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ARTICLE INFO ABSTRACT

Communicated by Nikos Paragios Scene Background Initialization (SBI) is one of the challenging problems in computer vision. Dynamic mode
decomposition (DMD) is a recently proposed method to robustly decompose a video sequence into the
background model and the corresponding foreground part. However, this method needs to convert the color
image into a grayscale image for processing, which leads to the neglect of the coupling information between the
three channels of the color image. In this study, we propose a quaternion-based DMD (Q-DMD), which extends
the DMD by quaternion matrix analysis, so as to ultimately preserve the inherent color structure of the color
image and the color video. We exploit the standard eigenvalues of the quaternion matrix to compute its spectral
decomposition and calculate the corresponding Q-DMD modes and eigenvalues. The results on the publicly
available benchmark datasets prove that our Q-DMD outperforms the exact DMD method, and experiment
results also demonstrate that the performance of our approach is comparable to that of the state-of-the-art
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1. Introduction

Scene Background Initialization (SBI) remains an important task in
the field of scene background modeling, and it has a wide range of ap-
plications, such as video surveillance, video segmentation, video com-
pression, video inpainting, and privacy protection for videos, computa-
tion photography, and so on. The aim of SBI is to extract a background
model with no foreground objects from a video sequence whose back-
ground is occluded by any number of foreground objects (Maddalena
and Petrosino, 2015). In real scenes, there exist challenges to achieving
this aim such as sudden illumination changes, night videos, low framer-
ate, dynamic background, camera jitter, and so on. In order to address
these challenges, various background modeling methods have been
proposed over the last few decades. Background modeling approaches
based on deep learning have been developed in recent years. Schofield
et al. (1996) was the first to propose a Random Access Memory (RAM)
based neural network method to identify sections of the background
scene in each test image. However, this approach requires the back-
ground of the scene to correctly represent the images. Maddalena
and Petrosino (2008) proposed a method based on self-organization
through artificial neural networks named Self Organizing Background
Subtraction (SOBS) which learns background motion trajectories in a
self-organizing manner. Convolutional Neural Networks (CNNs) have
also been used for background modeling by Braham and Van Droogen-
broeck (2016), Bautista et al. (2016), and Cinelli (2017). Halfaoui
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et al. (2016) proposed a reliable CNN-based approach to obtain the
initial background of a scene by using just a small set of frames
containing foreground objects. The Generative Adversarial Network
(GAN) based models have also been proposed by researchers to handle
the task of Scene Background Initialization, such as Sultana et al. (2019,
2020). For a detailed overview of deep learning-based methods, we
recommend Bouwmans et al. (2019). However, deep learning-based
approaches usually rely heavily on a large number of training samples,
which are usually limited, and obtaining labeled data, in reality, is often
laborious and sometimes difficult. Therefore, when the training data is
limited (for example, only one color video is available and needs to be
decomposed), it is necessary to develop effective non-learning methods.

In addition, among all the methods for separating background and
foreground, one of the representative frameworks is to decompose
video sequences into low-rank matrices (i.e., background) and sparse
matrices (i.e., foreground). Based on this viewpoint, Candeés et al.
(2011) proposed the first framework of robust principal component
analysis (RPCA). There are many variants of RPCA according to the
difference in decomposition, loss function, optimization problem and
the solver used. The recent review (Bouwmans et al., 2017b) provides
a detailed overview of some traditional and state-of-the-art methods. By
incorporating spatiotemporal sparse subspace clustering into the frame-
work of RPCA, Javed et al. (2017, 2018) proposed a Motion-assisted
Spatiotemporal Clustering of Low-rank (MSCL) approach for both the
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background estimation and foreground segmentation. A method named
LaBGen was developed by Laugraud et al. (2017) for generating a
stationary scene background using a pixel-wise temporal median filter
and a patch selection mechanism based on motion detection.

A data matrix can also be decomposed into a low-rank matrix and
a sparse matrix by using dynamic mode decomposition (DMD). This
method can easily distinguish the static background and dynamic fore-
ground from the data matrix by differentiating between the near-zero
temporal Fourier modes and the remaining modes bounded away from
the origin (Kutz et al., 2015). DMD also has many variants, such as stan-
dard DMD (Brunton and Kutz, 2019), exact DMD (Brunton and Kutz,
2019), multi-resolution DMD (Kutz et al., 2015, 2016), and compressed
DMD (Erichson et al., 2019). However, when it comes to the application
of background modeling of video frames, these variant methods deal
with grayscale video sequences directly. For color video processing,
DMD and its variants ignore the mutual connection among red, green,
and blue channels, because these methods are applied to red, green,
and blue channels separately, which may cause color distortion when
separating the foreground and background of color video frames.

In this paper, we use a quaternion matrix to represent a color image,
and then extend the DMD method to the quaternion system. Many
studies have shown that quaternion representation of color images can
achieve excellent results in color image processing problems, such as Ell
and Sangwine (2007), Li et al. (2015), Zou et al. (2016), Hosny and
Darwish (2019), Miao and Kou (2020), Miao et al. (2020), Miao and
Kou (2021a) and so on. The quaternion-based method is to represent
a pixel of a color image with a pure quaternion, that is, the three
channels RGB of a color pixel correspond to the three imaginary parts
of a quaternion, respectively, which can be shown by the following
formula:

p=0+pri+pgj+prgk,

where p represents a color pixel, and pg, pg, pg correspond to the pixel
values of the three channels RGB of this color pixel, and i, j, k are the
three imaginary units of a quaternion.

The main contribution of this paper is to extend the DMD method
to the quaternion system, so as to make full use of the coupling infor-
mation between the three color channels RGB of color video sequences
when separating video frames into background models and foreground
components. To this end, we need to obtain the spectral decomposition
of a quaternion matrix. However, a quaternion matrix has infinite
right eigenvalues (Zhang, 1997), and its left eigenvalues are difficult
to obtain. Therefore, in this paper, we establish the spectral decompo-
sition of a quaternion matrix by using the standard eigenvalues of the
quaternion matrix and the corresponding eigenvectors.

The outline of the rest of this paper is organized as follows. Sec-
tion 2 sets some notations and introduces preliminaries for quaternion
algebra. Section 3 briefly reviews the theory of the DMD method
and the DMD method for background modeling. In Section 4, we
introduce the eigenvalues, eigenvectors, spectral decomposition, and
singular value decomposition of a quaternion matrix. Then we propose
the quaternion-based DMD (Q-DMD) which can be used to separate
a color video sequence into an approximate low-rank structure and a
sparse structure. Section 5 provides some experiments on the basis of
benchmark datasets to illustrate the performance of our approach, and
compares our method with the DMD method and some state-of-the-art
methods. Finally, some conclusions are given in Section 6.

2. Notations and preliminaries

In this section, we first summarize some main notations and then
give a brief review of some basic knowledge of quaternion algebra. In
addition, for a more complete introduction to quaternion algebra, we
recommend Girard (2007).
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2.1. Notations

In this paper, the set of real numbers, the set of complex numbers
and the set of quaternions are denoted by R, C, H, respectively. In
addition, C* denotes the set of complex numbers with nonnegative
imaginary parts. N, denotes the set of all positive integers. Lowercase
letters, e.g., a, boldface lowercase letters, e.g., a, and boldface capital
letters, e.g., A represent scalars, vectors and matrices in real and
complex fields, respectively. A quaternion scalar, a quaternion vector
and a quaternion matrix are written as ¢, ¢, Q, respectively. (7!,
OF, OF, ()%, and (-) represent the inverse, pseudoinverse, transpose,
conjugation, and conjugate transpose, respectively.

2.2. Basic knowledge of quaternion algebra

Quaternion was first proposed by Hamilton (1844). Let § € H be a
quaternion,

4=4qo+q1i+q2J + a3k,

where ¢y, 4;, ¢, g3 € R, and i, j, k are imaginary number units which
obey the quaternion rules that

==K =ijk=-1,
ij=—ji=k, jk=—kj=iki=—ik=j.

For every quaternion ¢ = qy+4q,i+4,j+g3k, it can be uniquely rewritten
as ¢ = qy + q,i + (qy + q3i)j = ¢| + ¢pj, where ¢, ¢, € C. In addition,
a quaternion ¢ € H can be decomposed into a scalar part S(¢) and a
vector part V(¢), that is

4=5(@+ V()

where S(§) = ¢y € R, and V(¢§) = §— S(§) = q,i +¢,j + g3k. A quaternion
which satisfies S(¢§) = 0, is called a pure quaternion. And P denotes the
set of pure quaternions.

For a quaternion ¢, its conjugate quaternion is defined as ¢* =
qo — 4,i — ¢j — gzk. And the norm of a quaternion ¢ is defined as |¢| =
Vaa* =aqa= \/ @ + & + &3 + q3. Different from the complex number
field, the commutative law is generally not valid in the quaternion
system, i.e., §;¢, # ¢4, in general.

Now, we introduce the definition of exponential and logarithm of
a quaternion. Every (non-null) pure quaternion ¢ can be presented by
& = |£|E, where £ is a unit pure quaternion (i.e., £ € P, and |&] = 1).
And U denotes the set of unit pure quaternions.

Definition 1 (The Exponential Function of a Pure Quaternion Ell et al.,
2014). Assuming that ¢ is a (non-null) pure quaternion, then its expo-
nential function exp : P — H can be defined by exploiting its power
series expansion, which is given by the following formula:

+o oy
iy i

=0 n:

=*2’°|:|"4=
er @
400 2 2m 400 212m+1

A PRI ER-A SRR 1 N

_Z;)( b (2m)!+6';)( b Q2m+1)!

= cos|é| + Esinlé],

since Ee U satisfies the following formula:

o [,
£ = L
{(—wm:,

The exponential function of a pure quaternion can be easily rep-
resented by cosine and sine functions just as in the complex case.
The difference is that the axis ¢ is a unit pure quaternion, while
the argument is the modulus of . Obviously, the exponential of a

if n=2m,

if n=2m+1.
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pure quaternion is a full quaternion, with real part cos|é| and vector
part Zsin|é|. Another important property different from the complex
exponential case is that, in general, the product of two exponents of
a pure quaternion is not an exponent whose argument is equal to the
sum of the original exponential arguments (Ell et al., 2014), that is, for
b, ¢ € P with different unit pure quaternions 7 and g, then

elPIPldld o lPIF+4IT
The exponential function of full quaternions can be defined based

on Definition 1.

Definition 2 (The Exponential Function of a Full Quaternion Ell et al.,
2014). For a quaternion 4, its exponential function exp : H — H is
given by

(2)

= S@V@

= e5@D(cos|V(@)] + V(g sin| V(@)D
where V(§) = |V(§)|V(§) € P, and V(¢4) € U is the normalized vector
part of 4.

Definition 3 (The Logarithm of a Quaternion Ell et al, 2014). The
logarithm of the quaternion ¢ is the inverse of the exponential function.
This means that for p, ¢ € H, if

e’ =4

then

p=lng. 3

There also exists an expression for the logarithm of ¢ = gy+q;i+g,j+
g3k in terms of its elements, which can be considered as a generalization
of the logarithm of a complex number and is given by the following
formula:

Ing =1In|g| + p;9;, ()]
where
V@
e
¢ = arctan(ﬁ).

Similarly, a quaternion matrix Q = (g,,,) € H™*V is denoted as
Q =Qy+ Qi +Q,j + Qsk with Q, € RM*N(t =0, 1,2,3). If Q, = 0,
then the corresponding quaternion matrix is called a pure quaternion
matrix.

3. Dynamic mode decomposition in real field
3.1. Dynamic mode decomposition method

DMD is a data-driven method which spatiotemporally decomposes
data from snapshots or measurements of a given system in time into a
set of dynamic modes. In this section, we will give a brief review of the
DMD theory. For specific details of DMD, please refer to Brunton and
Kutz (2019), Kutz et al. (2015, 2016), and Erichson et al. (2019).

It is assumed here that the number of data points collected at a given
time is n, with the number of unified samples being m, and the timestep
is denoted by Ar. We use a vector x; € R" to denote the n data points
collected at the time 7, = /At, | = 1,2,...,m. Then, all the data points
can form a real matrix Z = [x; x, X,| € R™™. And the data
can be arranged into two matrices, X, Y:

X=[x] X, X3 X,,,_]],

Y:[xz X3 X4 oo xm],
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where X,Y € R™"-D_ Assuming that there exists a linear operator
A € R™" which describes the dynamic change between the data at
time #; = /At and the data at time 7,,; = (/ + 1)4r such that x| = Ax,.
Based on the assumption, the best fit linear map A which maps X to Y
can be estimated in a least-squares sense. Suppose

R, = (AJA € R™", |[Y — AX||; = min}, ®)

where ||-|| denotes the Frobenius norm. R; is the set of least squares
solutions of the matrix equation AX =Y. Then the best fit linear map
A is given by

A =YX, 6)

where X' is the pseudoinverse of X, and A is the minimum norm least
squares solution of the matrix equation AX = Y. The eigenvectors
and eigenvalues of A are defined as the DMD modes and eigenvalues,
respectively. In many systems, the dimension n of these systems is
larger than the number of snapshots m. However, when # is large, it is
intractable to directly compute the spectral decomposition of the matrix
A

Therefore, for high-dimensional data x € R" (i.e., n is large),
instead of explicitly computing A to obtain its dominant eigenvalues
and eigenvectors, the DMD method obtains the dominant eigenvalues
and eigenvectors of A by implementing dimensionality reduction. There
are many variants of DMD. The main difference between those methods
is the way to calculate the DMD modes and eigenvalues. In this paper,
we will expand the exact DMD to the quaternion system, so we give a
brief review of the exact DMD in this section. For more details please
refer to Tu (2013).

The computation process of the exact DMD algorithm is as fol-
lows (Tu, 2013):

1. First, compute the SVD of the matrix X:
X =Ux=V7, %)

where U € R, ¥ € R™, and V € R™, and r < m < n is the
rank (or the approximate rank) of X.

2. Second, after calculating the pseudoinverse of X, the full matrix
A can be obtained as follows:

A=YVEIUT, 8)

Instead of calculating A directly, the leading r eigenvalues and
eigenvectors of A are computed by using dimensionality re-
duction, projecting A onto these leading singular vectors and
resulting in a small matrix A

A=UTAU=UTYVZ, ©)]

where A € R™. The reduced matrix A has the same nonzero
eigenvalues as the full matrix A

3. Next, compute the spectral decomposition of A, obtaining W and
A such that

AW = W4, (10)
where A is a diagonal matrix and its diagonal elements are the
eigenvalues 4, of both the matrix A and the matrix K, i.e., the
DMD eigenvalues, while the columns of the matrix W are the
corresponding eigenvectors of the matrix A.

4. Finally, the leading spectral decomposition of A are obtained

based on Eq. (10). Calculate the DMD modes ® by using the
eigenvectors W of the matrix A, given by

& =YVE~'W. an

After obtaining the low-rank approximations of the eigenvalues
and eigenvectors, i.e., the DMD eigenvalues and the DMD modes, the
approximate data can be obtained for all times in the future. The
approximated data xpyp at time 7, = v4r (v € N, ) for any time after the
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data vector x; was collected can be obtained by xpyp(7,) = K“‘lxl . For
the convenience of spectral expansion in continuous time, a mapping
of A, is defined as w, = log(4,)/4t, s = 1,2, ..., r. Then the approximate
system state at all future times ¢,, Xpyp(?,), is given by

r
Xoup(ty) = D by e V4 = QDA 12)
s=1
where
e?1 0 0
=% & - 0
0 0 e%r

and b is generally calculated as
b=ox, = (®7®) 1®Tx,. 13)

The method is shown in Algorithm 1.

Algorithm 1 Exact DMD algorithm (Tu, 2013).

Input: Two matrices X and Y which are constructed from the data.
Output: DMD modes (®) and DMD eigenvalues.

: U, X, V=SVD(X, r) «— (reduced) QSVD.

A —UdYVEL

W, A — eigenvectors and eigenvalues of A

® = YVE-'W «— Q-DMD modes.

: return ® and 1N\;

abhwnye

3.2. Background modeling using the dynamic mode decomposition method

Assuming that the total number of frames in a video sequence is m,
and each frame has n pixels in total, then each frame can be vectorized
into a vector denoted as x,, where x;, € R", and s = 1,2,...,m.
Assuming that frames are collected at evenly spaced time intervals
At, then the time points of these collected frames can form a vector
t=1[4 1 1,,]. For convenience, the time point of collecting
the first frame is recorded as 0, and the time points of collecting the
second frame to the mth frame are similarly recorded as 1 to m — 1,
ie,t=[0 1 m — 1]. Therefore, using the Q-DMD method, the
full video sequence X can be reconstructed by the following formula

p
Xpwp = D, by@se”s! = $Q', a4
s=1

where ¢, € R”, t € R1*". The parameter r is related to the dimension-
ality reduction and it is fixed to m— 1, i.e., one less than the number of
frames of the video sequence in this paper. The key principle to separate
the reconstructed video frames into the background (approximately
low-rank) and foregrounds (approximately sparse) is to threshold the
low-frequency modes of the corresponding eigenvalues. Generally, the
portion of the first video frame that does not change with time, or
changes very slowly in time satisfies |»,| ~ 0, and is considered as the
background. Assume that there exists a w, that satisfies |o,| ~ 0, where
p € {1,2,...,r}, and the others (i.e. w,, Vs # p) are bounded away from
zero. Then we can obtain that

Xpvmp =L +S
= b,@,e”" + Z by e®st. 1s)
—— #
Background —“—— —r

Foreground

As can be seen from Eq. (15), each term of the DMD reconstruc-
tion is a complex matrix, i.e., bp,e®t € C™". However, the re-
constructed Xpyp should be a real matrix because the matrix Z =
[x; x, - x,] € R™™. Therefore, the modulus of each element
within the matrix Xpyp is calculated and used to estimate Xpyp. For
specific details of DMD and the DMD method for background modeling,
please refer to Brunton and Kutz (2019), Kutz et al. (2015, 2016),

and FErichson et al. (2019).
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4. Proposed quaternion-based dynamic mode decomposition

In this section, we will first introduce the calculation of eigenvalues,
eigenvectors, and singular value decomposition of a quaternion matrix.
Then we will extend DMD to the quaternion number system. The
purpose is to use the advantages of quaternion for representing color
images.

4.1. Eigenvalues and eigenvectors of a quaternion matrix

Due to the non-commutation of quaternion, there are two categories
of eigenvalues of a quaternion matrix, left eigenvalues and right eigen-
values. In this paper, we only use the right eigenvalues, so a brief
review of the right eigenvalues and eigenvectors of a quaternion matrix
will be given. For convenience, we abbreviate right eigenvalues as the
eigenvalues. For detailed overview of eigenvalues and eigenvectors of
a quaternion matrix, we recommend Lee (1948) and Zhang (1997).

Definition 4 (Eigenvalues Zhang, 1997). A quaternion 4 is said to be a
right (left) eigenvalue of a quaternion matrix Q if it satisfies

Qx=xi (Qx = Jix). (16)

Definition 5 (Eigenvalue Class Chang et al, 2003). If i is one right
eigenvalue of a quaternion matrix Q € HV*¥, then every element of the
set I' = {gA¢~! : where ¢ is any unit quaternion with its norm |¢| = 1}
is also a right eigenvalue of Q. Moreover, a single eigenvalue 1, € C*
will be contained in this set I, so this set is considered as the eigenvalue
class of 4,.

Therefore, the eigenvalues of a quaternion matrix are infinite, and
the eigenvalues of a quaternion matrix are finite if and only if all
eigenvalues of this quaternion matrix are real, however, there are finite
eigenvalue classes.

Theorem 1 (The Standard Eigenvalues of a Quaternion Matrix Zhang,
1997). Any N x N quaternion matrix Q has exactly N right eigenval-
ues which are complex numbers with nonnegative imaginary parts. Those
eigenvalues are defined as the standard eigenvalues of the quaternion matrix

Q.

Definition 6 (The Complex Representation of a Quaternion Matrix).
Given a quaternion matrix Q € HM*N  and let Q = Q, + Q,i + Q,j +
Q;k = Q, + Q,j, where Q, = Qq + Q,i, Qp = Q, + Qi € CM*N then
the complex representation of Q is defined as (Zhang, 1997)

.= Qa Qb]
XQ _Qb* Qa* '

where Q,* = Q) — Q,i, Q,* = Q, — Q3i, and y € CH2N,

a7

There are many similar properties between the quaternion matrix
and its corresponding complex representation matrix and the detail can
be found in Zhang (1997).

Based on the eigenvalues and eigenvectors of y,, we can com-
pute the eigenvalues and eigenvectors of Q, which is presented in
Theorem 2.

Theorem 2 (The Calculation of Standard Eigenvalues of the Quaternion
Matrix Chang et al, 2003). Given a quaternion matrix Q € HN*V,
then the complex eigenvalues of Q are the same as the eigenvalue of X0
Further, the complex eigenvalues of x ; appear in conjugate pairs. Specially,
if x o has any real eigenvalue, it occurs an even number of times. Therefore,
N complex eigenvalues with nonnegative imaginary part of the quaternion
matrix Q can be obtained.
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The relation between the eigenvectors of the quaternion matrix
(XD nx1

(X2) Nx1
eigenvector of the complex matrix y, corresponding to eigenvalue A

of x¢, then %)y = x; — xJj is an eigenvector of the quaternion
matrix Q corresponding to eigenvalue 4 of Q, where x;, x, € CN*I,
and x € HV1.

Q and the eigenvectors of y, is that if (X)yny = ] is an

4.2. Singular value decomposition of a quaternion matrix

Definition 7 (The Rank of Quaternion Matrix Zhang, 1997). The rank of
a quaternion matrix Q € HM*V is the maximum number of right (left)
linearly independent columns (rows) of Q.

Theorem 3 (Singular Value Decomposition of a Quaternion Matrix (QSVD)
Zhang, 1997). Given any quaternion matrix Q € HM*N of rank r, there
exist two quaternion unitary matrices U € HM*M and V € HN*N such that

s 0

Q=0 VH = UAVH, 18)
0 0
where 3, is a real diagonal matrix with r positive entries on its diagonal

(i.e. singular values of Q).

The computation of U, V and the singular values of Q can be
obtained based on the SVD of its complex representation y,. The
calculation of QSVD is briefly summarized as follows (Xu et al., 2015):

1. Compute the SVD of y,, and here we denote y, = UAXoVH
2. Then, we can get that

A =row, (col,,;,(AX0)),
U = col,;;(U;) + col, ;. (—=(Uz)*)J, 19
V = col,yy(Vy) + col, 4 (—=(V2)")j,

where
U= [(UI)MXZM] _ (VI)NXZN] .
Uwmsem)’ V)wan

and row,,,(M) and col,,,(M) represent the extraction of the odd rows
and odd columns of matrix M respectively.

4.3. Computation of quaternion-based dynamic mode decomposition modes
and eigenvalues

Assume that there are m snapshots of the state of a dynamic system
and each snapshot is arranged into an n x 1 quaternion vector with the
form

X(t)) € H",

where I = 1,2,...,m. These snapshots can form two data matrices, X
and Y € H™(m=1;

X=[X(t) Xt X@) X(ty_1)] »

Y =[X(rp) Xty X(y) X(t,)] -

Assuming that the data was collected by uniform sampling in time, with
t; =14t for I = 1,2,...,m, and 4 is the timestep. Similarly, we assume
that there is a linear operator Q which reflects the changes of the two
matrices X and Y:

Y ~ QX. (20)

Mathematically, the quaternionic least squares (QLS) problem can be
formulated as:

H, = {Q|Q € H™",

|Y - QX|| - = min}, (21)
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where ||-|| denotes the Frobenius norm, and H, is the set of least
squares solutions of Eq. (20). The Frobenius norm of a quaternion ma-
trix Q IS HM*Mijs  defined as (Zhang, 1997): ||Q|

= \/Zzll Z”Z‘:l Iy m, 12 =14/ tr((Q)” Q). And the minimum norm least

squares solution of Eq. (20) is

Q =YX, (22)
where X' is the quaternionic pseudoinverse of X (Kyrchei, 2013).
When the dimension of per time snapshot » is large, it is difficult to
deal with the quaternion matrix 6 directly. Therefore, we also reduce
the dimension of the quaternion matrix Q to obtain its leading spec-
tral decomposition. Before that, we first establish the special spectral
decomposition of a quaternion matrix.

Theorem 4 (Spectral Decomposition of a Quaternion Matrix). Given any
quaternion matrix Q € HM*M  after calculating the standard eigenvalues
and eigenvectors of Q, there exist two quaternion matrices ® € H™*M and
A e HMXM sych that

Qd = PA, (23
where A is a quaternion diagonal matrix with M quaternion numbers on

its diagonal, i.e., M standard eigenvalues of Q, and the columns of & are
the corresponding eigenvectors.

Proof. By using Theorem 2, we can calculate the M standard eigen-
values of Q and its corresponding M eigenvectors. We denote the
vth eigenvalue of Q as i,, and ¢, is the eigenvector correspond-
ing to A,. Then the M eigenvectors can form a quaternion matrix
which is denoted as &, ie., ® = [¢p, ¢, &]- Meanwhile
another diagonal quaternion matrix A can be formed, that is A =
diag(4,, Ay, ..., 45), where A is a quaternion diagonal matrix and has
the M standard eigenvalues of Q on its diagonal. Therefore, based on
Definition 4, we have

Qb =dA. O (24)
Now, we calculate the quaternion-based DMD (Q-DMD) modes and
eigenvalues. The calculation process is as follows:

1. Firstly, we calculate the (reduced) QSVD of the matrix X, i.e. find
U, ¥ and V such that
X=Ux=VvH, (25)
where U € H™, ¥ € R, and V € H™ and r < m < n
is the rank (or the approximate rank) of X. The rank (or the
approximate rank) r is related to the dimensionality reduction
of the quaternion matrix Q and the low-rank trunction of the
data. We note that UYU = I, VIV = I, where I is the identity
matrix. .

2. Secondly, we compute the reduced quaternion matrix Q. Accord-
ing to Eq. (22), after calculating the quaternionic pseudoinverse
of X, the full quaternion matrix 6 can be obtained as follows:

Q=Yvsluf, (26)
However, we are only interested in the leading spectral decom-

position of Q, and the reduced quaternion matrix Q can be
obtained by the following formula:

Q=U"QU=0"YVs" @7
3. Next, we compute the spectral decomposition of (~2 by using

Theorem 4:

QW = WA, (28)

where A is a diagonal matrix and its diagonal elements are the
standard eigenvalues (4, € H) of the matrix 6, which are defined
as the Q-DMD eigenvalues, while the columns of the matrix w
are the corresponding eigenvectors of the matrix Q.
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4. Finally, the leading spectral decomposition of Q are obtained
based on Eq. (28). The standard eigenvalues of Q are given by Q-
DMD eigenvalues, i.e., the diagonal elements of A. And Q-DMD
modes are given by columns of &:

& =YVS'W. (29)
These Q-DMD modes are the eigenvectors of 6, since we have
Q& = (YW UM )(YVE-W)
=YvE- Ut YvEHw
—YVE-IQW (30)
= YVE'WA
= &4
The approximate Q-DMD eigenvalues and Q-DMD modes are the stan-

dard eigenvalues and eigenvectors of quaternion matrix Q under certain
conditions.

Theorem 5. Define the quaternion matrix ¥ as
¥ = UW, €1b)

where U, W are from Egs. (25) and (28), respectively. If the column space
of Y are spanned by columns of X, then the Q-DMD eigenvalues and Q-DMD
modes defined by Eq. (31) are the standard eigenvalues and corresponding
eigenvectors of quaternion matrix 6

The proof of Theorem 5 can be found in the supplementary material.
In the exact Q-DMD definition, Q-DMD modes (columns of &) are
calculated using ® = YVE-!W instead of & = UW. In fact, if the
column spaces of X and Y are the same, they tend to converge. The
calculation steps of Q-DMD modes and eigenvalues are summarized in
Algorithm 2.

Algorithm 2 Quaternion-based DMD algorithm (Q-DMD).

Input: Two matrices X and Y which are constructed from data.
Output: Q-DMD modes (®) and Q-DMD eigenvalues.

LUZX V= QSVD(X, r) «— (reduced) QSVD.

2§ — UMYVE.

3 W, A— eigenvectors and standard eigenvalues of 6

4: & = YVE~'W «— Q-DMD modes.

5: return ® and A;

After calculating the low-rank approximations of eigenvalues
(i.e., Q-DMD eigenvalues) and eigenvectors (i.e., Q-DMD modes) of the
quaternion matrix Q, the system state can be approximated by using
the spectral decomposition:

. " . ool s

Xo.omp () = z @A by =PA b, (32)
s=1

where 7, = vAr (v € N,), b = $7x(1)) contains the initial amplitudes for

the modes, and A = diag(,, 4,, ..., 4,). The Q-DMD eigenvalues can be

converted to the continuous form by using Definition 3 :

In(4,)
W, =
At

s (33)

for s = 1,2,...,r. Therefore, the right spectral decomposition above can
be rewritten as

r
XQ»DMD(’U) — z ¢Sew3(v—l)AtbS — @Q(U_I)At'b, (34)

s=1
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where
el 0 0
a-|0 @ 0
0 O e®r

4.4. Background modeling using the quaternion-based dynamic mode de-
composition method

The Q-DMD method can deal with a color video sequence because
the frames of the video are normally uniformly sampled, and a color
pixel can be represented by a quaternion. It is assumed here that the
color video contains m frames, and each frame has n pixels in total, then
each frame can be vectorized into a pure quaternion vector denoted as

X, = R(:,8)i+G(:,5)j+ B(:,5)k,

where x;, € H", and s = 1,2,....,m. R(:,s), G(:,s), and B(:,s) € R"
respectively represent the pixel values of the corresponding red, green
and blue channels after vectorization of the sth frame. Then, all frames
of the color video are vectorized and form a quaternion matrix Z =
X %, %,| € H™". And any given frame of the color video
can be reconstructed by using Q-DMD method, that is by using Eq. (34).
Given a color video sequence and assuming that frames are collected
at uniform intervals, then the time points of these collected frames can
form a vector t = [t; 1, 1,,]- For convenience, here we assume
t=1[0 1 m —1]. Therefore, using the Q-DMD method, the full
video sequence X can be reconstructed by the following formula

v
Xo.omp = Z pe?th, = dQtb, (35)
s=1

where ¢, € H", t € R™™". As we mentioned before, the parameter
r is related to the dimensionality reduction and it is fixed to m — 1,
i.e., one less than the number of frames of the color video sequence in
this paper. After obtaining the prediction of the whole video sequences
by using Eq. (35), the separation of foregrounds and the background
can be obtained by thresholding the low-frequency modes of the corre-
sponding eigenvalues. Generally, any part of the first video frame that
does not change with time, or changes very slowly in time satisfies
|, ~ 0, and is regarded as the background. Therefore, suppose there is
a o, satisfying |w,| ~ 0, where p € {1,2,...,r}, and the others (i.e. @,
Vs # p) are not near the origin. Then we can obtain that

Xopmp =L +8

— 2y ,Opt ] DRESRON ¥
—¢pel’bp+2(pse sthy . (36)
N——  s#p
Background —“—— —
Foreground

It is worth noting that quaternions do not satisfy the commutative
law, so the product of the above Eq. (36) cannot change the order, and
this is different from the real field generally, that is

Xo-oMp = ¢pe“"ﬂtbp + Z @.e?sth, # 13p¢peth + Z by est.
s#p S#p

There exists another difference between DMD and Q-DMD. Each term
of the DMD reconstruction is a complex matrix, i.e., b,@ e?st € C™".
However, when the DMD term is decomposed into approximate low-
rank and sparse components, real value output is required. Different
from the output of DMD, each term of the Q-DMD reconstruction is
a quaternion matrix, i.e., ¢,e?th, € H™", and the coefficient matri-
ces corresponding to the three imaginary units i, j, k are real matrix
and correspond to the three channels RGB of the color frame to be
reconstructed.
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5. Experimental results and discussion

In this section, we conduct numerical experiments on two pub-
licly available benchmark datasets, i.e., Scene background modeling
dataset (SBMnet dataset)' (Jodoin et al., 2017) and Scene background
initialization dataset (SBI dataset)’ (Maddalena and Petrosino, 2015;
Bouwmans et al., 2017a), and illustrate that our Q-DMD method has
the ability to separate color video sequences into background models
and foreground components. We compare our method with the original
DMD and several state-of-the-art approaches.

Quantitative assessment: To evaluate the performance of our
proposed method, we employ the following six metrics suggested by
the SBMnet dataset and the SBI dataset to measure the performance.
For a detailed explanation for each metric we recommend Maddalena
and Petrosino (2015) and Jodoin et al. (2017).

(1) Average gray-level error (AGE): It is the average of the absolute
difference between the gray-level images’ ground truth (GT) and
the computed background (CB)

N-1
1
AGE = — Zz:;) 1By, = Boy |, (37)

where N is the total number of pixels in the image and B,,
and B, are the Y channel in the YCbCr color space of the GT
image and the background image computed by a background
initialization method, respectively. And the Y channel in the
YCbCr color space is obtained by

Y =0.299 xR+ 0.587x G +0.114 x B. (38)

According to Eq. (37), the lower the AGE value is, the better the
background estimate is.

Percentage of error pixels (pEPs): It is the percentage of error
pixels (number of pixels in CB whose value differs from the
value of the corresponding pixel in GT by more than a threshold
7 = 20) with respect to the total number of pixels in the image.

(2

—

N-1
pEPs = 3 (115, 5,151 ) (39)
where 1 is an indicator function. The lower the pEPs value, the
better is the background estimate.

Percentage of clustered error pixels (pCEPS): It is the percentage
of clustered error pixels (number of pixels whose 4-connected
neighbors are also error pixels) with respect to the total number
of pixels in the image. The lower the pCEPs value, the better is
the background estimate.

MultiScale Structural Similarity Index (MSSSIM): Estimate the
perceived visual distortion. For a single scale, the SSIM of a
squared image block x., of B, and the corresponding image
block x,, of B,, is calculated as:

(2Mgt ch+cl )(26g7,0b+c2)
(u 821+”42>b+cl )(”gr'mfb"c?) ’

3

=

(4

—

SSIM(X,p, Xg) = (40)
where y, and ¢, are the mean and the variance of x,, y € {cb, gt},
respectively, o,, ., is the covariance of x , and x,,, C; = K, L,
C, = K,L, K, = 001, K, = 0.03, and L is the range of
pixel values. The SSIM of the whole images is computed as the
mean of the values obtained for all corresponding image blocks.
MSSSIM aggregates SSIM values computed at different image
scales, thus providing hints on the similarity of the GT and the
evaluated background images at both the global and the detail
level. MS-SSIM is translation invariant. It assumes values in [—1,
1]; the higher the value of MSSSIM, the better the estimated
background.

L http://www.SceneBackgroundModeling.net
2 http://sbmi2015.na.icar.cnr.it/SBIdataset.html
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(5) Peak-signal-to-noise-ratio (PSNR): PSNR is defined as

MAX?
PSNR =10 -1 — ), 41
0g10< MSE ) 41)
where MAX is 255 in this case and MSE is the mean squared
error between B, and B,

N-1

MSE = % Y (B, - B.,)" (42)
z=0

It assumes values in decibels (db); the higher the PSNR value,

the better is the background estimate.

(6) Color image quality measure (CQM): By first converting RGB
images to the YUV color space and then computing the PSNR
value of each YUV channel separately, CQM is calculated based
on the resulting PSNR values:

PSNR,; +PSNR,,

2

where Ry, and Cy, are biologically-inspired coefficients set to

0.9449 and 0.0551, respectively (For specific details, please refer

to the original paper Yalman and ERTURK, 2013). It assumes

values in decibels and the higher the CQM value, the better the
background estimate.

CQM=PSNRy xRy, + XCyy» (43)

Experiment on SBMnet dataset: We first simulated on SBMnet
dataset to evaluate the proposed Q-DMD method for color video back-
ground modeling. The dataset consists of a wide range of challenging
videos, such as camera jitter, intermittent object motion, background
motion, abandoned object, illumination changes, long and short se-
quences of images, and the ground truth of some videos was provided.
Representative frames of the eight videos from the SBMnet dataset
are shown in Fig. 1. The spatial resolutions of those videos vary from
240 x 240 to 800 x 600. The spatial resolutions of the videos “511”
and “AVSS2007” are 480 x 640 and 576 x 720, respectively, so the two
videos were down-sampled by a factor of 2 to make the computational
memory requirements manageable for personal computers. In order to
process a color video efficiently, for the color video whose total number
of frames in the SBMnet database is far more than 200 frames, we
randomly selected 200 consecutive frames containing the foreground
and background information for experiments and the frames that did
not change over time were trimmed. We compared the performance of
our method with the DMD, and several other existing state-of-the-art
approaches, including MSCL (Javed et al., 2017), FSBE (Djerida et al.,
2019), LaBGen (Laugraud et al., 2017), NExBI (Mseddi et al., 2019),
Photomontage (Agarwala et al., 2004), SC-SOBS-C4 (Maddalena and
Petrosino, 2016), BE-AAPSA (Ramirez-Alonso et al., 2017), ABM (Avola
et al., 2017), and FC-FlowNet (Halfaoui et al., 2016).

The results of the generated backgrounds by different methods on
SBMnet dataset are displayed in Fig. 2. For the three sequences “511”,
“Blurred”, and “boulevard” with long background exposure time and
mild object motion, our method generates clear backgrounds with
satisfied perceptual quality like other methods except for BE-AAPSA
on “Blurred”. However, for those videos (“board” and ‘“boulevard-
Jam”) whose background is visible for a short time, the generated
backgrounds by Q-DMD contain the shadow effect of moving objects.
And for “board”, except for NExBI, FSBE, and MSCL, all the other
methods fail to initialize a high-quality background. For “boulevard-
Jam”, compared with other methods other than FSBE, our method
generates a relatively better result. There exists camera jittering in
the sequences “badminton”, and the instability (e.g., vibration) of the
camera and the movement of the foreground will cause the generated
background to be interfered with by the two movements. Although
the background of sequences “badminton” generated by Q-DMD has
also been corrupted by blurring effects, the result is still better than
most other methods. “AVSS2007” and “BusStation” belong to the in-
termittent motion category. The challenge of this category is that


http://www.SceneBackgroundModeling.net
http://sbmi2015.na.icar.cnr.it/SBIdataset.html
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(d) boule-
vardJam
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(e) boule- (f) Badmi- (g) AVSS- (h) BusSt-
vard nton 2007 ation
Fig. 1. Representative frames of the eight videos from SBMnet dataset.

Table 1

Quantitative quality indexes of DMD method and the proposed Q-DMD method for the 8 color videos on SBMnet dataset.
Videos AGE PEPs pCEPs MSSSIM PSNR CQM

DMD QDMD DMD QDMD DMD QDMD DMD Q-DMD DMD Q-DMD DMD Q-DMD

511 4.0569 4.0425 0.0378 0.0373 0.0013  0.0013 0.9780 0.9783 30.2008  30.2637 31.8512  32.1079
Blurred 11.3377 9.4219 0.1512 0.1033 0.1233  0.0821 0.9561 0.9596 24.3609 25.5840 25.3249  26.4187
board 30.1856 285044  0.6962 0.4943 0.6066 0.4073 0.5112  0.5549 17.4713 16.6794 18.3299 18.2303
boulevardJam 4.1226 3.6353 0.0095  0.0095 0.0029 0.0031 0.9314 0.9325 31.4713  31.5366 32.5999  32.6002
boulevard 9.4585 9.4098 0.1375 0.1372 0.0277  0.0276 0.9116 0.9116 22.6940 22.7186 24.1742  24.2013
Badminton 5.6188 3.9600 0.0283  0.0257 0.0132 0.0115 0.9541 09570 30.2312  31.3778 31.0495 322622
AVSS2007 17.2716 17.3175 0.2610 0.2589 0.2065 0.2031 0.7127 0.7123  19.3044 19.3450 20.2489  20.2835
BusStation 6.4834 6.3356 0.0497 0.0611 0.0255 0.0328 0.9512 0.9505 28.3237 28.0328 29.2942 29.1266

the foreground moves then stops for a short while, and then starts
moving again, which causes “ghosting” artifacts in the reconstructed
background. For “AVSS2007”, almost all the methods fail to generate
a high-quality background. The background generated by Q-DMD is
better than that generated by BE-AAPSA and Photomontage. For the
sequence “BusStation”, the performance of Q-DMD is better than that
of ABM, SC-SOBS-C4, Photomontage, and LaBGen.

The quantitatively evaluated results are shown in Tables 1 and 2. Six
evaluation metrics (AGE, pEPs, pCEPs, MSSSIM, PSNR, and CQM) are
used to demonstrate the performance of the proposed Q-DMD method.
It can be found from Table 1 that the performance of our Q-DMD
method is better than that of the DMD method in the vast majority of
images. The CQM is a color image quality measure based on reversible
luminance and chrominance (YUV) color transformation and PSNR
measure (Yalman and ERTURK, 2013). Therefore, in addition to the
advantage on PSNR, the good performance of our method on CQM also
demonstrates the advantages of the quaternion-based model.

As can be seen from Table 2, our method achieves competitive
CQM values in four color videos (“511”, “boulevardJam”, “boule-
vard”, and “Badminton”) compared with other methods. For those
videos with very short background exposure duration, such as ‘“Board”,
“AVSS2007”, “boulevardJam”, and “Badminton”, as shown in Fig. 2,
there exists the shadow effect of moving objects in the generated
background, which leads to a reduction in performance. However, for
long sequence images in which the background appears for a long time,
such as “Basic (511)”, “Jitter (boulevard)”, the CQM value obtained by
our method is almost the same as that obtained by FC-FlowNet method.
In particular, our method achieved the second highest CQM value on
“Clutter (boulevardJam)” and “Jitter (boulevard)”. These results show
that compared with the state-of-the-art approaches, the Q-DMD method
is competitive enough to extract background from challenging videos.

Experiment on the SBI dataset: We conducted additional experi-
ments on the SBI dataset to evaluate our background modeling results
by comparing them with the background initialization results obtained
by the DMD method. The SBI dataset also contains a large amount
of data extracted from original publicly available sequences, which
are frequently used in the literature to evaluate background initializa-
tion algorithms (Maddalena and Petrosino, 2015). We evaluated our

approach on 9 sequences of the SBI dataset. The remaining videos,
“Cavignal” and “CAVIAR1” are objects with intermittent object motion
which are not defined as moving objects, “Snellen” and “PeopleAndFo-
liage” are those videos with very short background exposure duration,
and “Toscana” has only five frames and is not suitable for Q-DMD
method. The background frames that did not change over time were
trimmed and among the nine videos, except those with less than 200
frames, we extracted 200 frames of videos for experiments to reduce
the computing time. We calculated the six metrics (AGE, pEPs, pCEPs,
MSSSIM, PSNR, and CQM) suggested by the SBI dataset to measure the
reconstructed background models, and the results are shown in Table 3.
Generated backgrounds with Q-DMD method on SBI dataset are shown
in Fig. 3.

As can be seen from Fig. 3, for the three color videos, “Board”,
“HighwayI”, and “HighwayIl”, the backgrounds reconstructed by the
DMD method had obvious different color intensity compared to the
ground truth, however the background models generated by Q-DMD
method do not have this problem. Therefore, we have reason to believe
that this is mainly due to the advantage of quaternion in representing
color pixel values. As shown in Table 3, for most videos on the SBI
dataset, our AGE, pEPs, and pCEPs were lower than those of the
DMD method, which indicates that it has a lower pixel-wise difference
between the reconstructed background model and the ground truth
model. PSNR, MS-SSIM, and CQM also show that the Q-DMD method
has advantages over the DMD method.

In addition, we also compare our method with several deep neural
network-based methods, which are BI-GAN (Sultana et al., 2020),
KNN (Zivkovic and Van Der Heijden, 2006), and BE-AAPSA (Ramirez-
Alonso et al., 2017). The comparison results are shown in Table 4. We
used the new version of MATLAB tools available on the SBI website to
calculate the quantitative AGE, pEPs, pCEPs, MSSSIM, PSNR, and CQM
values of DMD and Q-DMD. However, when comparing with BI-GAN,
KNN, and BE-AAPSA, there is no comparison of CQM values, because
the CQM values of those methods to be compared were calculated
using the old version of Matlab tool, that included a bug, as indicated
in the SBI website. As can be seen from Table 4, Q-DMD performed
better than other methods for the video sequence “CAVIAR2”. No
one method always performs best. In most cases, BE-AAPSA achieved
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(a) Original (b) GT

(c)FC-Flow- (d) ABM  (e) BE-AA- (f) SC-SOB- (g) Photo-
Net PSA S-C4

montage
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(h)NExBI (i)LaBGen ()FSBE (K)MSCL  ()DMD  (m)Q-DMD

Fig. 2. (a) Representative original frames of the eight videos from the SBMnet dataset. (b) Ground truth of the background. (c)-(m) are the generated backgrounds results of
FC-FlowNet, ABM, BE-AAPSA, SC-SOBS-C4, Photomontage, NExBI, LaBGen, FSBE, MSCL, DMD, Q-DMD, respectively. From top to bottom: First-row: 511; Second-row: Blurred;
Third-row: board; Fourth-row: boulevardJam; Fifth-row: boulevard; Sixth-row: Badminton; Seventh-row: AVSS-2007; Last-row: BusStation.

Board Candelam1- CAVIAR2

_ml.10

Foliage

HallAndMonitor

HighwayI HighwayIl HumanBody2 IBMtest2

Fig. 3. First-row: Representative frames of the nine videos from the SBI dataset; second-row: Ground truth of the background; Third-row: Generated backgrounds with DMD

method; Last-row: Generated backgrounds using Q-DMD method.

the highest AGE of all comparison methods, while Q-DMD achieved
the second highest AGE. For the video sequences ‘‘HallAndMonitor”
and “HumanBody2”, on some numerical indicators, BE-AAPSA and BI-
GAN performed better than Q-DMD, while KNN performed poorly in
terms of almost all metrics. For the video sequences “Highwayl” and
“HighwaylIl”, Q-DMD and KNN outperformed BE-AAPSA in almost all
metrics, except AGE and PSNR (see Table 4), and Q-DMD achieved the
highest MSSSIM among all the compared methods. The reason behind
this is that in these sequences, the foreground objects always move
(e.g., Highwayl, Highwayll, and CAVIAR2), which fits the assumptions
of Q-DMD, and therefore, Q-DMD performs better in these categories.
Overall, Q-DMD is competitive compared to these methods.

Results analysis of Q-DMD method: The Q-DMD method only
considers the part of the image sequence that does not change with time

as the background model. When this condition is met, the Q-DMD can
achieve better performance. For example, for the three sequences of SBI
dataset, “Highwayl”, “Highwayll”, and “IBMtest2”, the foregrounds
(people or vehicles) do not remain stationary anywhere in the scene
throughout the sequence. Therefore, for these color video sequences,
Q-DMD can generate a superb background model by eliminating the
foreground part of continuous motion. The results of these three videos,
“511”, “Blurred”, and “boulevard” in SBMnet dataset also reflect this
phenomenon. However, when this condition is not satisfied, it will
affect the results of Q-DMD. For example, on the “ Board” sequence
of SBI dataset, the background models reconstructed by Q-DMD and
DMD had human shadow. This is because there are two men in the
video sequence who occupy a large proportion of the background in
the whole video sequence, and the man standing on the right side of
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Table 2
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Comparison of AGE, MSSSIM, PSNR, and CQM between proposed Q-DMD method and other state-of-the-art background initialization methods on SBMnet dataset.
Numbers that are bold and underlined, numbers that are bold and dashed, and numbers that are bold represent the highest, second and third highest CQM values

on each video, respectively.

Videos FC-Flow- ABM BE-AA- SC-SOB-S-  Photo- NExBI LaBGen FSBE MSCL Q-DMD
Net PSA Cc4 montage
AGE 3.9735 6.1224 4.0511 5.5782 5.7977 5.8916 4.8294 3.7414 4.2186 4.0425
Basic (511) MSSSIM  0.9735 0.9407 0.9744 0.9553 0.9488 0.9345 0.9475 0.9761 0.9703 0.9783
PSNR 30.8573 26.5925  30.0319 27.2563 26.6706 26.2599 27.6577 30.5804 30.0808 30.2637
CQM 32.5541 28.5767  31.8292 29.2562 28.7131 28.3762  29.5002  32.2388 31.8784  32.1079
AGE 2.6962 2.4574 15.2057 2.0878 2.0214 2.5863 1.3990 3.1953 1.8057 9.4219
Basic (Blurred) MSSSIM  0.9902 0.9906 0.8924 0.9934 0.9941 0.9909 0.9975 0.9882 0.9930 0.9596
PSNR 36.3751 36.5219  22.4556 37.8907 38.2473 36.3266 41.5779  31.8882 38.1747  25.5840
CQM 36.8199 36.8815  23.3364 38.2289 38.5613 36.6845 41.6541 32.4592  38.5264 26.4187
AGE 14.1523 13.9757  25.4532 13.2993 13.4739 6.7738 8.0208 5.5795 6.0836 28.5044
Clutter (board) MSSSIM  0.8691 0.7647 0.7629 0.5086 0.5029 0.9162 0.8491 0.9340 0.9322 0.5549
PSNR 22.1587 20.3477  15.6631 19.0239 18.8444 28.1156  27.4114 29.7845  29.2266 16.6794
CQM 23.2484 21.4077  16.9305 20.3248 20.0911 29.0466 28.3713  30.7618 30.0739 18.2303
AGE 5.0200 7.6215 5.1418 6.7592 12.1045 5.0516 8.2239 2.3321 5.0010 3.6353
Clutter (boulevardJam) MSSSIM  0.8619 0.7546 0.9219 0.8752 0.7604 0.8789 0.6851 0.9653 0.9100 0.9325
PSNR 30.3476 24.7166  28.9114 26.8135 20.9163 27.6165 22.6515 33.8660 28.5787  31.5366
CQM 31.4309 26.0921  30.0986 28.0968 22.1436 28.8454 23.9772 35.0117 29.8099  32.6002
AGE 10.6830 11.4377  10.8262 9.7795 9.7829 9.4182 10.1888 10.1060 5.8660 9.4098
Jitter (boulevard) MSSSIM  0.8956 0.8776 0.8821 0.8998 0.8995 0.9076 0.8946 0.9003 0.9699 0.9116
PSNR 22.5246 20.6235  21.1393 21.7477 21.6868 22.2455 21.4645 22.5280 26.0077 22.7186
CQM 24.0208 22.0462  22.5861 23.1910 23.0513 23.7767  22.9249 23.8107 27.1642 24.2013
AGE 5.5368 7.7833 4.3975 3.6988 4.2924 5.2289 2.2670 6.5668 2.4174 3.9600
Jitter (Badminton) MSSSIM  0.9367 0.7872 0.9204 0.9386 0.9237 0.8726 0.9805 0.8636 0.9729 0.9570
PSNR 29.9097 23.9886  29.1352 30.8739 29.6868 26.7733  34.6482 27.3765 33.8011 31.3778
CQM 30.7442 24.9043  29.9490 31.8162 30.4911 27.7054  35.2688 28.2185 34.5949  32.2622
AGE 11.6751 9.6720 20.6172 10.8835 12.0167 12.3242  8.3062 11.5900 7.5256 17.3175
IntermittentMotion MSSSIM  0.8726 0.8809 0.7929 0.8625 0.8400 0.8799 0.9050 0.8830 0.9294 0.7123
(AVSS2007) PSNR 20.7442 21.6609  16.4960 21.3609 19.2860 21.1518 21.4577 20.1106 22.3138  19.3450
CQM 21.7565 22.5576 17.5546 22.2359 20.2173 22.0076  22.3158 21.2110 23.0990 20.2835
AGE 4.3513 6.5147 4.5206 5.4672 6.5309 3.0622 7.0296 4.3997 3.4057 6.3356
IntermittentMotion MSSSIM  0.9622 0.9128 0.9621 0.9212 0.8872 0.9815 0.8889 0.9847 0.9821 0.9505
(BusStation) PSNR 31.1049 24.4467  30.0286 25.1635 21.8651 35.2212  22.0988 33.1076 34.2369  28.0328
CQM 31.7573 25.5588  30.9833 26.3344 22.8979 35.7016 23.0664  33.7125 34.8402 29.1266
Table 3
Evaluation results (SBI dataset).
Videos AGE PEPs pCEPs MSSSIM PSNR CQM
DMD Q-DMD DMD Q-DMD DMD Q-DMD DMD Q-DMD DMD Q-DMD DMD Q-DMD
Board 28.3809 245430  67.8445 434299 59.6707  36.6799 0.5406  0.5967 18.0398  17.9744  17.7580  18.1454
Candelaml_m1.10  3.1744 3.1249 1.3780 1.4076 0.7339 0.7576 0.9653  0.9654 31.6111  31.6436 30.8939  30.8877
CAVIAR2 1.0730 1.0687 0.0041 0.0010 0.0000 0.0000 0.9988 0.9988 43.3340 43.7556 42.5350 42.9473
Foliage 22.2094  20.8727  43.2361  48.8854  31.1806 34.1458 0.7975 0.7644 19.2886  20.0956 19.2072  19.6507
HallAndMonitor 3.7244 3.8173 2.9616 2.9096 1.6359 1.6098 0.9561  0.9561 29.9361  29.9827 29.9230  29.9749
Highwayl 43.2153 5.4775 99.9688 0.1198 99.8958 0.0039 0.9015 0.9649 15.2265 31.3369 15.1443 31.2429
HighwayIl 3.1864 2.7014 0.3164 0.3125 0.0000 0.0013 0.9911  0.9917 35.1937  36.1269 34.8043  35.6207
HumanBody2 7.1215 7.0930 6.6536 6.7174 3.9896 4.0156 0.9511  0.9515 25.9354  25.9580 25.5177  25.4730
IBMtest2 4.9182 4.8208 2.7122 22513 0.8477 0.6133 0.9826 0.9827 30.7902 30.9653 29.9444 30.0359

the sequence has been rotating for some time in the sequence, which
leads to the background covered by the foregrounds for a long time.

In terms of quantitative metrics, CQM values reflect the advantages
of our method compared with DMD, and the CQM considers the biolog-
ical characteristics of the human eye, which is an enhanced version of
PSNR. In addition, from a visual point of view, the background images
of “Board”, “Highwayl”, “Highwayll”, and “IBMtest2” sequences in
the SBI dataset reconstructed by DMD show that processing three
color channels separately may lead to color distortion, and Q-DMD
can overcome this problem. The reason behind all this is that Q-DMD
naturally handles the coupling between the three color channels, and
makes full use of the information of color images.

6. Conclusions

In this paper, we propose a quaternion-based DMD (Q-DMD) method
for color video background modeling using quaternion matrix analysis.
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Quaternion representation treats color pixels as vector units rather
than scalars, naturally processes the coupling between color channels,
and fully retains the color information of the color image or video. A
high-order real tensor can be used to present a color video, however,
the color structure will be destroyed in the process of metrication
(e.g., mode-k unfolding). Using the standard eigenvalue of quaternion,
we establish the spectral decomposition of the quaternion matrix, and
then extend DMD to the quaternion system, i.e., Q-DMD. The results
demonstrate that compared with DMD, our method shows advantages
in reconstructing color video background model, and compared with
several state-of-art methods, the proposed method still has competitive
performance (w.r.t., CQM). Note that the proposed method can recon-
struct a better background model for videos that meet the requirements
(i.e., the Q-DMD method only considers the parts of the color videos
that do not change with time as the background model). On the
contrary, for videos that do not meet the conditions, the effect of the
reconstructed background model will be reduced.
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Table 4

Computer Vision and Image Understanding 224 (2022) 103560

Comparison of AGE, pEPs, pCEPs, MSSSIM, and PSNR between proposed Q-DMD method and other
state-of-the-art background initialization methods on SBI dataset.

Videos AGE PEPs pCEPs MSSSIM PSNR
BI-GAN 4.9075 0.9033 0.0488 0.9800 31.3445
Candelam1 m1.10 KNN 11.2176 10.0507 5.817 0.8158 17.3467
- BE-AAPSA 2.2656 0.0116 0.0065 0.9733 31.9643
Q-DMD 3.1249 1.4076 0.7576 0.9654 31.6436
BI-GAN 12.7988 13.6963 2.0020 0.9809 24.8151
CAVIAR2 KNN 7.1935 4.8910 1.4404 0.8469 18.9970
BE-AAPSA 1.1718 0.0000 0.0000 0.9983 43.7194
Q-DMD 1.0687 0.0010 0.0000 0.9988 43.7556
BI-GAN 3.9255 0.1709 0.0000 0.9899 34.1297
HallAndMonitor KNN 3.9413 0.0121 0.0021 0.9519 28.2208
BE-AAPSA 2.4425 0.3200 0.0400 0.9892 36.4218
Q-DMD 3.8173 2.9096 1.6098 0.9561 29.9827
BI-GAN 7.1523 4.1748 0.2930 0.9744 28.7653
HumanBody2 KNN 20.9423 18.5130 15.2188 0.7783 14.5871
Y BE-AAPSA 6.3274 0.0797 0.0550 0.9528 24.9434
Q-DMD 7.0930 6.7174 4.0156 0.9515 25.9580
BI-GAN - - - - -
. KNN 6.1277 0.0616 0.0003 0.8506 25.1521
Highwayl
BE-AAPSA 4.3721 2.7600 0.6900 0.9442 31.1332
Q-DMD 5.4775 0.1198 0.0039 0.9649 31.3369
BI-GAN - - - - -
Highwayll KNN 3.2112 0.0085 0.0001 0.9851 32.0981
ghway BE-AAPSA 2.5181 0.2800 0.0100 0.9903 36.2738
Q-DMD 2.7014 0.3125 0.0013 0.9917 36.1269

Therefore, in the future, we will work on proposing improved
versions of the Q-DMD method to achieve better performance. For
example, Kutz et al. (2015, 2016) has demonstrated that a multi-
resolution dynamic mode decomposition approach (multi-resolution
DMD) combining DMD with multi-resolution analysis can robustly
separate complex systems into multi-resolution time-scale component
hierarchies, which is a good hint for us to improve Q-DMD in the
future. We will also consider introducing nonlinearity to make the
model applicable to a wider range of data types. Additionally, Alford-
Lago et al. (2022) proposed a deep learning enhanced DMD algorithm,
which inspired us to develop a Q-DMD-based learning algorithm in
the future. Finally, inspired by quaternion-based higher-order singu-
lar value decomposition (QHOSVD) (Miao and Kou, 2021b), we plan
to further construct a quaternion-based higher-order dynamic mode
decomposition theory based on the Q-DMD method by combining
tensors and quaternions to better handle the task of Scene Background
Initialization or other color video processing problems.
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