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Abstract. Accurate semantic scene understanding of the surrounding
environment is a challenge for autonomous driving systems. Recent LiDAR-
based semantic segmentation methods mainly focus on predicting point-
wise semantic classes, which cannot be directly used before the further
densification process. In this paper, we propose a cylindrical convolution
network for dense semantic understanding in the top-view LiDAR data
representation. 3D LiDAR point clouds are divided into cylindrical parti-
tions before feeding to the network, where semantic segmentation is con-
ducted in the cylindrical representation. Then a cylinder-to-BEV trans-
formation module is introduced to obtain sparse semantic feature maps
in the top view. In the end, we propose a modified encoder-decoder net-
work to get the dense semantic estimations. Experimental results on the
SemanticKITTI and nuScenes-LidarSeg datasets show that our method
outperforms the state-of-the-art methods with a large margin.

1 Introduction

Semantic perception of the surrounding environments is important for au-
tonomous driving systems. In order to achieve reliable semantic estimations in
top-view representation, autonomous vehicles are usually equipped with cam-
era and LiDAR sensors. Benefiting from the rapid development of convolutional
neural networks (CNNs), a large number of camera-based semantic segmentation
networks, like Fully Convolutional Network (FCN) [1], ERFNet [2], U-Net [3],
etc., have been proposed and proved to be effective. However, most of these
methods are only applicable to the segmentation in perspective view, and accu-
rate transformation from perspective to top-view is still a challenge. The camera
sensor lacks effective geometric perception of the environment. In recent years,
with the release of large-scale 3D LiDAR semantic segmentation datasets (Se-
manticKITTI [4] and nuScenes-LidarSeg [5]), the LiDAR-based semantic seg-
mentation performance has been significantly increased. Because these datasets
only provide point level semantic labels, most works only perform sparse seman-
tic segmentation and predict point-wise semantic classes. The obtained sparse
results still need further processing before used. Therefore, some works conduct
dense top-view semantic segmentation with sparse inputs. Compared with sparse
predictions, the dense top-view segmentation results are more valuable for some
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upper-level tasks such as the navigation and path planning of autonomous driv-
ing vehicles.

In this paper, we focus on the dense semantic segmentation of LiDAR point
clouds in top-view representation. Compared with 2D camera images, the 3D
LiDAR data can retain precise and complete spatial geometric information of the
surroundings. Therefore, we can generate accurate top-view maps in a simpler
way. However, the main problem is that the LiDAR data is sparsely distributed,
and the generated top-view maps are sparse. In order to deal with the sparsity
of 3D LiDAR data, some LiDAR-based segmentation approaches [6] project the
3D point clouds onto 2D bird’s-eye-view (BEV!) images, and conduct dense
semantic segmentation with 2D convolution networks. However, the projection
process inevitably leads to a certain degree of information loss. Some methods
[7-9] use pillar-level representation and point-wise convolution to retain and
obtain more information in the height direction. These approaches still focus
more on 2D convolution, neglecting the rich geometric relationshipss between
precise 3D point cloud data.

To solve the problems mentioned above, we make use of the cylinder repre-
sentation and 3D sparse convolution networks in our work. Compared with 2D
images or pillar representation, the cylinder representation can maintain the 3D
geometric information. The cylindrical partition divides the LiDAR point cloud
dynamically according to the distances in cylindrical coordinates, and provides
a more balanced distribution than 3D voxelization. The 3D sparse convolution
networks can effectively integrate the geometric relationships of LiDAR point
clouds, extract informative 3D features and save significant memory at the same
time.

After the 3D sparse convolution networks, we introduce a cylinder-to-BEV
module to convert the obtained semantic features in cylindrical representation to
BEV maps. The cylinder-to-BEV module uses the coordinate information of 3D
points to establish corresponding relationships, and transfers features between
the two representations. The transformed feature maps in top-view are sparse,
so we further propose a modified U-Net network to get the final dense segmen-
tation results. We use groups of dilated convolutions with different receptive
field sizes in different stages of downsampling and upsampling to capture more
descriptive spatial features, and use grouped convolutions to reduce the FLOPs
while maintaining an acceptable level of accuracy.

The main contributions of this work lie in three aspects:

e We propose an end-to-end cylindrical convolution network that can gener-
ate accurate semantic segmentation results in top-view. The combination
of cylinder representation and 3D sparse convolution greatly improves the
segmentation performance.

e We propose a cylinder-to-BEV module and a modified U-Net to efficiently
use 3D features to enhance the dense semantic segmentation in top-view.

L BEV is another expression for top view.
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e The proposed method outperforms the state-of-the-art methods on the Se- 090
manticKITTI and nuScenes-LidarSeg datasets, which demonstrates the ef- 091

fectiveness of the model. 092

093

094

2 Related Work 005
096

2.1 Image Semantic Segmentation in Bird’s Eye View 007

Understanding the surrounding environment is an essential part of an autonomous”
driving system. To accomplish this, many previous works created a semantic map 099
in Bird’s Eye View(BEV) that can distinguish drivable regions, sidewalks, cars, 100
bicycles and so on [10-14]. Image semantic segmentation in BEV usually consists Lot
of following components: an encoder for encoding features in the image view, a 102
view transformer for converting the features from the image view to BEV, an '*
encoder for further encoding the features in BEV and a semantic head for label 1%
classification [10-12]. Thomas Roddick et al. [13] chose feature pyramid networks *%°
like in [15] when extracting the image-view features. Weixiang Yang et al. [16] *°°
implemented cross-view transformation module that consists of the cycled view 7
projection and the cycled view transformer in order to enrich the features getting '

from front-view image. 109
110

111
2.2 3D Data Representation 112

Since the recent launch of large-scale datasets, such as SemanticKITTI [4] and
nuScenes [5], there have been an increasing number of studies on semantic seg-
mentation of LiDAR point clouds. However, due to the sparse, irregular, and
disorderly LiDAR point cloud data, it is still challenging to be processed and
applied to semantic segmentation. The methods are mostly divided into three
branches: point-based methods, grid-based methods, and projection-based meth-
ods.

Point-based methods directly process raw LiDAR point clouds. PointNet [17]
is a pioneer and a representative of point-based approaches, which learns features
for each point using shared MLPs. PointNet++ [18], an upgrade to PointNet,
generates point cloud subsets by clustering and employs PointNet to extract
point features from each subset. RandLA-Net [19] uses a random sampling to
boost processing speed and local spatial encoding and attention-based pooling.
KPConv [20] develops spatial kernels to adapt convolution operations to point
clouds. However, due to computational complexity and memory requirements,
the performance on large-scale LiDAR point cloud datasets is limited.

Grid-based methods convert point clouds into uniform voxels, after which,
3D convolution can be employed on voxel data. In VoxelNet [21], point clouds are '3°
quantized into uniform 3D volumetric grids, which maintains the 3D geometric 13!
information. Fully convolutional point networks [22] achieve uniform sampling 32
in 3D space by collecting a fixed number of points around each sampled site and 133
then apply a U-Net to extract information from multiple scales. Cyliner3D [23] 134
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recommends dividing the original point cloud into cylindrical grids to distribute
the point clouds more evenly throughout the grids.

Furthermore, projection-based methods project 3D point clouds onto dif-
ferent 2D images. SqueezeSeg series [24,25], RangeNet series [26] and Salsanet
series [6,27] deploy the spherical projection on the LIDAR data. In VoloMap [28]
and PolarNet [29], bird-eye view (BEV) and polar BEV projections on LiDAR
points are proposed respectively. What’s more, PointPillar series [7,30,31] split
the point clouds into a group of pillars and project them onto a pseudo image.
Projection-based methods can attain real-time performance, but their accuracy
is often limited due to the information loss of projection.

2.3 Semantic Segmentation of LIDAR Input

Many approaches take point clouds as input and return point-wise semantic
labels as output, such as PointNet [17], PointNet++ [18] and KPConv [20].
Other methods convert the input of point clouds into different forms and finally
produce semantic voxel grids or semantic projected images. Voxelnet [21] and
SegCloud [32] employ 3D fully convolutional networks on voxels to assign a
class label to each grid, which is shared by all points in the grid. RangeNet+-+
[26], a typical method based on Range-View, converts point cloud to a range
image and performs semantic segmentation of the image using an hourglass fully
convolution network.

What’s more, some approaches achieve top-view semantic segmentation after
projecting the point cloud into a BEV image [8,33-35]. Bieder et. al [33] turn 3D
LiDAR data into a multi-layer top-view map for accurate semantic segmentation.
Following this route, PillarSegNet [8] is proposed to learn features from the pillar
encoding and conduct 2D dense semantic segmentation in the top view. These
methods take LIDAR point cloud as input and generates dense top-view semantic
grid maps, which provide a fine-grained semantic understanding that is necessary
for distinguishing drivable and non-drivable areas.

3 Proposed Method

In this section, we introduce the architecture of the proposed dense top-view
semantic segmentation method, as illustrated in Fig. 1. The whole network con-
sists of three parts, a 3D cylindrical encoding, a cylinder-to-BEV module, and
a 2D encoder-decoder network. The network takes sparse a LIDAR point cloud
as input and generates dense semantic maps in top-view. The design of each
module will be detailed in the following.

3.1 3D Cylindrical Encoding
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point cloud cylindrical partition point-wise features point-to-bev projection modified U-Net semantic segmentation

Fig. 1. Overview of the proposed dense top-view semantic segmentation network. Given
a 3D LiDAR point cloud, the network first divides it into cylindrical partitions and ap-
plies a 3D sparse convolution module to obtain high-level features. Then, the cylinder-
to-BEV module converts the semantic features in cylindrical representation to BEV
maps. Finally, a modified U-Net is used to predict the dense top-view semantic seg-
mentation results.

3D LiDAR point cloud into voxels [21] or pillar features [8]. The voxel represen-
tation quantizes the point cloud into uniform cubic voxels. However, the LiDAR
data is irregular and unstructured. This leads to a large number of empty voxels
and affects the computational efficiency. The pillar-based method uses MLPs to
extract features, which cannot make full use of the 3D topology and rich spatial
geometric relationships.

Based on these considerations, we apply cylindrical coordinates to represent
LiDAR data in this paper. The density of the 3D LiDAR point cloud usually
varies, and the density in nearby areas is significantly higher than that in remote
areas. Uniformly dividing the LiDAR data with different densities will lead to
an unbalanced distribution of points. The cylindrical partitions can cover areas
with different size of grids, which grow by distance, evenly distribute points
on different cylindrical grids, and provide a more balanced representation. The
cylindrical coordinate system is defined as follows,

p =+ y?
0 = arctan(y, x) (1)

zZ=Zz

where (z,y,z) represents the Cartesian coordinate, and (p, 6, z) represents its
corresponding cylindrical coordinate. The radius p and tangent angle 6 denote
the distance from the origin in the z-y plane and the tangent angle between the
y and z directions, respectively.

Compared with the voxel representation, although the number of empty el-
ements is reduced, the cylindrical representation of LiDAR data is still sparse.
Therefore, we apply a 3D sparse convolution network to extract features, which
can efficiently process sparse data and increase the computing speed. More de-
tails of the network can be referred in [23].

3.2 Cylinder-to-BEV Module

After the 3D feature encoding module, we can obtain high-level features with
rich semantic information in the form of cylindrical representation. Since the
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goal is to predict dense semantic categories in top-view, we need to convert
the cylindrical features into BEV maps before the 2D semantic segmentation
module.

Figure 2 shows two types of transformations, without and with point guid-
ance. Without point guidance means that we use the correspondence between
the cylindrical coordinate system and the BEV coordinate system to directly
convert the features. However, the cylindrical grid is different from the BEV
grid, which can lead to deviation problems at the boundaries. As shown in the
left of Fig.2, the cylindrical grid and the BEV grid have different shapes, in
which the yellow denotes the cylindrical grid with features, and the purple rep-
resents the empty cylindrical grid without features. One BEV grid overlaps with
two cylindrical grids. Transforming directly from cylinder to BEV may establish
correspondence between the purple cylindrical grid and the BEV grid instead
of the yellow one, resulting in loss of information. The right of Fig.2 shows the
transformation with point guidance. The cylindrical features are first converted
to point features according to Eq. 1. Then, the point features are converted
to BEV features according to Eq. 2. Using point features as intermediate can
preserve more useful features and cover the BEV grids more completely.

Fig. 2. Illustration of conversion from cylinder to BEV without and with point guid-
ance. Left shows the transformation without point guidance, in which the yellow de-
notes cylindrical grid with features, and the purple represents empty cylindrical grid
without features. Right shows the transformation with point guidance, the point serves
as intermediate to connect the cylinder and BEV grids.

The transformation from point to BEV grid is described bellow. Given a point
(z,y, z) and the feature f, its corresponding coordinates in BEV are calculated
as,

{u = x/precision + W/2 @)

v =y/precision + H/2

where (u,v) represents the corresponding point in BEV, precision denotes the
resolution of BEV. W and H represent the width and height of the BEV map,
respectively.

When converting point features to BEV features, a lot of geometric informa-
tion may be lost due to the many-to-one problem. Different from some methods
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that use maximum compression and retain only one point feature, we sort the
points corresponding to the same BEV grid by height, and retain the features
of the highest and lowest points. Therefore, the features of each BEV grid are
as follows,

Fbe’u:(Tl7xl7yl;zl7flarhaxh7yhazhafh) (3)

where r denotes the distance and the subscripts [ and h represent the lowest and
highest points, respectively. The features (zy, f1, 21, fi) of the highest and lowest
points can provide the height range and spatial features of each BEV grid. For
example, the spatial features of the highest and lowest points for roads, vehicles,
and pedestrians vary greatly, which is very useful in determining the semantic
categories.

3.3 2D Semantic Segmentation

After the cylinder-to-BEV process, we can get sparse BEV maps with rich seman-
tic information. In this section, we will introduce the 2D semantic segmentation
that is used to densify the semantic predictions. The network is based on U-Net
structure and added various convolution designs, including dilated convolution,
depth-wise convolution, inverse bottleneck, etc., as shown in Fig.3.

Encoder-Decoder Architecture. Building upon the U-Net framework, we
use convolutional blocks in both encoder and decoder, supplemented by appro-
priate design, to make the network more suitable for the LiDAR-based semantic
segmentation task. As a characteristic of U-Net, skip-connection is also used to
improve image segmentation accuracy by fusing low-level and high-level features.
Considering the computational overhead, we use a separate downsampling layer
and a pixel-shuffle layer instead of transpose convolution in the upsampling part.

Depth-wise Convolution and Inverse Bottleneck. Depth-wise convolu-
tion is adapted from grouped convolution, in which the number of groups equals
the number of channels. The advantage is that it greatly reduces the floating-
point operations while maintaining an acceptable level of accuracy. An important
design of blocks in Transformer [36], MobileNetV2 [37] and ConvNet [38] is the
inverse bottleneck. The dimension of the intermediate hidden layer is larger than
that of the input and output layers. We implement depth-wise convolution and
combine it with two 1x1 convolutions to form an inverse bottleneck. As shown
in Fig. 3, we combine these two designs and apply them as the basic block whose
color is pink.

Dilated Convolution Groups. Unlike increasing the size of the convolu-
tion kernel, which greatly increases the number of parameters, dilated convolu-
tion provides a cost-effective way to extract more descriptive features. Because
different stages of U-Net have different scales of information, we use convolution
groups with different receptive field sizes for each stage in downsampling and
upsampling as shown in Fig. 3. In each group, a 1x 1 convolution is used to
extract the spatial information from different receptive fields after concatenat-
ing the outputs of each dilated convolution. Meanwhile, a dropout layer and a
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Fig. 3. Flowchart of the proposed modified U-Net. k,d, s,bn, and X represent the
kernel size, dilation rate, stride, batch normalization, and block numbers, respectively.
Blocks of different colors represent convolutional layers of different structures. Among
them, the light blue blocks represent ordinary convolution, dropout, and normalization
blocks. The pink blocks represent a designed convolution block, which is the base block
of each convolution layer.

convolution blocks in different stages of downsampling and upsampling is ad-
justed to (3,3,9,3). As seen in the Fig. 3, the blue block represents a convolution
group consisting of 3 convolution blocks, and the cyan block represents a convo-
lution group consisting of 9 convolution blocks.

In addition, we use GeLU activation function instead of ReLU in the basic
block, and reduce the number of activation functions used in each block. Simi-
larly, we use fewer normalization layers and replace BatchNorm with LayerNorm,
as in Transformer.

3.4 Loss Function.

The unbalanced data distribution in the dataset can make model training dif-
ficult. Especially for the classes with fewer samples, the network predicts them
with a lower frequency than that of the classes with more samples. To solve this
problem, we use the weighted cross-entropy loss function, whose weight is equal
to the inverse square root of the frequency of each class, as shown below:

Lwce (y) @) = - Z Alp(yl)log(p(gz)) (4)
i=1
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where n denotes the number of classes, y; and y; represent the ground truth and 3
the prediction, respectively. A\; = 1/4/f; and f; denotes the frequency of the i*" 3
class. 3

In addition, we also incorporate the Lovasz-Softmax loss in the training pro- 3
cess. The Jaccard loss function is directly defined based on the Intersection over 3
Union (IoU) metric. However, it is discrete and its gradient cannot be calcu- 3
lated directly. In [39], the lovész extension is proposed, which is derivable and 3

can be used as the loss function to guide the training process. Specifically, the 3
Lovasz-Softmax loss can be expressed as follows: 3
1 3
Lis = @ Z Ay (m(c)), 3
ceC 3
. () 5
1—2a;(c) if c=uyic),
m;(c) = : 3
x;(c) otherwise s

3
3
3
3
3
3

where C' denotes the class number, A represents the lovasz extension of the
Jaccard index. z;(c) and y;(c) represent the predicted probability and the ground
truth of pixel ¢ for class ¢, respectively.

The final loss function is a linear combination of the weighted cross-entropy
loss and the Lovasz-Softmax loss, as shown below:

L= Lwce + Lls (6) 2

3
4 Experiments 3

3
In order to evaluate the segmentation performance of the proposed network, we 3
carry out experiments on SemanticKITTI [4] and nuScenes-LidarSeg [5] datasets 3
with raw LiDAR data, sparse semantic segmentation ground truths, and the 3
aggregated dense semantic segmentation ground truths. The experimental re- 3
sults show that our network achieves state-of-the-art performance in both Se- 3
manticKITTI and nuScenes-LidarSeg datasets. 3
3
3
3
3
3
3
3
3

4.1 Datasets

SemanticKITTI. The SemanticKITTI is a large-scale outdoor point cloud
dataset with precise pose information and semantic annotations of each LiDAR,
point. The training set consists of sequences 00-07 and 09-10, and the eval-
uation set consists of sequence 08, containing 19130 and 4071 LiDAR scans,
respectively. As in [8], we merge the 19 classes into 12 classes. Specifically, The
motorcyclist and bicyclist are merged to rider. The bicycle and motorcycle are *
merged to two-wheel. The car, truck and other-vehicle are merged to vehicle. *
The traf fic-sign, pole and fence are merged to object. The other-ground and *
parking are merged to other-ground. The unlabeled pixels are not considered #
in the training process. 4
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nuScenes-LidarSeg. The nuScenes-LidarSeg provides semantic annotations 405

for each LiDAR point in the 40,000 keyframes, marking a total of 1.4 bil- 406
lion LiDAR points, including 32 classes. Similarly, we map the adult, child, 407
policeof ficer, and constructionworker to pedestrian, bendybus and rigidbus to 408
bus. These class labels for barrier, car, constructionvehicle, truck, motorcycle, 409
traf ficcone, trailer, driveablesur face, sidewalk, manmade, other flat, terrain aio
and vegetation remain unchanged. The other classes are mapped to unlabeled. 411
As a result, we merge 32 classes into 16 classes on the nuScenes-LidarSeg dataset. 412
413

4.2 Label Generation 414
415

Sparse Label Generation. As described in [8], we project the 3D LiDAR 416
point cloud onto the BEV grid map and perform weighted statistical analysis 417
on the frequency of each class in each grid to obtain the most representative 415
grid-wise semantic label. For each grid, the weighted calculation formula of its 419

label ¢; is defined as follows: 420
421

Ci = argmalce(1,cy (wenic), (7) 422

423

where C' is the number of the semantic classes, w. denotes the weight for class
¢, and n; . represents the number of points of class c in grid 4. In addition, the
weights of the traffic participant classes, such as person, rider, two-wheel, and
vehicle, are chosen as 5. The weight of the unlabeled class is set as 0 and the
weights of other classes are set as 1.

Dense Label Generation. We use the precise pose information provided
by SemanticKITTI to aggregate consecutive LiDAR scans and generate dense
top-view ground truths, which can provide fine-grained descriptions of the sur-
rounding environment. As in [8], the neighboring LiDAR scans with a distance
less than twice the farthest distance are selected as the supplement to the cur- #32
rent frame. Based on the provided poses, we transform the adjacent LiDAR 433
point clouds to the coordinate system of the current scan, and then we can get 434
dense aggregation following Eq. 7. In addition, to avoid confusion caused by 435

overlapping, we only aggregate static objects and ignore moving objects. 436
437

438
439

424
425
426
427
428
429
430
431

4.3 Evaluation Metrics

To evaluate the performance of the proposed dense top-view semantic segmenta- 440
tion method, we apply the widely used intersection-over-union (IoU) and mean 441

intersection-over-union (mlIoU) in all classes, which are defined as follows: 442
443

Pi n Gl 1 = 444

IoUi = g0 moU =5 Z; IoU;, (8) 4us

= 446

where P; denotes the set of pixels whose predicted semantic labels are class i, G; **7
represents the set of pixels whose corresponding ground truths are class i, and 448
C represents the total number of classes. 449
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Table 1. Quantitative results on the SemanticKITTI dataset [4]
e
— 5 =
= 8 24 8 o0 .S
X |9 o '§ T; s = 8 = - =
S 5] o 5 0T b B
o2 2 3 5 3z £ &8 2 £ § %E B
S| 8 2 2 2 ¥ 8 2 8 £ E ¢
Mode Method E/m ® ®m ® ® ®m [ |
Bieder et al. [33] 39.8/69.7 0.0 0.0 0.0 85.8 60.3 25.9 72.8 15.1 68.9 9.9 69.3
Pillar [8] 55.1179.5 15.8 25.8 51.8 89.5 70.0 38.9 80.6 25.5 72.8 38.1 72.7
Sparse Train Pillar + Occ 8] 55.3182.7 20.3 24.5 51.3 90.0 71.2 36.5 81.3 28.3 70.4 38.5 69.0
Sparse Eval Pillar + Occ + P 57.5/85.1 24.7 16.9 60.1 90.7 72.9 38.3 82.9 30.1 80.4 35.4 72.8
Pillar + Occ + LP 57.8185.9 24.2 18.3 57.6 91.3 74.2 39.2 82.4 29.0 80.6 38.0 72.9
Pillar + Occ + LGP [9]|58.8|85.8 34.2 26.8 58.5 91.3 74.0 38.1 82.2 28.7 79.5 35.7 71.3
Our 67.9(89.5 59.7 52.7 74.1 92.7 76.2 36.5 85.8 37.5 83.3 50.6 75.7
Bieder et al. [33] 32.8(43.3 0.0 0.0 0.0 84.3 51.4 22.9 54.7 10.8 51.0 6.3 68.6
Pillar [8] 37.5/45.1 0.0 0.1 3.3 82.7 57.5 29.7 64.6 14.0 58.5 25.5 68.9
Sparse Train Pillar 4+ Occ [8] 384|525 0.0 0.2 3.0 85.6 60.1 29.8 65.7 16.1 56.7 26.2 64.5
Dense Eval Pillar + Occ + P 40.9(53.3 11.3 13.1 7.0 83.6 60.3 30.2 63.4 15.7 61.4 24.6 67.2
Pillar + Occ + LP 41.5|57.3 11.3 9.5 10.4 85.5 60.1 31.2 64.6 16.9 59.5 25.3 66.8
Pillar + Occ 4+ LGP [9]|40.4|55.8 10.8 14.1 9.3 84.5 58.6 26.8 62.4 15.2 59.2 26.3 62.3
Our 38.553.1 21.226.4 4.8 72.8 52.3 22.1 52.1 20.0 47.8 31.5 57.2
Pillar [8] 42.8/70.3 5.4 6.0 8.0 89.8 65.7 34.0 65.9 16.3 61.2 23.5 67.9

Pillar 4+ Occ [8] 44.1172.8 7.4 4.7 10.2 90.1 66.2 32.4 67.8 17.4 63.1 27.6 69.2
Pillar 4+ Occ + P 44.9|72.1 6.8 6.2 9.9 90.1 65.8 37.8 67.1 18.8 68.1 24.7 71.4
Pillar + Occ + LP 44.8|73.0 7.8 6.1 10.6 90.6 66.5 33.7 67.6 17.7 67.6 25.5 70.4
Pillar + Occ + LGP [9]|44.5|73.2 6.5 6.5 9.5 90.8 66.5 34.9 68.0 18.8 67.0 22.8 70.0
Our 48.8/70.0 25.9 28.0 22.5 90.8 65.4 32.7 68.3 20.9 64.4 30.6 66.1

Dense Train
Dense Eval

4.4 Implementation Details

We deploy the proposed network on a server with a single NVIDIA Geforce RTX
2080Ti-11GB GPU, running with PyTorch. The initial learning rate is 0.01, the
epoch size is 30, and the batch size of 2.

In the preprocessing step, the input LIDAR point cloud is first cropped into
[(—51.2,51.2),(—51.2,51.2), (—5.0,3.0)] meters in the x,y, z directions, respec-
tively. Then, the cropped data is divided into 3D representation R € 512 x 360 x
32 by cylindrical partition, where three dimensions represent radius, tangent
angle, and height, respectively. After the 3D sparse convolution networks, the fea-
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tures are converted to a BEV map, covering the area of [(—51.2, 51.2), (—25.6, 25.6)F2

meters in the x,y directions. The size of the BEV map is B x 48 x 256 x 512,
representing batch size, feature channels, image height and width, respectively.
The resolution is [0.2, 0.2] meters. The final output of the network is the semantic
prediction result whose size is 256 x 512. Since the range of the semantic ground
truth is [(—50.0,50.0), (—25.0,25.0)] meters and the resolution is [0.1,0.1], we
use linear interpolation to zoom in the network output, and then crop it to the
same size as the ground truth.

4.5 Results on SemanticKITTI dataset

We use two training modes and two evaluation modes for dense top-view seman-
tic segmentation, following [33]: Sparse Train and Sparse Eval, Sparse Train and
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495 Table 2. Quantitative results on the nuScenes-LidarSeg dataset [5]. 405
496 496
2
497 g 02 o =1 497
’ — 5 ¢ & . 5 o g £ ¥
498 Xls 3 T 5 . £ T § E & E 4%
- 2 > 5 2 ] s & = B
2Pl E &z 5 £ 58 % £ F B o2 £ & :E E &
499 2| &2 2 8§ 8 § & 8 & EBE s 35 % & E g 49
500 Mode Method | £ | @ ™ "= mm " " mE N B
501 Dense Train| Pillar [8][22.7[10.8 0.0 5.3 1.6 6.0 0.0 0.0 0.819.59 0.8 83.4 355 45.0 52.3 48.5 543 5,
Dense Eval |MASS [9)[32.7(28.4 0.0 24.0 35.7 16.4 2.9 4.4 0.1 29.3 21.2 87.3 46.9 51.6 56.3 56.8 61.4
502 Our [33.7/25.0 3.2 26.1 46.9 15.0 11.8 10.9 6.7 22.6 25.7 85.6 40.2 48.3 58.6 62.0 51.2 502
503 503
504 Dense Train, Dense Train and Dense Eval. Among them, Sparse Eval represents 504
505 using the sparse top-view semantic segmentation ground truth derived from a 505
506 single LiDAR scan, Dense Eval represents using the generated dense top-view 506
507 ground truth. 507
508 Table 1 shows the quantitative comparison with other state-of-the-art meth- sos
509 ods. The proposed method achieves a performance improvement of 9.1% over 509
510 the current best result in the sparse evaluation mode, and 3.9% improvement 510
511 in the dense evaluation mode. In particular, our method greatly improves the 511
512 performance of classes with small spatial size, including person, two-wheel and 512

513 rider, and also performs well on other classes. In the sparse mode, the IoUs of 53
514 these three classes are improved by 25.5%, 25.9% and 25.6%, respectively. In 514
515 the dense mode, they are increased by 18.1%, 21.8% and 21.9%. This proves 515

516 the effectiveness of our method in semantic segmentation. 516
517 517
518 4.6 Results on nuScenes-LidarSeg dataset 518
519 519

In addition to SemanticKITTI dataset, we also evaluate our method on the

ii? nuScenes-LidarSeg dataset for dense top-view semantic segmentation. As shown ii?
0 in Table 2, our network achieves better performance than other ones. The pro- .
. posed network obtains a 1.0% performance improvement over the state-of-the- .
500 art method. Our method is superior in categories with sparse points, such as -
505 ?)icycle, motorcycle, pedestrian and cone. The IoU of car has been significantly 505
o6 improved by 11.2%. o6
527 527
528 4.7 Ablation Studies 528
529 In this section, we conduct extensive ablation experiments to investigate the °*°
530 effects of different components in our method. We create several variants of °*
531 our network to verify the contributions of each components Table 3 summarizes °**
532 the semantic segmentation results on the SemanticKITTI evaluation dataset in °?
533 dense mode. The Baseline represents the method of using raw point features, >3
53 point-to-BEV projection and a simple encoder-decoder network with traditional 53
535 convolution blocks. The Cylinder represents replacing point features with cylin- °3°
536 drical features and direct cylinder-to-BEV projection without point-guidance. 536

537 The Cylinder-to-BEV represents using cylinder-to-BEV projection with point 37
538 as intermediate. The ModifiedU-Net means using a 2D modified U-Net in the 538
539 2D semantic segmentation part. 539
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Fig. 4. Qualitative results generated by our approach on the SemanticKITTI validation
set. From top to bottom in each column, we display the input point cloud, the 2D
occupancy map, the ground truth and the prediction from our method. The unobserved
areas were erased using the observability map as in [9]

Table 3. Ablation study on the SemanticKITTI dataset. All experiments are carried
out in dense mode.

Baseline Cylinder Cylinder-to-BEV Modified U-Net mIoU [%)]
v 38.9
v v 45.1
v v v 47.5
v v v v 48.8

The results in Table 3 show that when dealing with outdoor sparse point
clouds, the cylindrical encoding is quite successful in gathering rich charac-
teristics from input data, and greatly improves the spatial feature extraction.
Compared with methods that ignore 3D information and convert LiDAR data
to 2D representation directly, we focus on investigating the spatial geometric
relationships of LiDAR points, thus achieving an improvement of 6.2%. The
well-designed cylinder-to-BEV module selects key characters in each grid of the
2D top-view, and further increases the performance of 2.4%. The modified U-Net
with dilated convolution, depth-wise convolution and inverse bottleneck can also
bring a 1.3% performance improvement.
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(@)

(b)

©

Fig. 5. Qualitative results generated by our approach on the nuScenes dataset. From ©

left to right in each row, we display the input point cloud, the 2D occupancy map, the 6
ground truth and the prediction from our method. 6
6
6
4.8 Qualitative Analysis 6

As shown in Fig. 4 and Fig. 5, the proposed network can get an accurate se-
mantic understanding of the surrounding environment. It can not only recognize
large objects like roads, vehicles, and buildings, but also segment smaller ob-
jects more accurately, such as pedestrians, bicycles, motorbikes, and riders. This
demonstrates that our method can effectively deal with outdoor, large-scale,
sparse, and density-varying 3D point cloud data, and improve the dense seman-
tic segmentation performance in the 2D top-view.

5 Conclusion

In this paper, we propose an end-to-end cylindrical convolution network for
dense top-view semantic segmentation with LiDAR data only. We use cylindrical
LiDAR representation and 3D CNNs to extract semantic and spatial information,
which can effectively preserve more 3D connections and deal with the sparse
density of point clouds. Moreover, we introduce an efficient cylinder-to-BEV °
module to transform features from cylindrical representation to BEV map and °
provide guidance for the proposed modified U-Net based semantic segmentation °
in the top-view. We perform extensive experiments and ablation studies on the ©
SemanticKITTI and nuScenes-LidarSeg datasets, and achieve state-of-the-art ©
performance. 6

6
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This supplementary material provides additional visual results that can-
not be included in the paper submission due to space limitations. In the first
section, we show visual results for sparse predictions of our method on Se-
manticKITTI dataset [1]. In the second section, we display more visual results
on SemanticKITTI dataset, including comparisons with the results of previous
methods. Moreover, a demonstration video is included in the same zip file as the
supplementary material.

1 Visual Results for Sparse Predictions

In the main text, we have shown dense semantic prediction results. To fully
demonstrate the effectiveness of our model, we present sparse semantic prediction
results here.

(CY (b) ©

Fig. 1. Qualitative results generated on the SemanticKITTI validation set. From top
to bottom in each column, we display the input point cloud, the ground truth, the
prediction from our method, respectively.
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2 Addition Visual Results on SemanticKITTI

Here we show two groups of comparisons with the results for Bieder et al. [2],
PillarSeg [3], MASS [4] and our method on SemanticKITTI. For a fair compar-
ison, the unobservable regions in our predictions are also filtered out using the
observability map as in [2].

As shown in Fig 2 and Fig 3, our method is able to produce very similar
results to the ground truth for challenging urban scenes. Compared with other
methods, our method achieves a higher level of accuracy, especially for the pre-
diction of small volume objects.

Fig. 2. Qualitative results generated on the SemanticKITTI validation set. From top
to bottom in each column, we display the input point cloud, the 2D occupancy map,
the ground truth, the prediction from Bieder et al. [2], PillarSeg [3] and our method,
respectively. The unobserved areas were erased using the observability map as in [2]
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Fig. 3. Qualitative results generated on the SemanticKITTI [1] validation set. From
top to bottom in each column, we display the input point cloud, the 2D occupancy
map, the ground truth, the prediction from Bieder et al. [2], PillarSeg [3], MASS [4] 127
and our method, respectively. The unobserved areas were erased using the observability 128

map as in [2] 129
130
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