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Abstract: In the present study, microstructural evolution and hardness of the friction stir processed 

(FSPed) SAF 2507 super duplex stainless steel fabricated at a rotational speed of 650 rpm and a 

traverse speed of 60 mm/min were investigated. A scanning electron microscope (SEM) equipped 

with an electron backscatter diffraction (EBSD) detector was used to study the microstructure of the 

stir zone. The grain sizes of austenite and ferrite in the FSPed 2507 were found to be smaller (0.75 

and 0.96 μm) than those of the substrate (6.6 and 5.6 μm) attributed to the occurrence of continuous 

dynamic recrystallization (CDRX) in both phases. Higher degree of grain refinement and DRX were 

obtained at the advancing side of the FSPed specimens due to higher strain and temperature. A non-

uniform hardness distribution was observed along the longitudinal direction of the SZ. The maxi-

mum hardness was obtained at the bottom (407 HV1). 
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1. Introduction 

Super duplex stainless steels (SDSSs) have higher molybdenum and chromium con-

tents and a mixture of approximately equal fractions of austenite (γ) and ferrite (α), giving 

a combination of higher mechanical strength and corrosion resistance as compared with 

either austenitic or ferritic stainless steels [1]. SDSSs have become the alternatives to super 

austenitic stainless steels and Ni-based alloys because of their lower Ni content and price. 

SDSSs are widely used in many industrial fields including pulp and paper, oil, petro-

chemical, power generation, and pollution control industries [2]. 

Friction stir welding (FSW) is an alternative method in terms of overcoming the 

above problems as the welding temperature is relatively low. This solid-state welding 

method was invented at TWI in 1991 [3]. Recently, a new technology called friction stir 

processing (FSP) was developed by the basic principle of FSW [4] for various purposes, 

such as grain refinement [5], surface modification or hardening [6], and microstructural 

homogeneity [7,8]. In FSP, a consumable rotating tool is plunged into a workpiece and 

moves along the required regions. The severe plastic deformation coupled with high tem-

perature and pressure during FSP would result in contamination and tool wear [9]. Trans-

lation of the rotating tool creates a characteristic asymmetry at the two sides of the pro-

cessed zone, one is the advancing side (AS), where the direction of the tool rotation is the 
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same as that of the tool translation, and the other one is the retreating side (RS), where the 

direction of the tool rotation is opposite to that of the tool translation [4]. 

Up to now, much progress has been made in FSW/FSP of duplex stainless steels by 

some researchers. Defect-free welds/surfaces can be achieved on duplex stainless steels by 

applying FSW/FSP [10–13]. Sato et al. [11] studied the microstructure and mechanical 

properties of FSWed SAF 2507. They reported that FSW could significantly refine the α 

and γphases through dynamic recrystallization, the smaller grain size could lead to 

higher hardness and strength in the stir zone (SZ). Furthermore, multi-passes could make 

a further reduction in grain size of SAF 2507 after FSP [14]. Saeid and his co-workers 

[12,13] reported that continuous dynamic recrystallization (CDRX) in α and CDRX to-

gether with static recrystallization (SRX) in γ were the possible mechanisms of grain re-

finement in SZ of SAF 2205. The corrosion resistance of the FSWed hyper duplex stainless 

steel was improved by the fine grain structures [15]. 

Avila and his co-workers reported that there was a slight difference in microstruc-

tures in AS and RS of the friction stir processed zone as the cooling rate, peak temperature, 

and dwell time in AS were higher than those of RS [16]. As a result, the variation in the 

microstructure could lead to a difference in mechanical properties. In the previous work 

of the present authors, we found that the heat generation was different in AS and RS of 

FSPed 440C martensitic stainless steel resulting in non-uniform hardness distribution [17]. 

Furthermore, the difference in microstructure and properties of AS and RS of the FSPed 

specimens became more significant as the traverse speed increased [18]. Similarly, the ex-

isting temperature gradient along the longitudinal direction of the SZ would cause an 

inhomogeneous microstructure between the top and bottom regions. Mao and his co-

workers reported that the gradient microstructure and mechanical properties were found 

in different positions along the depth of the nugget zone of the FSWed 7075 aluminum 

alloy (20 mm thick) [19]. The maximum hardness (132 HV) of the nugget (3 mm beneath 

the top surface) was found to be slightly lower than that of the base material (165 HV). 

Cao and co-workers conducted FSW on a 4 mm thickness SDSS plate [20]. The tempera-

ture at the top region reached 1074 °C, while the temperature at the bottom region was 

only 627 °C, and the temperature difference became more obvious at a higher rotation 

speed. 

In summary, the microstructure of the entire SZ is heterogeneous and varies with the 

temperature and strain. Although some efforts have been conducted on the microstruc-

tural evolution and mechanical properties of DSS [12] and SDSS [11], the microstructural 

analyses at different locations (AS, RS, and regions along the longitudinal direction of SZ) 

of the FSPed SDSS are inadequate. Thus, in the present study, how the temperature and 

strain affect the microstructure in different regions (AS, center, RS, and along the depth of 

the SZ) of the SZ was systematically investigated. The relationship between the heteroge-

neity of microstructure and the hardness was studied aiming at a full understanding of 

the entire SZ. 

2. Materials and Methods 

2.1. Materials 

The base material used in this study was UNS S32750 (SAF 2507) SDSS plates. The 

nominal compositions in weight percent are listed in Table 1. Multipass hot-rolling of the 

20 mm slabs of SAF 2507 was conducted using a hot-rolling mill. The slabs were soaked 

at 1150 °C for half an hour followed by 4-pass hot-rolling processes. After each rolling 

step, the hot-rolled samples were reheated to 1150 °C in order to perform the next rolling 

step. To retain the high-temperature microstructure, the hot-rolled samples were rapidly 

quenched in water after the 4-pass hot-rolling processes. The final thickness of SAF 2507 

was 5 mm. The total strain (thickness reduction) after the 4-pass rolling processes was 
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75%. The surface of the plates with dimensions of 100 mm × 200 mm × 5 mm was ground 

with 600-grit emery paper and then rinsed with ethanol for removing the oil before FSP. 

Table 1. Nominal compositions of SAF 2507 SDSS (wt%). 

Cr Ni Mo Mn Cu Si N C S P Fe 

25.1 6.6 3.4 0.8 0.21 0.6 0.28 0.02 0.01 0.03 Bal. 
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2.2. Friction Stir Processing (FSP) 

A friction stir welding machine (FSW-TS-M16, China FSW Center) was applied for 

FSP of the SAF 2507 SDSS plate. FSP was conducted at a traverse speed of 60 mm/min and 

a rotation speed of 650 rpm and the specimen was designated as FSP650. The stirring tool 

was made of a tungsten–rhenium alloy (W–25 wt.% Re) with a conical pin and a shoulder. 

The diameters of the shoulder, pin base, pin tip, and pin height were 12 mm, 4.5 mm, 3.5 

mm, and 3 mm, respectively. In order to avoid surface oxidation of the specimens, argon 

was used as the shielding gas at a rate of flow of 15 L·min−1. 

2.3. Metallographic and Microstructural Studies 

The cross-sections of the FSPed specimens were mechanically ground and polished 

with 9, 3, and 1 μm diamond suspensions, and finally polished by 0.02 μm colloidal silica 

polishing suspension. The specimens were then electrochemically etched with the 10 M 

NaOH at 6V for microstructural analysis using an optical microscope (OM, DMI3000M, 

Leica) and a scanning electron microscope (SEM, Zigma, Zeiss) with an EDS detector (X-

Max, Oxford Instrument, Abingdon, UK) and an EBSD detector (NordlysNano, Oxford 

Instrument). The EBSD was operated at 20 kV under a step size of 0.1 μm. The grain sizes 

of the two phases were analyzed using the HKL Technology channel 5 software according 

to the phase map. The grains were detected depending on the grain boundaries. All 

boundary segments with an angle higher than 10 ° were considered grain boundaries. The 

distribution of misorientation angle was analyzed using software (Tango) with the EBSD 

raw data taken from the FSPed specimens. Grain boundaries with misorientation exceed-

ing 15° were defined as high angle boundaries (HABs) and misorientation between 3 and 

15 ° was low angle boundaries (LABs). The sum of the fractions (%) of LABs and HABs 

should be equal to 100%. Twin boundaries (TBs) are characterized by a 60° misorientation 

angle at a rotation axis of <111>. TBs should be included in HABs. 

The recrystallized fraction component in Tango was applied to detect the deformed, 

substructured, and recrystallized grains. The component in EBSD was used to measure 

the internal average misorientation angle within each grain. When the internal average 

misorientation of a grain was larger than the minimum angle (θc = 3°), the grain was clas-

sified as deformed grain (in red). As the average grain misorientation is smaller than θc, 

but the misorientation from subgrain to subgrain was above θc, the grain was defined as 

substructured grain (in yellow). The remaining grains were classified as recrystallized 

grains (in blue). 

The kernel average misorientation (KAM) was measured for describing the distribu-

tion of residual strains following a rainbow color scheme. Blue and red represented the 

minimum and maximum residual strains, respectively. The average misorientation was 

calculated between every pixel and its surrounding pixels, and the mean value was as-

signed to that pixel. In addition, misorientations exceeding 5° were discarded, so the mis-

orientations associated with discrete subgrain and grain boundaries were excluded. 

2.4. Hardness Test 

Vickers hardness test was conducted using an automatic Vickers hardness analyzer 

(Wilson VH3100, Lake Blu, IL, USA) with a diamond indenter subjected to a 1 kg load, 

according to ASTM-E384 (2011). Before the test, the surface of the specimen was ground 

with 1000-grit emery paper and then cleaned with ethanol. The hardness test was carried 

out along the cross-section starting 0.1 mm beneath the surface and repeated at least 3 

times. 

  



Materials 2022, 15, x FOR PEER REVIEW 5 of 18 

 

 

3. Results 

3.1. Metallographical Analysis 

Figure 1 illustrates the macroscopic top view of the FSPed specimen (FSP650) with 

the AS, center, and RS of the SZ. 

 

Figure 1. Top view of FSPed SAF 2507. 

Figure 2 illustrates the cross-sectional view of SZ of FSP650 fabricated at a rotation 

speed of 650 rpm and a traverse speed of 60 mm/min without defects. Due to frictional 

heating and the severe plastic deformation during FSP, the SZ exhibited a basin-like shape 

[3]. The SZ is asymmetric due to different thermo-mechanical conditions at the AS, center, 

and RS. According to the work of Avila et al. [16], the temperature at the AS was found to 

be higher than that at the RS due to the high relative velocities at both sides of the rotating 

pin. In addition, the boundary between the thermo-mechanically affected zone (TMAZ) 

and SZ is clear at the AS, but the one at the RS is indistinct. It was reported that the distinct 

boundaries mainly depended on the viscosity gradient between the processed region and 

unprocessed region [21]. Higher temperature at the AS would result in a steeper viscosity 

gradient. Therefore, the boundary observed at the AS is sharp and distinct while the one 

at the RS is diffused. Sato and his co-workers investigated the microstructure and me-

chanical properties of the FSPed SAF 2507 SDSS [11]. They found that the AS experienced 

the most severe deformation because the translation of the stirring tool and tangential 

component of rotation were in the same direction resulting in larger frictional force. In 

addition, no obvious heat-affected zone (HAZ) was found in the FSPed specimens indi-

cating that the growth of parent grains could be inhibited [22] because of low processing 

temperature and high cooling rate during FSP [23,24]. The microstructural evolution of 

three distinct regions (AS, center, and RS) will be analyzed in the next section. 

 

Figure 2. Cross-sectional view of the FSPed SAF 2507 taken with an optical microscope. 

3.2. Microstructural Analysis 

3.2.1. Different Regions along the Traverse Direction (AS, Center and RS) 

The volume fractions of austenite and ferrite in different regions including the sub-

strate (SUB), AS, center, and RS are summarized in Table 2. The locations of 0.1 mm be-

neath the processed surface of AS, center, and RS were selected. The volume fractions of 

austenite and ferrite of the SUB are 55% and 45%, respectively. The ferrite content of the 

center of the SZ is 50.7%, and is slightly higher than that of the SUB. This is attributed to 
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the ferrite being more stable than the austenite when exposed to high temperature during 

FSP [11]. 

Table 2. Volume fraction of austenite and ferrite in different regions. 

Region Austenite (%) Ferrite (%) 
Average Grain Size of Ferrite 

(μm) 

Average Grain Size of Austenite 

(μm) 

SUB 55.0 ± 3 45.0 ± 3 5.6 ± 1 6.6 ± 1 

RS 54.1 ± 2 45.9 ± 2 1.5 ± 0.2 1.0 ± 0.2 

Center 49.3 ± 2 50.7 ± 2 1.0 ± 0.2 0.8 ± 0.2 

AS 56.9 ± 2 43.1 ± 2 0.8 ± 0.2 0.7 ± 0.2 

The phase maps of the SUB and center are shown in Figure 3. The grain sizes were 

measured using the software Tango from the phase maps. The grain size distributions for 

center, RS, and AS are depicted in Figure 4. The SUB contains elongated ferrite and aus-

tenite grains with an average grain size of 5.6 and 6.6 μm, respectively. The microstructure 

of the center consists of a ferritic matrix with the austenite islands (Figure 3b). The average 

grain sizes of the ferrite and austenite in the center are 1.0 and 0.8 μm, respectively. The 

grain size is found to be reduced significantly after FSP because of dynamic recrystalliza-

tion (DRX) [15]. In addition, no intermetallic phases were observed. 

 

Figure 3. Phase maps of (a) SUB, (b) center, (c) RS, and (d) AS (austenite and ferrite are in red and 

blue respectively). Note that the scale bars in (a–d) are different. 
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Figure 4. Phase maps of (a,d) center, (b,e) RS, and (c,f) AS (The grain sizes of austenite and ferrite 

bars are in red and blue, respectively). 

The misorientation angle histogram for the γ/γ boundaries of the SUB (SAF 2507) is 

shown in Figure 5. The distribution of misorientation in different regions of the FSPed 

specimen is similar to the SUB. In the SUB, there is a high fraction of HABs, while the 

fraction of LABs is relatively low (10.0%), as illustrated in Figure 5a. In addition, about 

87.5% of HABs were a Σ3 twin relationship (60° rotation about <111> axis). The high frac-

tion of twin boundaries originated from the growth of recrystallized grains in the austen-

ite, which was reported by Mirzadeh et al. [25]. 

 

Figure 5. Misorientation angle histogram for γ/γ boundaries: (a) SUB, (b) RS, (c) center, and (d) AS 

(fLAB: fraction of low-angle boundaries, θm: mean misorientation angle). 
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From Figure 5, the SUB contained the lowest amount of γ/γ LABs as compared to 

the FSPed specimens. On the contrary, the portion of twin boundaries (with misorienta-

tion angle = 60°) decreased from 70% to below 30% after FSP. The conversion of twin 

boundaries to the HABs was attributed to the intense deformation associated with FSP 

leading to complex interactions of twin boundaries with slip dislocations [13]. 

Figure 6 depicts the misorientation distribution histogram for α/α boundaries of the 

SUB and different regions of the FSPed specimen. The distribution of misorientation of 

the different regions of the FSPed specimen is very different from that of the SUB. The 

ferrite in the SUB contains a considerable amount of LABs (51.5%) as shown in Figure 5a. 

The large number of LABs is probably derived from the initial rolled structure of the SUB 

[26]. There is a lower fLAB of AS (31.2%) as compared to those of center (48.5%) and RS 

(45.0%) as shown in Figure 5b–d. This phenomenon is related to different degrees of DRX 

of the three distinct regions, and hence different levels of evolution from LABs to HABs. 

 

Figure 6. Misorientation angle histogram for α/α boundaries: (a) SUB, (b) RS, (c) center, and (d) 

AS. 

The formation mechanisms of grain structure during FSW of DSSs have been re-

ported in the literature [11–13,15,27], and several restoration processes of DRX, dynamic 

recovery (DRV), and SRX could occur during FSW of the DSSs. It is well known that there 

are two types of DRX including discontinuous DRX (DDRX), which commonly occurs in 

stainless steels with low or medium stacking fault energy (SFE) by grain boundary migra-

tion; and continuous DRX (CDRX) which always takes place in the high SFE alloys by 

continuous fragmentation of substructure to form crystallites bounded with HABs [28]. 

Consequently, CDRX probably occurs in ferrite with higher SFE, whereas DDRX predom-

inant occurs in austenite with a lower SFE. However, it has been reported that the DRX 

behavior of austenite was changed (DDRX → CDRX+SRX) in the DSS due to the co-ex-

istence of austenite and ferrite [12]. 

The grain boundary character distribution (GBCD) of different regions of the FSPed 

specimens is summarized in Figure 7. The fLAB in the austenite increased after FSP (Figure 

7a). In the first stage, the formation of LABs in the austenite is attributed to the DRV dur-

ing deformation by rearrangement of accumulating lattice dislocations [12]. Then the 
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LABs transformed into HABs through absorption of mobile dislocations in the pre-exist-

ing boundaries because of the occurrence of CDRX. It was evidenced by the lower fLAB in 

AS and higher values in center and RS. Furthermore, the number of LABs in the ferrite 

decreased in the FSPed specimen as compared to that of SUB, which also revealed the 

mechanism of CDRX. 

 

Figure 7. Grain boundary character distribution of SUB, RS, center, and AS: (a) γ/γ boundaries and 

(b) α/α boundaries (TBs: twin boundaries). 

An increasing trend of a fraction of HABs and TBs from RS towards AS in both the 

two phases is observed in Figure 7. The variation of the misorientation distribution is 

mainly dependent on the temperature and degree of deformation [13]. It was reported 

that the temperature was the highest at the AS among all the processed regions due to the 

largest frictional force at the AS [16,29]. During CDRX, higher temperatures would pro-

mote the formation of HABs through thermally activated phenomena including cross-slip, 

dislocation movement, and climb [13]. On the other hand, the highest extent of defor-

mation was generated at the AS and gave rise to more stored energy. Consequently, more 

LABs transformed to HABs through CDRX by absorbing dislocations [26]. 

Compared with the SUB, the grain sizes of RS, center, and AS were finer. It is because 

the FSPed specimens experienced severe deformation and frictional heat which induces 

the occurrence of DRX [3]. The grain size of austenite is smaller than that of ferrite in dif-

ferent regions of the FSPed specimen. It is well known that DRX easily occurs in the low-

SFE phase, i.e., austenite [30]. On the other hand, DRX is hard to take place in the ferrite 

with high SFE. Conversely, the ferrite is more likely to undergo DRX than the austenite in 

duplex stainless steels. This is due to a priority accommodation of strain in ferrite and a 

higher diffusion rate of atoms in the ferrite as compared with the austenite at high tem-

peratures [31]. Therefore, the recrystallized ferrite grains grow earlier than that of austen-

ite grains after DRX. 

In the SZ, the grain sizes of the austenite and ferrite decreased from the RS to the AS. 

Humphreys and Hatherly [28] reported that the growth of the recrystallized grains is lim-

ited by work hardening in the grain interior. Guerra et al. [32] proposed that the AS un-

derwent the most severe deformation which would induce finer grain size. This is con-

sistent with the present finding, i.e., the grain sizes of the austenite and ferrite at the AS 

were the finest as compared with those at the center and RS. 

Figure 8 shows the typical recrystallized fraction (RF) maps at the center of the FSPed 

specimen. The number of recrystallized grains at the center was the largest among the 

different regions suggesting the occurrence of DRX in both phases during FSP. The ap-

pearances of the maps of AS, RS, and center were almost the same except for the fraction 

of recrystallized fraction. The deformed structure was surrounded by recrystallized grains 

in both austenite and ferrite in the SZ of the FSPed specimen (Figure 8). This implies that 
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the recrystallized grains that grew by consuming the deformed structure are mainly at-

tributed to the high diving force of nucleation and high dislocation density in the de-

formed regions [33]. 

 

Figure 8. Recrystallized fraction (RF) maps of the center: (a) austenite and (b) ferrite (fully recrys-

tallized grains are shown in blue, the deformed grains and the sub-structured grains are in red and 

yellow, respectively). 

The fraction of the recrystallized, substructured, and deformed grains at different 

locations of the FSPed specimen is summarized in Figure 9. The number of recrystallized 

grains was the largest in different regions of the FSPed specimen compared to the de-

formed grains and the sub-structured grains suggesting dynamic recrystallization oc-

curred in both phases during FSP. 

 

Figure 9. The fraction of the recrystallized, substructured, deformed grains at different locations of 

FSPed specimen: (a) austenite and (b) ferrite. 

The recrystallization process varied in different regions of the FSPed specimen be-

cause of the different temperatures and degrees of deformation in these areas. From Fig-

ure 9, the fraction of recrystallized and deformed grains presents a rising trend from the 

RS to AS. The increasing trend is in good agreement with the trend with LABs from RS to 

AS [25]. As mentioned above, the stored energy in AS was higher than that in RS, so it 

provided a larger driving force resulting in a higher degree of recrystallization [34]. In 

addition, the fraction of deformed grains shows an increasing trend from the RS to AS 

which is attributed to the higher degree of deformation generated at the AS. 

It is observed that the fraction of recrystallized grains in the ferrite is higher than that 

of the austenite. The higher fraction of recrystallized grains in the ferrite was attributed to 

the strain accommodated in the ferrite. It was then transformed to the austenite resulting 

in a prior occurrence of DRX in the ferrite as compared with the austenite. Furthermore, 

the recrystallization process was nearly complete in the ferrite at the AS as the recrystalli-

zation fraction was about 90%. 
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3.2.2. Different Regions along the Centerline 

Phase maps of the FSPed specimen from different regions (a, b, and c) along the ver-

tical centerline are illustrated in Figure 10. Regions a, b, and c are 0.1, 1.5, and 2.9 mm 

beneath the surface, respectively. All the regions consist of the islands of austenite in the 

ferritic matrix and the microstructure is similar to that of the substrate. Region c has more 

refined austenite islands than regions a and b. The grain sizes of both austenite and ferrite 

decrease from the top to the bottom of the SZ along the centerline. 

The volume fractions of austenite and ferrite are summarized in Table 3. The volume 

fraction of austenite increases with the depth along the centerline (Figure 10a–c). The var-

iation in the relative content of the two phases was dominantly affected by the tempera-

ture achieved during FSP. 

 

Figure 10. Phase maps of different regions (a–c) along the centerline of the FSPed SAF 2507 (ferrite 

and austenite are in blue and red, respectively). 

Table 3. Volume fraction of austenite and ferrite in different regions. 

Region Austenite (%) Ferrite (%) 
Average Grain Size of 

Austenite (μm) 

Average Grain Size of Ferrite 

(μm) 

SUB 55.0 ± 3 45.0 ± 3 6.6 ± 1.0 5.6 ± 1.0 

a 49.3 ± 2 50.7 ± 2 0.8 ± 0.2 1.0 ± 0.2 

b 53.5 ± 2 46.5 ± 2 0.9 ± 0.2 1.1 ± 0.2 

c 62.0 ± 2 38.0 ± 2 0.6 ± 0.2 0.7 ± 0.2 

According to pseudo-binary Fe-Cr-Ni phase diagram for 70 wt% Fe [35], the temper-

ature is estimated to be 1130 ℃ according to the phase fraction in region a (austenite: 

49.3%, ferrite: 50.7%), which is close to the transformation temperature of γ to α (1125 ℃). 
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The temperature in region c is around 950 ℃, which was the lowest among the three re-

gions. In summary, the volume fraction of austenite increased with the decrease in tem-

perature during FSP along the centerline. 

The grain boundary map of region c of SZ is shown in Figure 11. There are some 

incomplete grain boundaries in both constituent phases, as indicated in the enlarged re-

gions. This provides evidence of the occurrence of CDRX in the austenite and ferrite, and 

those LABs eventually transform into HABs [13,26]. 

 

Figure 11. Grain boundary map of region c (LABs and HABs are in yellow and black, respectively). 

The variation in grain size of austenite and ferrite along the centerline is illustrated in 

Figure 12. Lakshminarayanan and Balasubramanian [36] found that greater strain and 

more severe plastic deformation were produced near the tool shoulder as compared to the 

region away from the shoulder, leading to a finer grain structure near the surface. Thus, 

the grain sizes of both phases show an increasing trend from the top surface (0.1 mm) to 

0.8 mm. Although the strain kept on decreasing along the depth of the centerline, temper-

ature shows a predominant influence on the microstructure [13]. The descending temper-

ature resulted in finer grain at the bottom of the SZ (i.e., region c), which is due to the 

lower temperature and higher cooling rate at the bottom [28]. 

 

Figure 12. Grain size profiles of austenite and ferrite phases along the centerline. Regions a, b, and 

c are 0.1, 1.5, and 2.9 mm beneath the surface, respectively. 
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From Figure 13, the fraction of HABs in the two constitute phases increases from the 

top to the bottom along the centerline of the SZ. As discussed before, CDRX was the dom-

inant restoration mechanism in ferrite and austenite near the surface. However, the frac-

tion of LABs revealed an inverse trend from the bottom towards the surface although heat 

generation was maximum at the plate surface [32]. It was reported that higher strain in-

duces a larger amount of dislocations and substructures, while higher temperature accel-

erates the rearrangement of LABs because of the occurrence of CDRX [13]. Obviously, the 

strain is dominant as evidence of a decreasing trend of LABs from region a to region c. 

 

Figure 13. The fraction of LABs, HABs, and TBs in different regions along the centerline for FSPed 

SAF 2507: (a) γ/γ boundaries and (b) α/α boundaries. 

Figure 14 depicts the RF maps of the FSPed specimen along the depth of the centerline. 

The fractions of recrystallized grains at regions b and c are almost the same, i.e., more than 

80%, indicating the occurrence of complete DRX. Lower recrystallized fractions of austen-

ite and ferrite are obtained at region a. It is attributed to the growth of the recrystallized 

grains after complete DRX [37], when the temperature near the surface was higher than 

that of the region far from the surface. Moreover, higher strain in region a would deceler-

ate DRX in both ferrite and austenite [38]. Furthermore, the recrystallized fraction of fer-

rite was higher than that of austenite at the same location. This finding is consistent with 

the recrystallized fraction of the surface (Figure 9). It is mainly attributed to the strain 

accommodated by the ferrite resulting in a prior occurrence of DRX in the ferrite as com-

pared with the austenite [38]. 

 

Figure 14. The fraction of the recrystallized, substructured, deformed grains at different regions 

along the centerline of FSPed specimen: (a) austenite and (b) ferrite. 

The RF and KAM maps at regions a, b, and c are almost the same. Therefore, only the 

RF and KAM maps of region c are shown in Figure 15, which implies a big difference in 

microstructure developed in the austenite and ferrite. The KAM values adjacent to the 
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grain boundary were higher than that of intragranular of the ferrite, indicating a strain 

concentration adjacent to the grain boundary [Figure 15b(ii)]. Kamaya and co-workers [39] 

reported that KAM maps could reflect the distribution of dislocation density. Conse-

quently, the dislocations in ferrite are mainly concentrated in deformed grains and sub-

boundaries, while the dislocation density is low in the subgrains and recrystallized grains. 

The dislocations at the grain boundaries and deformed grains provided a high diving 

force for nucleation of the subgrains and the DRX at the grain boundaries [37]. Further-

more, the dislocation density decreased as the recrystallized grains grew by absorbing the 

dislocations in the deformed grains and subgrain boundaries [33,40]. 

 

Figure 15. EBSD micrographs of (a) austenite and (b) ferrite showing: (i) RF and (ii) KAM maps. 

For the austenite, the dislocation density is high in deformed and substructured 

grains. The high strain in the austenite implies that the deformation transferred from fer-

rite to austenite under such strain [38]. It was reported that in the initial stage of hot de-

formation, strain was mainly concentrated in the ferrite. Then, the deformation trans-

ferred to austenite gave rise to form dislocations until DRX occurred under higher strain 

[38]. In the present study, the strain at the bottom of the SZ was high enough to transfer 

the load from the ferrite to the austenite and promoted the occurrence of DRX in the aus-

tenite. The strain partitioning makes the microstructure evolution of FSPed SAF 2507 more 

complicated. 

3.3. Hardness 

The hardness profiles of the FSPed specimen in the transverse direction (0.1 mm below 

the top surface) and longitudinal direction (along the centerline) are shown in Figure 15. 

It is obvious that the measured hardness in all regions was higher than that of the substrate 

(272 HV1), as indicated by the red dash line (Figure 16). The increase in hardness of the SZ 

of the FSPed specimen is attributed to the generation of dislocations and the reduction in 

grain size [41]. According to Moshtaghi and Safyari [42], the yield stress of the specimen 

can be calculated by using Vickers hardness. The yield stress is proportional to the Vickers 
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hardness. The higher the hardness value, the higher the yielding stress can be achieved. 

Consequently, the yield strength in all regions of the SZ was higher than that of the sub-

strate. Cui and his co-workers [33] investigated the relationship between microstructure 

and hardness of FSPed AISI 201 austenitic stainless steel (ASS). It showed that the FSPed 

AISI 201 possessed higher hardness (260 HV) than the base material (210 HV) due to grain 

refinement (reduce from 30–80 mm to 4 mm) and high dislocation density in the stir zones 

induced by severe plastic deformation during the FSP. While the hardness in the AS and 

RS is similar. Moreover, Hajian and his co-worker reported that the ultrafine-grain struc-

tures (with an average grain size of 2.2 μm) were detected in the FSPed AISI 316L ASS. 

The hardness of the FSPed 316L (300 HV) is 1.73 times higher than that of the base material 

(173 HV) [43]. A sharp increase in the hardness near the upper surface of the FSPed 316L 

was observed (900 HV) due to the higher degree of grain refinement in this region. More-

over, the hardness of the FSPed AISI 420 martensitic stainless steel (698 HV1) with a grain 

size of 0.75 mm was reported to be dramatically enhanced as compared to the annealed 

420 (184 HV1) with a grain size of 4 mm [18]. The difference in hardness at the AS and RS 

was large for the FSPed 420 fabricated at high transverse speed. The distribution of hard-

ness of the FSPed SAF 2507 was not uniform in the traverse direction (Figure 16a). The 

asymmetric distribution of hardness value is due to the difference in grain sizes at AS and 

RS. The hardness at the AS was slightly higher than that of the RS, as the grains of both 

phases are finer in the AS [27]. 

From Figure 16b, the hardness decreases gradually near the top surface, and then it 

starts to increase until it reaches a peak value; finally, it decreases to the hardness of the 

SUB. According to the previous works [15,22,33], hardness has a close relationship with 

the grain size in the processed regions. According to the Hall–Petch relationship, finer 

grain size would result in higher hardness. Consequently, the bottom of the SZ possessed 

the highest hardness, indicating the finest grain size in this region. The value of hardness 

has a good agreement with the grain size (Figure 11) in these regions. It is worthy to notice 

that a high hardness (395 HV1) was also observed near the top surface, although the grain 

size was slightly larger than that of the bottom with a hardness of 407 HV1. As mentioned 

above, the strain and plastic deformation were maximum on the workpiece material clos-

est to the tool shoulder and decreases along the depth of the SZ, resulting in higher hard-

ness at the top surface. 

 

Figure 16. Hardness profiles of FSPed specimen in (a) transverse direction; and (b) longitudinal 

transverse direction (along the centerline). 
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4. Conclusions 

Microstructural evolution and hardness of FSPed SAF 2507 super duplex stainless 

steel were investigated in the present study. The main conclusions are summarized as 

follows: 

 Finer grain size was found in the processed zone of the FSPed SAF 2507 because of 

the occurrence of CDRX in both austenite and ferrite. The grain size of austenite was 

smaller than that of ferrite as CDRX initiated in the ferrite. 

 Higher degree of grain refinement and DRX were observed at the AS of the FSPed 

specimens due to higher strain and temperature there. The grain size increased from 

the bottom to the top, as the growth of recrystallized grains occurred at a longer cool-

ing time and a higher temperature at the top surface. 

 The volume fraction of austenite increased with the decrease in temperature during 

FSP along the centerline from top to bottom because more ferrite is transformed to 

austenite at a lower temperature. 

 The hardness value of SZ in different regions (360–397 HV1) was higher than that of 

the substrate (272 HV1) because of the generation of dislocations and the reduction in 

grain sizes during FSP. The generation of heat was different at the AS, center, RS, and 

along the longitudinal direction of the SZ, thus resulting in non-uniform hardness 

distribution. The maximum hardness was obtained at the bottom (407 HV1). 
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