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ABSTRACT: Utilizing smart face masks to monitor and analyze
respiratory signals is a convenient and effective method to give an early
warning for chronic respiratory diseases. In this work, a smart face mask is
proposed with an air-permeable and biodegradable self-powered breath
sensor as the key component. This smart face mask is easily fabricated,
comfortable to use, eco-friendly, and has sensitive and stable output
performances in real wearable conditions. To verify the practicability, we
use smart face masks to record respiratory signals of patients with chronic
respiratory diseases when the patients do not have obvious symptoms.
With the assistance of the machine learning algorithm of the bagged
decision tree, the accuracy for distinguishing the healthy group and three
groups of chronic respiratory diseases (asthma, bronchitis, and chronic
obstructive pulmonary disease) is up to 95.5%. These results indicate that
the strategy of this work is feasible and may promote the development of wearable health monitoring systems.
KEYWORDS: smart face mask, self-powered sensors, biodegradable, machine learning, chronic respiratory disease diagnosis

During the COVID-19 pandemic, people always needed to
wear face masks to protect themselves and the quantity

of face mask usage increased dramatically.1−4 It has been
reported that the average duration of wearing a face mask is 4−
8 h per day for most people since the pandemic.5 As a result, it
is possible to construct a wearable and portable respiratory
monitoring system with face masks as the basic platform to
give an early warning to chronic respiratory diseases.6,7 It
should be noted that chronic respiratory diseases belong to
common diseases.8 For example, there are about 3.3 million
people who suffer from the chronic obstructive pulmonary
disease (COPD) all over the world.9 In recent years, various
sensors such as thermal ones,10−12 humidity ones,13−17

piezoresistive ones,18,19 capacitive ones,20,21 self-powered
piezoelectric ones,22,23 and self-powered electrostatic ones
(including triboelectric24−26 and electret7,27,28 ones) have been
assembled with face masks to measure the respiratory signals
under normal or disordered conditions. The output perform-
ances of these sensors are good enough to capture the human
respiratory signals and some of them are permeable. However,
non-self-powered sensors need additional power sources,
which will affect the weight, size, duration time, or complexity
of the whole respiratory sensing system. On the other hand,
most of the self-powered respiratory sensors are mainly based
on environmentally unfriendly heavy-metal materials or
nondegradable polymer materials, which will cause inevitable
environmental concerns. It should be noted that real case

studies are also lacking in previous works about smart face
masks. Definitely, there are still some issues that limit the
practicability of smart face masks.6,11,29,30 A top-notch smart
face mask should meet the following requirements: (1) the
integrated sensors should have a fast response time, high
sensitivity, and excellent output stability in real wearable
conditions; (2) wearing comfort should be ensured, and it
requires that a smart face mask should have good air
permeability; (3) the duration for a smart face mask should
be long, which means that self-powered sensors are preferred
and the portable readout circuit must have low power
consumption; (4) a smart face mask should be eco-friendly
and have low cost because of the mass usage; thus, materials
for constructing smart face masks should be mostly
biodegradable and easily obtained; (5) real case studies should
be performed to verify their practicality, the detected
respiratory signals should be analyzed in an efficient way to
accurately diagnose typical chronic respiratory diseases, and
the corresponding machine learning algorithms need to be
developed. In general, developing a smart face mask that can
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meet the above-mentioned requirements has both clinical and
practical significance.

In this work, we propose a smart face mask with a self-
powered breath sensor as the sensing unit, polylactic acid
(PLA)-made face mask as the main body, a portable readout
circuit for signal recording, and a machine learning algorithm
for chronic respiratory disease diagnosis. Our face mask can be
conveniently used in daily life to collect and analyze respiratory
signals without sacrificing wearing comfort. The key advance-

ments of this work include: (1) the breath sensor can
sensitively detect the respiratory waveforms of various
breathing conditions, and it has been proven to work stably
for 4 h in real wearable conditions; (2) the permeability
resistance of the smart face mask is about 30 Pa, which is close
to those of normal face masks; (3) the smart face mask is
constructed with cheap and mostly biodegradable materials,
the output uniformity of multiple sensors is excellent, and the
readout circuit is reusable; these advantages prove its potential

Figure 1. System design strategy. (a) Schematic illustrating the composition of a biodegradable smart face mask for diagnosing chronic respiratory
diseases. The left part shows the signal processing strategy, and the right part shows the detailed structure of the breath sensor. (b) Image of a
sensor assembled with a PLA-made face mask, with a pin cable for external connection. (c) Image of a sensor showing the laminated structures. (d)
Surface SEM image of the PLA electret fabric. (e) Diagram illustrating the detailed working mechanism of a biodegradable self-powered breath
sensor. (f) Recorded by a smart face mask, measured respiratory signals of various breathing conditions of normal breath, deep breath, fast breath,
and cough.
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of mass usage; (4) by collaborating with a hospital to perform
real case studies, we use the smart face mask to record
respiratory signals of patients when they do not have obvious
symptoms. A healthy group and three groups of chronic
respiratory diseases (asthma, bronchitis, and COPD) are
successfully classified using a bagged decision-tree algorithm
with a total accuracy of up to 95.5%. This work provides a
strategy to access smart face masks having great potential for
practicability.

■ RESULTS AND DISCUSSION
System Design Strategy. The schematic of using our

proposed smart face mask to diagnose chronic respiratory
diseases is illustrated in Figure 1a. Specifically, a biodegradable
self-powered breath sensor is assembled with a commercial
PLA-made five-layer face mask to detect breathing conditions,
and the outputs are recorded by a portable readout circuit that
is connected to the sensor via pin cables. The detected
respiratory signals are then processed with a typical bagged
decision tree algorithm to diagnose respiratory diseases. The

Figure 2. Performance characteristics of biodegradable self-powered breath sensors. (a) Surface potential values vs time curves for PLA electret
fabrics with thicknesses of 80, 150, 220, and 320 μm. (b) Permeability resistance, removal efficiency, and peak-to-peak output voltage values of
sensors based on four kinds of PLA electret fabrics; error bars mean standard deviation, and the pressure and frequency for mechanical stimulation
for obtaining the outputs are 55 Pa and 5 Hz, respectively. (c) Peak-to-peak output voltage values of eight sensors, under a pressure of 100 Pa and
at a frequency of 5 Hz; error bars mean standard deviation, and the sensors are randomly selected from more than 60 smart face masks fabricated in
two batches. (d) Average peak-to-peak output voltage values of three sensors at a fixed frequency of 5 Hz and increasing applied pressure from 4 to
166 Pa; error bars mean standard deviation. (e) Output voltage vs time curves of a typical sensor under a fixed applied pressure of 55 Pa and
various frequencies from 2 to 10 Hz. (f) Output voltage vs time curves of a typical sensor working continuously for 4 h, under an applied pressure
of 55 Pa and at a frequency of 2 Hz. (g) Output voltage vs time curves recorded by a smart face mask, which is worn by a user continuously for 4 h.
(h) Recorded by smart face masks, output voltage vs time curves generated by normal breathing conditions of five healthy users.
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image of a PLA-made face mask assembled with a sensor is
shown in Figure 1b. Using pin cables for connection means
that an expensive readout circuit can be used multiple times to
connect with many low-cost face masks. Figure 1c and the
right part of Figure 1a indicate the image and schematic of a
biodegradable self-powered breath sensor, with detailed
fabrication steps shown in Figure S1 and the Methods section.
Normally, the size of all sensors used in this work is 3 × 3 cm2

and the total thickness of a sensor is about 350 μm (Figure
S2). The main structure of the sensor is composed of a
punched carbon paper electrode layer as the top electrode, a
pounced paper spacer layer, a PLA electret fabric layer, and
another punched carbon paper electrode layer as the bottom
electrode. With such a design, the whole device has good air
permeability. The radius of each punch hole on the two
electrodes is around 0.1 mm, and the distance between the
center of the circle of two holes is about 2 mm (Figure S3).
The resistance of a 3 × 3 cm2 punched carbon paper electrode
is ∼5 Ω, and the conductivity under flat, 90° bending, and
twisting conditions is stable, as shown in Figure S4. The PLA
electret fabric is fabricated with a melt-blown method31,32

(Figure S5) and can hold abundant electrostatic charges after
polarization with the corona charging method33 (Figure S6).
The surface scanning electron microscopy (SEM) image of the
PLA electret fabric in Figure 1d indicates that the diameters of
the fabricated PLA fibers are normally less than 5 μm and holes
with a size of tens of micrometers can ensure air permeability.
The existence of the pounced paper spacer will form an air gap
between the PLA electret fabric and the top electrode and
avoid the electrostatic charge making contact with the top
electrode to ensure the output ability of the sensor. The radius
of each punch hole on the paper spacer is around 0.7 mm, and
the distance between the center of the circle of two holes is
about 2 mm (Figure S7). The basic working mechanism of our
sensor is the electrostatic induction effect generated by the
electrostatic charges on PLA electret fabric.27,33,35 Such
electrostatic charges will generate induced electrical potential
on two electrodes. The dynamic breathing motions will change
the air gap distance inside the sensor to cause electrical
potential disequilibrium between the two electrodes. As a
result, alternative electrical signals are generated in the external
circuit.36 The detailed mechanical−electrical signal conversion
processes are shown in Figure 1e.34,37

In practical use, a breath sensor is inserted between the most
outer layer and the inner layers of a PLA-made face mask so
that the sensor will not affect the filtering capability of the face
mask. The melt-blown filter fabric and nonwoven fabric of the
face mask can also help to remove most of the moisture
generated by breathing. In fact, moisture will reduce the output
performances of our sensor (Figure S8). Moreover, our sensor
is sensitive enough to detect the details of respiratory signals
under different conditions. Various breathing conditions of
normal breath, deep breath, fast breath, and cough are
successfully recorded by a sensor assembled with a face
mask, and the peak-to-peak output intensity of the signals
measured by the portable readout circuit (with an amplifier)
can reach as high as 2 to 3 V, as shown in Figure 1f. It should
be noted that the intensity or waveform of each condition has a
significant difference. In Figure S9, we also attach a commercial
piezoelectric sensor to the chest of a volunteer to monitor
respiratory signals under different conditions of normal breath,
deep breath, fast breath, and cough. Actually, our respiratory

sensing system is more portable and it can capture more clear
details, especially for conditions of fast breath and cough.
Output Performance Characteristics. After corona

charging, the surface potential values versus time curves of
PLA electret fabrics with thicknesses of 80, 150, 220, and 320
μm are shown in Figure 2a, and the testing duration is 14 days.
The images of these four kinds of PLA electret fabrics are
shown in Figure S10. To get high surface potential, a desiccant
is used in the charging chamber to lower the humidity during
the corona charging process (Figure S6). The stable surface
potential values of the 220 μm-thick and 320 μm-thick samples
are around −160 V, which are significantly higher than those of
thinner samples. To get stable performances, all the sensors we
use are placed in a lab environment for more than 2 weeks
(Figure S11). The permeability resistance and removal
efficiency of the sensors based on four kinds of PLA electret
fabrics are tested, as shown in Figure 2b. Thick samples exhibit
better performances, and 220 μm-thick and 320 μm-thick
samples exhibit similar performances. The permeability
resistance and removal efficiency for PM 2.5 of the 220 μm-
thick sample are ∼24 Pa and ∼90%, respectively. The
permeability resistance is 30 to 40 Pa, and the removal
efficiency is ∼90% for commercial face masks and our smart
face mask (Figure S12), indicating that our sensor will not
affect the basic functions of the face masks. The peak output
voltage values of biodegradable self-powered breath sensors
based on four kinds of PLA electret fabrics are also shown in
Figure 2b. The peak-to-peak output voltage values of the 220
μm-thick sample can reach ∼0.32 V when driven by a pressure
of 55 Pa and a frequency of 5 Hz. The regular mechanical
stimulation is provided by a model shaker, and the electrical
output testing system is shown in Figure S13. Overall, 220 μm-
thick PLA electret fabrics are preferred to fabricate the sensors
by considering the thickness and key performances. To verify
the output uniformity of multiple sensors (Figure S14) and the
potential of mass production, the peak output voltage values of
eight sensors under a pressure of 100 Pa and a frequency of 5
Hz are tested and shown in Figure 2c. The peak-to-peak
output voltage values are around 0.4 to 0.5 V, proving the
excellent output uniformity.

Under a fixed frequency of 5 Hz and a pressure from 4 to
166 Pa, the average peak-to-peak output voltage values of the
three sensors are shown in Figure 2d. In fact, the air pressure
generated by breathing motions is normally below 150 Pa.7,36

The output values have an approximately linear increase with
increasing pressure applied to the sensor, from 0.12 V at 4 Pa
to 0.64 V at 166 Pa. The peak output voltage of our sensor is
lower than previously reported ultrathin electret-based breath
sensors (5.5 μm/4.5 mg)6 as the weight of our sensor (0.2−0.3
g) is higher and the charge density of the degradable PLA
electret is lower than the nondegradable Teflon AF electret.
On the other hand, Figure 2e shows the output voltage versus
time curves of a typical sensor under a fixed applied pressure of
55 Pa and a frequency from 2 to 10 Hz. The corresponding
peak-to-peak output voltage values remain stable at around 0.3
V for various testing frequencies. The peak-to-peak output
voltage of our sensor is mainly affected by the applied pressure,
while the peak output current is affected by the pressure and
frequency (Figure S15), meaning that our sensor has similar
output characteristics to other electrostatic-based sensors. To
test the output stability, mechanical stimulation with a pressure
of 55 Pa and a frequency of 2 Hz is applied on a typical sensor
for a continuous 4 h, as shown in Figure 2f. During the 28,800
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testing cycles, the corresponding peak-to-peak output voltage
values remain stable at around 0.30 to 0.32 V, indicating the
excellent output stability of our sensor, which is a critical
parameter ensuring practicability.

The output stability of a biodegradable self-powered breath
sensor assembled into a smart face mask is also tested, which is
worn by a user continuously for 4 h, as shown in Figure 2g. It is
proven that our sensor retains excellent output stability in real
wearing conditions. It is suggested by medical doctors that a
user should replace a face mask every 4 h. Furthermore, the
respiratory signals generated by normal breathing conditions of
five healthy users are measured and shown in Figure 2h. The
typical breathing features of each user are successfully recorded
to further prove the good reliability of our sensor.
Biodegradable Performances. Most of the traditional

face masks are made of polypropylene,38,39 which is sourced
from fossil fuels, and are nonbiodegradable. This fact indicates
that these face masks will not decompose and exist for a
tremendously long time in the natural environment. In our
smart face masks, the main body is fabricated with
biodegradable PLA; the functional component of the
biodegradable self-powered breath sensor is based on PLA,
cellulose-based paper, and a carbon electrode; the portable
readout circuit is reusable. Therefore, it will not cause serious
pollution problems during mass usage. The hydrolytic and
microbial degradation mechanisms play a significant role in
PLA degradation.38 Based on these mechanisms, PLA electret
fabric pieces and sensors are placed in Petri dishes with pure
water and microorganisms (Figure S16) so that we can easily
observe the whole degradation process and measure the weight
loss versus time curves. Then, these Petri dishes are placed in a
thermotank kept at 60° to accelerate hydrolysis. At the same

time, a commercial PLA-made mask is buried in the soil of a
pot to mimic natural degradation. Similarly, the pot is also
placed in the thermotank. The pot and Petri dishes are filled
with water daily to ensure a high-humidity environment. The
ester groups of the main chain of PLA are cleaved in the
degradation process, and the weight of PLA decreases.40−42

The images of the degradation process of the PLA electret
fabric are shown in Figure 3a. On day 14 of the PLA
degradation process, the main structure of PLA electret fabric
begins to crumble and the degradation almost finishes by day
70. The images of the degradation process of the sensor in
Figure 3b show that the degradation of paper-based
components is not very good on day 70, whereas the PLA
electret fabric in the sensor has nearly biodegraded. In fact,
paper-based components also begin to degrade, but they need
a longer time to be fully biodegraded. For the degradation
process of the PLA-made face mask, less than 15% of the face
mask remains on day 70, as shown in Figure 3c, demonstrating
that even in soil, microbes and water can quickly decompose
the face mask. Figure 3d shows the weight loss trends of the
PLA electret fabric and the sensor, and it is found that the PLA
electret fabric degrades more quickly after forming cracks on
day 14. On day 70, the degradation rate of the PLA electret
fabric and the sensor is 33 and 95%, respectively.

Collaborating with a hospital in Zhuhai, China, to perform a
real case study, we use smart face masks to diagnose three
typical chronic respiratory diseases such as asthma, bronchitis,
and COPD. Figure 4a shows the respiratory signal recording
process for a user, and the enlarged image shows the detail of
the portable readout circuit. The readout circuit is attached to
the main body of the volunteer; normally it does not need any
special treatment, such as disinfection. Here, the green LED is

Figure 3. Biodegradable performances. (a) Images of the PLA electret fabric at various stages of biodegradation. (b) Images of the biodegradable
self-powered breath sensor at various stages of biodegradation. (c) Images of the commercial PLA-made mask biodegradation on day 0 and day 70.
(d) Weight loss trends of the PLA electret fabric and the sensor; the insert shows cracks formed in the PLA electret fabric. Machine learning-
assisted chronic respiratory disease diagnosis.

ACS Sensors pubs.acs.org/acssensors Article

https://doi.org/10.1021/acssensors.2c01628
ACS Sens. 2022, 7, 3135−3143

3139

https://pubs.acs.org/doi/suppl/10.1021/acssensors.2c01628/suppl_file/se2c01628_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssensors.2c01628?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.2c01628?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.2c01628?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.2c01628?fig=fig3&ref=pdf
pubs.acs.org/acssensors?ref=pdf
https://doi.org/10.1021/acssensors.2c01628?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 4. Chronic respiratory disease diagnosis by the smart face mask. (a) Image illustrating the respiratory signal recording process, and the
enlarged image shows the portable readout circuit. (b) Flowchart of the respiratory signal recording process. (c) Left part: typical recorded
respiratory signals and their enlarged view from healthy volunteers and patients with asthma, bronchitis, and COPD. Right part: flowchart of the
machine learning process. (d) 3D scatter plot with feature 6, feature 7, and feature 10 as the coordinate axes to divide healthy and bronchitis as one
group and asthma and COPD as another group. (e) 3D scatter plot with feature 1, feature 15, and feature 25 as coordinate axes to divide healthy
and bronchitis groups. (f) 3D scatter plot with feature 1, feature 3, and feature 8 as coordinate axes to divide asthma and COPD groups. (g)
Confusion matrix showing the classification results of healthy (H) group, COPD (C) group, bronchitis (B) group, and asthma (A) group.
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a power indicator, and the red LED is a status indicator
triggered by a white button for indicating the signal recording
process. The detailed workflow is shown in Figure 4b.
Specifically, the respiratory signals are measured using a breath
sensor and then amplified by three times using an amplifying
circuit; the amplified analog signals are converted into digital
signals by an analog-to-digital converter circuit; the digital
signals are processed by a multicontroller unit (MCU) and
then stored in a data storage component (micro-SD), and
finally, the recorded respiratory signals are classified using a
typical machine learning algorithm. The detailed design for the
readout circuit is shown in Figure S17. The data recording rate
and time are 500 points/s and 5 min. Wireless communication
devices with low power and small size can only transmit a low
sampling rate of about 50 points/s. To more accurately
diagnose chronic respiratory diseases in a real case study, more
details of respiratory signals should be captured. Our system
can record a high sampling rate of 500 points/s, which obtains
better waveforms for machine learning. The readout circuit is
powered by a small lithium battery with a capacity of 1200
mAh, and this battery can support the system for up to 16.5 h
(Figure S18). The total weight of the sensor, the face mask,
and the readout circuit is about 60 g.

It should be noted that the respiratory signals of patients are
recorded when they are in normal states and have no obvious
symptoms. The respiratory signals of five healthy volunteers,
six patients with asthma, four patients with bronchitis, and five
patients with COPD are recorded and analyzed in this work.
Figure S19 shows the signal recording process of patients in
the hospital, and Figure S20 provides basic information about
the volunteers, such as gender, age, and smoking habits. All
volunteers are tested in a static sitting condition and indoors.
Normally, it takes less than 1 day to finish respiratory signal
collection and classification processes. Typical recorded
respiratory signals and their enlarged view of healthy
volunteers and patients are shown in the left part of Figure
4c. The decision tree algorithm is used for the classification of
signals, and we use a bagged ensemble strategy in the decision
tree to achieve high accuracy of classification,43,44 with the
specific parameters shown in Table S1. The flow chart of the
machine learning process is shown in the right part of Figure
4c. A complete breathing waveform is defined as a data set, and
2400 data sets in total are obtained. We extract 26 typical
features based on the time domain and frequency domain for
each data set, with the details of all features given in Table S2.
The definition of the main factors is given in Table S3. Among
all the data sets, we randomly extract 80% as the training set
and validate the remaining 20% after the model has been
trained.

The asthma, bronchitis, COPD, and health groups are
successfully classified by our bagged decision tree model. To
intuitively show the classification ability, 3D scatter plots are
provided to show the classification results of test data sets.
Typically, Figure 4d shows a 3D scatter plot with feature 6,
feature 7, and feature 10 as coordinate axes, in which the data
sets are clearly divided into two groups as marked by the
dashed lines: healthy and bronchitis in one group and asthma
and COPD in another group. In Figure 4e, with feature 1,
feature 15, and feature 25 as coordinate axes, healthy and
bronchitis groups are divided. Furthermore, in Figure 4f, with
feature 1, feature 3, and feature 8 as coordinate axes, asthma
and COPD groups are also divided. In fact, the total
classification accuracy is contributed by all 26 typical features.

As shown in the confusion matrix in Figure 4g, the total
classification accuracy for distinguishing healthy and disease
groups is up to 95.5%, with an accuracy of 100% for the
healthy group, an accuracy of 93.2% for the COPD group, an
accuracy of 93.3% for the bronchitis group, and an accuracy of
95.6% for the asthma group, respectively. These results
indicate that healthy people can be easily distinguished and
typical chronic respiratory diseases can be effectively diagnosed
by our method.

■ CONCLUSIONS
In summary, we develop a biodegradable self-powered breath
sensor with excellent air permeability based on a PLA electric
fabric, pounced carbon paper electrodes, and a pounced paper
spacer, and the sensor is integrated with a PLA-made face mask
and a portable readout circuit to form a smart face mask. The
output sensitivity, stability, and uniformity of the smart face
mask are proven to be good in real wearable conditions. The
smart face mask is eco-friendly and has the potential for mass
production. As a typical demonstration, smart face masks are
successfully used to diagnose three typical chronic respiratory
diseases of asthma, bronchitis, and COPD, with the machine
learning algorithm of the bagged decision-tree model as a data
analysis mean. The total accuracy for distinguishing the healthy
group and the three chronic respiratory disease groups is up to
95.5%. Future works to further improve the performances of
our smart face mask include but are not limited to (1) ensuring
the output performances of the sensor under harsh environ-
ments, (2) lowering the weight of the readout circuit to
improve the portability, and (3) recording and analyzing the
respiratory signals in real time.

■ METHODS
Fabrication of the PLA Electret Fabric. The PLA electret

powders were bought from Natureworks LLC (Ingeo 6252D). The
PLA electret fabric was fabricated via the melt-blown method. First,
PLA powders were melted in a hot barrel at a temperature of 220 °C,
and then the melted PLA was extruded through a spinning die under a
melt-blown pressure of 0.2 MPa. At the same time, hot air with a
temperature of 220 °C and a pressure of 0.2 MPa was applied to the
spinning die to make the molten PLA into fabric shape. A collector
with rotating and reciprocating motion was placed 14 cm below the
spinning die to collect the PLA electret fabric. The reciprocating
motion speed was 1 mm/s, with a displacement of 30 cm. The
rotating motion speed was 6 rpm. The thickness of the PLA electret
fabric was controlled by the collection time, which were 20, 30, and
40 min for 150, 220, and 320 μm, respectively. For the 80 μm-thick
sample, the hot air temperature was decreased to 190 °C with other
parameters retained, and the collection time was 20 min.
Fabrication of the Biodegradable Self-Powered Breath

Sensor. The detailed fabrication steps are shown in Figure S1.
Step I�punch holes: a laser (Mingchuang 4060, 70 W) is used to
punch a circular hole on conductive carbon paper with a carbon layer
of 20 μm, a paper layer of 100 μm, and a size of 3 × 3 cm2. The radius
of each punch hole is set as 0.1 mm, and the distance between the
center of the circle of two holes is set as 2 mm. Step II�adhere it to
the electret: a PLA electret fabric with a size of 3 × 3 cm2 is pasted on
the carbon paper electrode with double-sided tape fixing the four
boundaries. Step III�corona charging: the corona charging method is
used to generate negative electrostatic charges on the PLA electret
fabric. In specific, as shown in Figure S5, the PLA surface not pasted
on the carbon paper faces the corona needle tip at a distance of 5 cm.
The charging voltage generated by a high voltage source (Dongwen
DW-N503-4ACD2) is −16 kV. The charging time is 5 min. Step IV�
punch holes: a laser (Snapmaker A350T, 1.6 W) is used to punch a
circular hole on an A4 paper to form the punched paper spacer. The
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radius of each punch hole is set as 0.7 mm, and the distance between
the center of the circle of two holes is set as 2 mm. Step V�adhere it
to the spacer: a punched paper spacer with a size of 3 × 3 cm2 is
covered on the charged PLA surface with four boundaries fixed with a
double-sided tape. Step VI�adhere it to the top electrode: Another
carbon electrode with a size of 3 × 3 cm2 is covered on the spacer
with four boundaries fixed with double-sided tape.
Fabrication of the Biodegradable Smart Face Mask. The

main body of the biodegradable smart face mask is a commercial PLA-
made five-layer face mask bought from Health Box. A biodegradable
self-powered breath sensor is inserted between the most outer layer
and other layers of the PLA face mask to form the biodegradable
smart face mask. The sensor is connected to an external readout
circuit via pin cables.
Material and Device Characterization. The SEM images are

measured by high-resolution field emission SEM (Sigma FE-SEM,
Zeiss Corporation, Germany). The surface potential of the samples is
tested using an electrostatic voltmeter (Trek 347). The conductivity
of the samples is measured using a Keithley 2400 source meter. The
outputs of the samples are measured by a self-made portable readout
circuit or an electromechanical output testing system. In this system,
the outputs are measured by a NI USB 6341 data acquisition system,
and regular mechanical stimulation applied to the samples is provided
by a modal shaker (JZK-10, Sinocera Piezotronics, Inc. China)
controlled by a YE1311 (Sinocera Piezotronics, China) sweep signal
generator and a YE5872A (Sinocera Piezotronics, China) power
amplifier. The study protocol is thoroughly reviewed and approved by
the ethical committee of the University of Macau (approval number
BSERE21-APP022-FST). Informed signed consent for the volunteer
tests has been obtained from the volunteers prior to their participation
in this study.
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