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Abstract: Counterparty credit risk (CCR) is a significant risk factor that financial institutions have
to consider in today’s context, and the COVID-19 pandemic and military conflicts worldwide have
heightened concerns about potential default risk. In this work, we investigate the changes in the
value of financial derivatives due to counterparty default risk, i.e., total value adjustment (XVA). We
perform the XVA for multi-asset option based on the multivariate Carr–Geman–Madan–Yor (CGMY)
processes, which can be applied to a wider range of financial derivatives, such as basket options,
rainbow options, and index options. For the numerical methods, we use the Monte Carlo method
in combination with the alternating direction implicit method (MC-ADI) and the two-dimensional
Fourier cosine expansion method (MC-CC) to find the risk exposure and make value adjustments for
multi-asset derivatives.

Keywords: counterparty credit risk; total value adjustment; CGMY process; Monte Carlo simulation;
ADI method; 2D Fourier expansion

1. Introduction

The concept of value adjustment for financial derivatives started to gain popularity
after the financial crisis in 2008. The industry regulations, such as the Basel regulations
and the International Financial Reporting Standards (IFRS), are beginning to require the
financial institutions to charge the counterparty a premium to balance the credit risk. This
premium is often called credit valuation adjustment (CVA), and Ref. [1] gave a very detailed
introduction to counterparty credit risk (CCR) and CVA. In the following years, different
value adjustments have emerged, which together constitute what is now called total value
adjustment (XVA). For the majority of financial derivatives, the most important components
of XVA are CVA, FVA, and KVA, where FVA is the funding value adjustment and KVA is the
capital value adjustment. For other value adjustments currently in dispute, see, e.g., [2,3].

Currently, there are two approaches to calculate XVA. One is represented by Refs. [4–7],
by constructing a portfolio containing defaultable bonds and deriving the partial differential
equation (PDE)/partial integro-differential equation (PIDE). The other method, more
commonly used in real markets, is to calculate XVA by estimating the exposure and expected
exposure (EE). The expected exposures can be seen as potential losses in the future if the
counterparty defaults [3], which is related to the value of the derivatives. Based on the
numerical estimation of EE, Ref. [8] investigated the CVA and its sensitivities under the
Heston model. Ref. [9] proposed a hybrid tree–finite difference method to compute the
CVA under the Bates model. Refs. [10,11] and Ref. [12] studied the XVA of the Bermudan
option under a pure jump Lévy process. Compared to the diffusion models and the
stochastic volatility models, the pure jump Lévy process has better performance to capture
all the empirical stylized regularities of stock price movements [13,14]. In this work, we
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further extend the study in Ref. [12] by expanding the model from one dimension to
higher dimensions.

The literature noted above is based on the single-asset model. Let us shift the gaze from
a one-dimensional case to a higher-dimensional case. Benefiting from the development
of scientific computing, the trading of multi-asset derivatives has expanded in the past
decade. For example, the basket option is one illustration of such a derivative. The vanilla
option’s essential properties apply to the multivariate product as well, but the underlying
option is now a basket of stocks rather than a single stock. It is not simple to price these
derivatives, as it requires a model that jointly represents the stock values involved. Similar
to the one-dimensional case, value adjustments to multi-asset derivatives are performed
based on their exposures. Ref. [15] applied a stochastic grid bundling method to compute
the counterparty credit exposure profiles of the multi-asset option, and they prove that this
method has high accuracy in the computation of exposure profiles. Ref. [16] considered
exponential utility indifference pricing for a multidimensional non-traded assets model
subject to inter-temporal default risk. A recent research paper, Ref. [17], used the Gaussian
process regression, a machine learning technique, to evaluate the XVA for basket derivatives
under the Black–Scholes stochastic model.

Because the exposures are based on the value of derivatives, research on derivative
pricing under the multivariate Lévy processes is also of interest. In a review paper, Ref. [18]
introduced three main ways to build multivariate Lévy processes: multivariate subordi-
nation, affine transformation, and Lévy copulas. The Lévy copulas are not defined on the
cumulative distribution function but on the characteristic function of the process. This
structure was first simulated and used in option pricing by Ref. [19]. A more commonly
used way to build a multivariate Lévy process is affine transformation. It can be seen as
a linear combination of Lévy process. Ref. [20] proposed a multivariate risk-neutral Lévy
process model by linear combination and presented the model’s applicability in the context
of the volatility smile of multiple assets. Ref. [21] proposed a multivariate asset model based
on the jump-diffusion process for pricing options written on more than one underlying
asset. For the research of multivariate pure jump Lévy processes, Ref. [22] introduced a
so-called ρµ-VG process to capture linear and nonlinear dependence in asset returns.

For the numerical approaches to estimating the value of derivatives with multiple
assets, Ref. [23] proposed the primal–dual active set method for solving option values
of American better-of option on two assets. Ref. [24] applied a second-order alternating
direction implicit (ADI) finite difference method to solve a 2D fractional Black–Scholes
equation, where the asset price is based on two independent geometric Lévy processes.
Ref. [25] investigated the Crank–Nicolson ADI scheme to approximate the value of the
basket option under the Carr–Geman–Madan–Yor (CGMY) process. However, in their
paper, the derivation of the fractional partial differential equation (FPDE) associated with
the CGMY process is incomplete. In Section 3, we present a detailed derivation of the 2D
FPDE based on the multivariate CGMY processes in light of Refs. [25–27]. The ADI method
enjoys unconditional stability and computational efficiency, which makes it a popular
numerical method for solving multi-dimensional problems [28–34]. Therefore, we here
employ the ADI method to find the exposure of a two-asset option. Theoretically, this
method can also be extended to higher dimensions, but for the simplicity of numerical
calculations, only the two-dimensional case is discussed in this work.

Another popular numerical method to deal with the multi-asset based option is devel-
oped by Ref. [35]. They extended the COS method proposed by Ref. [36] to two dimensions,
allowing the algorithm to be applied to derivatives such as rainbow options and basket
options. In addition, Ref. [37] applied a similar, but modified, sine–sine expansion to
numerically calculate the rainbow option. The modified Fourier expansion has an improve-
ment in the approximation of analytical, non-periodic functions. In this work, we will also
calculate the multi-asset option exposure using the cosine–cosine expansion method (CC)
and compare it to the ADI method.
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The rest of this paper is structured as follows. Section 2 reviews some concepts
and definitions concerning XVA and the multidimensional Lévy process. In Section 3,
we construct two numerical methods, the Monte Carlo method in combination with the
alternating direction implicit method (MC-ADI) and the two-dimensional Fourier cosine
expansion method (MC-CC), to compute the expected exposure and XVA of the multi-asset
option under the multivariate CGMY processes. The numerical results on exposures and
XVA are presented in Section 4. Finally, the conclusion and further applications of this work
are presented in Section 5.

2. Preliminaries
2.1. The Structure of XVA and Exposure

The classical derivatives valuation, particularly for option pricing, mainly focused on
the influence of cash flow. For basic derivative types, the pricing problem was frequently
as easy as selecting the appropriate discount factor. The global financial crisis prompted a
series of valuation adjustments that took credit risk, funding cost, and regulatory capital
cost into account in order to turn a basic valuation into a correct one. A general and simple
representation [3] of value adjustments is:

Actual Value = Base Value + XVA,

where XVA is composed of the various value adjustments, i.e.,

XVA = CVA + FVA + KVA.

Notice that this expression assumes the XVA component is totally separate from the
actual value. This is not completely true in reality, but it can almost always be considered
to be a reasonable assumption in practice.

All of the above value adjustments relate to derivatives’ credit exposures. The fact of
credit exposure is a positive value of a financial derivative, and the expected exposure (EE)
can be seen as the future value of the derivative. This future exposure gives an indication
of the possible loss if a counterparty defaults. Following Ref. [1], let V(t) be the value of a
portfolio at time t, then the exposure E(t) is defined by

E(t) = V(t)+, (1)

where x+ = max[x, 0], and the present expected exposure at a future time t is defined by

EE(t) = E[E(t)|F0], (2)

where F0 is the filtration at time t = 0. The discounted version of EE is computed as

EE∗(t) = E[D(0, t)E(t)|F0],

where D(0, t) is the discount factor. We also use potential future exposure (PFE) to represent
the best or worst case the buyer may face in the future. It is defined as

PFEα(t) = in f {x : P(E(t) ≤ x) ≥ α}, (3)

where α takes 97.5% and 2.5% in this work.
Then, each part of the XVA is defined as follows.
CVA—The most significant component of XVA is the credit value adjustment, which is also

the principal expression for describing the counterparty risk. The CVA can be thought of as
the real price of counterparty credit risk, in contrast to traditional credit limitations. According
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to Ref. [1], assuming independence between default probability (PD), exposure, and recovery
rate (R), a practical CVA expression is given by

CVA = −LGD
∫ T

0
EE∗(t)dPD(t)

≈ −(1− R)
M

∑
m=1

EE∗(tm)PD(tm−1, tm),
(4)

where R is the recovery rate and usually a constant. It is related to loss given default (LGD),
and a more detailed definition can be found in Refs. [38,39]. In addition,
{0 = t1 < t2 < . . . < tM = T} is a fixed time grid, and EE∗ is the discounted expected
exposure. The PD is the default probability. As its name implies, the PD is the probability
of counterparty defaults, which is usually derived from credit spreads observed in the
market [3]. Let us define the default probability between two sequential times tm and tm+1
as PD(tm, tm+1); a commonly used approximation [3,40] of PD is:

PD(tm, tm+1) ≈ exp
(
− s(tm) · tm

LGD

)
− exp

(
− s(tm+1) · tm+1

LGD

)
, (5)

where s(t) is the credit spread at time t.
FVA—A large portion of OTC derivatives are traded without collateral due to liquidity

and capacity limitations. The funding value adjustment can be generally regarded as a
funding cost for these uncollateralized trades, which are a source of funding risk [3,41].
An intuitive FVA formula is:

FVA = −
∫ T

0
(EPE∗(t)− ENE∗(t)) · s f (t)dt

≈ −
M

∑
m=1

(EPE∗(tm)− ENE∗(tm))

×
{

exp
[
−s f (tm−1) · tm−1

]
−exp

[
−s f (tm) · tm

]}
,

(6)

where EPE∗ and ENE∗ are discounted expected positive exposure and discounted expected
negative exposure, respectively, and s f (t) is the market funding spread. For a future time t,
the EPE and ENE are given by:

EPE(t) := E[E+(t)|F0],

ENE(t) := E[E−(t)|F0],
(7)

where x− = min[x, 0]. In this work, we price options whose option values can never be
negative. Therefore, the ENE := 0 and the FVA can be simplified to:

FVA = −
∫ T

0
EE∗(t) · s f (t)dt. (8)

KVA—In general, the capital value adjustment is a cost incurred by a financial institution
to meet regulatory requirements, and it quantifies the tail risk it is exposed to [42]. Regula-
tors set capital use restrictions or require banks to reach a certain capital threshold, at least
implicitly charging capital for transactions. The formula of KVA is given by Ref. [3]:

KVA = −
∫ T

0
EKt · rc · DFtdt, (9)

where EKt is the expected capital, DFt is the survival rate, and rc is the cost of holding the
capital. As we noted in last section, for option pricing, the influence of the KVA can be
neglected, thus we will not consider this term when we subsequently calculate XVA.
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2.2. Multivariate Lévy Processes and Stock Price Model

Although there are many types of Lévy processes, we can describe them in a concise way
using the characteristic function. This is the famous Lévy–Khintchine representation [43,44]:

Lemma 1. Let (Lt)t≥0 be a Lévy process on Rd with characteristic triplet (Q, γ, w). Then

E[eiu.Lt ] = etψ(u), u ∈ Rd

with
ψ(u) = −1

2
u.Qu + iγ.u +

∫
Rd
(eiu.l − 1− iu.l1|l|≤1)w(dl),

where γ ∈ Rd, Q ∈ Rd×d is symmetric non-negative definite and w is the Lévy measure.

For real-valued Lévy process, the above formula takes the form:

E[eiuLt ] = etψ(u), u ∈ Rd

with ψ(u) = −1
2

σ2u2 + iγu +
∫ ∞

−∞
(eiul − 1− iul1|l|≤1)w(dl),

and ψ(u) is also known as the characteristic exponent of the Lévy process. A Lévy pro-
cess is made up of a diffusion component, a drift component, and a jump component.
The generating triplet (Q, γ, w) determines these three parts.

Lemma 2. Let Xt be a pure jump n-dimensional Lévy process (without a Gaussian part) with
mutually independent components, and let A ∈ Rd×n be a matrix. Then the characteristic exponent
of Zt = AXt is given by

ΨZt(ξ) =
n

∑
s=1

ΨXs

(
d

∑
j=1

ξ j(A)js

)
, (10)

where ΨXs is the characteristic exponent of the marginal Xs, and (A)js is the (j, s)th entry of the
matrix A.

Proof. By definition, we have the characteristic function of Zt:

ΦZt(ξ) = E[eiξZt ] = E[eiξ(AXt)].

After rearrangement and using the independence of Xs, and noting Lemma 1, we
can rewrite:

E[eiξ(AXt)] =
n

∏
s=1

E[ei ∑d
j=1 ξ j(A)jsXs

t ].

By a straightforward calculation and the definition of characteristic component, we
can get (10).

The CGMY process is a typical pure jump process, and the Lévy measure
W(dx) = wCGMY(x) is defined by [45]

wCGMY(x) =

C e−Mx

x1+Y for x > 0,

C e−G|x|

|x|1+Y for x < 0,
(11)

and the characteristic exponent can be obtained through Lévy–Khintchine representa-
tion [26]

ΨCGMY(u) = CΓ(−Y)
[
(M− iu)Y −MY + (G + iu)Y − GY

]
, (12)

where u ∈ R, Γ(·) is a Gamma function, C > 0, G ≥ 0, M ≥ 0, and Y < 2. The parameter
C measures the intensity of jumps. The parameters G and M control the skewness of
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distribution, which could influence the frequency of large positive jumps and negative
jumps. For Y ∈ [0, 1], it means infinite activity processes of finite variation, whereas for
Y ∈ (1, 2), the process is infinite activity and infinite variation [46].

According to Lemma 2, we can find the characteristic components of any combina-
tion of multivariate pure jump Lévy processes. In this work, for simplicity in numerical
calculations, we consider a two-dimensional case for CGMY processes through linear
combination without correlation. For two stocks S1

t and S2
t , the log-return of stocks obeys

CGMY processes,

d(lnS1
t ) = (r− ν1)dt + dX1

t , (13)

d(lnS2
t ) = (r− ν2)dt + dX2

t , (14)

with solution

S1
T = S1

t e(r−ν1)(T−t)+
∫ T

t dX1
u , (15)

S2
T = S2

t e(r−ν2)(T−t)+
∫ T

t dX2
u , (16)

where X1
t and X2

t are two independent CGMY process, r is the risk-free rate, and
ν1 = ΨX1(−i) and ν2 = ΨX2(−i) are convexity adjustments so that EQ(ST) = er(T−t)St
under the risk-neutral measure Q. Let

Zt = AXt =

(
ω1 0
0 ω2

)(
X1

t
X2

t

)
(17)

and taking ω1 = ω2 = 1. By Lemma 2, the characteristic component of Zt = AXt at t = 1 is

Ψ(ξ) = Ψ1(ξ1 A11 + ξ2 A21) + Ψ2(ξ1 A12 + ξ2 A22)

:= φ(ζ), (18)

where ξ = (ξ1, ξ2)
T is the dual variable of x = (x1, x2)

T under the Fourier transform,
and ζ = (ζ1, ζ2)

T denotes the dual variable of z = (z1, z2)
T .

Remark 1. The matrix A in (17) can be a general correlation matrix, and the corresponding
characteristic component of Zt is given by Lemma 2. In this work, we simplify the model for
subsequent FPDE derivation, the matrix A is diagonal, which means that there is no correlation
between z1 and z2.

3. Numerical Method

In this section, we present two numerical methods for calculating XVA for multi-asset
derivatives under the multivariate CGMY processes. Both of them are combined with
Monte Carlo simulation to obtain the option value and then the value adjustments can
be found by the definition in Section 2. Here we have chosen two multi-asset options for
numerical experiments, the basket call option as well as the call-on-max rainbow option.

Basket option: Given a vector of weights a = (a1, . . . , an) ∈ Rn, the basket is defined
as the weighted arithmetic average of the n stock prices S1

t , . . . , Sn
t at time T:

ST = ∑ n
k=1akSk

T .

Without loss of generality, we assume that ∑ n
k=1ak = 1. A basket option in the

European style, in which the holder has the right but not the obligation to purchase (or
sell) a portfolio of assets with a strike price K only at terminal time T. The payoff function
ϕ(ST) of the European-style basket option is

ϕ(ST) =

{
(ST − K)+, for a call option,
(K− ST)

+, for a put option.
(19)
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Call-on-max rainbow option: A call-on-max option gives its holder the right to buy
the maximum (expensive) asset with the strike price K at maturity. The payoff function of
this option is given by

ϕ =
(

max(S1
T , . . . , Sn

T)− K
)+

. (20)

The general steps of the whole algorithm is as follows:

1. Simulate paths of underlying price St under the multivariate CGMY model by the
Monte Carlo method.

2. Based on option types, applying the ADI method and cosine–cosine expansion method
to find the exposure of each path in step 1.

3. Based on the exposure obtained in step 2, CVA, FVA, and XVA are calculated as defined
in Section 2.

3.1. Monte Carlo–ADI Method

The Monte Carlo simulation of the CGMY process is based on Refs. [47,48]. It has been
proved that the CGMY process can be considered as a time-changed Brownian motion,
i.e., the CGMY process can be written as

X(t) =
G−M

2
Υ(t) + B(Υ(t)), (21)

where Υ(t) is a subordinator independent of the Brownian motion B(t). Based on the
Laplace transform of this time change subordinator and Rosinski rejection [49], the CGMY
process can be simulated by a complex equation containing a confluent hypergeometric
function and a parabolic cylinder function. More details about the Monte Carlo simulation
of the CGMY process can be found in Ref. [47].

As introduced previously, after obtaining the path of the multivariate CGMY processes
by Monte Carlo simulation, a combination of the ADI method needs to be used to obtain
the exposure, which is based on the option value. For a two-asset option whose underlying
price obeys a binary CGMY process, its value satisfies a 2D FPDE, and below we give the
derivation procedure for satisfying the specific conditions and use the ADI method to solve
it numerically.

3.1.1. The Derivation of 2D FPDE

Let us start with the definitions of the Riemann–Liouville (RL) tempered fractional
derivatives and their Fourier transforms.

Definition 1. The left and right RL fractional derivatives are given by

−∞DY
x f (x) =

1
Γ(p−Y)

∂p

∂xp

∫ x

−∞
(x− y)p−Y−1 f (y)dy, (22)

xDY
∞ f (x) =

(−1)p

Γ(p−Y)
∂p

∂xp

∫ x

−∞
(y− x)p−Y−1 f (y)dy (23)

for p− 1 ≤ Y < p, and p is the smallest integer larger than Y. The left and right RL tempered
fractional derivatives are

−∞DY,G
x f := e−Gx

−∞DY
x

(
eGx f

)
, xDY,M

∞ f := eMx
xDY

∞

(
e−Mx f

)
.

The Fourier transform can be shown by a direct calculation.
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Lemma 3. Let 1 ≤ Y < 2, the Fourier transforms of left and right RL tempered fractional
derivatives satisfy

F
(
−∞DY,G

x f (x)
)
= (G + iξ)Y f̂ (ξ), F

(
xDY,M

∞ f (x)
)
= (M− iξ)Y f̂ (ξ),

where f̂ (ξ) denotes Fourier transform of f (x).

The value of a two-asset option is given by following theorem.

Theorem 1. For a two-asset option, if the underlying price is given by Z in (17), then the value of
the European-style option satisfies the FPDE

∂V(z, t)
∂t

= (r− ν1)
∂V(z, t)

∂z1
+ (r− ν2)

∂V(z, t)
∂z2

− rV(z, t)

+ C1Γ(−Y1)
[
−∞DY1,G1

z1 V(z, t) + z1 DY1,M1
∞ V(z, t)− (GY1

1 + MY1
1 )V(z, t)

]
+ C2Γ(−Y2)

[
−∞DY2,G2

z2 V(z, t) + z2 DY2,M2
∞ V(z, t)− (GY2

2 + MY2
2 )V(z, t)

]
,

(24)

where −∞D
Yj ,Gj
zj and zj D

Yj ,Mj
∞ , j = 1, 2 are the left and right RL tempered fractional derivatives,

and the convexity adjustments ν = ΨZt(−i,−i).

Proof. Writing the value of the option as the risk-neutral expectation of the final payoff
Π(Z, T), then

V(z, t) = e−r(T−t)EQ[Π(Z, T)], (25)

here, z = Ax. Assuming the payoff Π(Z, T) has a complex Fourier transform

Π̂(ζ, T) =
∫ ∞+iα1

−∞+iα1

∫ ∞+iα2

−∞+iα2

eiζ1z1+iζ2z2 Π(Z, T)dz1dz2. (26)

with αj = Imζ j, here, j = 1, 2. Then, according to the Fourier inversion theorem, we have

Π(Z, T) =
1

4π2

∫ ∞+iα1

−∞+iα1

∫ ∞+iα2

−∞+iα2

e−iz1ζ1−iz2ζ2 Π̂(ζ, T)dζ1dζ2. (27)

Substituting this representation into Equation (25), we have the following equation:

V(z, t) =
e−r(T−t)

4π2 EQ
[∫ ∞+iα1

−∞+iα1

∫ ∞+iα2

−∞+iα2

e−iζ1z1−iζ2z2 Π̂(ζ, T)dζ1dζ2

]
=

e−r(T−t)

4π2

∫ ∞+iα1

−∞+iα1

∫ ∞+iα2

−∞+iα2

EQ
[
e−iζ1z1−iζ2z2

]
Π̂(ζ, T)dζ1dζ2 (28)

=
e−r(T−t)

4π2

∫ ∞+iα1

−∞+iα1

∫ ∞+iα2

−∞+iα2

e−iζ1z1−iζ2z2+κ(T−t)+(T−t)φ(−ζ))Π̂(ζ, T)dζ1dζ2,

where κ = −iζ1(r− ν1)− iζ2(r− ν2), and φ(ζ) is the characteristic exponent of the Lévy
process Zt. Note that from the Fourier inversion theorem we also have

V(z, t) =
1

4π2

∫ ∞+iα1

−∞+iα1

∫ ∞+iα2

−∞+iα2

e−iζ1z1−iζ2z2 V̂(ζ, t)dζ1dζ2. (29)

Comparing Equations (28) and (29), we conclude:

V̂(ζ, t) = e−r(T−t)+κ(T−t)+(T−t)φ(−ζ)Π̂(ζ, T). (30)
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This Fourier transform of the value of a European-style option satisfies (12) and (18).
We have the function V̂(ζ, t) that solves the following differential equation:

∂V̂(ζ, t)
∂t

= [r− κ − φ(−ζ)]V̂(ζ, t), (31)

with boundary condition V̂(ζ, T) = Π̂(ζ, T). According to Lemma 3, we get the FPDE for
the two-asset European-style option with the payoff Π(Z, T):

∂V(z, t)
∂t

= (r− ν1)
∂V(z, t)

∂z1
+ (r− ν2)

∂V(z, t)
∂z2

− rV(z, t)

+ C1Γ(−Y1)
[
−∞DY1,G1

z1 V(z, t) + z1 DY1,M1
∞ V(z, t)− (GY1

1 + MY1
1 )V(z, t)

]
+ C2Γ(−Y2)

[
−∞DY2,G2

z2 V(z, t) + z2 DY2,M2
∞ V(z, t)− (GY2

2 + MY2
2 )V(z, t)

]
,

(32)

where −∞D
Yj ,Gj
zj and zj D

Yj ,Mj
∞ , j = 1, 2 are the left and right RL tempered fractional deriva-

tives, and the convexity adjustments ν = ΦZt(−i,−i). According to Equation (18), we have

ν1 = C1Γ(−Y1)
[
(M1 − 1)Y1 −MY1

1 + (G1 + 1)Y1 − GY1
1

]
ν2 = C2Γ(−Y2)

[
(M2 − 1)Y1 −MY2

2 + (G2 + 1)Y2 − GY2
2

]
.

Theoretically, the variable Z in Equation (17) can be extended to more dimensional
situations, but the difficulty of calculation will also increase rapidly. In this work, we only
do numerical calculations in the two-dimensional case. For simplicity, we will use X1 and
X2 below to represent two independent Lévy processes. Let us consider a basket option
with two underlying assets S1 = ex1 and S2 = ex2 . The payoff and boundary condition is
given by the following:

V(x1, x2, T) = max(a1ex1 + a2ex2 − K, 0),

lim
x1→−∞

V(x1, x2, t) = 0, lim
x1→∞

V(x1, x2, t) = a1ex1max + a2ex2 − Ke−r(T−t),

lim
x2→−∞

V(x1, x2, t) = 0, lim
x2→∞

V(x1, x2, t) = a1ex1 + a2ex2max − Ke−r(T−t),

where K is strike price and satisfies 0 < K < min(ex1max − ex1min , ex2max − ex2min); ai are
weighted parameters.

Similarly, for a call-on-max rainbow option, we have

V(x1, x2, T) = max(max(ex1 , ex2)− K, 0),

lim
x1→−∞

V(x1, x2, t) = 0, lim
x1→∞

V(x1, x2, t) = ex1 − Ke−r(T−t),

lim
x2→−∞

V(x1, x2, t) = 0, lim
x2→∞

V(x1, x2, t) = ex2 − Ke−r(T−t).

According to Theorem 1, the values of the above basket option and rainbow option
follow Equation (24). In the next step, we will use the ADI method to obtain the numerical
solution of Equation (24).

Remark 2. Equation (24) is obtained when there is no correlation between the underlying assets.
If we consider the correlation, the mixed derivative term ∂V(z,t)

∂z1∂z2
may appear in (24). However,

the derivation of this differential equation is quite difficult. This is an important issue that we will
address in future work.
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3.1.2. ADI Method for 2D FPDE

In this subsection, we present the numerical approximation to the FPDE related with
CGMY processes in two-dimensional space. Note that the unbounded spatial domain is
truncated into a bounded one, i.e., (x1, x2) ∈ Ω = (x1L, x1R)× (x2L, x2R).

Next, we employ the ADI method to solve the two-dimensional FPDE related with
CGMY processes,

rV(x1, x2, t) = (r− ν1)
∂V(x1, x2, t)

∂x1
+ (r− ν2)

∂V(x1, x2, t)
∂x2

− ∂V(x1, x2, t)
∂t

+ C1Γ(−Y1)[x1L DY1,G1
x1 V(x1, x2, t)+x1 DY1,M1

x1R V(x1, x2, t)−(GY1
1 +MY1

1 )V(x1, x2, t)]

+ C2Γ(−Y2)[x2L DY2,G2
x2 V(x1, x2, t)+x2 DY2,M2

x2R V(x1, x2, t)−(GY2
2 +MY2

2 )V(x1, x2, t)],

(33)

where (x1, x2, t) ∈ Ω× (0, T) and

x1L DY1,G1
x1 V(x1, x2, t) = e−G1x1 x1L DY1

x1

(
eG1x1 V(x1, x2, t)

)
,

x1 DY1,M1
x1R V(x1, x2, t) = eM1x1 x1 DY1

x1R

(
e−M1x1 V(x1, x2, t)

)
,

x2L DY2,G2
x2 V(x1, x2, t) = e−G2x2 x2L DY2

x2

(
eG2x2 V(x1, x2, t)

)
,

x2 DY2,M2
x2R V(x1, x2, t) = eM2x2 x2 DY2

x2R

(
e−M2x2 V(x1, x2, t)

)
.

The temporal domain is divided into Nt parts by the grid points tj = jτ (0 ≤ j ≤ Nt),
where the temporal stepsize τ = T

Nt
. The spatial domain is divided into Nx1 Nx2 parts by the mesh

points x1n = x1L + nhx1 (0 ≤ n ≤ Nx1), x2m = x2L + mhx2 (0 ≤ m ≤ Nx2), where the spatial
stepsize hx1 = x1R−x1L

Nx1
, hx2 = x2R−x2L

Nx2
. For simplicity, we set N = Nx1 = Nx2 , h = hx1 = hx2 .

The temporal domain is covered by Ωτ = {tj|0 ≤ j ≤ Nt}, and the spatial domain is covered

by Ωh = {(x1n, x2m)|0 ≤ n, m ≤ N}. Let Vh = {v|v = {vj
n,m| 0 ≤ j ≤ Nt, 0 ≤ n, m ≤ N}}

be grid function space defined on Ωτ × Ωh. For the grid function v ∈ Vh, we have the
following notations:

vj+ 1
2

n,m =
vj+1

n,m+vj
n,m

2
, δtv

j+ 1
2

n,m =
vj+1

n,m−vj
n,m

τ
,

δx1 vj+ 1
2

n,m =
vj+ 1

2
n+1,m−vj+ 1

2
n−1,m

2h
, δx2 vj+ 1

2
n,m =

vj+ 1
2

n,m+1−vj+ 1
2

n,m−1

2h
,

and the tempered, weighted, and shifted Grünwald difference (tempered-WSGD) operators
are given by [50]:

LD
Y1,G1
h vn,m =

1
hY1

[
n+1

∑
l=0

g(Y1)
l,G1

vn−l+1,m − θ1(G1)vn,m

]
, (34)

RD
Y1,M1
h vn,m =

1
hY1

[
N−n+1

∑
l=0

g(Y1)
l,M1

vn+l−1,m − θ1(M1)vn,m

]
, (35)

LD
Y2,G2
h vn,m =

1
hY2

[
n+1

∑
l=0

g(Y2)
l,G2

vn,m−l+1 − θ2(G2)vn,m

]
, (36)

RD
Y2,M2
h vn,m =

1
hY2

[
N−n+1

∑
l=0

g(Y2)
l,M2

vn,m+l−1 − θ2(M2)vn,m

]
, (37)

here (λ = G1, G2, M1, or M2)

θ1(λ) =
(

γ1ehλ+γ2+γ3e−hλ
)(

1−e−hλ
)Y1

,

θ2(λ) =
(

γ1ehλ+γ2+γ3e−hλ
)(

1−e−hλ
)Y2

,
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and the weights are given by (µ = Y1 or Y2)
g(µ)0,λ = γ1ω0ehλ, g(µ)1,λ = γ1ω1 + γ2ω0,

g(µ)l,λ = (γ1ωl + γ2ωl−1 + γ3ωl−2)e−(l−1)hλ, l ≥ 2,

ω0 = 1, ωl =
(

1− 1+µ
l

)
ωl−1, l ≥ 1,

(38)

and the parameters γ1, γ2 and γ3 admit the following linear system:{
γ1 = µ

2 + γ3,
γ2 = 2−µ

2 − 2γ3,
(39)

where γ3 is the free variable.
First, we approximate the first-order space derivatives by using the second-order

central difference operators, and for the tempered fractional order derivatives, we use
the second-order tempered-WSGD operators [50]. Second, the Crank–Nicolson scheme is
employed to discrete the time derivative. Then, we arrive at

rV j+ 1
2

n,m − (r−ν1)δx1 V j+ 1
2

n,m − (r−ν2)δx2 V j+ 1
2

n,m + δtV
j+ 1

2
n,m

−C1Γ(−Y1)[LD
Y1,G1
h V j+ 1

2
n,m +RD

Y1,M1
h V j+ 1

2
n,m ]−C2Γ(−Y2)[LD

Y2,G2
h V j+ 1

2
n,m +RD

Y2,M2
h V j+ 1

2
n,m ] (40)

= Rj+ 1
2

n,m , 0 ≤ j ≤ Nt − 1, 1 ≤ n, m ≤ N − 1,

and there exists a constant CR such that the truncation error

|Rj+ 1
2

n,m | ≤ CR(τ
2 + h2). (41)

Let
Lx1 = (r− ν1)δx1 + C1Γ(−Y1)(LD

Y1,G1
h +R D

Y1,M1
h ),

Lx2 = (r− ν2)δx2 + C2Γ(−Y2)(LD
Y2,G2
h +R DY2,M2

h ).

After adding suitable correction terms, Equation (40) can be factored into

[(1 +
r
2

τ)I − τ

2
Lx1 ](1−

τ

2
Lx2)V

j+1
n,m (42)

= [(1− r
2

τ)I + τ

2
Lx1 ](1 +

τ

2
Lx2)V

j
n,m + R1j+ 1

2
n,m ,

and there exists a positive constant CR1 such that the truncation error R1j+ 1
2

n,m satisfies

|R1j+ 1
2

n,m | ≤ CR1(τ
2 + h2). (43)

Dropping the truncation error R1j+ 1
2

n,m , and replacing the exact solution V j+ 1
2

n,m with the

numerical approximation vj+ 1
2

n,m , we have

[(1 +
r
2

τ)I − τ

2
Lx1 ](1−

τ

2
Lx2)v

j+1
n,m

= [(1− r
2

τ)I + τ

2
Lx1 ](1 +

τ

2
Lx2)v

j
n,m. (44)

For Equation (44), introducing an intermediate variable

v∗n,m = (1− τ

2
Lx2)v

j+1
n,m ,
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we obtain the ADI scheme for solving the two-dimensional FPDE related with CGMY
processes (33):

[(1 +
r
2

τ)I − τ

2
Lx1 ]v

∗
n,m = [(1− r

2
τ)I + τ

2
Lx1 ](1 +

τ

2
Lx2)v

j
n,m (45)

(1− τ

2
Lx2)v

j+1
n,m = v∗n,m.

3.1.3. Convergence Test

In this subsection, we carry out a numerical experiment to validate the convergence of
the proposed ADI scheme (45).

We consider the following two-dimensional FPDE:

V(x1, x2, t) =
∂V(x1, x2, t)

∂x1
+

∂V(x1, x2, t)
∂x2

− ∂V(x1, x2, t)
∂t

+0DY1,G1
x1 V(x1, x2, t)V(x1, x2, t)− GY1

1 V(x1, x2, t)

+0DY2,G2
x2 V(x1, x2, t)V(x1, x2, t)− GY2

2 V(x1, x2, t)] + f (x1, x2, t),

(x1, x2, t) ∈ (0, 1)2 × (0, T).

Take the exact solution to be V(x1, x2, t) = e−x1−x2+t(x2
1 − x3

1)(x2
2 − x3

2), and set the
parameters T = 1, Y1 = Y2 = 1.5, G1 = G2 = 1. The initial and boundary conditions are
determined by the exact solution, and the added term f (x1, x2, t) is of the following form:

f (x1, x2, t) = 4e−x1−x2+t(x2
1 − x3

1)(x2
2 − x3

2)

− (x2
2 − x3

2)e
−x1−x2+t

[
(2x1 − 4x2

1 + x3
1) +

Γ(3)
Γ(3−Y1)

x2−Y1
1 − Γ(4)

Γ(4−Y1)
x3−Y1

1

]
− (x2

1 − x3
1)e
−x1−x2+t

[
(2x2 − 4x2

2 + x3
2) +

Γ(3)
Γ(3−Y2)

x2−Y2
2 − Γ(4)

Γ(4−Y2)
x3−Y2

2

]
.

The numerical errors and convergence orders are shown in Table 1. It is observed that
the proposed ADI scheme has second-order accuracy in time and space.

Table 1. Numerical errors and convergence orders of the ADI scheme.

h = τ ‖VT − vT‖2 Order ‖VT − vT‖∞ Order
1
10 3.5624 × 10−4 — 8.6670 × 10−4 —
1
20 8.9622 × 10−5 1.9909 2.0971 × 10−4 2.0471
1
40 2.2375 × 10−5 2.0020 5.1710 × 10−5 2.0199
1
80 5.5945 × 10−6 1.9998 1.2809 × 10−5 2.0133

3.2. Monte Carlo–Cosine-Cosine Expansion Method

Similar to Section 3.1, when we have the Monte Carlo simulation results, we combine
it with 2D Fourier series expansions method to obtain the exposure of derivatives. There
are many different types of 2D Fourier series expansions. Ref. [35] pointed out that the
cosine–cosine expansion seems to have a better performance in estimating call option. As
the examples we gave are all call options, we will use cosine–cosine expansion in this work.

3.2.1. The Cosine–Cosine Expansion of Derivative Value

Let (Ω,F ,P) be a probability space, and let F = {Ft} be a filtration satisfying the
usual conditions. The process Xt = (X1

t , X2
t ) denotes a 2D stochastic process on the filtered

probability space (Ω,F ,F,P), which can be seen as the log-asset prices. Let T > 0 be the
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terminal time. The value of a European-style two-asset option V(t0; x1, x2), with payoff
g(X1

T , X2
T), is given by the risk-neutral option valuation formula

V(t0; x1, x2) = e−r∆tEQ[g(X1
T , X2

T)|(X1
t , X2

t ) = (x1, x2)] (46)

= e−r∆t
∫ ∫

R2
g(y1, y2) f (y1, y2|x1, x2)dy1dy2,

where f (y1, y2|x1, x2) is the conditional density function, r is the risk-free rate, and
∆t := T − t0 is the time to expiration.

Assuming that the integrand is integrable, for given x = (x1, x2), we can truncate the
infinite integration ranges to a finite domain [a, b] × [c, d] ⊂ R2 without losing significant
accuracy. The analysis of the truncation error can refer to the original work [35] of the COS-COS
method. Then, we can get the approximation V1 of the value V:

V1(t0; x1, x2) = e−r∆t
∫ b

a

∫ d

c
g(y1, y2) f (y1, y2|x1, x2)dy1dy2

= e−r∆t
∫ b

a

∫ d

c
g(y1, y2)

+∞

∑
n

+∞

∑
m
An,m(x) (47)

cos
(

nπ
y1 − a
b− a

)
cos
(

mπ
y2 − c
d− c

)
dy1dy2,

and the series coefficients An,m(x) are defined by

An,m(x) := wn.m

∫ b

a

∫ d

c
f (y1, y2|x1, x2)cos

(
nπ

y1 − a
b− a

)
cos
(

mπ
y2 − c
d− c

)
dy1dy2. (48)

In this section, we use the following notations: w0,0 = 1/(b− a)(d− c), wn,0 = w0,m =
2/(b− a)(d− c), and wn,m = 4/(b− a)(d− c), for n, m ∈ N. Define that

Gn,m(T) := wn,m

∫ b

a

∫ d

c
g(y1, y2)cos

(
nπ

y1 − a
b− a

)
cos
(

mπ
y2 − c
d− c

)
dy1dy2. (49)

Then, the approximation V2 of the value V is the truncation of the series summations:

V2(t0; x1, x2) =
1

wn,m
e−r∆t

N−1

∑
n=0

M−1

∑
m=0

An,m(x)Gn,m(T). (50)

It has been proved in [35,37] that An,m(x) can be approximated by

An,m(x) ≈ wn.m
2

{
Re
[
φ
(

nπ
b−a , mπ

d−c | x1, x2

)
exp

(
−i nπy1

b−a

)
exp

(
−i mπy2

d−c

)]
(51)

+Re
[
φ
(

nπ
b−a , mπ

d−c | x1, x2

)
exp

(
−i nπy1

b−a

)
exp

(
i mπy2

d−c

)]}
.

Here, Re{·} denotes the real part of the argument; ϕ(., .|x) is the bivariate condi-
tional characteristic function of given Xt0 = x. For a specific Lévy process, we can let
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φlevy(u1, u2) := φ(u1, u2|0, 0). Inserting Equation (52) into Equation (50), we get the 2D-
COS formula for approximation of V:

V̂(t0; x1, x2) =
1
2

e−r∆t
N−1

∑
n=0

′M−1

∑
m=0

′ [
Re
{

φlevy

(
nπ

b− a
,

mπ

d− c
| x1, x2

)
·exp

(
−i

nπy1

b− a

)
exp

(
−i

mπy2

d− c

)}
(52)

+Re
{

φlevy

(
nπ

b− a
,

mπ

d− c
| x1, x2

)
· exp

(
−i

nπy1

b− a

)
exp

(
i
mπy2

d− c

)}]
Gn,m(T).

For different types of derivatives, the payoff-related function Gn,m(T) may or may not
have analytical solutions. For the payoff functions (19) and (20), Equation (49) does not
have an analytical solution. For this case, we will use the discrete cosine transforms (DCTs)
to obtain a numerical solution for Gn,m(T).

3.2.2. The Discrete Cosine Transforms Approximation

In this subsection, we will give a brief introduction of the DCT method. Taking
Q ≥ max[N, M] and define

yq1
1 := a + (q1 +

1
2
)

b− a
Q

and ∆y1 :=
b− a

Q
,

yq2
2 := c + (q2 +

1
2
)

d− c
Q

and ∆y2 :=
d− c

Q
.

The midpoint-rule integration gives us

Gn,m(T) ≈
Q−1

∑
q1=0

Q−1

∑
q2=0

ωn,mg(yq1
1 , yq2

2 )cos

(
nπ

yq1
1 − a
b− a

)

· cos

(
mπ

yq2
2 − c
d− c

)
∆y1∆y2 (53)

=
Q−1

∑
q1=0

Q−1

∑
q2=0

g(yq1
1 , yq2

2 )cos
(

nπ
2q1 + 1

2Q

)
cos
(

mπ
2q2 + 1

2Q

)
2
Q

2
Q

.

Inserting Equation (53) into Equation (52) gives us the value of the option. For European-
style options, the option value is always positive. When we combine this with the Monte
Carlo simulation results, we can get the expected exposure

EE(t) = E[E(t)|F0] = E[V̂(t; x1, x2)|F0].

4. Numerical Results and Discussion

In this section, we will present several numerical results for value adjustments of the
basket option and rainbow option under the multivariate CGMY processes. The parameters
of different cases can be found in Table 2. The risk-free rate r = 0.1 is not changed in every
experiment. The terminal times of the basket option and rainbow option are T = 1 and
T = 0.5, respectively. For each process X1

t and process X2
t , we generated 1000 Monte Carlo

simulation paths. In all cases, experiments have been performed using MATLAB on an
Intel(R) Core(TM) i7-8700 CPU computer.

The exposure curve for a multi-asset option is very different from that of single-asset
one. For the basket option, in the left graph of Figure 1, it can be seen that the fluctuation of
PFE97.5% is very obvious, gradually increasing with time and rapidly decreasing near the
terminal time. The right graph of Figure 1 is for a call-on-max rainbow option; the PFE97.5%
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grows quickly amidst volatility, and its expected exposure EE has been increasing over
time in addition to going to zero at maturity. The reason for the exposures going to zero at
maturity is because when it expires, we already know whether the option will be exercised
or not.

In Figure 1, we can see that the exposure paths obtained by the MC-ADI method
and the MC-CC method are quite different, but the overall trend is the same. This is due
to the difference between the two methods in calculating values around the strike price,
especially in the early days of the option (i.e., around the initial time), where the Monte
Carlo simulation prices starting from S0 fluctuates around the strike price. However, when
calculating the final results, which are the value adjustments, the difference between their
calculations is minor. As can be seen in Tables 3 and 4, the rainbow option has a larger
XVA. The differences between the CVA, FVA, and XVA obtained by the two methods are
quite small.
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Figure 1. EE, PFE97.5%, and PFE2.5% of the basket and rainbow options, comparison of the MC-ADI
and MC-CC methods.

Table 2. Parameter setting for basket options and rainbow options.

C G M Y S0

Basket Process X1
t 1 5 6 1.5 40

Process X2
t 1 10 12 1.2 40

Rainbow Process X1
t 0.5 25 26 1.5 40

Process X2
t 0.5 20 22 1.2 45

Table 3. CVA, FVA, and XVA of Basket Option, comparison and difference of the MC-ADI and
MC-CC methods.

MC-ADI MC-CC Difference

CVA −9.5826% −10.0421% 0.4595%

FVA −3.1944% −3.3514% 0.1570%

XVA −12.7770% −13.3935% 0.6165%
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Table 4. CVA, FVA, and XVA of Rainbow Option, comparison and difference of the MC-ADI and
MC-CC methods.

MC-ADI MC-CC Difference

CVA −11.1571% −10.6143% 0.5428%

FVA −3.7185% −3.5462% 0.1723%

XVA −14.8753% −14.1605% 0.7151%

In terms of computational efficiency, the MC-ADI method is more efficient than the MC-
CC method. Table 5 gives the computation time of the two methods in calculating different
options, and it can be seen that the MC-CC method takes more than twice the time of the
MC-ADI method. This is mainly due to two reasons. First, the MC-CC method needs to
use the DCT method to perform the calculation when facing complex boundary conditions,
and more computational resources are needed to perform the numerical calculation of the
boundaries in order to maintain a high accuracy. The second is that the ADI method can
generate a value surface when calculating the option value, as shown in Figure 2. When
combined with the Monte Carlo simulation paths, the option values can be quickly located
at the corresponding position. For the MC-CC method, on the other hand, one calculation
is required at each price node of each simulation path.

Figure 2. The value surface of basket and rainbow options at time t = 0, generated by the ADI method.

Table 5. Comparison of the calculation time (in hours) of the two methods.

MC-ADI MC-CC

Basket 1.8798 4.6667
Rainbow 1.9943 4.7001

In general, although the exposure paths of the two methods are not exactly the same,
the final value adjustments obtained are almost the same. The MC-ADI method has a better
computational efficiency. Through numerical experiments, we can see that the counterparty
default risk can significantly reduce the option value.
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5. Conclusions

After several financial crises and rapid changes in financial markets, the impact of
counterparty default risk on the value of derivatives is becoming more and more signif-
icant. In this work, we focus on the XVA of the multi-asset derivatives. We have used
two approaches to find it where underlying assets follow a multivariate CGMY process.
The exposures are calculated at each Monte Carlo simulated path in both approaches. Al-
though we have only discussed the CGMY model in this work, the approach is similar for
other pure jump Lévy processes. For example, when the CGMY parameter Y = 0, we can
obtain the VG model, and the KoBoL model can also be obtained by making appropriate
adjustments to the parameters.

Compared to a single-asset model, the exposures of options under multi-asset condi-
tions fluctuate more. The overall fluctuation trends of the exposures we obtained using
the MC-ADI method and the MC-CC method are consistent, but the final calculated XVA
has some minor differences. This may be due to the fact that the cosine–cosine expan-
sion method has some errors around the strike price. Similar to the one-dimensional case,
the impact of the pure jump feature on exposure is most significant for PFE97.5%. Compared
to FVA, the effect of CVA on option value is more pronounced. The existence of XVA can
significantly reduce the value of the option.

Author Contributions: Conceptualization, G.Y.; methodology, F.W. and G.Y.; software, F.W. and
G.Y.; validation, W.L.; formal analysis, F.W.; writing—original draft preparation, F.W. and G.Y.;
writing—review and editing, D.D. and W.L.; supervision, D.D. and J.Y.; funding acquisition, D.D.
and J.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Nos. 61973096,
12001067), the Macao Young Scholars Program (No. AM2020016), the Natural Science Foundation
of Chongqing, China (No. cstc2019jcyj-bshX0038), and the China Postdoctoral Science Foundation
funded Project No. 2019M653333.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gregory, J. Counterparty Credit Risk and Credit Value Adjustment: A Continuing Challenge for Global Financial Markets; John Wiley &

Sons: Hoboken, NJ, USA, 2012.
2. Kenyon, C. Completing CVA and liquidity: Firm-level positions and collateralized trades. arXiv 2010, arXiv:1009.3361
3. Gregory, J. The xVA Challenge: Counterparty Credit Risk, Funding, Collateral and Capital; John Wiley & Sons: Hoboken, NJ, USA, 2015.
4. Burgard, C.; Kjaer, M. Partial differential equation representations of derivatives with bilateral counterparty risk and funding

costs. J. Credit Risk 2011, 7, 1–19. [CrossRef]
5. Arregui, I.; Salvador, B.; Vázquez, C. PDE models and numerical methods for total value adjustment in European and American

options with counterparty risk. Appl. Math. Comput. 2017, 308, 31–53. [CrossRef]
6. Borovykh, A.; Pascucci, A.; Oosterlee, C.W. Efficient computation of various valuation adjustments under local Lévy models.

SIAM J. Finance Math. 2018, 9, 251–273. [CrossRef]
7. Salvador, B.; Oosterlee, C.W. Total value adjustment for a stochastic volatility model. A comparison with the Black–Scholes

model. Appl. Math. Comput. 2020, 391, 125489. [CrossRef]
8. de Graaf, C.; Kandhai, D.; Sloot, P. Efficient estimation of sensitivities for counterparty credit risk with the finite difference Monte

Carlo method. J. Comput. Financ. 2016, 21, 83–113. [CrossRef]
9. Goudenège, L.; Molent, A.; Zanette, A. Computing credit valuation adjustment solving coupled PIDEs in the Bates model.

Comput. Manag. Sci. 2020, 17, 163–178. [CrossRef]
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