkin (2013) used a fluid model to address 
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the strategic choice of arrival time in a stochastic queueing model. Liu 
et al. (2016) applied the Markovian renewal approach to model the age 
of the oldest stock in a perishable blood bank system with Poisson input 
and demand streams. Poormoaied (2020) analysed the ageing process of 
perishables through an embedded Markov renewal process. Regarding 
the demand process, Yan (2006) conducted a series of studies on 
continuous models for a production–inventory system, where both 
production and demand occurred continuously at varying rates. Dai and 
Yao (2013) analysed an inventory system that fluctuated as a Brownian 
motion in the absence of control. Wu and Chao (2014) studied a pro
duction–inventory system, where both processes were modelled using 
Brownian motions. Moreover, continuous models are also able to 
describe the ordering process in inventory systems. Browne and Zipkin 
(1991) constructed an (r, Q) inventory policy for continuous and sto
chastic demands. Boxma et al. (2015) studied a fluid EOQ model with 
two alternate demand rates. Yao et al. (2015) presented the (s, S) in
ventory model subjected to Brownian demand and a concave ordering 
cost; their model was extended by considering price-dependent drift 
(Yao, 2017). Using the fluctuation theory of spectrally one-sided Lévy 
processes, Yamazaki (2017) proved the optimality of (s, S) policy under 
a Lévy demand process. He et al. (2017) examined a continuous-review 
inventory system in which the setup cost of each order is a function of 
order quantity and the demand process is modelled as a drifted Brow
nian motion. Cao and Yao (2019) studied a continuous-review inventory 
system with dual sourcing modes and Brownian demand, and showed 
that the optimal ordering rate must be strictly less than the expected 
demand rate. To the best of the authors’ knowledge, a continuous in
ventory model for perishables under Brownian demands has not been 
introduced thus far. This constitutes a significant difference between the 
current research and previous works. 

Buyback contracts have also been extensively explored in previous 
studies. Pasternack (1985) considered the channel coordination issue for 
a seasonal product under a stochastic demand using the newsvendor 
framework. Padmanabhan and Png (1995) introduced the return policy 
and discussed conditions for manufacturers to accept a return contract. 
Lariviere (1999) discussed the possibility of achieving channel coordi
nation under stochastic demands. Hahn et al. (2004) investigated a 
novel contract in which the retailer obtains a lower wholesale price by 
renouncing the return of unsold goods to the supplier. Moreover, Duan 
et al. (2010) analysed the benefit of coordinating a two-level supply 
chain through a quantity discount strategy considering a fixed lifetime 
product. In general, most of the existing studies on inventory policies 
focus on the long-run cost rate while evaluating optimal strategies. 
When considering the contract between the supplier and retailer, 
long-run profit rates are more appropriate criteria for decision making. 
Based on these studies, a framework is proposed to evaluate the re
tailer’s strategy when implementing a buyback contract with the 
supplier. 

3. Model setting and assumptions 

We consider a supply chain model with one supplier and one retailer. 
In the proposed model, we assume that the supplier has unlimited ca
pacity and a stable cooperation with an outside manufacturer, thus can 
fulfill the retailer’s order at any time. A wholesale price w is offered to 
the retailer. Furthermore, the supplier also grants a buyback contract to 
the retailer. According to this contract, if any of the items perished 
before sold, the retailer can return to the supplier and receive a refund of 
m for each unit returned. Such contract encourages the retailer to place a 
larger order to serve as many customers as possible, while the supplier 
also expects to benefit from the bulk order, thus is considered as a win- 
win cooperation. 

The retailer employs an (s, S) continuous review control policy. In 
this policy, whenever the inventory level reaches the predetermined 
threshold s, the retailer will place an order to increase the inventory 
level to its maximum S(s < S <+ ∞). Usually, there exists a waiting time 

from making an order till receiving the ordered products, commonly 
known as the leadtime. However, in modern society, transportation and 
logistics are highly developed, the leadtime is relatively short when 
compared with a sales cycle. Moreover, replenishment can be completed 
overnight without occupying the opening hours. Thus, it is feasible to 
assume a zero replenishment leadtime. Under such assumption, there 
are three reasons that will induce the retailer to choose a non-positive s. 
Firstly, replenish before all products are sold out will increase the per
ishing risk of the unsold products. Secondly, too frequent replenishment 
leads to unnecessary transportation and labour costs. Lastly, by allowing 
backorders, retailers may wait until they have enough demands to 
maximise the economics of scale. Besides, we assume that the customers 
are loyal to their favourite brand, and will not switch to other compet
itors easily, therefore lost sales can be prevented. 

The sequence of events in each sales cycle may develop in two 
possible directions, as shown in Fig. 1. Assume that a fresh batch of 
products have an identical lifetime T. Initially, the inventory level at 
time 0 is S. When the product is in stock, the retailer is available to meet 
any customer demand upon arrival, until the products are sold out at 
time T1, T1 ≤ T. After that, the product become out-of-stock, the retailer 
will backorder any incoming demand until the inventory level reaches 
the lower bound s at time T2, and an order is placed to increase the in
ventory level to S. When replenishment is completed, the supplier will 
deliver all the backlogged demands, and then come into a new sales 
cycle. Thereafter, the second batch of products are failed to be sold out 
before expiration, thus some of them perished at time T3 = T2 + T, and 
all the perished items are returned to the supplier. Then the inventory 
level is cleared to zero, all forthcoming demands are backordered until 
the inventory level reaches s again at T4, and the cycle then repeats. 

The current research focuses on the retailer’s optimal ordering pol
icy. Customer arrival process is assumed independent with the inventory 
status. Notably, we adopt a complete competition market, that is, the 
retailer cannot determine a monopoly price arbitrarily. In such context, 
the retail price of the underlying product usually depends on the 
manufacturer suggestions and market quotations, thus is also regarded 
exogenous in our model. To conclude, the retailer’s decision variables 
contain only s and S. 

The associated notations and explanations are listed in Table 1. From 
the perspective of the retailer, there are four main types of associated 
costs: wholesale price, holding cost, loss, and penalty. Except for the 
ordering cost paid to the supplier, there exists a fixed set-up cost for each 
order, usually consists of transportation and labour costs. The holding 
cost depends on the real-time inventory level. The loss for each perished 
item is w − m. Penalty can be further divided into two parts: the penalty 
for each backordered unit, which typically embodies a charge of home 
delivery or discount on the retail price; and the goodwill loss due to 
delayed delivery. Correspondingly, the profit of the retailer can be 
computed by subtracting all the costs from the sales revenue. In general, 
we assume that the retailer is always rational, so that the ordering policy 
is undoubtedly chosen to maximise their own profit. 

4. The Markov renewal sales model 

In the current research, the arrival of customer demands are assumed 
to be continuous over time. As an extension of the normal demand 
assumption in periodic review inventory model (Rao, 2003), the de
mand process in this paper is modelled using a drifted Brownian motion 
with the drift parameter μ > 0 and variance parameter σ. Let D(t) denote 
the total demand within any time interval of length t, it can be modelled 
as 

D(t) = μt + σB(t), t ≥ 0  

where B(t) is a standard Brownian motion with zero drift and unit 
variance. Subsequently, D(t) follows a normal distribution with mean μt 
and variance σ2t, which indicates that the expected total demand 
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increases linearly, but the volatility also grows with respect to time. 
Notable, the Brownian parameters in this study are chosen such that the 
occurrence of negative increments is negligible. According to the normal 
properties, when μt > 3σ

̅̅
t

√
, or t > 9σ2

μ2 , the probability of negative de
mand is negligibly small. In the remainder of this paper, we always 
follow the assumption that the product lifetime T > 9σ2

μ2 , and the order 

quantity per cycle S − s > 9σ2

μ . 
The proposed sales model incorporates a background process and a 

inventory level process. Let Z(t) denote the inventory level at time t. 
Assuming that Z(t) is right continuous with left limits, the inventory 
level {Z(t), t ≥ 0} is a continuous random process. When the inventory 
level reaches a threshold, the background process will transit to another 
state. In the proposed model, the background process comprises the 
stocking status, and it includes two states: in stock or out of stock. The 
inventory level {Z(t), t ≥ 0} modulated by the background process is a 
regenerative process if we define a cycle as follows. Suppose the cycle 
starts from S, Z(t) drops with drift − μ and variance σ2 until either it 
reaches 0, or t reaches the lifetime T. Subsequently, the background 
process transits, and Z(t) continues to reduce until it reaches s, indicating 
the end of a cycle. 

It is evident that the background process is a Markov renewal pro
cess. By definition, the occurrence of events after a regenerative point 
shall be independent of any historical states. Owing to the independence 
of Brownian motion increments, the epoch when a fresh batch of 
products arrive is a regenerative point. Besides, The epoch when all the 
products in stock are sold out or perished is another regenerative point. 

The state space of the background process is as follows: 

State I: The process is defined to be in State I if the products are in 
stock. It transits into the other state when all the products are either 
sold out or perished. 
State O: The process is defined to be in State O if the products are out 
of stock. It transits into the other state when a fresh batch of products 
are replenished. 

Specially, when s = 0, the model degenerates to a process with one 
regenerative point. 

The optimal replenishment policy should maximise the long run 
profit rate of the retailer, while the total profit in each sales cycle can be 
regarded as a kind of reward. According to the well-known renewal 
reward theorem, the profit rate converges with probability one to the 
ratio between the expected profit in a cycle and the expected time length 
of a cycle. Moreover, since each cycle consists of two states, the profit 
and time length in a cycle can be further split into the sum of profits and 
time lengths in both states. Next, we present the mathematical formu
lations of expected sojourn time and profit in each state. 

In state I, assume that all items are used to satisfy the demand until 
perishing. Let TS denote the first time when the total demand reaches S, 
its survival function can be computed as follows: 

P{TS > t} = P{∀0 < τ ≤ t,D(τ) < S}

= P{∀0 < τ ≤ t, μτ + σB(τ) < S}

= P
{

∀0 < τ ≤ t,B(τ) < −
μ
σ τ + S

σ

}

.

(1)  

Siegmund (1986) revealed that, for any t > 0 and constant a ∈ R, b > 0, 

P{∃τ≤ t, ​ such ​ that ​ B(τ)≥ aτ+ b|B(t)= ξ} = exp
{

−
2b(at + b − ξ)

t

}

.

(2)  

Based on the Markovian property of Brownian motion, we have 

0 T1 T2 T3 T4

Time

S

s

yrotnevnI
leveL

Fig. 1. Example of inventory level trends over time.  

Table 1 
Notations and explanations.  

Notations Explanations 

W Wholesale price per unit 
P Retail price per unit 
M Buyback price per unit perished 
Co Order set-up cost per order 
Ch Inventory holding cost per unit per unit time 
Cs Goodwill cost per unit per unit time 
Cu Backorder penalty per unit backordered  
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P{∀0 < τ ≤ t,B(τ) < aτ + b} = E[P{∀0 < τ ≤ t,B(τ) < aτ + b}|ℱ t]

=

∫ at+b

− ∞

[

1 − exp
{

−
2b(at + b − x)

t

}]
1̅̅̅
̅̅̅̅

2πt
√ exp

{

−
x2

2t

}

dx

= Φ
(

at + b
̅̅
t

√

)

− exp{− 2ab}Φ
(

at − b
̅̅
t

√

)

(3)  

where Φ(x) is the normal distribution function and ℱ t is the natural 
filtration. Thus, the survival function of the hitting time TS is 

FS(t) = P{TS > t} = Φ
(

S − μt
σ

̅̅
t

√

)

− exp
{

2μS
σ2

}

Φ
(

−
S + μt
σ

̅̅
t

√

)

. (4) 

Assume that the lifetime of a fresh item in storage is a constant T. The 
background process transits to state O when all the stocks are either sold 
out or perished, thus, the sojourn time in state I can be calculated by 
truncation TI = min{TS, T}, and the mean sojourn time in state I can be 
represented by a function of S 

TI(S) = E[min{TS,T}] =
∫ T

0
tdFS(t) + TFS(T) (5)  

where the survival function FS( ⋅) is defined in (4) and FS(⋅) is the cor
responding cumulative distribution function. 

The revenue in state I includes the sales income for sold products and 
reimbursement for perished products, while the costs consist of set-up 
cost, ordering cost and holding cost. The instantaneous inventory level 
at time t is Z(t) = S − D(t) = S − μt − σB(t), and the holding cost during 
the cycle depends on the time until all the items are sold out or perished. 
The expected total inventory holding cost in a reorder cycle H(S) can be 
computed through a conditional expectation H(S) =

E
[
E
[ ∫ TI

0 ChZ(t)dt|T0

] ]
, where Z(t) is the inventory level at time t, it 

follows a normal distribution with mean S − μt and variance σ2t. We 
have 

H(S) =
∫ T

0

∫ t

0
ChZ(τ)dτdFS(t) + FS(T)

∫ T

0
ChZ(τ)dτ. (6) 

Return occurs only if some of the items are outdated before being 
sold out, i.e.,TS > T, otherwise, all the items are sold out before out
dating and none of the items perish. In general, the total demand until 
time T, denoted by D(T), follows a normal distribution with mean μT and 
variance σ2T. However, under the premise that TS > T, the conditional 
distribution of D(T) should be truncated at S. Notably, it is assumed that 
the demand is always non-negative, so the distribution of D(T) should 
also be truncated at zero. Owing to the high computational complexity 
of two side truncated distribution, here we provide an approximation 
scheme under the assumption μT > 3σ

̅̅̅
T

√
, so that the occurrence of 

negative D(T) can be ignored. In this case, the number of perished items 
in each cycle approximately follows a truncated normal distribution 
with mean S − μT and variance σ2T, truncated at zero. Let R(S) denote its 
expectation, by the aid of existing conclusions on one side truncated 
normal distribution, we have 

R(S) = FS(T)

⎛

⎜
⎜
⎝S − μT +

σ
̅̅̅̅
T

√

̅̅̅̅̅
2π

√ [
1 − Φ

(
− S− μT

σ
̅̅
T

√

) ] exp

{

−
(S − μT)2

2σ2T

}
⎞

⎟
⎟
⎠.

(7)  

For each perished item, the retailer receives a reimbursement of m. The 
expected reimbursement per cycle can be calculated by mR(S). 

After the background process transits into state O, the demand still 
increases according to Brownian motion with drift μ and variance σ2 

until it hits − s. For convenience of expression, let x = − s for the 
remainder of this paper, named after the backorder level. As the ex
pected total demand increases linearly with respect to time, it is 

straightforward that the expected sojourn time in state O is TO(x) = x/μ. 
To compute the expected total goodwill loss, here we employ the 

conclusions drawn by Karlin and Taylor (1981): for a continuous func
tion h(⋅), if K denotes the hitting time of s of a Brownian motion whose 
initial state y > s, then the function generated by 

w(y) = E
[ ∫ K

0 h(Z(t))dt|Z(0)= y
]

satisfies the following differential 

equations: 

− h(y) = − μ dw
dy

+
σ2

2
d2w
dy2 , w(s) = 0. (8)  

Based on the conclusion of Wu and Chao (2014), we provide a general 
solution for differential equation (8), and attach a detailed proof in the 
appendix. 

Theorem 1. The solution to (8) is 

w(y) =
∫ y

s

(
2
σ2

∫ +∞

u
exp

{

−
2μ(ξ − u)

σ2

}

h(ξ)dξ
)

du. (9)   

Proof. See appendix. □ 

The initial state of our model is y = 0 and h(ξ) = − Csξ. The mean 
goodwill penalty is thus 

gp(x) =
∫ 0

− x

(

−
2
σ2

∫ +∞

u
Csexp

{

−
2μ(ξ − u)

σ2

}

ξdξ
)

du. (10)  

Furthermore, for backordered demands, the retailer will provide a 
preferential price as p − Cu. In other words, the retailer suffers a penalty 
Cux due to backordering. The total penalty during a cycle is gp(x) + Cux. 

In summary, the expected total profit for the retailer is 

PR(x,S) = p(S − R(S))+mR(S)+(p − Cu)x − gp(x) − H(S) − w(S+ x) − C0
=(p − w)S − (p − m)R(S) − H(S)+(p − w − Cu)x − gp(x) − C0,

(11)  

and the expected profit rate for the retailer is 

pR(x, S) =
(p − w)S − (p − m)R(S) − H(S) + (p − w − Cu)x − gp(x) − C0

TI(S) + TO(x)
.

(12)  

5. The retailer’s ordering policy 

As introduced in Section 3, the decision model is a two-stage game, 
the supplier determines the wholesale and buyback price at first, then 
the retailer determines the ordering policy. In this section, we will study 
the retailer’s optimal (s, S) policy for given w and m. 

5.1. Optimal backorder policy 

Let x = − s be the maximum backorder level, the retailer’s problem 
can be described by 

max
x,S

pR(x, S), ​ s.t. ​ x ≥ 0, S > 0. (13)  

We solve this optimisation problem sequentially in two stages. Firstly, 
given the maximum inventory level S, we can express the optimal 
backorder level x*(S) as a function of S. Then we can find the solution of 
the single-variable optimisation problem via simulation study. 

When the maximum inventory level S is fixed, the retailer’s profit 
rate pR(x, S) degenerates to a single variable function of the backorder 
level x. From the function properties, we can conclude that there exists 
an optimal backorder level x*(S) for any given S. 

Theorem 2. When Cs > 0, unmet demand x∗(S) =
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(μTI(S))2 +
2μΔTI(S)

Cs

√

− μTI(S) if 

μ(p − w − Cu) +
σ2

2μCS >
p(S − R(S)) + mR(S) − wS − H(S) − C0

TI(S)
, (14)  

and x*(S) = 0 otherwise. Here Δ is obtained by substracting the right side of 
inequality (14) from the left side. Proof for Theorem 2 can be found in 
the appendix. We can easily find that the right-hand side of (14) is the 
retailer’s actual profit rate during state I, while μ(p − w − Cu) is the 
retailer’s profit rate during state O, regardless of the goodwill loss. Thus, 
the inequality (14) is essentially a competition between the profit rates 
during in-stock and out-of-stock status. When it holds, permitting a 
certain amount of backorder is profitable, until the cumulative goodwill 
lost is unendurable. 

Corollary 1. When Cs = 0, the optimal backorder level x*(S) approaches 
infinity under certain conditions. 

Corollary 1 reveals the significance of the goodwill penalty: a 
maximum waiting time should be identified to avoid unconstrained 
backorders, which may irreversibly tarnish the retailer’s reputation. 

Corollary 2. x*(S) > 0 always holds when S is approaching 0 or infinity. 

Corollary 2 is straightforward as for a small S, the order setup cost Co 
is expensive in comparison with the sales revenue, whereas for a large S, 
the retailer is more likely to suffer a heavy loss from perished goods. 
These factors reduce the profit rate in state I and provide a reference for 
accepting the backorder. 

To illustrate the relationship between S and x, simulation studies are 
designed as follows. The assumed parameter values are listed in Table 2. 
Firstly, let S varies from 2 to 15 with a fixed interval of 0.1. We generate 
a string of sales data with these parameters and compute the optimal 
backorder level x*(S) through Theorem 2. The replication time for each 
S is 10,000 times, and the optimal x*(S) is obtained by taking average of 
the results in each trial. We plot the x*(S) against S in Fig. 2(a). 

Generally, the plot validates Corollary 2, it resembles a bathtub curve 
in shape, though it is concave at both ends and flat in the middle part. In 
the current example, we can conclude that backorder should be 
permitted when the maximum inventory level S is either smaller than 
2.7 or larger than 9.7. Under such backorder policy, one can well ima
gine that the retailer will suffer a substantial backorder penalty when S 
is small, and a heavy loss due to perishing when S is large. Thus, the 
optimal S should locate in the flat segment, or when backorder is not 
permitted, and a majority of products should be sold at the retail price. 

Secondly, for several given S, let the backorder level x vary from 0.1 
to 15 with a fixed interval 0.1, and the retailer’s profit rates are plotted 
against x in Fig. 2(b). We can observe that the profit rate decreases in x 
when S is ranging from 6 to 9 (represented by thinner lines), indicating 
that no backorder is permitted, which is coincident with the conclusions 
in Fig. 2(a). When S equals 1.5 or 15 (represented by thicker lines), the 
profit rate is an unimodal function of x and in particular, when S is 
significantly large, the peak is not observed owing to space limitations. 
Furthermore, the expected total demand until expiration is μT = 8, 
whereas in the current experiment, the policy S = 7 has the highest 
overall profit rate, followed by S = 6, 8 and 9. This indicates that it is a 
good choice to choose an S which approaches μT but is slightly smaller, 
so that all the stocks are expected to be sold out right before expiration, 
while the chance of an expiration is relatively low. The policy S = 15 is 
inferior to all the other policies, owing to the heavy loss caused by 
perished goods. Additionally, slight fluctuation is caused by the 

instability of the Brownian random variables. 

5.2. Retailer’s optimal replenishment policy 

The analysis in Section 5.1 indicates that the optimal backorder level 
x can be described as a piecewise function of maximum inventory level 
S. Thus, the profit rate function pR(x, S) can be simplified by a single 
variable function pR(S). In other words, if the retailer makes a decision 
on his own, the profit rate is determined uniquely by the selection of S. 
Unfortunately, owing to the intractability of stochastic integral, espe
cially with the involvement of the truncated distributions, it is difficult 
to obtain a closed-form solution for the optimal value of S. Thus, we need 
to perform a simulation. Let S vary from 0.1 to 15 with a fixed interval of 
0.1, we use the optimal backorder level x*(S) obtained through Theorem 
2. The pair of S and x*(S) that maximises the retailer’s profit rate is 
considered as the optimal inventory policy. In real applications, the 
retailer can determine the maximum inventory level according to his/ 
her capacity, and then divide it by a fixed interval. A smaller interval 
indicates a larger replication time and higher accuracy. In general, the 
complexity of the simulation is linear in the replication time, and the 
results can be obtained in a finite period of time. 

Assume that the manufacturing cost for each unit of product is a 
constanct c. Similar to equation (12), we can compute the expected 
profit rate for the supplier through 

pS(x, S) =
(w − c)(S + x) − mR(S)

TI(S) + TO(x)
, (15)  

and the expected profit rate for the total channel is 

pT(x, S) =
(p − c)S − pR(S) − H(S) + (p − c − Cu)x − gp(x) − C0

TI(S) + TO(x)
. (16) 

Assume that the manufacturing cost per unit c = 4. The profit rates of 
the retailer, supplier, and whole channel under varying values of S are 
plotted in Fig. 3. 

We can conclude from Fig. 3 that the total profit rate of the channel 
reaches its maximum at S = 7.6. The profit rate of the retailer reaches its 
maximum earlier, at S = 6.8, after which it decreases rapidly due to 
perishability and is finally surpassed by the profit rate of the supplier at 
S = 11.3. The profit rate of the supplier is less sensitive to S in com
parison with that of the retailer. In particular, under the parameter 
values given in Table 2, the profit rate functions of the retailer and whole 
channel are convex when backorder is permitted, and concave when 
backorder is forbidden. However, although the concavity and convexity 
properties change with the backorder policy, the profit rate functions of 
the retailer and whole channel still exhibit a quasi-concave property, 
that is, both of them have an unique ordering policy to optimise the 
function value individually. 

Although we cannot provide a closed-form solution for S*, an anal
ysis on the marginal revenue and cost can provide some insights on the 
location of S*. The retailer’s revenue rate and cost rate during each cycle 
can be represented by 

Rev(x, S) =
p(S − R(S) + x) + mR(S)

TI(S) + TO(x)
, C(x, S)

=
w(S + x) + H(S) + Cux + gp(x) + C0

TI(S) + TO(x)
,

the profit rate pR(x, S) = Rev(x, S) − C(x, S). We plot them with respect to 
S in Fig. 4, the retailer’s marginal revenue and cost rates are the slopes of 
the curves. 

We can conclude from Fig. 4 that the revenue rate is overall stable 
when S is varying. When S is large, since the perished products can only 
provide some salvage values, the retailer will backlog some unmet de
mands to maintain the revenue rate. Specially, when S has just exceeded 
μT, a slight increase on the revenue rate is detected. This is because the 
customer arrival follows a random process, the actual demand has a 

Table 2 
Parameters in the simulation example.  

p w m C0 Ch Cs Cu μ σ T 

15 8 2 5 0.05 0.1 2 2 0.5 4  
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same probability to be higher or lower than expected. In the former case, 
the revenue rate will be much higher than expected; while in the latter 
case, the retailer can still earn some surplus value from perished prod
ucts. On the other side, when S exceeds μT, the cost increases rapidly, 
this is because the expected sojourn time in State I has an upper bound T, 
but the holding cost and wholesale cost are increasing rapidly with S. As 
a result, the marginal cost rate is much higher than the marginal revenue 

rate when S > μT, which provides a strong evidence for choosing S < μT 
under the current parameter settings. 

We glean some observations from the numerical studies: the re
tailer’s profit rate function is unimodal and the optimal value of S is 
likely to be close to μT. Based on these findings, we can adopt a simple 
line search algorithm to efficiently approximate the optimal value of S. 
We firstly choose S0 = μT as the initial value. Owing to a lack of infor
mation on the searching direction, we attempt an initial stepsize of 1, 
that is S1 = S0 + stepsize. If the profit rate value becomes greater, we keep 
the same search direction with the same stepsize: S2 = S1 + stepsize, 
otherwise if the profit rate becomes smaller, we change the searching 
direction and shrink the stepsize to be the one-third of the previous 
stepsize. We keep doing so utill the increment of the profit rate after a 
move is smaller than a predetermined threshold. 

6. The effect of the buyback price 

When the retailer orders from the supplier, the retailer needs to 
consider not only the holding cost, but the shortage cost and the items 
expired. In many cases, when S is large, the overall marginal cost is 
greater than the marginal revenue. As a result, the retailer is reluctant to 
order too much from the supplier. Consequently, the supplier is usually 
willing to share some risk with the retailer by buying back the expired 
items in order to attract the retailer to order more, such that these two 
parties can reach a win-win. In this section, we will do some numerical 
analysis to investigate how the buyback price m affects the retailer’s 
order policy. 

We conduct a test on the system performance under fixed wholesale 
price w = 8 and varying buyback prices. We acquiesce in the restriction 
that buyback price can never exceed the wholesale price, otherwise, the 
retailer can benefit from expiration, which creates a condition for 
commercial fraud. Let the buyback price m varies from 0 to 8 with an 
interval 0.5. We anticipate the retailer’s ordering policy and obtain the 
profit rates of the whole channel, supplier and retailer under such policy. 
Some results are plotted in Fig. 5. 

The following observations can be made from Fig. 5:  

(i) m = 0 indicates that no contract is signed between the retailer and 
supplier. In comparison with the case m = 2 (Fig. 3) and m = 4, 
there is no significant difference in the retailer’s optimal ordering 
policy S*, while the supplier’s profit rate under S*, say pS(x*, S*), 
is also nearly constant. This is because the retailer is conservative 
when buyback price is low, as a result, the chance of expiration is 
low and buyback rarely happens. 
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(ii) It is worth mentioning that when m = 4, the retailer’s optimal 
policy S = 7.6 also maximises the supply chain’s total profit rate. 
In this case, the retailer and supplier share the highest total profit 
rate, and we say the supply chain is coordinated (Cachon, 2003). 
When m is greater than 4, the retailer assumes an advantageous 
position in the channel because the supplier’s profit from peri
shed items w − m is lower than its manufacturing cost c.  

(iii) When m increases, the retailer can retrive more from perished 
products, and the loss from perishing decreases accordingly. This 
can be interpreted as a higher marginal revenue when S is large. 
As a result, the policy S* > μT may become feasible. Conse
quently, the supplier’s profit rate pS(x*, S*) falls.  

(iv) Finally, when m = 8, the supplier must refund the retailer for any 
items perished. In other words, the retailer does not suffer any 
loss from perished products. Thus, pR(x, S) is nearly constant 
when S is large, until the inventory holding cost is high enough 
make an impact. When S is extremely large, the retailer takes 
almost all the profits in the channel, while the supplier faces a 
deficit. Consequently, it is irrational to guarantee a buyback 
contract that allows unlimited returns and full refund. 

Moreover, Fig. 6 presents the retailer’s maximal profit rate pR(x*, S*) 
and the supplier’s corresponding profit rate pS(x*, S*) under different m. 
It may seem counter-intuitive that pR(x*, S*) is rarely affected by the 
buyback price m. Even if m = w, the retailer still cannot benefit much 
from it. The is because when m is small, the optimal policy is conser
vative and the chance of expiration is low. However, even when m is 
large, owing to the property of normal distributions, the occurrence 
probability of a extremely large demand is negligible. An S > (μ + 3σ)T 
will almost certainly lead to unnecessary waste on the inventory holding 
cost. Generally, the major source of profit is always those products sold 
to customers, which is not affected by m. However, the supplier’s profit 
rate pS(x*, S*) significantly decreases when m is large. To conclude, an 
excessive high m unilaterally hurts the supplier’s benefit, and thus 
damages the social welfare. 

In all, when the wholesale price w is fixed, there does not exist a 
buyback policy m that is superior to others. However, it can be imagined 

that the supplier will benefit from a higher wholesale price w, and 
consequently, the retailer expects a lower w. The effect of w to (x*, S*) 
will be discussed in the following section. In real-world problems, the 
final settlement always depends on the bargaining power of the supplier 
and retailer. 

7. Sensitivity analysis and insights 

In this section, we analyse the impact of different parameters in our 
model on the optimal ordering policy through a series of sensitivity 
analyses. The optimal backorder level x* is zero in our previous 
example, which is inappropriate as a reference. Thus, we select another 
set of parameters in this section so that x* is positive, and then both 
upward and downward changes on the backorder policy can be detec
ted. The updated parameters and corresponding optimal policy are listed 
in Table 3. 
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First of all, we study the effects of retail price p and wholesale price w 
on the optimal policy. The results are listed in Table 4. 

We can conclude the following results from Table 4.  

(i) Both S* and x* are insensitive to p. We can observe from equation 
(11) that the term which includes p in the total profit PR(x, S) 
represents the sales revenue. The coefficient of p in this term is 
the actual sales. As a result, the coefficient of p in the long run 
profit rate pR(x, S) should be the actual sales rate. Obviously, pμ 
acts as a constant term in pR(x, S), thus changes in p will not affect 
its maximum point (x*, S*).  

(ii) For each perished product, the retailer suffers an actual loss w −
m. A higher w will prevent the retailer from holding too many 
stocks. As a result, S* decreases with w.  

(iii) When S* is decreasing, the retailer tends to moderately increase 
the backorder level to lengthen the replenishment interval. But 
the increase has gradually slowed down as the goodwill loss 
become another non-negligible problem.  

(iv) Generally, since S* is chosen so that no item is expected to perish, 
the profit rate increases with p almost linearly. Similarly, it de
creases with w almost linearly. In particular, when p is consid
erably low or w is considerably high, the profit rate can take a 
negative value and the retailer faces a deficit. 

Next, we study the effects of two types of backorder penalties, Cs and 
Cu, on the optimal policy. The results are listed in Table 5. 

We can conclude the following results from Table 5. 

(i) x* decreases significantly with both Cs and Cu. This is straight
forward as a higher penalty prevents the retailer from accepting 
too many backorders.  

(ii) When x* > 0, the profit rate pR(x*, S*) decreases with both Cs and 
Cu, among which Cu deals a greater influence than Cs. That is, the 
goodwill loss is slighter when compared with the backorder 
penalty.  

(iii) S* is not sensitive to Cs or Cu. However, when x* is considerably 
small or even equal to zero, slight fluctuation can be observed in 
S* and the profit rate pR(x*, S*), this is because the sales cycle is 
excessively short, and the results are therefore unstable. 

Next, we study the effects of demand arrival rate μ and product 
lifetime T on the optimal policy. The results are listed in Table 6. 

We can conclude the following results from Table 6.  

(i) S* increases with both μ and T. Generally, we always have S* <
μT, which reiterates our previous conclusions.  

(ii) According to Section 4, the customer arrival rate μ affects most of 
the costs and revenues, thus x* may not be monotone with μ, 
though it is decreasing with μ here. On the other side, from 
Theorem 2, the profit rate in state O is completely independent of 
T, however, in state I, the profit rate increases with T. Conse
quently, x* decreases with T.  

(iii) The maximum profit rate pR(x*, S*) increases rapidly with the 
demand arrival rate μ. When x* = 0, pR(x*, S*) increases almost 
linearly with μ as expected.  

(iv) The profit rate pR(x*, S*) increases with T, mainly because of two 
reasons: Firstly, a longer T can weaken the effect of the order 
setup cost C0. Secondly, due to the Brownian properties, the 
variance of the total demand per cycle is increasing with T. As a 
result, the retailer’s policy becomes more conservative when T is 
larger. Intuitively, μT − S* is increasing with T, so the expected 
perishing loss per cycle is decreasing with T. 

Finally, we explore the effect of μ and T under the assumption that μT 
is constant, that is, μ and T vary simultaneously. Additionally, we study 
the system performance under changes in the variance parameter σ of 
demand arrival process. The results are listed in Table 7. 

We can conclude the following results from Table 7. 

(i) When μT is fixed, S* still increases with μ, and consequently de
creases with T. Intuitively, μ does not affect the variance of 
customer demands, while T is proportional to the variance of 
customer demands within the shelf life. Thus, to guarantee that 
all the products are sold out before expiration, the retailer’s 
policy becomes more conservative when T is increasing. As a 
result, μT − S* is increasing with T.  

(ii) The variance of customer demands during a fixed time interval is 
increasing with σ. Thus, smaller σ can relieve the sensitivity of S* 
to T, that is, when μ and T are fixed, μT − S* decreases with σ. 
Consequently, x* is lower and pR(x*, S*) is higher under a smaller 
σ.  

(iii) In a periodic review problem, the optimal order quantity per 
cycle can be represented by μ + SFσ, where SFσ represents the 
safety stock coped with unexpectedly large demand, and SF is a 
stocking factor determined by the demand and cost parameters 
(Petruzzi and Dada, 1999). However, in the current model, since 
the products are perishable, setting a safety stock might increase 
the risk of suffering a heavy perishing loss, whose benefit is rarely 

Table 3 
Parameters and optimal policy as a frame of reference.  

p w m C0 Ch Cs Cu μ σ T S* x* pR(x*, S*) 

10 6 2 5 0.05 0.1 1 2 0.5 3 5.27 2.734 5.829  

Table 4 
Optimal policies and maximum profit rates under varying p or w.  

p w (x*, S*) μT − S* pR(x*, S*) p w (x*, S*) μT − S* pR(x*, S*) 

12.5 6 (2.673, 5.33) 0.67 10.839 10 9 (3.709, 5.06) 0.94 − 0.239 
12 (2.646, 5.28) 0.72 9.847 8.5 (3.584, 5.09) 0.91 0.770 
11.5 (2.722, 5.33) 0.67 8.839 8 (3.394, 5.15) 0.85 1.783 
11 (2.749, 5.27) 0.73 7.836 7.5 (3.292, 5.12) 0.88 2.795 
10.5 (2.728, 5.25) 0.75 6.831 7 (3.149, 5.18) 0.82 3.805 
10 (2.734, 5.27) 0.73 5.829 6.5 (2.908, 5.19) 0.81 4.817 
9.5 (2.729, 5.24) 0.76 4.827 6 (2.734, 5.27) 0.73 5.829 
9 (2.730, 5.30) 0.70 3.832 5.5 (2.553, 5.24) 0.76 6.842 
8.5 (2.746, 5.21) 0.79 2.825 5 (2.424, 5.25) 0.75 7.862 
8 (2.731, 5.24) 0.76 1.826 4.5 (2.082, 5.46) 0.54 8.878 
7.5 (2.703, 5.21) 0.79 0.825 4 (1.894, 5.42) 0.58 9.904 
7 (2.691, 5.30) 0.70 − 0.176 3.5 (1.412, 5.61) 0.39 10.928  
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worth the cost. As a result, the optimal S is usually smaller than 
μT, their difference depends on the demand and cost parameters. 
Unfortunately, owing to the intractability of stochastic integrals, 
it is hard to give an explicit formula of μT − S*. Nonetheless, we 
can observe from Table 7 that when the backorder policy is 
consistent (the first three and last three cases), the value of μT −
S* when σ = 0.5 is nearly twice as much when σ = 0.25. 

8. Concluding remarks 

To draw a conclusion from the paper, we outline the procedures to 
obtain the optimal (s, S) inventory policy as follows.  

(i) Determine the pricing policies with the supplier and estimate the 
demand arrival rate and other cost rates, including holding and 
penalty rates.  

(ii) For any S candidate, evaluate whether it is necessary to permit 
backorder according to Theorem 2.  

(iii) If backorder is permitted, express the optimal s as a function of S 
through Theorem 2, and then represent the profit rate of the 
retailer as a single variable function of S by (12). 

(iv) Try S = μT initially, and approximate the optimal S that maxi
mises the profit rate of the retailer through a line search algo
rithm. Then, the optimal policy is (− x*(S*), S*). 

In this paper, we introduced an (s, S) inventory policy for perishable 
items with a continuous demand process and a buyback contract. Drifted 
Brownian motion was applied to model the arrival of customers. The 
Markov renewal process was utilised to characterise the sales cycle, and 
closed-form profit rate functions were derived. The results indicate that 
the optimal backorder level depends on the maximum inventory level, 
and profit rates are highly sensitive to changes in the backorder policy. 
The optimal ordering policy is obtained through numerical analysis, and 
an algorithm is developed to approximate the optimum. Typically, a 
moderate S to ensure that all stocks are sold out right before expiration 
can maximise the profit rate of the retailer. If the retailer persists to 
choose a larger S to be on the safe side, then backlog a greater amount of 
demands is a more informed choice. Conversely, when S is fairly small, 
the retailer should also increase the backorder level to relieve the 
pressure from the setup cost. Furthermore, the supplier rarely benefits 
from a low buyback price, because the optimal policy is conservative 
when buyback price is low, as a result, the chance of expiration is also 
low and the profit rate is actually not affected by the buyback price. 
Finally, one can well imagine that both the customer arrival distribution 
and supplier’s pricing policies have effects on the retailer’s strategy. 
Through sensitivity analyses, we demonstrated the effects of different 
parameters on the optimal replenishment policy. 

Table 5 
Optimal policies and maximum profit rates under varying Cs or Cu.  

Cs Cu (x*, S*) μT − S* pR(x*, S*) Cs Cu (x*, S*) μT − S* pR(x*, S*) 

0.025 1 (8.051, 5.21) 0.79 5.863 0.1 0 (11.254, 5.19) 0.81 6.931 
0.05 (4.747, 5.24) 0.76 5.849 0.5 (7.866, 5.18) 0.82 6.298 
0.075 (3.544, 5.21) 0.79 5.839 1 (2.734, 5.27) 0.73 5.829 
0.1 (2.734, 5.27) 0.73 5.829 1.5 (0, 5.21) 0.79 5.826 
0.125 (2.310, 5.27) 0.73 5.824 2 (0, 5.27) 0.73 5.840 
0.15 (1.975, 5.21) 0.79 5.827 2.5 (0, 5.21) 0.79 5.833 
0.25 (1.326, 5.27) 0.73 5.820 3 (0, 5.30) 0.70 5.836 
0.5 (0.717, 5.30) 0.70 5.816 3.5 (0, 5.27) 0.73 5.836 
1 (0.387, 5.29) 0.71 5.795 4 (0, 5.27) 0.73 5.840  

Table 6 
Optimal policies and maximum profit rates under varying μ or T.  

μ T (x*, S*) μT − S* pR(x*, S*) μ T (x*, S*) μT − S* pR(x*, S*) 

1.2 3 (6.798, 2.96) 0.64 3.051 2 1.5 (9.252, 2.58) 0.44 5.162 
1.6 (5.210, 4.15) 0.65 4.394 2 (7.217, 3.44) 0.56 5.372 
2 (2.734, 5.27) 0.73 5.829 2.5 (5.004, 4.33) 0.67 5.589 
2.4 (0, 6.33) 0.87 7.461 3 (2.734, 5.27) 0.73 5.829 
2.8 (0, 7.46) 0.94 9.066 3.5 (0.478, 6.10) 0.90 6.073 
3.2 (0, 8.54) 1.06 10.661 4 (0, 7.06) 0.94 6.311 
3.6 (0, 9.71) 1.09 12.255 4.5 (0, 7.68) 1.32 6.465 
4 (0, 10.60) 1.40 13.850 5 (0, 8.58) 1.42 6.593  

Table 7 
Optimal policies and maximum profit rates under fixed μT and varying μ, T, σ  

σ = 0.5 σ = 0.25 

μ T (x*, S*) μT − S* pR(x*, S*) μ T (x*, S*) μT − S* pR(x*, S*) 

1 6 (3.490, 4.91) 1.09 2.819 1 6 (1.320, 5.43) 0.57 2.901 
1.5 4 (3.131, 5.12) 0.88 4.321 1.5 4 (0.843, 5.54) 0.46 4.438 
2 3 (2.734, 5.27) 0.73 5.829 2 3 (0.516, 5.63) 0.37 5.981 
2.5 2.4 (2.478, 5.36) 0.64 7.358 2.5 2.4 (0, 5.64) 0.36 7.573 
3 2 (2.007, 5.45) 0.55 8.880 3 2 (0, 5.67) 0.33 9.138 
3.5 1.714 (1.780, 5.42) 0.58 10.402 3.5 1.714 (0, 5.67) 0.33 10.588 
4 1.5 (1.189, 5.48) 0.52 11.961 4 1.5 (0, 5.67) 0.33 12.261 
4.5 1.33 (0.419, 5.49) 0.51 13.495 4.5 1.33 (0, 5.68) 0.32 13.615 
5 1.2 (0.235, 5.49) 0.51 15.096 5 1.2 (0, 5.73) 0.27 15.398 
5.5 1.091 (0, 5.52) 0.48 16.725 5.5 1.091 (0, 5.75) 0.25 17.002 
6 1 (0, 5.58) 0.42 18.240 6 1 (0, 5.79) 0.21 18.531  
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Appendix 

This section includes the proofs of the results presented in the preceding sections. 

proof of Theorem 1. It is evident that w(s) = 0. Define λ =
2μ
σ2 for the remainder of the proof, then 

dw
dy

=
2
σ2

∫ +∞

y
exp{− λ(ξ − y)}h(ξ)dξ.

In other words, − μ dw
dy = − λ

∫+∞
y exp{ − λ(ξ − y)}h(ξ)dξ. Furthermore,  

σ2

2
d2w
dy2 =

d
( ∫+∞

y exp{− λ(ξ − y)}h(ξ)dξ
)

dy
.

Let t = ξ − y, we have 

σ2

2
d2w
dy2 =

d
(
∫ +∞

0
exp{− λt}h(y + t)dt

)

dy

=

∫ +∞

0
exp{− λt}dh(y + t)

= [exp{− λt}h(y + t)]+∞
0 −

∫ +∞

0
h(y + t)dexp{− λt}

= − h(y) + λ
∫ +∞

0
exp{− λt}h(y + t)dt

= − h(y) + λ
∫ +∞

y
exp{− λ(ξ − y)}h(ξ)dξ.

Stated thus, the equation − μ dw
dy +

σ2

2
d2w
dy2 = − h(y) holds, which concludes the proof. 

Proof of Theorem 2. Firstly, we can infer from Theorem 1 that 

μgp(x) =

∫ 0

− x

(

− λ
∫ +∞

u
Csexp{− λ(ξ − u)}ξdξ

)

du =

∫ 0

− x

∫ +∞

u
Csξdexp{− λ(ξ − u)}du

=

∫ 0

− x
[Csξexp{− λ(ξ − u)}]+∞

u du −

∫ 0

− x

∫ +∞

u
Csexp{− λ(ξ − u)}dξdu

= −

∫ 0

− x
Csudu +

∫ 0

− x

[
Cs

λ
exp{− λ(ξ − u)}

]+∞

u
du

=
1
2
Csx2 −

σ2

2μCsx,

the computation here incorporated the higher divergence rate of an exponential function than that of a linear function. Denote A = μ[(p − w)S − (p −
m)R(S) − H(S) − C0], B = μTI(S), a = 1

2Cs and b = μ(p − w − Cu)+
σ2

2μCS, we can conclude from equation (12) that 

pR(x) =
− ax2 + bx + A

x + B
, p′

R(x) =
− ax2 − 2aBx + bB − A

(x + B)2 .

The numerator of p′

R(x) is a concave quadratic function with symmetry axis x = − B < 0. That is, when bB − A < 0, we have p′

R(x) < 0 for any x > 0, and 

no backorder should be permitted. Otherwise, when bB − A > 0, the equation p′

R(x) = 0 has an unique positive solution x∗(S) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

B2 + bB− A
a

√

− B which 

satisfies p′

R(x) > 0 for any 0 < x < x*(S) and p′

R(x) < 0 for any x > x*(S). Therefore, x*(S) maximises the profit function and is the optimal backorder 
level. 

Moreover, p′′R(x) = −
2(aB2+bB− A)

(x+B)3
. When a positive optimal backorder level x*(S) exists, we always have p′′R(x) < 0, which concludes the proof. 

Proof of Corollary 1. When Cs = 0, we have 
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pR(x) =
A + μ(p − w − Cu)x

B + x
, p′

R(x) =
Bμ(p − w − Cu) − A

(B + x)2 ,

if A < Bμ(p − w − Cu), we always have p′

R(x) > 0, and pR(x) becomes an increasing function of x, so all the demands should be backordered. 

Proof of Corollary 2. Firstly, it is straightforward that 

lim
S→0

p(S − R(S)) + mR(S) − wS − H(S) − C0

TI(S)
= − lim

S→0

C0

TI(S)
= − ∞,

while we can infer from (5) and (7) that lim
S→+∞

TI(S) = T and lim
S→+∞

S − R(S) = μT, that is 

lim
S→+∞

p(S − R(S)) + mR(S) − wS − H(S) − C0

TI(S)
= (p − m)μ − lim

S→+∞

(w − m)S + H(S) + C0

T
= − ∞.

On the other side, the left side of (14) is a positive constant. As a result, (14) always holds when S approaches 0 or infinity. 
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