A Cylindrical Convolution Network for **Dense Top-View Semantic Segmentation** with LiDAR Point Clouds Anonymous ACCV 2022 Submission Paper ID 1011 Abstract. Accurate semantic scene understanding of the surrounding environment is a challenge for autonomous driving systems. Recent LiDAR-based semantic segmentation methods mainly focus on predicting point-wise semantic classes, which cannot be directly used before the further densification process. In this paper, we propose a cylindrical convolution network for dense semantic understanding in the top-view LiDAR data representation. 3D LiDAR point clouds are divided into cylindrical parti-tions before feeding to the network, where semantic segmentation is con-ducted in the cylindrical representation. Then a cylinder-to-BEV trans-formation module is introduced to obtain sparse semantic feature maps in the top view. In the end, we propose a modified encoder-decoder net-work to get the dense semantic estimations. Experimental results on the SemanticKITTI and nuScenes-LidarSeg datasets show that our method outperforms the state-of-the-art methods with a large margin. Introduction Semantic perception of the surrounding environments is important for au-tonomous driving systems. In order to achieve reliable semantic estimations in top-view representation, autonomous vehicles are usually equipped with cam-era and LiDAR sensors. Benefiting from the rapid development of convolutional neural networks (CNNs), a large number of camera-based semantic segmentation networks, like Fully Convolutional Network (FCN) [1], ERFNet [2], U-Net [3], etc., have been proposed and proved to be effective. However, most of these methods are only applicable to the segmentation in perspective view, and accu-rate transformation from perspective to top-view is still a challenge. The camera  $^{035}$ sensor lacks effective geometric perception of the environment. In recent years, with the release of large-scale 3D LiDAR semantic segmentation datasets (Se-manticKITTI [4] and nuScenes-LidarSeg [5]), the LiDAR-based semantic seg-<sup>038</sup> mentation performance has been significantly increased. Because these datasets <sup>039</sup> only provide point level semantic labels, most works only perform sparse seman-<sup>040</sup> tic segmentation and predict point-wise semantic classes. The obtained sparse <sup>041</sup> results still need further processing before used. Therefore, some works conduct <sup>042</sup> dense top-view semantic segmentation with sparse inputs. Compared with sparse <sup>043</sup> predictions, the dense top-view segmentation results are more valuable for some <sup>044</sup>  $\mathbf{2}$ 

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ACCV-22 submission ID 1011

upper-level tasks such as the navigation and path planning of autonomous driv- 045
 ing vehicles.

047 In this paper, we focus on the dense semantic segmentation of LiDAR point <sup>047</sup> 048 clouds in top-view representation. Compared with 2D camera images, the 3D <sup>048</sup> 049 LiDAR data can retain precise and complete spatial geometric information of the <sup>049</sup> 050 surroundings. Therefore, we can generate accurate top-view maps in a simpler <sup>050</sup> 051 way. However, the main problem is that the LiDAR data is sparsely distributed, 051 052 and the generated top-view maps are sparse. In order to deal with the sparsity 052 of 3D LiDAR data, some LiDAR-based segmentation approaches [6] project the 053 053 3D point clouds onto 2D bird's-eye-view (BEV<sup>1</sup>) images, and conduct dense 054 054 semantic segmentation with 2D convolution networks. However, the projection 055 055 process inevitably leads to a certain degree of information loss. Some methods 056 056 057 [7–9] use pillar-level representation and point-wise convolution to retain and 057 obtain more information in the height direction. These approaches still focus 058 058 more on 2D convolution, neglecting the rich geometric relationshipss between 059 059 precise 3D point cloud data. 060 060

To solve the problems mentioned above, we make use of the cylinder repre-<sup>061</sup> 061 062 sentation and 3D sparse convolution networks in our work. Compared with 2D <sup>062</sup> 063 images or pillar representation, the cylinder representation can maintain the 3D <sup>063</sup> 064 geometric information. The cylindrical partition divides the LiDAR point cloud <sup>064</sup> 065 dynamically according to the distances in cylindrical coordinates, and provides 065 066 a more balanced distribution than 3D voxelization. The 3D sparse convolution 066 067 networks can effectively integrate the geometric relationships of LiDAR point <sup>067</sup> clouds, extract informative 3D features and save significant memory at the same 068 068 069 time. 069

070 After the 3D sparse convolution networks, we introduce a cylinder-to-BEV <sup>070</sup> 071 module to convert the obtained semantic features in cylindrical representation to <sup>071</sup> 072 BEV maps. The cylinder-to-BEV module uses the coordinate information of 3D <sup>072</sup> 073 points to establish corresponding relationships, and transfers features between <sup>073</sup> 074 the two representations. The transformed feature maps in top-view are sparse, <sup>074</sup> 075 so we further propose a modified U-Net network to get the final dense segmen- $^{075}$ 076 tation results. We use groups of dilated convolutions with different receptive 076 077 field sizes in different stages of downsampling and upsampling to capture more 077 078 descriptive spatial features, and use grouped convolutions to reduce the FLOPs 078 079 079 while maintaining an acceptable level of accuracy.

The main contributions of this work lie in three aspects:

080

We propose an end-to-end cylindrical convolution network that can generate accurate semantic segmentation results in top-view. The combination of cylinder representation and 3D sparse convolution greatly improves the segmentation performance.
 We propose a cylinder-to-BEV module and a modified U-Net to efficiently 085 086

use 3D features to enhance the dense semantic segmentation in top-view.

086 087 088

089

080

081

082

083

084

085

 $^{1}$  BEV is another expression for top view.

088 089

ACCV-22 submission ID 1011

• The proposed method outperforms the state-of-the-art methods on the Se- 090 manticKITTI and nuScenes-LidarSeg datasets, which demonstrates the ef- 091 fectiveness of the model.  $\mathbf{2}$ **Related Work**  $\mathbf{2.1}$ Image Semantic Segmentation in Bird's Eye View Understanding the surrounding environment is an essential part of an autonomous driving system. To accomplish this, many previous works created a semantic map in Bird's Eye View(BEV) that can distinguish drivable regions, sidewalks, cars, bicycles and so on [10–14]. Image semantic segmentation in BEV usually consists of following components: an encoder for encoding features in the image view, a view transformer for converting the features from the image view to BEV, an encoder for further encoding the features in BEV and a semantic head for label classification [10–12]. Thomas Roddick et al. [13] chose feature pyramid networks like in [15] when extracting the image-view features. Weixiang Yang et al. [16] implemented cross-view transformation module that consists of the cycled view

projection and the cycled view transformer in order to enrich the features getting <sup>108</sup> 

#### 2.2**3D** Data Representation

from front-view image.

Since the recent launch of large-scale datasets, such as SemanticKITTI [4] and nuScenes [5], there have been an increasing number of studies on semantic segmentation of LiDAR point clouds. However, due to the sparse, irregular, and disorderly LiDAR point cloud data, it is still challenging to be processed and applied to semantic segmentation. The methods are mostly divided into three

ods. Point-based methods directly process raw LiDAR point clouds. PointNet [17] is a pioneer and a representative of point-based approaches, which learns features for each point using shared MLPs. PointNet++ [18], an upgrade to PointNet, generates point cloud subsets by clustering and employs PointNet to extract point features from each subset. RandLA-Net [19] uses a random sampling to boost processing speed and local spatial encoding and attention-based pooling. KPConv [20] develops spatial kernels to adapt convolution operations to point <sup>126</sup> clouds. However, due to computational complexity and memory requirements, the performance on large-scale LiDAR point cloud datasets is limited.

branches: point-based methods, grid-based methods, and projection-based meth-

Grid-based methods convert point clouds into uniform voxels, after which, <sup>129</sup> 3D convolution can be employed on voxel data. In VoxelNet [21], point clouds are <sup>130</sup> quantized into uniform 3D volumetric grids, which maintains the 3D geometric <sup>131</sup> information. Fully convolutional point networks [22] achieve uniform sampling <sup>132</sup> in 3D space by collecting a fixed number of points around each sampled site and <sup>133</sup> then apply a U-Net to extract information from multiple scales. Cyliner3D [23] <sup>134</sup>

145

146

147

165

166

167

168

176

177

### CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ACCV-22 submission ID 1011

recommends dividing the original point cloud into cylindrical grids to distribute 135 the point clouds more evenly throughout the grids.

Furthermore, projection-based methods project 3D point clouds onto dif-137 137 ferent 2D images. SqueezeSeg series [24, 25], RangeNet series [26] and Salsanet 138 138 series [6,27] deploy the spherical projection on the LiDAR data. In VoloMap [28] 139 139 and PolarNet [29], bird-eve view (BEV) and polar BEV projections on LiDAR 140 140 points are proposed respectively. What's more, PointPillar series [7, 30, 31] split 141 141 the point clouds into a group of pillars and project them onto a pseudo image. 142 142 Projection-based methods can attain real-time performance, but their accuracy 143 143 is often limited due to the information loss of projection. 144 144

145 146

147

## 2.3 Semantic Segmentation of LiDAR Input

148 Many approaches take point clouds as input and return point-wise semantic <sup>148</sup> 149 labels as output, such as PointNet [17], PointNet++ [18] and KPConv [20]. 149 150 Other methods convert the input of point clouds into different forms and finally <sup>150</sup> 151 produce semantic voxel grids or semantic projected images. Voxelnet [21] and <sup>151</sup> 152 SegCloud [32] employ 3D fully convolutional networks on voxels to assign a <sup>152</sup> 153 class label to each grid, which is shared by all points in the grid. RangeNet++ <sup>153</sup> 154 [26], a typical method based on Range-View, converts point cloud to a range <sup>154</sup> 155 image and performs semantic segmentation of the image using an hourglass fully 155 156 156 convolution network.

157 What's more, some approaches achieve top-view semantic segmentation after <sup>157</sup> 158 projecting the point cloud into a BEV image [8,33–35]. Bieder et. al [33] turn 3D <sup>158</sup> 159 LiDAR data into a multi-layer top-view map for accurate semantic segmentation. <sup>159</sup> Following this route, PillarSegNet [8] is proposed to learn features from the pillar 160 160 encoding and conduct 2D dense semantic segmentation in the top view. These 161 161 162 methods take LiDAR point cloud as input and generates dense top-view semantic 162 163 grid maps, which provide a fine-grained semantic understanding that is necessary 163 for distinguishing drivable and non-drivable areas. 164 164

165 166

## 3 Proposed Method

167 168 169

170

171

172

173

In this section, we introduce the architecture of the proposed dense top-view 169 semantic segmentation method, as illustrated in Fig. 1. The whole network con- 170 sists of three parts, a 3D cylindrical encoding, a cylinder-to-BEV module, and 171 a 2D encoder-decoder network. The network takes sparse a LiDAR point cloud 172 as input and generates dense semantic maps in top-view. The design of each 173 module will be detailed in the following. 174

174 175 176

177

## 3.1 3D Cylindrical Encoding

Effectively extracting the features of 3D point cloud data is an important part of <sup>178</sup>
 the LiDAR-based semantic segmentation. Previous methods usually convert the <sup>179</sup>

### CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ACCV-22 submission ID 1011



a 3D LiDAR point cloud, the network first divides it into cylindrical partitions and applies a 3D sparse convolution module to obtain high-level features. Then, the cylinder-  $_{188}$ to-BEV module converts the semantic features in cylindrical representation to BEV maps. Finally, a modified U-Net is used to predict the dense top-view semantic seg-mentation results.

(1)

3D LiDAR point cloud into voxels [21] or pillar features [8]. The voxel represen-193 tation quantizes the point cloud into uniform cubic voxels. However, the LiDAR 194 data is irregular and unstructured. This leads to a large number of empty voxels 195 and affects the computational efficiency. The pillar-based method uses MLPs to 196 extract features, which cannot make full use of the 3D topology and rich spatial 197 geometric relationships. 

Based on these considerations, we apply cylindrical coordinates to represent 199 LiDAR data in this paper. The density of the 3D LiDAR point cloud usually 200 varies, and the density in nearby areas is significantly higher than that in remote 201 areas. Uniformly dividing the LiDAR data with different densities will lead to 202 an unbalanced distribution of points. The cylindrical partitions can cover areas 203 with different size of grids, which grow by distance, evenly distribute points 204 on different cylindrical grids, and provide a more balanced representation. The 205 cylindrical coordinate system is defined as follows, 

$$\sqrt{x^2 + y^2}$$

$$\left\{ \theta = arctan \right\}$$

$$\begin{cases} \rho = \sqrt{x^2 + y^2} & 207 \\ \theta = \arctan(y, x) & (1) \\ z = z & 210 \end{cases}$$

where (x, y, z) represents the Cartesian coordinate, and  $(\rho, \theta, z)$  represents its corresponding cylindrical coordinate. The radius  $\rho$  and tangent angle  $\theta$  denote the distance from the origin in the x-y plane and the tangent angle between the y and x directions, respectively. 

Compared with the voxel representation, although the number of empty el-ements is reduced, the cylindrical representation of LiDAR data is still sparse. Therefore, we apply a 3D sparse convolution network to extract features, which can efficiently process sparse data and increase the computing speed. More de-tails of the network can be referred in [23]. 

#### Cylinder-to-BEV Module 3.2

After the 3D feature encoding module, we can obtain high-level features with <sup>223</sup> rich semantic information in the form of cylindrical representation. Since the <sup>224</sup>

244

245

246 247

248

249

250

251 252

253

254

255

256

257

258

259

260

261

262 263 264 CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ACCV-22 submission ID 1011

goal is to predict dense semantic categories in top-view, we need to convert 225 225 the cylindrical features into BEV maps before the 2D semantic segmentation 226 226 module. 227 227

Figure 2 shows two types of transformations, without and with point guid- 228 228 229 ance. Without point guidance means that we use the correspondence between 229 the cylindrical coordinate system and the BEV coordinate system to directly 230 230 convert the features. However, the cylindrical grid is different from the BEV 231 231 grid, which can lead to deviation problems at the boundaries. As shown in the  $_{232}$ 232 left of Fig.2, the cylindrical grid and the BEV grid have different shapes, in 233 233 which the yellow denotes the cylindrical grid with features, and the purple rep-234 234 resents the empty cylindrical grid without features. One BEV grid overlaps with 235 235 two cylindrical grids. Transforming directly from cylinder to BEV may establish 236 236 correspondence between the purple cylindrical grid and the BEV grid instead 237 237 of the yellow one, resulting in loss of information. The right of Fig.2 shows the 238 238 transformation with point guidance. The cylindrical features are first converted 239 239 to point features according to Eq. 1. Then, the point features are converted 240 240 to BEV features according to Eq. 2. Using point features as intermediate can  $_{241}$ 241 preserve more useful features and cover the BEV grids more completely. 242 242



253 ance. Left shows the transformation without point guidance, in which the vellow de-254 notes cylindrical grid with features, and the purple represents empty cylindrical grid 255 without features. Right shows the transformation with point guidance, the point serves 256 as intermediate to connect the cylinder and BEV grids.

257 258

The transformation from point to BEV grid is described bellow. Given a point <sup>259</sup> (x, y, z) and the feature f, its corresponding coordinates in BEV are calculated <sup>260</sup> 261 as.

$$\int u = x/precision + W/2$$

$$\begin{cases} v = y/precision + H/2 \end{cases}$$
(2) 263

265 where (u, v) represents the corresponding point in BEV, precision denotes the <sup>265</sup> 266 resolution of BEV. W and H represent the width and height of the BEV map,  $^{266}$ 267 267 respectively.

268 When converting point features to BEV features, a lot of geometric informa-<sup>268</sup> 269 tion may be lost due to the many-to-one problem. Different from some methods <sup>269</sup>

 $\mathbf{6}$ 

### ACCV-22 submission ID 1011

that use maximum compression and retain only one point feature, we sort the 270 points corresponding to the same BEV grid by height, and retain the features 271 of the highest and lowest points. Therefore, the features of each BEV grid are 272 as follows, 

$$F_{bev} = (r_l, x_l, y_l, z_l, f_l, r_h, x_h, y_h, z_h, f_h)$$
(3) 274

where r denotes the distance and the subscripts l and h represent the lowest and highest points, respectively. The features  $(z_h, f_h, z_l, f_l)$  of the highest and lowest points can provide the height range and spatial features of each BEV grid. For example, the spatial features of the highest and lowest points for roads, vehicles, and pedestrians vary greatly, which is very useful in determining the semantic categories. 

#### **2D** Semantic Segmentation 3.3

After the cylinder-to-BEV process, we can get sparse BEV maps with rich seman-tic information. In this section, we will introduce the 2D semantic segmentation that is used to densify the semantic predictions. The network is based on U-Net structure and added various convolution designs, including dilated convolution, depth-wise convolution, inverse bottleneck, etc., as shown in Fig.3. 

**Encoder-Decoder Architecture.** Building upon the U-Net framework, we use convolutional blocks in both encoder and decoder, supplemented by appro-priate design, to make the network more suitable for the LiDAR-based semantic segmentation task. As a characteristic of U-Net, skip-connection is also used to improve image segmentation accuracy by fusing low-level and high-level features. Considering the computational overhead, we use a separate downsampling layer and a pixel-shuffle layer instead of transpose convolution in the upsampling part.

Depth-wise Convolution and Inverse Bottleneck. Depth-wise convolu-tion is adapted from grouped convolution, in which the number of groups equals the number of channels. The advantage is that it greatly reduces the floating-point operations while maintaining an acceptable level of accuracy. An important design of blocks in Transformer [36], MobileNetV2 [37] and ConvNet [38] is the inverse bottleneck. The dimension of the intermediate hidden layer is larger than that of the input and output layers. We implement depth-wise convolution and combine it with two  $1 \times 1$  convolutions to form an inverse bottleneck. As shown in Fig. 3, we combine these two designs and apply them as the basic block whose color is pink.

Dilated Convolution Groups. Unlike increasing the size of the convolu-tion kernel, which greatly increases the number of parameters, dilated convolu-tion provides a cost-effective way to extract more descriptive features. Because <sup>308</sup> different stages of U-Net have different scales of information, we use convolution <sup>309</sup> groups with different receptive field sizes for each stage in downsampling and <sup>310</sup> upsampling as shown in Fig. 3. In each group, a  $1 \times 1$  convolution is used to <sup>311</sup> extract the spatial information from different receptive fields after concatenat-<sup>312</sup> ing the outputs of each dilated convolution. Meanwhile, a dropout layer and a <sup>313</sup> pooling layer are added at the end. Following Transformer [36], the number of  $3^{14}$ 

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ACCV-22 submission ID 1011



**Fig. 3.** Flowchart of the proposed modified U-Net. k, d, s, bn, and  $\times$  represent the model and the model and

convolution blocks in different stages of downsampling and upsampling is adjusted to (3,3,9,3). As seen in the Fig. 3, the blue block represents a convolution group consisting of 3 convolution blocks, and the cyan block represents a convolution lucks.

In addition, we use GeLU activation function instead of ReLU in the basic block, and reduce the number of activation functions used in each block. Similarly, we use fewer normalization layers and replace BatchNorm with LayerNorm, as in Transformer.

# 3.4 Loss Function.

The unbalanced data distribution in the dataset can make model training difficult. Especially for the classes with fewer samples, the network predicts them with a lower frequency than that of the classes with more samples. To solve this problem, we use the weighted cross-entropy loss function, whose weight is equal to the inverse square root of the frequency of each class, as shown below: 

$$L_{wce}(y,\hat{y}) = -\sum_{i=1}^{n} \lambda_i p(y_i) log(p(\hat{y}_i))$$
(4) (358)
(5)

### CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

### ACCV-22 submission ID 1011

where n denotes the number of classes,  $y_i$  and  $\hat{y}_i$  represent the ground truth and  $_{360}$ the prediction, respectively.  $\lambda_i = 1/\sqrt{f_i}$  and  $f_i$  denotes the frequency of the  $i^{th}$  361 class. 

In addition, we also incorporate the Lovász-Softmax loss in the training pro- 363 cess. The Jaccard loss function is directly defined based on the Intersection over 364 Union (IoU) metric. However, it is discrete and its gradient cannot be calcu- 365 lated directly. In [39], the lovász extension is proposed, which is derivable and <sub>366</sub> can be used as the loss function to guide the training process. Specifically, the <sub>367</sub> Lovász-Softmax loss can be expressed as follows: 

$$L_{ls} = \frac{1}{|C|} \sum_{c \in C} \overline{\Delta_{J_c}}(m(c)), \qquad 370$$

$$m_i(c) = \begin{cases} 1 - x_i(c) & \text{if } c = y_i(c), \\ m_i(c) & \text{otherwise} \end{cases}$$
(5) 372

$$= \begin{cases} x_i(c) & otherwise \end{cases}$$

$$373 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\ 374 \\$$

where C denotes the class number,  $\overline{\Delta_{J_c}}$  represents the lovász extension of the Jaccard index.  $x_i(c)$  and  $y_i(c)$  represent the predicted probability and the ground truth of pixel i for class c, respectively. 

The final loss function is a linear combination of the weighted cross-entropy loss and the Lovász-Softmax loss, as shown below: 

$$L = L_{wce} + L_{ls} \tag{6} \frac{^{381}}{^{382}}$$

#### Experiments

In order to evaluate the segmentation performance of the proposed network, we <sup>386</sup> carry out experiments on SemanticKITTI [4] and nuScenes-LidarSeg [5] datasets <sup>387</sup> with raw LiDAR data, sparse semantic segmentation ground truths, and the <sup>388</sup> aggregated dense semantic segmentation ground truths. The experimental re- <sup>389</sup> sults show that our network achieves state-of-the-art performance in both Se- 390 manticKITTI and nuScenes-LidarSeg datasets. 

## 

#### 4.1Datasets

SemanticKITTI. The SemanticKITTI is a large-scale outdoor point cloud <sup>395</sup> dataset with precise pose information and semantic annotations of each LiDAR point. The training set consists of sequences 00-07 and 09-10, and the eval-uation set consists of sequence 08, containing 19130 and 4071 LiDAR scans, respectively. As in [8], we merge the 19 classes into 12 classes. Specifically, The <sup>399</sup> motorcyclist and bicyclist are merged to rider. The bicycle and motorcycle are  $^{400}$ merged to two-wheel. The car, truck and other-vehicle are merged to vehicle.<sup>401</sup> The traffic-sign, pole and fence are merged to object. The other-ground and 402parking are merged to other-ground. The unlabeled pixels are not considered 403in the training process.

415

421

437

438

439

### CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

10 ACCV-22 submission ID 1011

nuScenes-LidarSeg. The nuScenes-LidarSeg provides semantic annotations 405 405 for each LiDAR point in the 40,000 keyframes, marking a total of 1.4 bil-406 406 lion LiDAR points, including 32 classes. Similarly, we map the adult, child, 407 407 policeofficer, and constructionworker to pedestrian, bendybus and rigidbus to  $_{408}$ 408 bus. These class labels for barrier, car, construction vehicle, truck, motor cycle, 409 409 trafficcone, trailer, driveablesurface, sidewalk, manmade, other flat, terrain 410410 and vegetation remain unchanged. The other classes are mapped to unlabeled. 411 411 As a result, we merge 32 classes into 16 classes on the nuScenes-LidarSeg dataset. 412 412

413 414

415

421

422

# 4.2 Label Generation

416 **Sparse Label Generation.** As described in [8], we project the 3D LiDAR  $_{416}$ 417 point cloud onto the BEV grid map and perform weighted statistical analysis  $_{417}$ 418 on the frequency of each class in each grid to obtain the most representative  $_{418}$ 419 grid-wise semantic label. For each grid, the weighted calculation formula of its  $_{419}$ 420 label  $c_i$  is defined as follows: 420

$$c_i = argmax_{c \in [1,C]}(w_c n_{i,c}), \tag{7}$$

where C is the number of the semantic classes,  $w_c$  denotes the weight for class  $\substack{423\\ 244}$  c, and  $n_{i,c}$  represents the number of points of class c in grid i. In addition, the  $\substack{424\\ 425}$ weights of the traffic participant classes, such as *person*, *rider*, *two-wheel*, and  $\substack{425\\ 426}$  *vehicle*, are chosen as 5. The weight of the *unlabeled* class is set as 0 and the  $\substack{426\\ 427}$ weights of other classes are set as 1.

428 Dense Label Generation. We use the precise pose information provided <sup>428</sup> 429 by SemanticKITTI to aggregate consecutive LiDAR scans and generate dense <sup>429</sup> 430 top-view ground truths, which can provide fine-grained descriptions of the sur- <sup>430</sup> 431 rounding environment. As in [8], the neighboring LiDAR scans with a distance <sup>431</sup> 432 less than twice the farthest distance are selected as the supplement to the cur-  $^{432}$ 433 rent frame. Based on the provided poses, we transform the adjacent LiDAR <sup>433</sup> 434 point clouds to the coordinate system of the current scan, and then we can get <sup>434</sup> 435 dense aggregation following Eq. 7. In addition, to avoid confusion caused by <sup>435</sup> 436 436 overlapping, we only aggregate static objects and ignore moving objects.

## 4.3 Evaluation Metrics

To evaluate the performance of the proposed dense top-view semantic segmentation method, we apply the widely used intersection-over-union (IoU) and mean intersection-over-union (mIoU) in all classes, which are defined as follows: 442 443

$$IoU_i = \frac{P_i \cap G_i}{P_i \cup G_i}, \quad mIoU = \frac{1}{C} \sum_{i=1}^C IoU_i,$$
 (8)   
444  
445

445 446

437

438

439

440

441

442

443

444

where  $P_i$  denotes the set of pixels whose predicted semantic labels are class i,  $G_i$  <sup>447</sup> represents the set of pixels whose corresponding ground truths are class i, and <sup>448</sup> C represents the total number of classes. <sup>449</sup>

### CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

### ACCV-22 submission ID 1011

| Mode         | Method                 | mIoU [%] | vehicle | person | two-wheel | rider | road | sidewalk | other-ground | building | object | vegetation | trunk | terrain |
|--------------|------------------------|----------|---------|--------|-----------|-------|------|----------|--------------|----------|--------|------------|-------|---------|
|              | Bieder et al. [33]     | 39.8     | 69.7    | 0.0    | 0.0       | 0.0   | 85.8 | 60.3     | 25.9         | 72.8     | 15.1   | 68.9       | 9.9   | 69.3    |
|              | Pillar [8]             | 55.1     | 79.5    | 15.8   | 25.8      | 51.8  | 89.5 | 70.0     | 38.9         | 80.6     | 25.5   | 72.8       | 38.1  | 72.7    |
| Sparse Train | Pillar + Occ [8]       | 55.3     | 82.7    | 20.3   | 24.5      | 51.3  | 90.0 | 71.2     | 36.5         | 81.3     | 28.3   | 70.4       | 38.5  | 69.0    |
| Sparse Eval  | Pillar + Occ + P       | 57.5     | 85.1    | 24.7   | 16.9      | 60.1  | 90.7 | 72.9     | 38.3         | 82.9     | 30.1   | 80.4       | 35.4  | 72.8    |
|              | Pillar + Occ + LP      | 57.8     | 85.9    | 24.2   | 18.3      | 57.6  | 91.3 | 74.2     | 39.2         | 82.4     | 29.0   | 80.6       | 38.0  | 72.9    |
|              | Pillar + Occ + LGP [9] | 58.8     | 85.8    | 34.2   | 26.8      | 58.5  | 91.3 | 74.0     | 38.1         | 82.2     | 28.7   | 79.5       | 35.7  | 71.3    |
|              | Our                    | 67.9     | 89.5    | 59.7   | 52.7      | 74.1  | 92.7 | 76.2     | 36.5         | 85.8     | 37.5   | 83.3       | 50.6  | 75.7    |
|              | Bieder et al. [33]     | 32.8     | 43.3    | 0.0    | 0.0       | 0.0   | 84.3 | 51.4     | 22.9         | 54.7     | 10.8   | 51.0       | 6.3   | 68.6    |
|              | Pillar [8]             | 37.5     | 45.1    | 0.0    | 0.1       | 3.3   | 82.7 | 57.5     | 29.7         | 64.6     | 14.0   | 58.5       | 25.5  | 68.9    |
| Sparse Train | Pillar + Occ [8]       | 38.4     | 52.5    | 0.0    | 0.2       | 3.0   | 85.6 | 60.1     | 29.8         | 65.7     | 16.1   | 56.7       | 26.2  | 64.5    |
| Dense Eval   | Pillar + Occ + P       | 40.9     | 53.3    | 11.3   | 13.1      | 7.0   | 83.6 | 60.3     | 30.2         | 63.4     | 15.7   | 61.4       | 24.6  | 67.2    |
|              | Pillar + Occ + LP      | 41.5     | 57.3    | 11.3   | 9.5       | 10.4  | 85.5 | 60.1     | 31.2         | 64.6     | 16.9   | 59.5       | 25.3  | 66.8    |
|              | Pillar + Occ + LGP [9] | 40.4     | 55.8    | 10.8   | 14.1      | 9.3   | 84.5 | 58.6     | 26.8         | 62.4     | 15.2   | 59.2       | 26.3  | 62.3    |
|              | Our                    | 38.5     | 53.1    | 21.2   | 26.4      | 4.8   | 72.8 | 52.3     | 22.1         | 52.1     | 20.0   | 47.8       | 31.5  | 57.2    |
|              | Pillar [8]             | 42.8     | 70.3    | 5.4    | 6.0       | 8.0   | 89.8 | 65.7     | 34.0         | 65.9     | 16.3   | 61.2       | 23.5  | 67.9    |
| р т.         | Pillar + Occ [8]       | 44.1     | 72.8    | 7.4    | 4.7       | 10.2  | 90.1 | 66.2     | 32.4         | 67.8     | 17.4   | 63.1       | 27.6  | 69.2    |
| Dense Frain  | Pillar + Occ + P       | 44.9     | 72.1    | 6.8    | 6.2       | 9.9   | 90.1 | 65.8     | 37.8         | 67.1     | 18.8   | 68.1       | 24.7  | 71.4    |
| Dense Livai  | Pillar + Occ + LP      | 44.8     | 73.0    | 7.8    | 6.1       | 10.6  | 90.6 | 66.5     | 33.7         | 67.6     | 17.7   | 67.6       | 25.5  | 70.4    |
|              | Pillar + Occ + LGP [9] | 44.5     | 73.2    | 6.5    | 6.5       | 9.5   | 90.8 | 66.5     | 34.9         | 68.0     | 18.8   | 67.0       | 22.8  | 70.0    |
|              | Our                    | 48.8     | 70.0    | 25.9   | 28.0      | 22.5  | 90.8 | 65.4     | 32.7         | 68.3     | 20.9   | 64.4       | 30.6  | 66.1    |

## Table 1. Quantitative results on the SemanticKITTI dataset [4]

#### Implementation Details 4.4

We deploy the proposed network on a server with a single NVIDIA Geforce RTX <sup>474</sup> 2080Ti-11GB GPU, running with PyTorch. The initial learning rate is 0.01, the <sup>475</sup> epoch size is 30, and the batch size of 2.

In the preprocessing step, the input LiDAR point cloud is first cropped into <sup>477</sup> [(-51.2, 51.2), (-51.2, 51.2), (-5.0, 3.0)] meters in the x, y, z directions, respec- 478 tively. Then, the cropped data is divided into 3D representation  $\mathbb{R} \in 512 \times 360 \times 479$  by cylindrical partition, where three dimensions represent radius, tangent  $^{480}$ angle, and height, respectively. After the 3D sparse convolution networks, the fea-<sup>481</sup> tures are converted to a BEV map, covering the area of  $[(-51.2, 51.2), (-25.6, 25.6)]^{3/2}$ meters in the x, y directions. The size of the BEV map is  $B \times 48 \times 256 \times 512$ , 483 representing batch size, feature channels, image height and width, respectively. 484 The resolution is [0.2, 0.2] meters. The final output of the network is the semantic 485 prediction result whose size is  $256 \times 512$ . Since the range of the semantic ground 486 truth is [(-50.0, 50.0), (-25.0, 25.0)] meters and the resolution is [0.1, 0.1], we 487 use linear interpolation to zoom in the network output, and then crop it to the 488 same size as the ground truth. 

#### **Results on SemanticKITTI dataset** 4.5

We use two training modes and two evaluation modes for dense top-view seman-<sup>493</sup> tic segmentation, following [33]: Sparse Train and Sparse Eval, Sparse Train and <sup>494</sup>

### CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

#### ACCV-22 submission ID 1011

Table 2. Quantitative results on the nuScenes-LidarSeg dataset [5].

| Mode        | Method     | mIoU [%] | barrier | bicycle | bus  | car  | const-vehicle | motorcycle | pedestrian | cone | trailer | truck | drivable | other-flat | sidewalk | terrain | manmade | vegetation |
|-------------|------------|----------|---------|---------|------|------|---------------|------------|------------|------|---------|-------|----------|------------|----------|---------|---------|------------|
| Dense Train | Pillar [8] | 22.7     | 10.8    | 0.0     | 5.3  | 1.6  | 6.0           | 0.0        | 0.0        | 0.8  | 19.59   | 0.8   | 83.4     | 35.5       | 45.0     | 52.3    | 48.5    | 54.3       |
| Dense Eval  | MASS [9]   | 32.7     | 28.4    | 0.0     | 24.0 | 35.7 | 16.4          | 2.9        | 4.4        | 0.1  | 29.3    | 21.2  | 87.3     | 46.9       | 51.6     | 56.3    | 56.8    | 61.4       |
|             | Our        | 33.7     | 25.0    | 3.2     | 26.1 | 46.9 | 15.0          | 11.8       | 10.9       | 6.7  | 22.6    | 25.7  | 85.6     | 40.2       | 48.3     | 58.6    | 62.0    | 51.2       |

Dense Train, Dense Train and Dense Eval. Among them, Sparse Eval represents 504 using the sparse top-view semantic segmentation ground truth derived from a 505 single LiDAR scan, Dense Eval represents using the generated dense top-view 506 ground truth. 

Table 1 shows the quantitative comparison with other state-of-the-art meth- 508 ods. The proposed method achieves a performance improvement of 9.1% over 509 the current best result in the sparse evaluation mode, and 3.9% improvement 510 in the dense evaluation mode. In particular, our method greatly improves the 511performance of classes with small spatial size, including *person*, two-wheel and 512 *rider*, and also performs well on other classes. In the sparse mode, the IoUs of these three classes are improved by 25.5%, 25.9% and 25.6%, respectively. In 514 the dense mode, they are increased by 18.1%, 21.8% and 21.9%. This proves 515the effectiveness of our method in semantic segmentation. 

#### 4.6 **Results on nuScenes-LidarSeg dataset**

In addition to SemanticKITTI dataset, we also evaluate our method on the nuScenes-LidarSeg dataset for dense top-view semantic segmentation. As shown  $\frac{1}{521}$ in Table 2, our network achieves better performance than other ones. The pro- $\frac{1}{522}$ posed network obtains a 1.0% performance improvement over the state-of-the-art method. Our method is superior in categories with sparse points, such as bicycle, motorcycle, pedestrian and cone. The IoU of car has been significantly improved by **11.2%**. 

#### 4.7**Ablation Studies**

In this section, we conduct extensive ablation experiments to investigate the effects of different components in our method. We create several variants of our network to verify the contributions of each components Table 3 summarizes the semantic segmentation results on the SemanticKITTI evaluation dataset in dense mode. The Baseline represents the method of using raw point features, point-to-BEV projection and a simple encoder-decoder network with traditional <sup>534</sup> convolution blocks. The Cylinder represents replacing point features with cylin- 535 drical features and direct cylinder-to-BEV projection without point-guidance. 536 The Cylinder-to-BEV represents using cylinder-to-BEV projection with point <sup>537</sup> as intermediate. The ModifiedU-Net means using a 2D modified U-Net in the <sup>538</sup> 2D semantic segmentation part.

## CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

### ACCV-22 submission ID 1011



| seline       | Cylinder C   | ylinder-to-BEV | Modified U-N | et mloU [% |
|--------------|--------------|----------------|--------------|------------|
| ✓            |              |                |              | 38.9       |
| $\checkmark$ | $\checkmark$ |                |              | 45.1       |
| $\checkmark$ | $\checkmark$ | $\checkmark$   |              | 47.5       |
| $\checkmark$ | $\checkmark$ | $\checkmark$   | $\checkmark$ | 48.8       |

The results in Table 3 show that when dealing with outdoor sparse point  $^{575}$ clouds, the cylindrical encoding is quite successful in gathering rich charac-teristics from input data, and greatly improves the spatial feature extraction. Compared with methods that ignore 3D information and convert LiDAR data  $^{578}$ to 2D representation directly, we focus on investigating the spatial geometric  $^{579}$ relationships of LiDAR points, thus achieving an improvement of 6.2%. The <sup>580</sup> well-designed cylinder-to-BEV module selects key characters in each grid of the <sup>581</sup> 2D top-view, and further increases the performance of 2.4%. The modified U-Net <sup>582</sup> with dilated convolution, depth-wise convolution and inverse bottleneck can also 583 bring a 1.3% performance improvement.

# ACCV2022 #1011

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ACCV-22 submission ID 1011



**Fig. 5.** Qualitative results generated by our approach on the nuScenes dataset. From <sup>601</sup> left to right in each row, we display the input point cloud, the 2D occupancy map, the <sup>602</sup> ground truth and the prediction from our method.

## 4.8 Qualitative Analysis

As shown in Fig. 4 and Fig. 5, the proposed network can get an accurate semantic understanding of the surrounding environment. It can not only recognize large objects like roads, vehicles, and buildings, but also segment smaller objects more accurately, such as pedestrians, bicycles, motorbikes, and riders. This demonstrates that our method can effectively deal with outdoor, large-scale, sparse, and density-varying 3D point cloud data, and improve the dense semantic segmentation performance in the 2D top-view.

## 5 Conclusion

In this paper, we propose an end-to-end cylindrical convolution network for <sup>620</sup> dense top-view semantic segmentation with LiDAR data only. We use cylindrical <sup>621</sup> LiDAR representation and 3D CNNs to extract semantic and spatial information, <sup>622</sup> which can effectively preserve more 3D connections and deal with the sparse <sup>623</sup> density of point clouds. Moreover, we introduce an efficient cylinder-to-BEV <sup>624</sup> module to transform features from cylindrical representation to BEV map and <sup>625</sup> provide guidance for the proposed modified U-Net based semantic segmentation <sup>626</sup> in the top-view. We perform extensive experiments and ablation studies on the <sup>627</sup> SemanticKITTI and nuScenes-LidarSeg datasets, and achieve state-of-the-art <sup>628</sup> performance.

### ACCV-22 submission ID 1011

#### References 630 631 631 632 1. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic <sup>632</sup> segmentation. In: Proceedings of the IEEE conference on computer vision and 633 633 pattern recognition. (2015) 3431-3440 634 634 2. Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: Erfnet: Efficient residual 635 635 factorized convnet for real-time semantic segmentation. IEEE Transactions on 636 636 Intelligent Transportation Systems 19 (2017) 263–272 637 637 3. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-638 638 cal image segmentation. In: International Conference on Medical image computing $\frac{639}{639}$ 639 and computer-assisted intervention, Springer (2015) 234-241 640 640 4. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, 641 641 J.: Semantickitti: A dataset for semantic scene understanding of lidar sequences. 642 In: Proceedings of the IEEE/CVF International Conference on Computer Vision. <sup>642</sup> 643 643 (2019) 9297–9307 5. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., 644 644 Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous 645 645 driving. In: Proceedings of the IEEE/CVF conference on computer vision and 646 646 pattern recognition. (2020) 11621–11631 647 647 6. Cortinhal, T., Tzelepis, G., Erdal Aksoy, E.: Salsanext: Fast, uncertainty-aware 648 648 semantic segmentation of lidar point clouds. In: International Symposium on Visual 649 649 Computing, Springer (2020) 207–222 650 650 7. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: Fast 651 651 encoders for object detection from point clouds. In: Proceedings of the $\rm IEEE/\rm CVF$ 652 652 Conference on Computer Vision and Pattern Recognition. (2019) 12697–12705 653 8. Fei, J., Peng, K., Heidenreich, P., Bieder, F., Stiller, C.: Pillarsegnet: Pillar-based <sup>653</sup> 654 semantic grid map estimation using sparse lidar data. In: 2021 IEEE Intelligent 654 655 Vehicles Symposium (IV), IEEE (2021) 838-844 655 9. Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 656 656 Stiller, C., Stiefelhagen, R.: Mass: Multi-attentional semantic segmentation of 657 657 lidar data for dense top-view understanding. IEEE Transactions on Intelligent $_{658}$ 658 Transportation Systems (2022) 659 659 10. Huang, J., Huang, G., Zhu, Z., Du, D.: Bevdet: High-performance multi-camera 660 660 3d object detection in bird-eye-view. arXiv preprint arXiv:2112.11790 (2021) 661 661 11. Ng, M.H., Radia, K., Chen, J., Wang, D., Gog, I., Gonzalez, J.E.: Bev-seg: Bird's 662 eye view semantic segmentation using geometry and semantic point cloud. arXiv $^{662}$ 663 663 preprint arXiv:2006.11436 (2020) 664 12. Pan, B., Sun, J., Leung, H.Y.T., Andonian, A., Zhou, B.: Cross-view semantic <sup>664</sup> segmentation for sensing surroundings. IEEE Robotics and Automation Letters 5 665 665 (2020) 4867-4873 666 666 13. Roddick, T., Cipolla, R.: Predicting semantic map representations from images 667 667 using pyramid occupancy networks. In: Proceedings of the IEEE/CVF Conference $_{668}$ 668 on Computer Vision and Pattern Recognition. (2020) 11138–11147 669 669 14. Philion, J., Fidler, S.: Lift, splat, shoot: Encoding images from arbitrary camera 670 670 rigs by implicitly unprojecting to 3d. In: European Conference on Computer Vision, 671 671 Springer (2020) 194-210 672 672 15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature 673 673 pyramid networks for object detection. In: Proceedings of the IEEE conference on 674 674 computer vision and pattern recognition. (2017) 2117–2125

630

# 16 ACCV-22 submission ID 1011

| 675        | 16. | Yang, W., Li, Q., Liu, W., Yu, Y., Ma, Y., He, S., Pan, J.: Projecting your view                             | 675        |
|------------|-----|--------------------------------------------------------------------------------------------------------------|------------|
| 676        |     | attentively: Monocular road scene layout estimation via cross-view transformation.                           | 676        |
| 677        |     | In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern                                    | 677        |
| 678        |     | Recognition. (2021) 15536–15545                                                                              | 678        |
| 679        | 17. | Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for                            | 679        |
| 680        |     | 3d classification and segmentation. In: Proceedings of the IEEE conference on                                | 680        |
| 681        |     | computer vision and pattern recognition. (2017) 652–660                                                      | 681        |
| 682        | 18. | Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature                                | 682        |
| 683        |     | learning on point sets in a metric space. Advances in neural information processing systems <b>30</b> (2017) | 683        |
| 684        | 10  | Hu O Vang P. Via I. Rosa S. Cuo V. Wang Z. Trigoni N. Markham A.                                             | 684        |
| 685        | 19. | Bandla not: Efficient segmentation of large scale point clouds. In: Pro                                      | 685        |
| 686        |     | ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-                                  | 686        |
| 697        |     | tion (2020) 11108–11117                                                                                      | 697        |
| 600        | 20  | Thomas H Oi C B Deschaud LE Marcotogui B Coulette E Cuibas L L:                                              | 600        |
| 088        | 20. | Knconv: Flexible and deformable convolution for point clouds. In: Proceedings of                             | 088        |
| 689        |     | the IEEE/CVF international conference on computer vision (2019) 6411–6420                                    | 689        |
| 690        | 21  | Zhou V. Tuzel O: Voxelnet: End-to-end learning for point cloud based 3d object                               | 690        |
| 691        | 21. | detection In: Proceedings of the IEEE conference on computer vision and pattern                              | 691        |
| 692        |     | recognition. (2018) 4490–4499                                                                                | 692        |
| 693        | 22. | Rethage, D., Wald, J., Sturm, J., Navab, N., Tombari, F.: Fully-convolutional point                          | 693        |
| 694        |     | networks for large-scale point clouds. In: Proceedings of the European Conference                            | 694        |
| 695        |     | on Computer Vision (ECCV). (2018) 596–611                                                                    | 695        |
| 696        | 23. | Zhu, X., Zhou, H., Wang, T., Hong, F., Ma, Y., Li, W., Li, H., Lin, D.: Cylindrical                          | 696        |
| 697        |     | and asymmetrical 3d convolution networks for lidar segmentation. In: Proceedings                             | 697        |
| 698        |     | of the IEEE/CVF conference on computer vision and pattern recognition. $\left(2021\right)$                   | 698        |
| 699        |     | 9939–9948                                                                                                    | 699        |
| 700        | 24. | Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: Convolutional neural nets with                            | 700        |
| 701        |     | recurrent crf for real-time road-object segmentation from 3d lidar point cloud. In:                          | 701        |
| 702        |     | 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE                                   | 702        |
| 703        |     | (2018) 1887–1893                                                                                             | 703        |
| 704        | 25. | Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv2: Improved model                               | 704        |
| 705        |     | structure and unsupervised domain adaptation for road-object segmentation from                               | 705        |
| 706        |     | a lidar point cloud. In: 2019 International Conference on Robotics and Automation                            | 706        |
| 707        |     | (ICRA), IEEE (2019) 4376–4382                                                                                | 700        |
| 707        | 26. | Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: Fast and accurate                             | 707        |
| 708        |     | lidar semantic segmentation. In: 2019 IEEE/RSJ International Conference on                                   | 708        |
| 709        | 07  | Intelligent Robots and Systems (IROS), IEEE (2019) 4213–4220                                                 | 709        |
| 710        | 21. | in lidar point clouds for autonomous driving. In: 2020 IEEE intelligent vehicles                             | 710        |
| 711        |     | symposium (IV). IEEE (2020) 926–932                                                                          | 712        |
| 712        | 28. | Radi, H., Ali, W.: Volman: A real-time model for semantic segmentation of a lidar                            | 712        |
| 713        |     | surrounding view. arXiv preprint arXiv:1906.11873 (2019)                                                     | 713        |
| 715        | 29. | Zhang, Y., Zhou, Z., David, P., Yue, X., Xi, Z., Gong, B., Foroosh, H.: Polarnet: An                         | 715        |
| 716        |     | improved grid representation for online lidar point clouds semantic segmentation.                            | 716        |
| 717        |     | In: Proceedings of the $\mathrm{IEEE}/\mathrm{CVF}$ Conference on Computer Vision and Pattern                | 717        |
| 111<br>710 |     | Recognition. (2020) 9601–9610                                                                                | 710        |
| 718<br>719 | 30. | Vedder, K., Eaton, E.: Sparse pointpillars: Exploiting sparsity in birds-eye-view                            | 710<br>710 |
|            |     | object detection. arXiv e-prints (2021) arXiv=2106                                                           |            |

# ACCV-22 submission ID 1011 17

| 720<br>721<br>722 | 31.         | Paigwar, A., Sierra-Gonzalez, D., Erkent, Ö., Laugier, C.: Frustum-pointpillars: A multi-stage approach for 3d object detection using rgb camera and lidar. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. (2021) 2926–2933 | 720<br>721<br>722 |
|-------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 723<br>724        | 32.         | Tchapmi, L., Choy, C., Armeni, I., Gwak, J., Savarese, S.: Segcloud: Semantic                                                                                                                                                                             | 723<br>724        |
| 725               |             | segmentation of 3d point clouds. In: 2017 international conference on 3D vision (3DV). IEEE (2017) 537–547                                                                                                                                                | 725               |
| 726               | 33.         | Bieder, F., Wirges, S., Janosovits, J., Richter, S., Wang, Z., Stiller, C.: Exploiting                                                                                                                                                                    | 726               |
| 727<br>728        |             | multi-layer grid maps for surround-view semantic segmentation of sparse lidar data.<br>In: 2020 IEEE Intelligent Vehicles Symposium (IV), IEEE (2020) 1892–1898                                                                                           | 727<br>728        |
| 729               | 34.         | Paigwar, A., Erkent, Ö., Sierra-Gonzalez, D., Laugier, C.: Gndnet: Fast ground                                                                                                                                                                            | 729               |
| 730<br>731        |             | plane estimation and point cloud segmentation for autonomous vehicles. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),                                                                                               | 730<br>731        |
| 732               | 25          | IEEE (2020) 2150–2156<br>Keene X. Zhai G. Zhang P. Lie X. Peer2d Preside and conducted exception                                                                                                                                                          | 732               |
| 733<br>734        | 35.         | segmentation for 3d point cloud. In: 2019 IEEE/RSJ International Conference on                                                                                                                                                                            | 733<br>734        |
| 735               | 36.         | Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin                                                                                                                                                                             | 735               |
| 736               |             | transformer: Hierarchical vision transformer using shifted windows. In: Proceedings                                                                                                                                                                       | 736               |
| 737               |             | of the IEEE/CVF International Conference on Computer Vision. (2021) 10012–                                                                                                                                                                                | 737               |
| 738               | 37.         | Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-                                                                                                                                                                             | 738<br>739        |
| 740               |             | verted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on                                                                                                                                                                        | 740               |
| 741               | 38          | computer vision and pattern recognition. (2018) 4510–4520<br>Tan M. Chon B. Pang B. Vasudovan V. Sandler M. Howard A. Le O.V.:                                                                                                                            | 741               |
| 742               | <b>J</b> 0. | Masnet: Platform-aware neural architecture search for mobile. In: Proceedings of                                                                                                                                                                          | 742               |
| 743<br>744        |             | the IEEE/CVF Conference on Computer Vision and Pattern Recognition. (2019)                                                                                                                                                                                | 743<br>744        |
| 745               | 39.         | 2820–2828<br>Berman, M., Triki, A.R., Blaschko, M.B.: The lovász-softmax loss: A tractable                                                                                                                                                                | 745               |
| 746               |             | surrogate for the optimization of the intersection-over-union measure in neural                                                                                                                                                                           | 746               |
| 747               |             | networks. In: Proceedings of the IEEE conference on computer vision and pattern                                                                                                                                                                           | 747               |
| 748               |             | recognition. $(2018)$ 4413–4421                                                                                                                                                                                                                           | 748               |
| 750               |             |                                                                                                                                                                                                                                                           | 750               |
| 751               |             |                                                                                                                                                                                                                                                           | 751               |
| 752               |             |                                                                                                                                                                                                                                                           | 752               |
| 753               |             |                                                                                                                                                                                                                                                           | 753               |
| 755<br>755        |             |                                                                                                                                                                                                                                                           | 754<br>755        |
| 756               |             |                                                                                                                                                                                                                                                           | 756               |
| 757               |             |                                                                                                                                                                                                                                                           | 757               |
| 758               |             |                                                                                                                                                                                                                                                           | 758               |
| 759               |             |                                                                                                                                                                                                                                                           | 759               |
| 760<br>761        |             |                                                                                                                                                                                                                                                           | 760<br>761        |
| 762               |             |                                                                                                                                                                                                                                                           | 762               |
| 763               |             |                                                                                                                                                                                                                                                           | 763               |
| 764               |             |                                                                                                                                                                                                                                                           | 764               |



Fig. 1. Qualitative results generated on the SemanticKITTI validation set. From top <sup>042</sup>
 to bottom in each column, we display the input point cloud, the ground truth, the <sup>043</sup>
 prediction from our method, respectively.

ACCV-22 submission ID 1011

045 046

047

048

049

050

051

052

053

054

 $\mathbf{2}$ 

 $\mathbf{2}$ 

# Addition Visual Results on SemanticKITTI

ACCV2022

#1011

Here we show two groups of comparisons with the results for Bieder *et al.* [2], <sub>047</sub> PillarSeg [3], MASS [4] and our method on SemanticKITTI. For a fair comparison, the unobservable regions in our predictions are also filtered out using the observability map as in [2].

As shown in Fig 2 and Fig 3, our method is able to produce very similar <sup>051</sup> results to the ground truth for challenging urban scenes. Compared with other <sup>052</sup> methods, our method achieves a higher level of accuracy, especially for the prediction of small volume objects. <sup>054</sup>



**Fig. 2.** Qualitative results generated on the SemanticKITTI validation set. From top to bottom in each column, we display the input point cloud, the 2D occupancy map, the ground truth, the prediction from Bieder *et al.* [2], PillarSeg [3] and our method, respectively. The unobserved areas were erased using the observability map as in [2]

087 088 089

085

130 131

132

## CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ACCV-22 submission ID 1011



129 130 131

132

133

- References
- 1. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, <sup>133</sup> J.: Semantickitti: A dataset for semantic scene understanding of lidar sequences. <sup>134</sup>

4 ACCV-22 submission ID 1011

| 136       (2019) 3291-3501       136         2       Bieder, F., Wirges, S., Janosovits, J., Richter, S., Wang, Z., Stiller, C.: Exploiting       137         137       multi-layer grid maps for surround-view semantic segmentation of sparse lidar data.       138         139       S. Fei, J., Peng, K., Heidenreich, P., Bieder, F., Stiller, C.: Pillarsegnet: Pillar-based       139         140       semantic grid map estimation using sparse lidar data.       141         141       Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 142       141         142       Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 142       141         143       data for dense top-view understanding.       IEEE Tarnsactions on Intelligent Trans-144         144       Peng, K., Stiefelhagen, R.: Mass: Muti-attentional segmentation of lidar 433       143         145       portation Systems (2022)       146         146       147       147         147       148       149         148       149       149         149       149       149         141       141       147         145       141       147         146       141       148         147       141       141         14                                                                                                                                           | 135 |    | In: Proceedings of the IEEE/CVF International Conference on Computer Vision.            | 135 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----------------------------------------------------------------------------------------|-----|
| 13       2. Deter, 1., 1. Higgs, D., Malos F., Hender, J., Hung, J., Johns, U. T., Johns, J. 39         13       multi-layer grid maps for surround-view semantic segmentation of sparse lidar data.         13       B. Fei, J., Peng, K., Heidenreich, P., Bieder, F., Stiller, C.: Pillarsegnet: Pillar-based         14       Deng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 142         14       Vehicles Symposium (IV), IEEE (2021) S38-844         14       Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 142         15       Stiller, C., Stiefelhagen, R.: Mass: Multi-attentional semantic segmentation of lidar         14       data for dense top-view understanding. IEEE Transactions on Intelligent Trans-         14       portation Systems (2022)         15       16         16       16         17       16         18       16         19       16         14       17         14       17         14       17         14       17         14       17         14       16         14       16         15       15         15       15         15       15         15       15                                                                                                                                                                                                                                   | 136 | 2  | Bieder F. Wirges S. Janosovits I. Richter S. Wang Z. Stiller C.: Exploiting             | 136 |
| 138       In: 2020 IEEE Intelligent Vehicles Symposium (IV), IEEE (2020) 1892–1898       139         39       5. Fei, J., Peng, K., Heidenreich, P., Bieder, F., Stiller, C.: Pillarsegnet: Pillar-based       140         141       2. Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 141       141         4. Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 141       143         5. Biller, C., Stiefelhagen, R.: Mass: Multi-attentional semantic segmentation of lidar       143         4. Deng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 144       144         data for dense top-view understanding. IEEE Transactions on Intelligent Transportation Systems (2022)       145         5. Feinfelbagen, R.: Mass: Multi-attentional semantic segmentation of lidar       146         147       147       147         148       148       148         149       149       149         150       151       151         151       152       152         152       152       152         153       153       155         154       154       154         155       155       155         156       156       156         157       157       158 <td< td=""><td>137</td><td>2.</td><td>multi-laver grid maps for surround-view semantic segmentation of sparse lidar data.</td><td>137</td></td<> | 137 | 2. | multi-laver grid maps for surround-view semantic segmentation of sparse lidar data.     | 137 |
| 39       3. Fei, J., Peng, K., Heidenreich, P., Bieder, F., Stiller, C.: Pillarsegnet: Pillar-based       140         40       semantic grid map estimation using sparse lidar data. In: 2021 IEEE Intelligent       141         41       4. Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 142       141         41       4. Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 142       141         41       4. Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 142       141         41       4. Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 142       141         42       tata for dense top-view understanding. IEEE Transactions on Intelligent Trans.       144         43       portation Systems (2022)       145         44       144       144         44       149       149         55       151       152         56       156       156         57       157       157         58       156       156         59       159       159         56       156       156         57       157       157         58       156       156         59       159       159 <t< td=""><td>138</td><td></td><td>In: 2020 IEEE Intelligent Vehicles Symposium (IV), IEEE (2020) 1892–1898</td><td>138</td></t<>                                                 | 138 |    | In: 2020 IEEE Intelligent Vehicles Symposium (IV), IEEE (2020) 1892–1898                | 138 |
| 140       semantic grid map estimation using sparse lidar data. In: 2021 IEEE Intelligent       141         141       Vehicles Symposium (IV), IEEE (2021) 838-844       141         142       Peng, K., Fei, J., Yang, K., Roiberg, A., Zhang, J., Bieder, F., Heidenreich, P., 142         143       Stiller, C., Stiefelhagen, R.: Mass: Multi-attentional semantic segmentation of lidar         144       data for dense top-view understanding. IEEE Transactions on Intelligent Trans.         145       portation Systems (2022)         146       147         147       148         148       149         150       150         151       152         152       152         153       154         154       154         155       155         156       156         157       158         158       156         159       150         151       155         152       156         153       156         154       154         155       155         156       156         157       157         158       156         159       156         161<                                                                                                                                                                                                                                                                                                                                                         | 139 | 3. | Fei, J., Peng, K., Heidenreich, P., Bieder, F., Stiller, C.: Pillarsegnet: Pillar-based | 139 |
| 141       Vehicles Symposium (IV), IEEE (2021) 838-844       141         142       4. Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 142         Stiller, C., Stiefelhagen, R.: Mass: Multi-attentional semantic segmentation of lidar 143         144       data for dense top-view understanding. IEEE Transactions on Intelligent Trans-         145       portation Systems (2022)         146       147         147       146         148       148         149       149         140       147         141       147         142       147         143       148         144       147         145       147         146       147         147       147         148       148         149       149         140       149         151       151         152       153         153       155         154       154         155       155         156       156         157       157         158       158         159       150         161       161                                                                                                                                                                                                                                                                                                                                                                                                                  | 140 |    | semantic grid map estimation using sparse lidar data. In: 2021 IEEE Intelligent         | 140 |
| 4. Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P., 142         Stiller, C., Stiefelhagen, R.: Mass: Multi-attentional semantic segmentation of lidar 133         data for dense top-view understanding. IEEE Transactions on Intelligent Trans.         144       portation Systems (2022)         145         146         147         148         149         149         150         151         152         153         154         155         156         157         158         159         150         151         152         153         154         155         156         157         158         159         160         161         162         163         164         165         166         167         168         169         161         162         163         164         165         166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 141 |    | Vehicles Symposium (IV), IEEE (2021) 838–844                                            | 141 |
| 133       Stiller, C., Stiefelhagen, R.: Mass: Multi-attentional semantic segmentation of lidar 143         144       data for dense top-view understanding. IEEE Transactions on Intelligent Trans-144         145       portation Systems (2022)         146       146         147       147         148       149         149       149         150       150         151       152         152       153         153       154         154       154         155       155         156       156         157       155         158       156         159       159         160       161         161       161         162       162         163       164         164       164         165       166         166       166         167       167         168       166         169       169         170       170         171       171         172       172         173       174         174       174         175 <td>142</td> <td>4.</td> <td>Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P.,</td> <td>142</td>                                                                                                                                                                                                                                                                                                                                                    | 142 | 4. | Peng, K., Fei, J., Yang, K., Roitberg, A., Zhang, J., Bieder, F., Heidenreich, P.,      | 142 |
| 144     data for dense top-view understanding. IEEE fransactions on Intelligent Irans-     144       145     portation Systems (2022)     145       146     147     147       147     148     149       149     149     149       150     150     150       151     151     152       152     153     153       154     154     155       155     155     155       156     156     156       157     158     159       158     159     160       161     161     161       162     163     163       164     164     164       165     166     166       166     166     166       167     167     167       168     169     169       170     171     171       171     173     173       174     174     174       175     176     176       176     177     177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 143 |    | Stiller, C., Stiefelhagen, R.: Mass: Multi-attentional semantic segmentation of lidar   | 143 |
| 145     portation Systems (2022)     145       146     146       147     148       148     149       150     150       151     152       153     153       154     155       155     155       156     157       158     158       159     150       161     161       162     163       164     164       165     165       166     166       167     167       168     168       169     169       170     171       171     172       173     174       174     174       175     175       176     176       177     177       178     176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 144 |    | data for dense top-view understanding. IEEE Transactions on Intelligent Trans-          | 144 |
| 146     146       147     147       148     149       150     150       151     151       152     153       154     155       155     155       156     155       157     158       158     159       161     161       162     161       163     163       164     164       165     165       166     161       167     163       168     166       169     161       161     161       162     163       163     164       164     164       165     165       166     167       170     171       171     172       173     174       174     174       175     175       176     176       177     176       178     176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 145 |    | portation Systems (2022)                                                                | 145 |
| 147     147       148     149       150     150       151     151       152     153       154     154       155     156       156     156       157     157       158     159       160     160       161     161       162     163       164     164       165     166       166     166       167     163       168     164       169     161       161     162       162     163       163     164       164     164       165     166       166     167       171     171       172     172       173     173       174     174       175     175       176     175       177     176       178     178       179     179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 146 |    |                                                                                         | 146 |
| 148     148       149     149       150     150       151     152       153     153       154     154       155     155       156     157       158     159       160     160       161     161       162     163       163     161       164     164       165     165       166     166       167     161       168     166       169     161       161     161       162     163       163     161       164     164       165     166       166     167       170     170       171     171       172     173       174     174       175     175       176     176       177     171       178     174       179     175       170     176       171     177       172     173       173     174       174     175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 147 |    |                                                                                         | 147 |
| 149     149       150     150       151     152       153     153       154     154       155     156       156     157       158     159       160     160       161     161       162     163       163     161       164     161       165     166       166     161       167     161       168     161       169     161       161     161       162     163       163     161       164     161       165     166       166     161       170     171       171     172       172     173       174     174       175     175       176     176       177     177       178     178       179     179       170     171       171     172       172     173       174     174       175     176       176     176       177     178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 148 |    |                                                                                         | 148 |
| 150     150       151     151       152     153       154     154       155     156       156     156       157     157       158     159       159     150       160     160       161     161       162     163       164     164       165     166       166     166       167     161       168     161       169     160       170     170       171     171       172     173       173     173       174     174       175     175       176     176       177     177       178     177       179     170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 149 |    |                                                                                         | 149 |
| 151     151       152     153       153     154       155     155       156     156       157     157       158     159       159     150       160     160       161     161       162     163       164     164       165     165       166     166       167     161       168     161       169     160       170     170       171     171       172     173       173     174       174     175       175     175       176     177       177     173       178     174       179     175       170     176       171     177       172     173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150 |    |                                                                                         | 150 |
| 152     152       153     153       154     155       155     156       157     157       158     159       160     160       161     161       162     162       163     164       164     164       165     166       166     166       167     168       168     169       169     161       170     171       171     172       173     173       174     175       175     176       176     177       177     178       178     179       179     170       171     171       172     173       174     174       175     176       176     171       177     173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 151 |    |                                                                                         | 151 |
| 153     153       154     154       155     156       157     157       158     159       160     160       161     161       162     162       163     164       164     165       165     166       166     166       167     162       168     166       169     161       170     170       171     171       172     173       174     175       175     176       176     177       177     171       178     172       179     172       174     175       175     176       176     177       177     178       178     179       179     170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 152 |    |                                                                                         | 152 |
| 154     154       155     156       157     157       158     159       160     160       161     161       162     163       164     164       165     166       166     166       167     161       168     166       169     161       161     162       162     163       163     164       164     165       165     166       166     166       167     163       168     169       170     171       171     172       173     174       174     175       175     176       176     177       177     178       178     179       179     170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 153 |    |                                                                                         | 153 |
| 155     155       156     156       157     157       158     159       159     159       160     160       161     161       162     163       164     164       165     166       166     166       167     168       168     169       169     169       170     170       171     171       172     173       173     174       174     175       175     176       176     177       177     178       178     179       179     170       170     171       171     172       173     174       174     175       175     176       176     171       177     173       178     176       179     171       170     171       171     172       172     173       173     174       174     175       175     176       176     171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 154 |    |                                                                                         | 154 |
| 156       156         157       157         158       159         159       159         160       160         161       161         162       163         164       164         165       166         166       166         167       163         168       169         170       170         171       171         172       173         174       174         175       175         176       176         177       177         178       176         179       177         170       176         171       177         172       173         173       174         174       175         175       176         176       176         177       177         178       178         179       179         170       170         171       171         172       173         173       171         174       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 155 |    |                                                                                         | 155 |
| 157     157       158     159       159     159       160     160       161     161       162     162       163     163       164     164       165     166       166     166       167     167       168     169       169     169       170     170       171     171       172     172       173     173       174     174       175     175       176     176       177     177       178     177       179     170       170     171       171     171       172     172       173     173       174     174       175     176       176     176       177     177       178     176       179     170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 156 |    |                                                                                         | 156 |
| 158     158       159     159       160     160       161     161       162     162       163     163       164     164       165     166       166     166       167     167       168     168       169     169       170     170       171     171       172     172       173     173       174     174       175     175       176     176       177     177       178     177       179     170       170     171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 157 |    |                                                                                         | 157 |
| 159     169       160     160       161     161       162     162       163     163       164     164       165     166       166     166       167     168       168     169       170     170       171     171       172     172       173     173       174     174       175     175       176     176       177     177       178     178       179     179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 158 |    |                                                                                         | 158 |
| 160       160         161       161         162       162         163       163         164       164         165       166         166       166         167       167         168       169         170       170         171       170         172       173         173       174         174       175         175       175         176       176         177       177         178       178         179       179         170       170         171       175         172       173         173       174         174       175         175       176         176       176         177       178         178       179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 159 |    |                                                                                         | 159 |
| 101     101       162     162       163     163       164     164       165     165       166     166       167     167       168     168       169     169       170     170       171     171       172     172       173     173       174     174       175     175       176     176       177     177       178     178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 161 |    |                                                                                         | 161 |
| 102     102       163     163       164     164       165     165       166     166       167     168       169     169       170     170       171     171       172     172       173     173       174     174       175     175       176     176       177     177       178     178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101 |    |                                                                                         | 161 |
| 103     103       164     164       165     165       166     166       167     167       168     169       170     170       171     171       172     173       173     174       175     175       176     176       177     177       178     178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 162 |    |                                                                                         | 162 |
| 104     104       105     106       106     106       107     107       108     108       109     100       170     170       171     171       172     172       173     173       174     174       175     175       176     176       177     177       178     178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 164 |    |                                                                                         | 164 |
| 103     103       166     166       167     167       168     168       169     169       170     170       171     171       172     172       173     173       174     174       175     175       176     176       177     177       178     178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 165 |    |                                                                                         | 165 |
| 160     160       167     167       168     168       169     169       170     170       171     171       172     172       173     173       174     174       175     175       176     176       177     177       178     178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 166 |    |                                                                                         | 166 |
| 101     101       168     169       169     169       170     170       171     171       172     172       173     173       174     174       175     175       176     176       177     177       178     178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 167 |    |                                                                                         | 167 |
| 100     100       169     169       170     170       171     171       172     172       173     173       174     174       175     175       176     176       177     177       178     178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 168 |    |                                                                                         | 168 |
| 100100170170171171172172173173174174175175176176177177178178170170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 169 |    |                                                                                         | 169 |
| 170     170       171     171       172     172       173     173       174     174       175     175       176     176       177     177       178     179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 170 |    |                                                                                         | 170 |
| 172     172       173     173       174     174       175     175       176     176       177     177       178     179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 171 |    |                                                                                         | 171 |
| 173     173       174     174       175     175       176     176       177     177       178     179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 172 |    |                                                                                         | 172 |
| 174     174       175     175       176     176       177     177       178     179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 173 |    |                                                                                         | 173 |
| 175     175       176     176       177     177       178     178       170     170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 174 |    |                                                                                         | 174 |
| 176     176       177     177       178     178       170     170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 175 |    |                                                                                         | 175 |
| 177<br>178<br>170<br>170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 176 |    |                                                                                         | 176 |
| 178 170 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 177 |    |                                                                                         | 177 |
| 170 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 178 |    |                                                                                         | 178 |
| 1/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 179 |    |                                                                                         | 179 |