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Abstract
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formula and the comparison theorem are developed in our setup, via which the game
is shown to have the value function as the unique solution to the associated Shapley
equation. By the Shapley equation in the form of a differential equation, we establish
the existence of a saddle point with a very simple form, which only depends on the
current state and can be applied at any time. A potential algorithm for computing
saddle points is proposed.

Keywords Piecewise deterministic Markov games · Zero sum · Unbounded
transition rate · Shapley equation · Saddle point

Mathematics Subject Classification 91A15 · 91A25

B Yonghui Huang
hyongh5@mail.sysu.edu.cn

Zhaotong Lian
lianzt@um.edu.mo

Xianping Guo
mcsgxp@mail.sysu.edu.cn

1 School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China

2 Faculty of Business Administration, University of Macau, Macau SAR, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-023-00809-0&domain=pdf
http://orcid.org/0000-0002-5804-6920


Y. Huang et al.

1 Introduction

As iswell known, game theory is amathematical framework to analyze social situations
among competing players and produce satisfactory decision-making for competing
players.Game theoryhas awide rangeof applications such as psychology, evolutionary
biology, politics, social sciences, economics and business. Since John Nash received
the Nobel Prize in 1994, twenty game theorists have been awarded the Nobel Prize
in Economic Sciences. Nowadays, there have been many advances along with plenty
of branches in game theory; see, for instance, the monographs (Barron 2013; Haurie
et al. 2012).

Markov games are one type of stochastic dynamic games, where the state dynamics
of the games are driven by Markov processes. To date, Markov games have received
increasing attentions and have been widely investigated; see, for instance, Minjárez-
Sosa (2020) for discrete-time Markov games (DTMGs) with discounted criterion;
Gensbittel and Renault (2015), Minjárez-Sosa (2020) for DTMGs with long-run aver-
age criterion; Guo and Zhang (2017) for continuous-time (pure jump) Markov games
(CTMGs) with finite-horizon payoff criterion; Guo and Hernández-Lerma (2007),
Prieto-Rumeau and Lorenzo (2015) for CTMGs with discounted payoff criterion;
Guo and Hernández-Lerma (2003), Lorenzo et al. (2015) for CTMGs with average
payoff criterion; Jaśkiewicz (2009), Mondal (2017) for semi-Markov games (SMGs)
with average criterion; Ghosh and Goswami (2006) for SMGs with discounted crite-
rion; Costa and Dufour (2018) for piecewise deterministic Markov games (PDMGs)
with discounted payoff criterion.

This paper is concerned with zero-sum PDMGs, one type of Markov games whose
state dynamics are driven by piecewise deterministic Markov processes (PDMPs).
PDMPs evolve through random jumps at random time pointswhile themotion between
jumps follows a flow. In particular, if the flow remains unchanged over time, PDMPs
reduce to continuous-time (pure jump) Markov processes (CTMPs). These features of
PDMPsmake themhavewide applications inmany areas such asmanagement science,
operations research, and engineering. There has been a vast literature on piecewise
deterministic Markov decision processes (PDMDPs) where only one decision maker
is considered (Bäuerle and Rieder 2011; Costa et al. 2016; Huang and Guo 2019).
However, as far as we can tell, there is only one paper (Costa and Dufour 2018)
devoted to PDMGs. In fact, Costa and Dufour (2018) deal with zero-sum PDMGs
with the infinite horizon total expected discounted reward criterion. The transition
rate and reward functions are assumed to be unbounded. The authors use the special
features of the PDMPs to reformulate the problem as a discrete-stage zero-sum game
problem. They derive conditions for the existence of min-max strategies.

In this paper, our problem and the assumptions on model data are similar to those in
Costa and Dufour (2018). We also consider the expected infinite-horizon discounted
payoff criterion. The state space is assumed to be a Borel space. Both the transition
rate and payoff function are allowed to be unbounded. The policies of the two players
are history-dependent, and the controls continuously act on the transition rate and the
payoff rate.However, there are somedifferences between thework inCosta andDufour
(2018) and ours. First, the decisions for the two players in Costa and Dufour (2018) are
taken only after a jump time, while the transition rate, reward rate and boundary reward
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are affected until the next jump occurs through a predefined mapping l(x, a, b, t),
where x is the state at the beginning of the current jump, (a, b) is the action pair
chosen by players, and t is the time elapsed since this jump occurred. In our work, the
decisions for the two players are taken continuously over time, and these actions will
be continuously acting on the transition rate and the payoff rate. Second, our approach
to dealing with the problem is different from the reduction technique in Costa and
Dufour (2018). In fact, we use a so-called infinitesimal approach, which characterizes
the value function as a solution to some differential equation; see Costa et al. (2016)
for infinite-horizon discounted PDMDPs with bounded jump rates and Huang and
Guo (2019) for finite-horizon PDMDPs with unbounded jump rates. In more detail,
we develop Dynkin’s formula and the comparison theorem in our setup, and then show
that the game has the value function as the unique solution to the Shapley equation
that is in the form of a differential equation. As far as we know, this paper is the first
attempt to apply the infinitesimal approach to studying PDMGs. Third, because our
approach is different from the one in Costa and Dufour (2018), some assumptions in
this paper are different from those in Costa and Dufour (2018); see Remarks 2 and
3 for details. We also provide a simple example to verify our assumptions. Finally,
by the Shapley equation derived in this paper, we establish the existence of saddle
points, and propose a potential algorithm for computing a saddle point. We mention
that, since the Shapley equation in this paper is in the form of a differential equation,
the saddle point we obtain is in a very simple form, which only depends on the current
state and can be applied at any time.

The rest of the paper is organized as follows. Section 2 describes the model of
PDMGs and the problem formulation. Section 3 provides some preliminaries such
as Dynkin’s formula and the comparison theorem. The main results on the Shapley
equation and the existence of saddle points are given in Sect. 4. Section 5 provides an
example that verifies all the assumptions in this paper. An appendix about the proof
of Proposition 1 is included in Sect. 6.

2 Problem formulation

Notation. Let R = (−∞,∞), and R+ = [0,∞). For a Borel space X , we denote by
Dc the complement of a set D ⊆ X , by δ{x}(·) the Dirac measure concentrated on
x ∈ X , by 1D(x) the indicator function on a set D ⊆ X , by P(X) the family of all
non-empty subsets of X , byB(X) the Borel σ -algebra on X , and by P(X) the space
of all probability measures on (X ,B(X)).

The model of a zero-sum PDMG is a tuple as below:

{E, A, B, {A(x), B(x), x ∈ E}, q(·|x, a, b), φ(x, t), r(x, a, b)}. (1)

Here, E is the state space of the PDMP, while A and B are the action space for player
1 and player 2, respectively. These spaces are all assumed to be Borel spaces endowed
with Borel σ -algebras. A(·) and B(·) aremeasurable compact-valued multi-functions
from E toP(A) andP(B), respectively. For each x ∈ E , A(x) and B(x) denote the
sets of available actions to player 1 and player 2, respectively, when the system is at
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the state x ∈ E . For convenience, let’s introduce the set

K := {(x, a, b) : x ∈ E, a ∈ A(x), b ∈ B(x)}.

That is, K is the graph of the multi-function A(·) × B(·). Since A(·) and B(·) are
measurable compact-valued multi-functions, by Lemma 1.7 in Nowak (1984), K is a
measurable subset of E × A× B. Moreover, q(·|x, a, b) is referred to a transition rate,
which is a measurable signed kernel on E given K such that, for all (x, a, b) ∈ K ,
(i) 0 ≤ q(D|x, a, b) < +∞ for x /∈ D ∈ B(E), (ii) q(E |x, a, b) ≡ 0, and (iii)
q∗(x) := supa∈A(x),b∈B(x) q(x, a, b) < ∞, whereq(x, a, b) := −q({x}|x, a, b) ≥ 0.
The motion between jumps of the PDMP is determined by φ(x, t) in (1), called a
flow, which is a measurable function from E × R to E . We assume that φ(x, s + t) =
φ(φ(x, s), t) for all x ∈ E and (s, t) ∈ R2. Finally, the measurable function r(x, a, b)
on K denotes the payoff rate for player 1. In a zero-sum game, one player’s gain is
equivalent to another’s loss, so that r(x, a, b) is the loss rate for player 2.

Remark 1 Unlike the models of PDMPs in Costa et al. (2016), Costa and Dufour
(2018), we do not consider jumps when hitting the boundary and the related impulsive
control in our model. In some cases, there are actually no boundary jumps since the
boundary will be never reached, as indicated in the example in Sect. 5 below.

To construct the PDMP based on the data above, let E� := E ∪ {x∞}, where
x∞ is an isolated artificial point corresponding to the case when no jump occurs in
the future. For n ≥ 0, we put �n = E × ((0,∞) × E)n × ({∞} × {x∞})∞. The
sample space is � = ∪∞

n=0�n ∪ (E × ((0,∞) × E)∞), and let F be the Borel
σ -algebra on �. Then we obtain a measurable space (�,F ). For a trajectory ω =
(x0, θ1, x1, . . . , θn, xn, . . .) ∈ �, x0 denotes the initial state of the process, and for
n ≥ 1, θn > 0 and xn correspond to the time interval between two consecutive
jumps and the state of the process immediately after the jump. In case θn < ∞ and
θn+1 = ∞, the trajectory has only n jumps, and we put θm = ∞ and xm = x∞ for
all m ≥ n + 1. On the measurable space (�,F ), we define a sequence of random
variables {	n, Xn, n ≥ 0} by 	0(ω) := 0,	n+1(ω) := θn+1, Xn(ω) := xn , for each
n ≥ 0 and any trajectory ω = (x0, θ1, x1, . . . , θk, xk, . . .) ∈ �. Further, we define
T0(ω) := 0, Tn(ω) := ∑n

i=1 	i (ω) for every n ≥ 1, and T∞(ω) := limn→∞ Tn(ω).
Then, the PDMP {ξt , t ∈ R+} is defined by

ξt (ω) :=
{

φ(Xn(ω), t − Tn(ω)), if Tn(ω) ≤ t < Tn+1(ω),

x∞, if t ≥ T∞(ω),

for each t ∈ R+. To be complete, when the PDMP occupies the state x∞, we introduce
artificial actions a∞ and b∞ for player 1 and player 2, respectively. Moreover, let
q(·|x∞, a∞, b∞) ≡ 0, A(x∞) = {a∞}, B(x∞) = {b∞}, and A∞ = A ∪ {a∞},
B∞ = B ∪ {b∞}.

The probabilistic properties of the PDMP {ξt , t ∈ R+} are determined by the
transition rate and policies of players. First of all, we need to define policies. To
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this end, we introduce the random measure μ associated with {	n, Xn, n ≥ 0} on
(R+ × E,B(R+ × E)) by

μ(ω; dt, dx) :=
∑

n≥1

1{Tn(ω)<∞}δ{Tn(ω),Xn(ω)}(dt, dx).

Moreover, we take the right-continuous family of σ -algebras {Ft }t≥0 with Ft :=
σ(μ([0, s]× D) : 0 ≤ s ≤ t, D ∈ B(E)), and let P := σ({� ×{0}, � ∈ F0}∪ {� ×
(s,∞), � ∈ Fs−, s > 0}) be the σ -algebra of predictable sets on � × R+ related to
{Ft }t≥0, where Fs− := ∨t<sFt .

Definition 1 A randomized history-dependent policy, or simply, a policy for player 1
is a transition probability π1(da|ω, t) from (� × R+,P) onto (A∞,B(A∞)) such
that π1(A(ξt−(ω))|ω, t) = 1. In particular, a policy π1(da|ω, t) is called randomized
Markov for player 1 if the action selection depends on the history only through the
current state, i.e., the policy has the form π1(da|ξt−(ω)). Policies for player 2 can be
defined similarly.

For each i = 1, 2, we denote by 
i and 
i
RS the families of all policies and that of

all randomized Markov policies for player i , respectively.
Now consider a state x ∈ E and a pair of policies (π1, π2) ∈ 
1×
2. By Theorem

3.6 in Jacod (1975), there exists a probability measure Pπ1,π2

x on (�,F ) such that

the restriction of Pπ1,π2

x on (�,F0) is given by

Pπ1,π2

x (X0 = x) = 1,

and the random measure νπ1,π2
defined on (0,∞) × E by

νπ1,π2
(ω; dt, dx)

:=
∫

B

∫

A
q(dx \ {ξt−(ω)}|ξt−(ω), a, b)π1(da|ω, t)π2(db|ω, t)dt .

is the predictable projection of μ with respect to Pπ1,π2

x ; see Costa et al. (2016) for
further details.

Let Eπ1,π2

x be the corresponding expectation operator with respect to Pπ1,π2

x . For
each pair of policies (π1, π2) ∈ 
1 × 
2, we define the expected infinite-horizon
discounted payoff criterion by

V π1,π2
(x)

:= E
π1,π2

x

[∫ ∞

0
e−αt

∫

B

∫

A
r(ξt , a, b)π1(da|ω, t)π2(db|ω, t)dt

]

∀x ∈ E,

provided that the integral is well defined. Here, α is a discount factor.
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As is well known, the functions V ∗(x) and V
∗
(x) on E defined by

V ∗(x) := sup
π1∈
1

inf
π2∈
2

V π1,π2
(x),

and V
∗
(x) := inf

π2∈
2
sup

π1∈
1
V π1,π2

(x), x ∈ E,

are called the lower value and the upper value of the game, respectively. It is clear that
V ∗(x) ≤ V

∗
(x) for all x ∈ E .

Definition 2 If V ∗(x) = V
∗
(x) for all x ∈ E , the common function is called the value

function of the game and denoted by V ∗(x).

Definition 3 A pair of policies (π̂1, π̂2) is called a saddle-point if

V π1,π̂2
(x) ≤ V π̂1,π̂2

(x) ≤ V π̂1,π2
(x) ∀π1 ∈ 
1, π2 ∈ 
2, x ∈ E .

At a saddle point, no player can improve (reduce) his/her payoff (loss) by deviating
unilaterally from the saddle-point policy. Note that if a saddle point (π̂1, π̂2) exits,
we must have

V
∗
(x) ≤ V π̂1,π̂2

(x) ≤ V ∗(x) ∀x ∈ E,

which implies that V π̂1,π̂2
(x) = V ∗(x) for all x ∈ E , meaning that the game has a

value. In the following sections, we show when a saddle point exists and how to find
a saddle point for the game.

3 Preliminaries

Since the transition rate is unbounded, we shall first avoid the explosion of the PDMP
{ξt }, and so we propose the following assumption.

Assumption 1 (a) There exist a measurable function w0 ≥ 1 on E , and constants
c0 > 0,d0 ≥ 0 such that

∫
E w0(y)q(dy|x, a, b) ≤ c0w0(x)+d0, for all (x, a, b) ∈ K ;

(b) There exists a sequence {Em,m ≥ 1} of Borel subsets of E such that Em ↑ E ,
supx∈Em

q∗(x) < ∞, and limm→∞ infx /∈Em w0(x) = ∞;
(c) w0(φ(x, t)) ≤ w0(x) for all (x, t) ∈ E × R+.

Remark 2 (a) Assumption 1 is inspired by Assumption A in Guo and Song (2011)
for continuous-time Markov decision processes (CTMDPs) and Assumption 3.1 in
Guo and Hernández-Lerma (2007) for CTMGs. However, due to the presence of the
flow φ in PDMPs, we add Assumption 1(c) additionally to ensure the non-explosion
of PDMPs. Moreover, Assumption 1 here is similar to Assumption 3.1 in Huang and
Guo (2019) for finite-horizon PDMDPs, but the two assumptions slightly differ.

(b) The parallel assumption in Costa and Dufour (2018) for PDMGs to Assump-
tion 1 here is Assumption B therein, but it is different from ours owing to different
techniques applied, mentioned in the introduction above.
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Proposition 1 Let Assumption 1 be fulfilled. For each (π1, π2) ∈ 
1 × 
2, x ∈ E,
and t ∈ R+, the following assertions hold.

(a) Pπ1,π2

x (T∞ = +∞) = 1.

(b) Eπ1,π2

x
[
w0(ξt )

] ≤ ec0tw0(x) + d0
c0

(ec0t − 1).

Proof The proof is postponed to Sect. 6. ��

To ensure the finiteness of V π1,π2
, we also propose some growth conditions on the

payoff rate and the discount factor.

Assumption 2 (a) The constant c0 in Assumption 1 satisfies that c0 < α.
(b) There exists a constant M0 > 0 such that

|r(x, a, b)| ≤ M0w0(x) ∀(x, a, b) ∈ K .

We can now show that V π1,π2
is finite for each pair of policies (π1, π2).

Lemma 1 Under Assumptions 1 and 2, we have

|V π1,π2
(x)| ≤ M0

α − c0
w0(x) + d0M0

α(α − c0)
∀(π1, π2) ∈ 
1 × 
2, x ∈ E .

Proof Under Assumptions 1 and 2, it follows from Proposition 1(b) that

|V π1,π2
(x)| ≤ M0

∫ ∞

0
e−αt

E
π1,π2

x

[
w0(ξt )

]
dt ≤ M0

α − c0
w0(x) + d0M0

α(α − c0)
.

The proof is complete. ��
We are going to derive Dynkin’s formula for discounted PDMGs with unbounded

transition rates. To this end, we introduce a framework. Let w ≥ 1 be a real-valued
measurable function on E , called a weight function. For every measurable function ϕ

on E , we introduce its w-norm ‖ϕ‖w by

‖ϕ‖w := sup
x∈E

|ϕ(x)|/w(x).

LetBw(E) be the Banach space of all measurable functions ϕ on E such that ‖ϕ‖w <

∞, while let Bac
w (E) be the collection of all measurable functions ϕ in Bw(E) such

that ϕ(φ(x, t)) is absolutely continuous in t ∈ R+ for all x ∈ E . For a function ϕ ∈
Bac

w (E), by Lemma A.1 in Piunovskiy and Zhang (2021), there is some measurable
function Lφϕ on E satisfying

ϕ(φ(x, t)) − ϕ(x) =
∫ t

0
Lφϕ(φ(x, v))dv ∀ t ∈ R+, x ∈ E .
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Here, for x ∈ E , the function Lφϕ(φ(x, v))on R+ coincideswith the partial derivative,
∂ϕ(φ(x, v))/∂v, of the functionϕ(φ(x, v)) in v ∈ R+ apart fromon a null set Zϕ(x) ⊂
R+ with respect to the Lebesgue measure. For such a function ϕ, let

Dϕ := {φ(x, t) ∈ E : t ∈ Zc
ϕ(x), x ∈ E}.

Then, the function Lφϕ on E can be defined as below:

Lφϕ(x) :=
⎧
⎨

⎩
lim

�s→0

ϕ(φ(x,�s)) − ϕ(x)

�s
, x ∈ Dϕ,

arbitrary, otherwise.

In particular, if φ(x, t) ≡ x in which case a PDMP becomes a CTMP, Lφϕ(x) = 0
for all x ∈ E . Moreover, for ϕ ∈ Bac

w (E) and a weight function w̄ on E , we let

‖Lφϕ‖esw̄ := sup
x∈Dϕ

|Lφϕ(x)|/w̄(x),

and Bac
w,w̄(E) := {ϕ ∈ Bac

w (E) : ‖Lφϕ‖esw̄ < ∞}.
Some more assumptions are required to ensure Dynkin’s formula works.

Assumption 3 There exist ameasurable functionw1 ≥ 1 on E , and constantsM1 > 0,
c1 < α and d1 ≥ 0 such that

(a)
(
1 + q(x, a, b)

)
w0(x) ≤ M1w1(x), for all (x, a, b) ∈ K ;

(b)
∫
E w1(y)q(dy|x, a, b) ≤ c1w1(x) + d1 for all (x, a, b) ∈ K ;

(c) w1(φ(x, t)) ≤ w1(x) for all (x, t) ∈ E × R+.

Remark 3 The parallel assumption inCosta andDufour (2018) for PDMGs toAssump-
tion 3here isAssumptionD therein, but it is different fromours.AssumptionD together
with Assumption B and C therein are used to ensure the convergence of the expected
infinite horizon discounted payoffs, while Assumption 3 together with Assumption 1
here are used to justify Dynkin’s formula in our setup.

When Assumptions 3(b) and 3(c) are further imposed, Proposition 1(b) holds with
w0 being replaced by w1 so that we have

Eπ1,π2

x

[
w1(ξt )

] ≤ ec1tw1(x) + d1
c1

(ec1t − 1). (2)

We are ready to state Dynkin’s formula for discounted PDMGs.

Theorem 2 (Dynkin’s formula) Suppose Assumptions 1, 2(a) and 3 are satisfied. For
each (π1, π2) ∈ 
1 × 
2, ϕ ∈ Bac

w0,w1
(E), T ∈ R+ and x ∈ E,

E
π1,π2

x

[ ∫ T

0

(
Lφ

[
e−αtϕ(ξt )

]
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+e−αt
∫

B

∫

A

∫

E
ϕ(y)q(dy|ξt , a, b)π1(da|ω, t)π2(db|ω, t)

)
dt

]

= E
π1,π2

x [e−αTϕ(ξT )] − ϕ(x).

Proof It follows from Proposition 1(a) that, for almost all (a.a.) ω ∈ �with respective

to Pπ1,π2

x , there are only finite number of jumps of the PDMP {ξt (ω)} up to any time
T . Therefore, by the construction of ξt and the definition of Dϕ , we conclude that for
a.a. t ∈ R+, ξt (ω) ∈ Dϕ . Hence, by the definition of the operator Lφ , we have

Lφ
[
e−αtϕ(ξt (ω))

] = ∂[e−αtϕ(ξt (ω))
]

∂t
, a.a. ω ∈ �, t ∈ R+.

Thus, using the equality (8) in Avrachenkov et al. (2015) yields that

e−αTϕ(ξT ) − ϕ(ξ0)

=
∫ T

0
Lφ

[
e−αtϕ(ξt )

]
dt

+
∫

(0,T ]×E

[
e−αtϕ(y) − e−αtϕ(ξt−)

]
μ(ω; dt, dy), a.a.ω − Pπ1,π2

x . (3)

We are going to take expectations in both sides of (3) to derive Dynkin’s formula, but,
we should first discuss if the expectations are well defined, as shown below.

Since ϕ ∈ Bac
w0,w1

(E), it is clear that |ϕ(x)| ≤ ‖ϕ‖w0w0(x) for all x ∈ E , and
|Lφϕ(x)| ≤ ‖Lφϕ‖esw1

w1(x) for any x ∈ Dϕ . On the one hand, observe that (ξt (ω)) ∈
Dϕ for a.a. ω ∈ � and t ∈ R+, and so we have

Lφ
[
e−αtϕ(ξt (ω))

] = −αe−αtϕ(ξt (ω)) + e−αt Lφ
[
ϕ(ξt (ω))

]
, a.a. ω ∈ �, t ∈ R+,

which together with Proposition 1(b) and (2) give

E
π1,π2

x

[∫ T

0

∣
∣
∣Lφ

[
e−αtϕ(ξt )

]∣∣
∣dt

]

≤
∫ T

0
E

π1,π2

x

[
αe−αt‖ϕ‖w0w0(ξt ) + e−αt‖Lφϕ‖esw1

w1(ξt )
]]
dt

≤ α‖ϕ‖w0

α − c0
(w0(x) + d0

c0
) + ‖Lφϕ‖esw1

α − c1
(w1(x) + d1

c1
)

< ∞. (4)

On the other hand, under Assumptions 1 and 3, we have

∣
∣
∣

∫

B

∫

A

∫

E
ϕ(y)q(dy|ξt , a, b)π1(da|ω, t)π2(db|ω, t)

∣
∣
∣

≤ ‖ϕ‖w0

∫

B

∫

A

[ ∫

E
w0(y)q(dy|ξt , a, , b) + 2q(ξt , a, b)w0(ξt )

]
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π1(da|ω, t)π2(db|ω, t)

≤ ‖ϕ‖w0

[
c0w0(ξt ) + d0 + 2M1w1(ξt )

]
. (5)

Thus, by (5), Proposition 1(b) and (2), we obtain

E
π1,π2

x

[∫ T

0
e−αt

∣
∣
∣

∫

B

∫

A

∫

E
ϕ(y)q(dy|ξt , a, b)π1(da|ω, t)π2(db|ω, t)

∣
∣
∣dt

]

≤ ‖ϕ‖w0

∫ T

0
e−αt

E
π1,π2

x

[
c0w0(ξt ) + d0 + 2M1w1(ξt )

]
dt

≤ ‖ϕ‖w0

[ c0
α − c0

(w0(x) + d0
c0

) + d0
α

+ 2M1

α − c1
(w1(x) + d1

c1
)
]

< ∞. (6)

Now, taking expectation in both sides of (3), using (4) and (6) yields that

E
π1,π2

x

[
e−αTϕ(ξT (ω))

]
− ϕ(x)

= E
π1,π2

x

[∫ T

0
Lφ

[
e−αtϕ(ξt )

]
dt

]

+E
π1,π2

x

[∫

E

∫

(0,T ]
[e−αtϕ(y) − e−αtϕ(ξt−)

]
μ(dt, dy)

]

= E
π1,π2

x

[∫ T

0
Lφ

[
e−αtϕ(ξt )

]
dt

]

+E
π1,π2

x

[∫

E

∫

(0,T ]
e−αt (ϕ(y) − ϕ(ξt−))νπ1,π2

(dt, dy)

]

= E
π1,π2

x

[∫ T

0
Lφ

[
e−αtϕ(ξt )

]
dt

]

+E
π1,π2

x

[∫ T

0
e−αt

∫

B

∫

A

∫

E
ϕ(y)q(dy|ξt−, a, b)π1(da|ω, t)π2(db|ω, t)dt

]

,

where the second equality follows from the fact that the random measure νπ1,π2
is

a dual predictable projection of the random measure μ under Pπ1,π2

x . Note that, for
every ω ∈ �, ξt−(ω) = ξt (ω) on (0, T ] except countable many time points. Hence,

E
π1,π2

x

[∫ T

0
e−αt

∫

B

∫

A

∫

E
ϕ(y)q(dy|ξt−, a, b)π1(da|ω, t)π2(db|ω, t)dt

]

= E
π1,π2

x

[∫ T

0
e−αt

∫

B

∫

A

∫

E
ϕ(y)q(dy|ξt , a, b)π1(da|ω, t)π2(db|ω, t)dt

]

.

The formula then follows. ��
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Remark 4 Costa et al. (2016) derive Dynkin’s formula for infinite-horizon discounted
PDMDPs, where bounded transition rate and boundary jumps are considered.

Now, using Dynkin’s formula, we can compare V π1,π2
with the solution to some

differential inequality or equation. To beginwith,we introduce the following notations:
for each x ∈ E , (η, γ ) ∈ P(A(x)) × P(B(x)) and ϕ ∈ Bw0(E),

r(x, η, γ ) :=
∫

B(x)

∫

A(x)
r(x, a, b)η(da)γ (db), (7)

∫

E
ϕ(y)q(dy|x, η, γ ) :=

∫

B(x)

∫

A(x)

∫

E
ϕ(y)q(dy|x, a, b)η(da)γ (db). (8)

Theorem 3 (Comparison Theorem) Suppose that Assumptions 1–3 hold.

(a) If there exists a function ϕ ∈ Bac
w0,w1

(E) such that

Lφϕ(x) − αϕ(x) + r(x, η, γ )

+
∫

E
ϕ(y)q(dy|x, η, γ ) ≤ 0 ∀(η, γ ) ∈ P(A(x)) × P(B(x)), x ∈ Dϕ,

we have V π1,π2
(x) ≤ ϕ(x), for all (π1, π2) ∈ 
1 × 
2 and x ∈ E.

(b) If there exists a function ϕ ∈ Bac
w0,w1

(E) such that

Lφϕ(x) − αϕ(x) + r(x, η, γ )

+
∫

E
ϕ(y)q(dy|x, η, γ ) ≥ 0 ∀(η, γ ) ∈ P(A(x)) × P(B(x)), x ∈ Dϕ,

we have V π1,π2
(x) ≥ ϕ(x), for all (π1, π2) ∈ 
1 × 
2 and x ∈ E.

Proof (a) As in the proof of Theorem 2, we conclude that, for a.a. ω ∈ � with respect

to Pπ1,π2

x and a.a. t ∈ R+ with respect to Lebesgue measure, ξt (ω) ∈ Dϕ , which
together with the condition in (a) implies that, for a.a. ω ∈ � and t ∈ R+,

Lφϕ(ξt (ω)) − αϕ(ξt (ω)) +
∫

B

∫

A
r(ξt (ω), a, b)π1(da|ω, t)π2(db|ω, t)

+
∫

B

∫

A

∫

E
ϕ(y)q(dy|ξt , a, b)π1(da|ω, t)π2(db|ω, t) ≤ 0,

which yields that

Lφ
[
e−αtϕ(ξt (ω))

]
+ e−αt

∫

B

∫

A
r(ξt (ω), a, b)π1(da|ω, t)π2(db|ω, t)

+e−αt
∫

B

∫

A

∫

E
ϕ(y)q(dy|ξt , a, b)π1(da|ω, t)π2(db|ω, t) ≤ 0.
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Thus, by Theorem 2, for all (π1, π2) ∈ 
1 × 
2 and x ∈ E , we have

E
π1,π2

x [e−αTϕ(ξT )] − ϕ(x)

= E
π1,π2

x

[ ∫ T

0

(
Lφ[eαtϕ(ξt )]

+eαt
∫

B

∫

A

∫

E
ϕ(y)q(dy|ξt , a, b)π1(da|ω, t)π2(db|ω, t)

)
dt

]

≤ −E
π1,π2

x

[ ∫ T

0
e−αt

∫

B

∫

A
r(ξt , a, b)π1(da|ω, t)π2(db|ω, t)dt

]
,

which indicates that

E
π1,π2

x

[ ∫ T

0
e−αt

∫

B

∫

A
r(ξt , a, b)π1(da|ω, t)π2(db|ω, t)dt

]

≤ ϕ(x) − E
π1,π2

x [e−αTϕ(ξT )].

Letting T → ∞ on both sides of the above inequality, the dominated convergence
theorem yields that V π1,π2

(x) ≤ ϕ(x).
(b) The proof is similar to that of part (a). ��

Theorem 4 Suppose Assumptions 1–3 hold. For every (π1, π2) ∈ 
1
RS×
2

RS, V
π1,π2

is the unique solution solution in Bac
w0,w1

(E) to the differential equation

Lφϕ(x) − αϕ(x) + r(x, π1(·|x), π2(·|x))
+

∫

E
ϕ(y)q(dy|x, π1(·|x), π2(·|x)) = 0 ∀x ∈ Dϕ. (9)

Proof From Lemma 1, we see that V π1,π2 ∈ Bw0(E). Now, for each x ∈ E , condi-
tioning on the first-jump time and the post-jump state, we have

V π1,π2
(x)

= E
π1,π2

x

[ ∫ T1

0
e−αt

∫

B

∫

A
r(ξt , a, b)π1(da|ξt−)π2(db|ξt−)dt

]

+E
π1,π2

x

[

e−αT1

∫ ∞

T1
e−α(t−T1)

∫

B

∫

A
r(ξt , a, b)π1(da|ξt−)π2(db|ξt−)dt

]

=
∫ ∞

0
e−αt

P
π1,π2

x (T1 > t)r(φ(x, t), π1(·|φ(x, t)), π2(·|φ(x, t)))dt

+E
π1,π2

x

[

e−αT1Eπ1,π2

x

[ ∫ ∞

T1
e−α(t−T1)

×
[ ∫

B

∫

A
r(ξt , a, b)π1(da|ξt−)π2(db|ξt−)

]
dt

∣
∣
∣T1, X1

]]
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=
∫ ∞

0
e−αt−∫ t

0 q(φ(x,v),π1(·|φ(x,v)),π2(·|φ(x,v)))dv

×
[
r(φ(x, t), π1(·|φ(x, t)), π2(·|φ(x, t)))

+
∫

E\{φ(x,t)}
V π1,π2

(y)q(dy|φ(x, t), π1(·|φ(x, t)), π2(·|φ(x, t)))
]
dt . (10)

For all s ∈ R+, replacing x with φ(x, s) in (10), we obtain

V π1,π2
(φ(x, s))

=
∫ ∞

0
e−αt e− ∫ t

0 q(φ(x,v+s),π1(·|φ(x,t+v)),π2(·|φ(x,t+v)))dv

×[
r(φ(x, t + s), π1(·|φ(x, t + s)), π2(·|φ(x, t + s)))

+
∫

E\{φ(x,t+s)}
V π1,π2

(y)

·q(dy|φ(x, t + s), π1(·|φ(x, t + s)), π2(·|φ(x, t + s)))
]
dt . (11)

Now, changing the integral variable t to u with u = t + s in the R.H.S. of (11), and
then multiplying by e− ∫ s

0 (α+q(φ(x,v),π1(·|φ(x,v)),π2(·|φ(x,v))))dv in both sides of (11), we
find that

e− ∫ s
0 (α+q(φ(x,v),π1(·|φ(x,v)),π2(·|φ(x,v))))dvV π1,π2

(φ(x, s))

=
∫ ∞

s
e− ∫ u

0 (α+q(φ(x,v),π1(·|φ(x,v)),π2(·|φ(x,v))))dv

×
[
r(φ(x, u), π1(·|φ(x, u)), π2(·|φ(x, u)))

+
∫

E\{φ(x,u)}
V π1,π2

(y)q(dy|φ(x, u), π1(·|φ(x, u)), π2(·|φ(x, u)))
]
du,

which shows that V π1,π2
(φ(x, s)) is absolutely continuous in s ∈ R+, and thus, is dif-

ferentiable almost everywhere on R+. Therefore, differentiating both sides of the above
equalitywith respect to s, and thendividingby e− ∫ s

0 (α+q(φ(x,v),π1(·|φ(x,v)),π2(·|φ(x,v))))dv

both sides of the resulting equality yields

LφV π1,π2
(φ(x, s)) − αV π1,π2

(φ(x, s)) + r(φ(x, s), π1(·|φ(x, s)), π2(·|φ(x, s)))

+
∫

E
V π1,π2

(y)q(dy|φ(x, s), π1(·|φ(x, s)),

π2(·|φ(x, s))) = 0 ∀s ∈ Zc
V π1,π2

(x).

This implies that

LφV π1,π2
(x) − αV π1,π2

(x) + r(x, π1(·|x), π2(·|x))
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+
∫

E
V π1,π2

(y)q(dy|x, π1(·|x), π2(·|x)) = 0,

for all x ∈ DV π1,π2

. That is, V π1,π2
satisfies (9).

To show that V π1,π2
is inBac

w0,w1
(E), it remains to verify that ‖LφV π1,π2‖esw1

< ∞.
Indeed, by (9) and Assumptions 1-3, a simple calculation gives that

|LφV π1,π2
(x)| ≤ [ M0

α − c0
(1 + d0

α
)(α + c0 + d0 + 2M1) + M0

]
w1(x)∀x ∈ DV π1,π2

,

which indicates that ‖LφV π1,π2‖esw1
< ∞. Now, if ϕ is another solution inBac

w0,w1
(E)

to equation (9), by Theorem 3, we must have ϕ = V π1,π2
. The proof is achieved. ��

4 Main results

4.1 Shapley equation and saddle points

In this subsection, we prove that the game has the value function V ∗ satisfying the
associated Shapley equation and a saddle point exists.

To proceed, we introduce a set of continuity assumptions.

Assumption 4 Let x ∈ E be arbitrary.

(a) The payoff rate r(x, a, b) is continuous in (a, b) ∈ A(x) × B(x);
(b) The function q(D|x, a, b) is continuous in (a, b) ∈ A(x) × B(x) for every D ∈

B(E);
(c) The function

∫
E w0(y)q(dy|x, a, b) is continuous in (a, b) ∈ A(x) × B(x).

Moreover, let m(x) be a measurable function on E such that m(x) ≥ q∗(x) + 1,
and

Q(D|x, a, b) := q(D|x, a, b)

m(x)
+ δ{x}(D) ∀(x, a, b) ∈ K and D ∈ B(E).

Clearly, Q(·|x, a, b) is a stochastic kernel on E given K .

Lemma 2 (a) P(A(·)) and P(B(·)) are measurable compact-valued multi-functions
from E toP(P(A)) and P(P(B)), respectively;

(b) Under Assumptions 2(b) and 4(a), r(x, η, γ ) defined by (7) is continuous in
(η, γ ) ∈ P(A(x)) × P(B(x)) with respect to the weak topology for each x ∈ E;

(c) SupposeAssumptions 1(a), 3(a), 4(b) and4(c) hold.For every functionϕ inBw0(E)

and x ∈ E,
∫
E ϕ(y)Q(dy|x, η, γ ) and

∫
E ϕ(y)q(dy|x, η, γ ) defined by (8) are

continuous in (η, γ ) ∈ P(A(x)) × P(B(x)) with respect to the weak topology.

Proof (a) When the model of PDMG is introduced, we have assumed that A(·) and
B(·) are measurable compact-valued multi-functions from E toP(A) andP(B),
respectively. Then, the result follows from Lemma 1.11 in Nowak (1984).
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(b) For each fixed x ∈ E , Assumptions 2(b) and 4(a) implies that r(x, a, b) is a
bounded continuous function on A(x) × B(x). Hence, for any sequence (ηn, γn)

weakly converging to (η, γ ) in P(A(x))×P(B(x)), we have r(x, ηn, γn) converge
to r(x, η, γ ), which means that r(x, η, γ ) is continuous in (η, γ ) ∈ P(A(x)) ×
P(B(x)).

(c) For each x ∈ E , Assumption 4(c) implies that
∫
E ϕ(y)Q(dy|x, a, b) is con-

tinuous in (a, b) ∈ A(x) × B(x) for every bounded measurable function ϕ on
E , while Assumption 4(c) implies that

∫
E w0(y)Q(dy|x, a, b) is continuous in

(a, b) ∈ A(x) × B(x). Using this fact and a similar argument as in the proof
of Lemma 8.3.7 in Hernández-Lerma and Lasserre (1999), we can prove that∫
E ϕ(y)Q(dy|x, a, b) is continuous in (a, b) ∈ A(x) × B(x) for every ϕ in

Bw0(E), and so is
∫
E ϕ(y)q(dy|x, a, b).

For each fixed x ∈ E , Assumptions 1(a) and 3(a) as well as what we have
proved above imply that

∫
E ϕ(y)Q(dy|x, a, b) and

∫
E ϕ(y)q(dy|x, a, b) are bounded

continuous function on A(x) × B(x). Hence, for any sequence (ηn, γn) weakly
converging to (η, γ ) in P(A(x)) × P(B(x)), we have

∫
E ϕ(y)Q(dy|x, ηn, γn) →∫

E ϕ(y)Q(dy|x, η, γ ) and
∫
E ϕ(y)q(dy|x, ηn, γn) → ∫

E ϕ(y)q(dy|x, η, γ ), com-
pleting the proof. ��

For a function ϕ in Bw0(E), we define a dynamic programming operator H as
below:

Hϕ(x) :=
∫ ∞

0
e−αse− ∫ s

0 m(φ(x,v))dv sup
η∈P(A(φ(x,s)))

inf
γ∈P(B(φ(x,s)))

[
r(φ(x, s), η, γ )

+m(φ(x, s))
∫

E
ϕ(y)Q(dy|φ(x, s), η, γ )

]
ds, x ∈ E .

In general, the function

x �→ sup
η∈P(A(x))

inf
γ∈P(B(x))

[
r(x, η, γ ) + m(x)

∫

E
ϕ(y)Q(dy|x, η, γ )

]

need not be measurable. However, under those conditions in Lemma 2, by Fan’s
minimax theorem in Fan (1953) and Lemma 4.1 in Nowak (1984), it is the case and
thus the operator H is well defined.

Now, for each n = 0, 1, . . . and x ∈ E , we recursively define a sequence of
functions as follows: ψn+1(x) := Hψn(x), where the initial function ψ0 is defined
by

ψ0(x) := − M0

α − c0
w0(x) − d0M0

α(α − c0)
.

The choice of ψ0 is inspired by Lemma 1, i.e., ψ0 is the lower bound of V π1,π2. Note
that H need not be a contraction operator due to the unbounded transition rate, and so
the convergence of {ψn} may be sensitive to the choice of ψ0.

Theorem 5 Suppose that Assumptions 1, 2, 3(a) and 4 are satisfied.
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(a) The sequence {ψn} is increasing in n, and the limit ψ∞ := lim
n→∞ ψn is inBw0(E).

(b) The function ψ∞ in (a) satisfies the equation ψ∞ = Hψ∞.
(c) The function ψ∞ in (a) is in Bac

w0,w1
(E) and verifies the following Shapley equa-

tion:

Lφϕ(x) − αϕ(x)

+ sup
η∈P(A(x))

inf
γ∈P(B(x))

[
r(x, η, γ ) +

∫

E
ϕ(y)q(dy|x, η, γ )

]
= 0 ∀x ∈ Dϕ.(12)

Proof (a) To prove themonotonicity of the sequence {ψn}, we first show thatψ1 ≥ ψ0.
Indeed, under Assumptions 1, and 2, for every x ∈ E , a direct calculation gives

ψ1(x)

≥ −
∫ ∞

0
e−αse− ∫ s

0 m(φ(x,v))dv sup
η∈P(A(φ(x,s)))

inf
γ∈P(B(φ(x,s)))

[
M0w0(φ(x, s))

+m(φ(x, s))
∫

E

( M0

α − c0
w0(y) + d0M0

α(α − c0)

)
Q(dy|φ(x, s), η, γ )

]
ds

≥ −
∫ ∞

0
e−αse− ∫ s

0 m(φ(x,v))dv
[
M0w0(φ(x, s))

+ M0

α − c0

(
c0w0(φ(x, s)) + d0 + m(φ(x, s))w0(φ(x, s))

)

+m(φ(x, s))
d0M0

α(α − c0)

]
ds

≥ −
∫ ∞

0
e−αse− ∫ s

0 m(φ(x,v))dv
[
M0w0(x)

+ M0

α − c0

(
c0w0(x) + d0 + m(φ(x, s))w0(x)

)
+ m(φ(x, s))

d0M0

α(α − c0)

]
ds

= −
∫ ∞

0
e−αse− ∫ s

0 m(φ(x,v))dv
[αM0w0(x)

α − c0
+ M0d0

α − c0

+
(M0w0(x)

α − c0
+ d0M0

α(α − c0)

)
m(φ(x, s))

]
ds

= −
(M0w0(x)

α − c0
+ d0M0

α(α − c0)

) ∫ ∞

0
e− ∫ s

0 (α+m(φ(x,v)))dv
(
α + m(φ(x, s))

)
ds

= −
(M0w0(x)

α − c0
+ d0M0

α(α − c0)

)

= ψ0(x).

Thus, the monotonicity of the operator H yields

ψn+1 = Hnψ1 ≥ Hnψ0 = ψn ∀n ≥ 1,

which implies the monotonicity of the sequence {ψn}, and thus the existence of
the point-wise limit ψ∞. Moreover, by a similar calculation as in the proof of
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ψ1 ≥ ψ0 and an induction argument, one can show that

|ψn(x)| ≤ M0

α − c0
w0(x) + d0M0

α(α − c0)
∀x ∈ E, n ≥ 0,

and so is ψ∞, which indicates that ψ∞ ∈ Bw0(E).
(b) On the one hand, by the monotonicity of H , we have that ψn+1 = Hψn ≤ Hψ∞

for all n ≥ 0. Hence, ψ∞ ≤ Hψ∞. On the other hand, for every fixed x ∈ E and
any η ∈ P(A(x)), it is clear that

sup
η∈P(A(x))

inf
γ∈P(B(x))

[
r(x, η, γ ) + m(x)

∫

E
ψn(y)Q(dy|x, η, γ )

]

≥ inf
γ∈P(B(x))

[
r(x, η, γ ) + m(x)

∫

E
ψn(y)Q(dy|x, η, γ )

]
. (13)

By Lemma 2, for each n ≥ 0, there exists γn ∈ P(B(x)) such that

inf
γ∈P(B(x))

[
r(x, η, γ ) + m(x)

∫

E
ψn(y)Q(dy|x, η, γ )

]

= r(x, η, γn) + m(x)
∫

E
ψn(y)Q(dy|x, η, γn). (14)

Note that P(B(x)) is compact with respect to the weak topology, there is a sub-
sequence {γnl , l ≥ 0} of {γn, n ≥ 0} such that γnl weakly converges to some
γ ∗ ∈ P(B(x)). Hence, it follows from Lemma 2(b) that

lim
l→∞ r(x, η, γnl ) = r(x, η, γ ∗). (15)

Furthermore,

∣
∣
∣

∫

E
ψnl (y)Q(dy|x, η, γnl ) −

∫

E
ψ∞(y)Q(dy|x, η, γ ∗)

∣
∣
∣

≤
∣
∣
∣

∫

E
ψnl (y)Q(dy|x, η, γnl ) −

∫

E
ψ∞(y)Q(dy|x, η, γnl )

∣
∣
∣

+
∣
∣
∣

∫

E
ψ∞(y)Q(dy|x, η, γnl ) −

∫

E
ψ∞(y)Q(dy|x, η, γ ∗)

∣
∣
∣

≤
∫

E

(
ψ∞(y) − ψnl (y)

)
Q(dy|x, η, γnl )

+
∣
∣
∣

∫

E
ψ∞(y)Q(dy|x, η, γnl ) −

∫

E
ψ∞(y)Q(dy|x, η, γ ∗)

∣
∣
∣. (16)

Note that (ψ∞−ψnl ) are non-increasing in l. Under Assumption 4, using Theorem
A. 1. 5 in Bäuerle and Rieder (2011) and the dominated convergence theorem, we
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conclude that

lim
l→∞

∫

E

(
ψ∞(y) − ψnl (y)

)
Q(dy|x, η, γnl )

≤ lim
l→∞ sup

b∈B(x)

[ ∫

E

(
ψ∞(y) − ψnl (y)

)
Q(dy|x, η, b)

]

= sup
b∈B(x)

lim
l→∞

[ ∫

E

(
ψ∞(y) − ψnl (y)

)
Q(dy|x, η, b)

]

= sup
b∈B(x)

[ ∫

E
lim
l→∞

(
ψ∞(y) − ψnl (y)

)
Q(dy|x, η, b)

]

= 0. (17)

Moreover, since ψ∞ is in Bw0(E), it follows from Lemma 2(c) that

lim
l→∞

∣
∣
∣

∫

E
ψ∞(y)Q(dy|x, η, γnl ) −

∫

E
ψ∞(y)Q(dy|x, η, γ ∗)

∣
∣
∣ = 0. (18)

Now, using (16)-(18), we have

lim
l→∞

∫

E
ψnl (y)Q(dy|x, η, γnl ) =

∫

E
ψ∞(y)Q(dy|x, η, γ ∗). (19)

Hence, it follows from (14), (15) and (19) that

lim
l→∞ inf

γ∈P(B(x))

[
r(x, η, γ ) + m(x)

∫

E
ψnl (y)Q(dy|x, η, γ )

]

= lim
l→∞

[
r(x, η, γnl ) + m(x)

∫

E
ψnl (y)Q(dy|x, η, γnl )

]

= r(x, η, γ ∗) + m(x)
∫

E
ψ∞(y)Q(dy|x, η, γ ∗), (20)

which together with (13) gives that

lim
l→∞ sup

η∈P(A(x))
inf

γ∈P(B(x))

[
r(x, η, γ ) + m(x)

∫

E
ψnl (y)Q(dy|x, η, γ )

]

≥ lim
l→∞ inf

γ∈P(B(x))

[
r(x, η, γ ) + m(x)

∫

E
ψnl (y)Q(dy|x, η, γ )

]

= r(x, η, γ ∗) + m(x)
∫

E
ψ∞(y)Q(dy|x, η, γ ∗)

≥ inf
γ∈P(B(x))

[
r(x, η, γ ) + m(x)

∫

E
ψ∞(y)Q(dy|x, η, γ )

]
.

(21)

123



Zero-sum discounted PDMGs

Hence, using the arbitrariness of η and (21), we obtain

lim
l→∞ sup

η∈P(A(x))
inf

γ∈P(B(x))

[
r(x, η, γ ) + m(x)

∫

E
ψnl (y)Q(dy|x, η, γ )

]

≥ sup
η∈P(A(x))

inf
γ∈P(B(x))

[
r(x, η, γ ) + m(x)

∫

E
ψ∞(y)Q(dy|x, η, γ )

]
∀x ∈ E .(22)

Thus, using the dominated convergence theorem and (22), we have

ψ∞(x)

= lim
l→∞ Hψnl (x)

= lim
l→∞

∫ ∞

0
e−αse− ∫ s

0 m(φ(x,v))dv sup
η∈P(A(φ(x,s)))

inf
γ∈P(B(φ(x,s)))

[
r(φ(x, s), η, γ )

+m(φ(x, s))
∫

E
ψnl (y)Q(dy|φ(x, s), η, γ )

]
ds

=
∫ ∞

0
e−αse− ∫ s

0 m(φ(x,v))dv lim
l→∞ sup

η∈P(A(φ(x,s)))
inf

γ∈P(B(φ(x,s)))

[
r(φ(x, s), η, γ )

+m(φ(x, s))
∫

E
ψnl (y)Q(dy|φ(x, s), η, γ )

]
ds

≥
∫ ∞

0
e−αse− ∫ s

0 m(φ(x,v))dv sup
η∈P(A(φ(x,s)))

inf
γ∈P(B(φ(x,s)))

[
r(φ(x, s), η, γ )

+m(φ(x, s))
∫

E
ψ∞(y)Q(dy|φ(x, s), η, γ )

]
ds ∀x ∈ E,

which gives the reverse inequality ψ∞ ≥ Hψ∞. This leads to that ψ∞ = Hψ∞.
(c) Clearly, for every x ∈ E and t ∈ R+, we see that

ψ∞(φ(x, t))

=
∫ ∞

0
e−αse− ∫ s

0 m(φ(x,v+t))dv

× sup
η∈P(A(φ(x,s+t)))

inf
γ∈P(B(φ(x,s+t)))

[
r(φ(x, s + t), η, γ )

+m(φ(x, s + t))
∫

E
ψ∞(y)Q(dy|φ(x, s + t), η, γ )

]
ds, x ∈ E,

which is equivalent to that

e− ∫ t
0 (α+m(φ(x,v)))dvψ∞(φ(x, t))

=
∫ ∞

t
e− ∫ s

0 (α+m(φ(x,v)))dv sup
η∈P(A(φ(x,s)))

inf
γ∈P(B(φ(x,s)))

[
r(φ(x, s), η, γ )

+m(φ(x, s))
∫

E
ψ∞(y)Q(dy|φ(x, s), η, γ )

]
ds, x ∈ E . (23)
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This equality shows that ψ∞(φ(x, t)) is absolutely continuous in t ∈ R+, and
thus, is differentiable almost everywhere on R+, which indicates that ψ∞ is in
Bac

w0
(E).

For x ∈ E and t ∈ R+, differentiating both sides of (23)with respect to t eventually
leads to

Lφψ∞(x) − αψ∞(x)

+ sup
η∈P(A(x))

inf
γ∈P(B(x))

[
r(x, η, γ ) +

∫

E
ψ∞(y)q(dy|x, η, γ )

]
= 0 ∀x ∈ Dψ∞ ,

which in turn implies that ‖Lφψ∞‖esw1
< ∞. The proof is complete. ��

We are now ready to state our main results.

Theorem 6 Under Assumptions 1–3 and 4, the following assertions hold.

(a) The game has the value function V ∗(x) as the unique solution in Bac
w0,w1

(E) to
the Shapley equation

LφV ∗(x) − αV ∗(x) +
sup

η∈P(A(x))
inf

γ∈P(B(x))

[
r(x, η, γ ) +

∫

E
V ∗(y)q(dy|x, η, γ )

]
= 0 ∀x ∈ DV ∗

.

(b) There exists a pair of policies (π̂1, π̂2) ∈ 
1
RS × 
2

RS such that

sup
η∈P(A(x))

inf
γ∈P(B(x))

[
r(x, η, γ ) +

∫

E
V ∗(y)q(dy|x, η, γ )

]

= r(x, π̂1(·|x), π̂2(·|x)) +
∫

E
V ∗(y)q(dy|x, π̂1(·|x), π̂2(·|x))

= inf
γ∈P(B(x))

[
r(x, π̂1(·|x), γ ) +

∫

E
V ∗(y)q(dy|x, π̂1(·|x), γ )

]

= sup
η∈P(A(x))

[
r(x, η, π̂2(·|x)) +

∫

E
V ∗(y)q(dy|x, η, π̂2(·|x))

]

for all x ∈ E, and such a pair of policies (π̂1, π̂2) ∈ 
1
RS × 
2

RS is a saddle
point.

Proof For each x ∈ E , by Lemma 2, P(A(x)) and P(B(x)) is compact, and the
function

(η, γ ) �→ r(x, η, γ ) +
∫

E
ψ∞(y)q(dy|x, η, γ ) (24)

is continuous on P(A(x)) × P(B(x)) with respect to the weak topology. Moreover,
(24) is linear in (η, γ ) ∈ P(A(x)) × P(B(x)). Thus, using Fan’s minimax theorem
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in Fan (1953), we obtain

sup
η∈P(A(x))

inf
γ∈P(B(x))

[
r(x, η, γ ) +

∫

E
ψ∞(y)q(dy|x, η, γ )

]

= inf
γ∈P(B(x))

sup
η∈P(A(x))

[
r(x, η, γ ) +

∫

E
ψ∞(y)q(dy|x, η, γ )

]
∀x ∈ E .

Now, by Lemma 2 above and Lemma 4.1 in Nowak (1984), there exists a pair of
policies (π̂1, π̂2) ∈ 
1

RS × 
2
RS such that

sup
η∈P(A(x))

inf
γ∈P(B(x))

[
r(x, η, γ ) +

∫

E
ψ∞(y)q(dy|x, η, γ )

]

= inf
γ∈P(B(x))

[
r(x, π̂1(·|x), γ ) +

∫

E
ψ∞(y)q(dy|x, π̂1(·|x), γ )

]
∀x ∈ E,

and

inf
γ∈P(B(x))

sup
η∈P(A(x))

[
r(x, η, γ ) +

∫

E
ψ∞(y)q(dy|x, η, γ )

]

= sup
η∈P(A(x))

[
r(x, η, π̂2(·|x)) +

∫

E
ψ∞(y)q(dy|x, η, π̂2(·|x))

]
∀x ∈ E,

which implies that

sup
η∈P(A(x))

inf
γ∈P(B(x))

[
r(x, η, γ ) +

∫

E
ψ∞(y)q(dy|x, η, γ )

]

= r(x, π̂1(·|x), π̂2(·|x)) +
∫

E
ψ∞(y)q(dy|x, π̂1(·|x), π̂2(·|x)) ∀x ∈ E .

Therefore, since the function ψ∞ satisfies Shapley equation (12) by Theorem 5, we
have

Lφψ∞(x) − αψ∞(x) + r(x, π̂1(·|x), π̂2(·|x))
+

∫

E
ψ∞(y)q(dy|x, π̂1(·|x), π̂2(·|x)) = 0, (25)

Lφψ∞(x) − αψ∞(x) + inf
γ∈P(B(x))

[
r(x, π̂1(·|x), γ )

+
∫

E
ψ∞(y)q(dy|x, π̂1(·|x), γ )

]
= 0, (26)

Lφψ∞(x) − αψ∞(x) + sup
η∈P(A(x))

[
r(x, η, π̂2(·|x))

+
∫

E
ψ∞(y)q(dy|x, η, π̂2(·|x))

]
= 0, (27)
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for every x ∈ Dψ∞ . Using Theorem 4 and (25), we have ψ∞ = V π̂1,π̂2
. Using

Theorem 3(b) and (26), we have ψ∞ ≤ V π̂1,π2
for every π2 ∈ 
2. Using Theorem

3(a) and (27), we have V π1,π̂2 ≤ ψ∞ for every π1 ∈ 
1. These three facts show that

V π1,π̂2
(x) ≤ V π̂1,π̂2

(x) ≤ V π̂1,π2
(x) ∀π1 ∈ 
1, π2 ∈ 
2, x ∈ E, (28)

which implies that the pair of policies (π̂1, π̂2) ∈ 
1
RS × 
2

RS is a saddle point, and
thus V ∗ = ψ∞ is the value of the game. Hence, part (a) and part (b) follow. ��
Remark 5 From Theorem 6, one can see that the max-min points of the mapping

(η, γ ) �→ r(x, η, γ ) +
∫

E
V ∗(y)q(dy|x, η, γ )

over P(A(x)) × P(B(x)) for all x ∈ E , denoted by (π̂1(·|x), π̂2(·|x)), constitute a
saddle point. It has a very simple form, which depends only on the current state and
can be applied at any time.

4.2 How to compute a saddle point

Although Theorem 6 shows the existence of a saddle point, how to compute a saddle
point in practice is still a difficult task. There are two problems on this issue. The first
one is how to compute the value function V ∗(x). The second one is how to solve the
static game

sup
η∈P(A(x))

inf
γ∈P(B(x))

[
r(x, η, γ ) +

∫

E
V ∗(y)q(dy|x, η, γ )

]
.

Fortunately, Theorem 5 proposes a value iteration algorithm to compute the value
functionV ∗(x), andSect. 2.4.2 inBarron (2013) provides a linear program formulation
to solve the static game. Below, we propose a potential algorithm to compute a saddle
point.
Algorithm for saddle point:

Step 1. Specify an accuracy ε > 0, and set n = 0. Let

ψ0(x) := − M0

α − c0
w0(x) − d0M0

α(α − c0)
∀x ∈ E .

Step 2. For each x ∈ E , carry out the linear program:

LP1 : max
η,V (x)

V (x),

s.t. r(x, η, b) + m(x)
∫
E ψn(y)Q(dy|x, η, b) ≥ V (x) ∀b ∈ B(x),

η ∈ P(A(x)).
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One of the outputs of LP is the value V̂ (x) of the static game

sup
η∈P(A(x))

inf
γ∈P(B(x))

[
r(x, η, γ ) + m(x)

∫

E
ψn(y)Q(dy|x, η, γ )

]
.

Step 3. For each x ∈ E , compute

ψn+1 :=
∫ ∞

0
e− ∫ s

0 (α+m(φ(x,v)))dv V̂ (φ(x, s))ds.

Step 4. If |ψn+1(x) − ψn(x)| < ε for every x ∈ E , go to Step 5. Otherwise,
increment n by 1 and return to Step 2.

Step 5. For each x ∈ E , carry out the two linear programs:

LP2 : max
η,V (x)

V (x),

s.t. r(x, η, b) + ∫
E ψn+1(y)q(dy|x, η, b) ≥ V (x) ∀b ∈ B(x),

η ∈ P(A(x)).

and

LP3 : min
γ,W (x)

W (x),

s.t. r(x, a, γ ) + ∫
E ψn+1(y)q(dy|x, a, γ ) ≤ W (x) ∀a ∈ A(x),

γ ∈ P(B(x)).

Denote by (V̂ (x), π̂1(·|x)) the solution of LP2 and by (Ŵ (x), π̂2(·|x)) the solution
of LP3. Then, V̂ (x) = Ŵ (x) and (π̂1(·|x)), π̂2(·|x))) are the value and a saddle point
of the static game

sup
η∈P(A(x))

inf
γ∈P(B(x))

[
r(x, η, γ ) +

∫

E
ψn+1(y)q(dy|x, η, γ )

]
, x ∈ E,

respectively.
Since ψn+1 ≈ V ∗, by Theorem 6, we can expect that (π̂1, π̂2) obtained in Step 5

above is a near saddle point for the original PDMGs.
It should be noted that it is very difficult to implement the algorithm since the state

space and the action spaces are all uncountable.

5 Example

In this section, we provide an example wherein all the assumptions in this paper are
fulfilled.
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Example 1 Let E = (0,∞), A(x) = [−x − 1,−x], and B(x) = [0,
√
2
2 x] for each

x ∈ E . Suppose that the flow φ(x, t) = xe−t , the payoff rate r(x, a, b) = x

2
+ a + b

for each (x, a, b) ∈ K and t ∈ R+. The transition rates are given by

q(D|x, a, b) = (x + a + b + 1)
[ ∫

D\{x}
1

x + a + b + 1
e− y

x+a+b+1 dy − δ{x}(D)
]
,

∀(x, a, b) ∈ K , D ∈ B(E).

Note that, starting from any state x ∈ E , the flow never touches the boundary of E ,
say, {0}. Moreover, it is obvious that the multi-functions A(·) and B(·) are compact-
valued. Also, we can verify that the inverses A−1(O) := {x ∈ E : A(x) ∩ O = ∅} ∈
B(E) and B−1(O) ∈ B(E) for every open interval O in R, which together with the
fact that any open set in R can be represented by countable union of open intervals,
A−1(O) ∈ B(E) and B−1(O) ∈ B(E) for every open set O in R. This means that
the multi-functions A(·) and B(·) are measurable.

Now, we verify that all the assumptions in this paper are satisfied. To do so, take
w0(x) = x + 1, w1(x) = x2 + 1, and Em = [0,m] for all x ∈ E and m ≥ 1. Then, it
is clear that w0(φ(x, t)) ≤ w0(x), w1(φ(x, t)) ≤ w1(x), Em ↑ E , supx∈Em

q∗(x) =√
2
2 m + 1 < ∞, limm→∞ infx /∈Em w0(x) = ∞, |r(x, a, b)| ≤ x

2
+ 1 ≤ w0(x), and

(
1 + q(x, a, b)

)
w0(x) ≤ (

√
2

2
x + 2)(x + 1) ≤ 3w1(x) ∀(x, a, b) ∈ K .

This indicates that Assumptions 1(b), 1(c), 2(b), 3(a) and 3(c) are fulfilled.
Regarding Assumption 1(a), for all (x, a, b) ∈ K ,

∫

E
w0(y)q(dy|x, a, b) ≤ (x + a + b + 1)

[
(

√
2

2
− 1)x + 1)

]
.

If x ≤ 2+√
2, then (

√
2
2 −1)x +1 ≥ 0, and thus, (x +a+b+1)

[
(
√
2
2 −1)x +1)

]
≤

(
√
2
2 x + 1)

[
(
√
2
2 − 1)x + 1)

]
≤ w0(x). If x > 2 + √

2, then (
√
2
2 − 1)x + 1 < 0, and

thus, (x + a + b+ 1)
[
(
√
2
2 − 1)x + 1)

]
≤ 0 < w0(x). This means that, in either case,

Assumption 1(a) is fulfilled with c0 = 1 and d0 = 0.
Regarding Assumption 3(b), for all (x, a, b) ∈ K , we have

∫

E
w1(y)q(dy|x, a, b)

= (x + a + b + 1)
[
2(x + a + b + 1)2 − x2

]

≤ (

√
2

2
x + 1)

[
2(

√
2

2
x + 1)2 − x2

]

≤ (

√
2

2
x + 1)(2

√
2x + 2)
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≤ 4w1(x) + 2,

which implies that Assumption 3(b) is satisfied with c1 = 4 and d1 = 2. Hence, if
we take α > 4, the requirements on the discount factor in Assumptions 2(a) and 3 are
both fulfilled.

Finally, Assumption 4 is obviously true for the data in this example.
Therefore, by Theorem 6, there is a saddle point for this game model.
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6 Appendix: Proof of Proposition 1

In fact, we extend the previous results (Guo and Song 2011, Theorem3.1) for CTMDPs
and (Huang and Guo 2019, Proposition 3.1) for PDMDPs to the case of PDMGs.
Thus, the proof of Proposition 1 proceeds in a similar way. Since Assumption 1 in this
paper slightly differs from Assumption 3.1 in Huang and Guo (2019), the proofs are
accordingly adjusted. First, we provide two lemmas.

Lemma 3 Let some function w ≥ 0 on E, and some signed kernel q̄(dy|x, u) on E
given E × R+ satisfy the following conditions: (i) q̄(E |x, u) = 0; q̄(D|x, u) ≥ 0
if φ(x, u) /∈ D; q̄(x, u) := q̄(E \ {φ(x, u)}|x, u) < ∞; (ii)

∫
E q̄(dy|x, u)w(y) ≤

cw(φ(x, u))+d, where u ≥ 0, c > 0 and d ≥ 0 are some constants; (iii)w(φ(x, t)) ≤
w(x) for all x ∈ E and t ∈ R+. Then the function

�(s, x) := ecsw(x) + d

c
(ecs − 1), s ∈ R+, x ∈ E, (29)

satisfies the following inequality

∫ s

0

∫

E\{φ(x,u)}
e− ∫ u

0 q̄(x,v)dvq̄(dy|x, u)�(s − u, y)du + e− ∫ s
0 q̄(x,v)dvw(φ(x, s))

≤ �(s, x)

for all s ∈ R+ and x ∈ E.

Proof Using the conditions in this lemma, it is easy to verify that

∫ s

0

∫

E\{φ(x,u)}
e− ∫ u

0 q̄(x,v)dvq̄(dy|x, u)
[
ec(s−u)w(y) + d

c
(ec(s−u) − 1)

]
du

+e− ∫ s
0 q̄(x,v)dvw(φ(x, s))

≤
∫ s

0
e− ∫ u

0 q̄(x,v)dv
[
ec(s−u)

(
cw(φ(x, u)) + d + q̄(x, u)w(φ(x, u))

)
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+b

c
(ec(s−u) − 1)q̄(x, u)

]
du + e− ∫ s

0 q̄(x,v)dvw(φ(x, s))

≤
∫ s

0
e− ∫ u

0 q̄(x,v)dv
[
ec(s−u)

(
cw(x) + d + q̄(x, u)w(x)

)

+d

c
(ec(s−u) − 1)q̄(x, u)

]
du

+e− ∫ s
0 q̄(x,v)dvw(x)

=
(
w(x) + d

c

) ∫ s

0
e− ∫ u

0 q̄(x,v)dvd
(

− ec(s−u)
)

+w(x)
∫ s

0
ec(s−u)d

(
− e− ∫ u

0 q̄(x,v)dv
)

+d

c

∫ s

0

(
ec(s−u) − 1

)
d
(

− e− ∫ u
0 q̄(x,v)dv

)
+ e− ∫ s

0 q̄(x,v)dvw(x)

=
(
w(x) + d

c

)[
ecs − e− ∫ s

0 q̄(x,v)dv −
∫ s

0
ec(s−u)d

(
− e− ∫ u

0 q̄(x,v)dv
)]

+
(
w(x) + d

c

) ∫ s

0
ec(s−u)d

(
− e− ∫ u

0 q̄(x,v)dv
)

+ d

c

(
e− ∫ s

0 q̄(x,v)dv − 1
)

+e− ∫ s
0 q̄(x,v)dvw(x)

= ecsw(x) + d

c
(ecs − 1)

= �(s, x),

where thefirst and second inequalities follow fromconditions (ii) and (iii), respectively.
��

Lemma 4 Let Assumption 1(a) and Assumption 1(c) be fulfilled. Then, for each
(π1, π2) ∈ 
1 × 
2, x ∈ E, and m = 0, 1, 2, . . .,

Eπ1,π2

x

[
w0(ξt )1{t<Tm+1}

] ≤ ec0tw0(x) + d0
c0

(ec0t − 1) ∀t ∈ R+.

Proof The proof is similar to that of (Huang andGuo 2019, LemmaA.2) for PDMDPs.
We omit it to save space. ��

Proof of Proposition 1 Based on Lemma 4 and Assumption 1, the proof of Proposition
1 can be proceeded in a similar way to that of (Guo and Song 2011, Theorem 3.1) for
CTMDPs and that of (Huang and Guo 2019, Proposition 3.1) for PDMDPs. However,
we omit the proof to save space. ��
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