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Learning curve of a short time neurofeedback
training: Reflection of brain network dynamics
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Abstract—Neurofeedback (NF) training is a type of online
biofeedback in which neural activity is measured and provided
to the participant in real time to facilitate the top-down control
of specific activation patterns. To improve the training efficiency,
an investigation on the learning of EEG regulation and effect
on neural activity during NF is critical. This paper attempts
to analyze the learning curve and the dynamics of the phase
locking value (PLV)-based brain network for a short time EEG-
based NF, in which 28 participants carried out alpha down-
regulating NF training in 2 consecutive days. The results reveal
that participants could successfully construct the related learning
network to achieve the training goals in the first day training
and the beginning of the second day training. Moreover, the
learning plateaus were discovered from the results of the relative
amplitude and the functional brain network in the middle of the
second day training. These findings could be helpful for better
understanding of the learning process in NF from the functional
connectivity viewpoint and would contribute to building a more
efficient learning protocol for NF training.

Index  Terms—Neurofeedback training, Alpha down-
regulation, Learning curve, Functional brain network dynamics,
Phase locking value.

I. INTRODUCTION

EUROFEEDBACK (NF) training is a psychophysiolog-
N ical procedure in which a closed-loop training technique
is applied to help participants learn the self-regulation of their
brain activity [1]. It has demonstrated benefits on cognitive and
behavioral performance as well as the treatment of symptoms
in brain disorders [2]-[5]. However, as the core mechanism of
the NF training, the learning of the EEG self-regulation has not
been understood well. The learning curve and changes of brain
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networks are explored in this study to investigate the learning
process during the NF training, which could be helpful for
improving the training protocol. The training protocols in most
recent studies require more than 20-min training time per day
and need to be repeated for a number of days [6]-[8]. Such
long training time easily leads participants to over-learning,
fatigue, and consequently to learning plateau [1], [9]. Based
on the good understanding of the learning curve during the
NF training, tailored protocols with short training time could
be designed to maintain participants’ attentions and improve
the efficiency of training by avoiding the learning plateau.

The learning curve is literally a graphic record of the
performance and self-control in the field of learning [10]. For
a statistical pattern of the learning curve, when the number of
repetitions is increased, there is a stagnation of learning the
task [11], [12]. Results of the theta/beta NF for ADHD patients
illustrated an increment in performance during the beginning
of the training phase, a stagnation in the middle training phase,
and a subsequent increase in the final training phase [13].
A flattening of the learning curve following a strong initial
improvement also reported in the NF for treating tinnitus
[14]. For healthy participants, NF training has also reported a
plateau with a subsequent stagnation [15]-[17]. These findings
illustrate that optimizing the NF training protocol for EEG
regulation by studying the brain activities to avoid the learning
plateau is required and important for maximizing the efficiency
of the NF training. Many recent studies focused on analyzing
factors influencing the EEG learning but from the activities
in isolated brain regions [18]-[21]. Some researches tried
to build the relationships between the learning processes of
the NF and the brain functions to explain these changes of
the training parameters in the NF training [10], [22], [23].
Although these studies showed the learning curves of the NF
and hypothesized these observations as the training fatigue or
over-learning, they did not consider the short time NF training
and did not provide evidences from the modulation of neural
activation patterns to explain the learning curves and to verify
their hypotheses. To fill these knowledge gaps and better reveal
the underlying neural functions, the functional connectivity
method is introduced.

The functional connectivity elucidates the relationship be-
tween the topological structures of the brain networks and
the processes appearing in those networks [24]. Recently,
the graph theories are applied in several studies to obtain
better understanding of the brain functions [25]-[27]. These
studies suggest that the brain networks are correlated with
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the cognitive functions, and thus provide new insights into
the brain activities during the NF training. The functional
connectivity has been considered as the feedback in the NF
training [1], [28], [29]. Besides as the feedback method in
the NF training, it also could reflect the changes of neural
functions due to the NF training. Most existing studies focused
on analyzing the functional connectivities in resting states
and differences between functional connectivities in pre/post-
training conditions, which can reveal the rough trends of
the brain networks before and after NF training [25], [30]-
[33]. However, the detailed dynamics during the NF training
cannot be disclosed in this case. Some researchers applied the
functional magnetic resonance imaging (fMRI) to investigate
dynamics of functional connectivity networks during the NF
training [34], [35]. However, fMRI that is known for relatively
poor temporal resolution could not be able to tell the detailed
brain network dynamics. On the contrary, the EEG technique
can provide high temporal resolution for investigating the
functional connectivity network changes [26], [36], [37]. The
EEG based functional connectivity analysis has been applied
to study the fatigue states [38]-[40]. Among the measurements
of the synchronization in the functional connectivity analysis,
the phase synchronization has a key role of studying the
integration and the brain networks of reciprocal interactions
and providing the neuronal machinery underlying behavioral-
level phenomena [41]-[44]. The phase locking value (PLV)
method can separate the phase component from the amplitude
component in EEG signals and is a fundamental method of
quantifying the phase synchronization [45], [46]. Compared
with different synchronization measures, the PLV is mathe-
matically simple and theoretically fast to use and implement
while keeping the same informational level as more complex
measures [47], [48]. In literature, the PLV has been shown
to reveal important aspects of brain function in different
tasks, such as emotion processing, cognitive tasks, and motor
imagery [49]-[54].

The alpha brainwave plays important roles in cognitive,
memory and motor functions as well as physiological con-
ditions [55]-[57], so that the alpha NF training becomes a
common protocol in literature [6], [7], [S8]-[61]. Moreover,
the alpha frequency band has a large inter-individual differ-
ence, and thus it was suggested to adjust the frequency band
of alpha individually [57]. The protocol of the NF training
applied in this study is to down-regulate the relative individual
alpha frequency band (IAB) amplitude. In our previous work
[62], the effects of the alpha NF training were illustrated;
however, due to the limited numbers of subjects and EEG
channels therein, only the BCI performances before and after
the NF training were compared, and the relationships among
EEG signals in different channels were not explored. This
study first analyzes changes of the NF training performance to
obtain a learning curve, and then focuses on analyzing changes
of the phase synchrony to further verify the learning curve
and exploring changes of the brain networks during this short
time NF training. It can be found that different brain network
patterns were evoked in different stages of NF training. Such
analysis of the brain network dynamics can provide better
understanding of the learning process of NF training. In
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the first day, the participants successfully constructed phase
synchrony networks. In the second day, they can rebuild
the similar brain networks quickly and enhance these brain
networks before achieving the NF learning plateaus. Then,
there were significant trend changes of the PLV functional
connectivity network after achieving the learning plateaus.
These findings can be helpful for optimizing the NF training
protocols and improving the effectiveness of the NF training
in future applications.

II. MATERIAL AND METHODS
A. Participants

A total of 28 healthy volunteers (age: 25.1 &+ 3.2 years;
9 females) participated in the experiment. All subjects were
normal or corrected to normal vision and did not have self-
reported chronic medication/substance intake/neurological dis-
eases such as epilepsy. They signed an informed consent
form before experiment and received monetary compensation
for their participation after experiment. The protocol was in
accordance with the Declaration of Helsinki and approved by
the local Research Ethics Committee (University of Macau).

B. EEG signal acquisition

EEG signals were collected from 16 standard Ag-AgCl
electrodes placed at Fpz, F3, Fz, F4, C3, Cz, C4, P3, Pz, P4,
PO3, POz, PO4, O1, Oz, and O2 based on the international
EEG 10-20 system with respect to the ground electrode at
the forehead and the reference electrode at the left mastoid.
These signals were amplified through the g.USBamp amplifier
(Guger Technologies, Graz, Austria) with a sampling rate of
256 Hz. The impedances were kept below 10 k(2. The on-line
filters including a bandpass filter between 0.5 Hz and 60 Hz
and a 50 Hz notch filter enabled in the amplifier as well as
the off-line filters including the Butterworth bandpass filter be-
tween 0.5 Hz and 30 Hz and the blind source separation (BSS)-
canonical correlation analysis (CCA) method based filter were
applied to filter out the high-frequency noise, the baseline drift,
the power line interference, and EOG/EMG artifacts [63], [64].
In addition, data points with absolute amplitude exceeding 75
uV were regarded as noise and removed in time domain.

C. Experiment design

For the NF training process, each participant performed
1 session with 5 blocks per day. Each block had three 1-
min trials with an interval of 5 s between two consecutive
trials. Resting EEG signals were recorded before and after
training. Each baseline consisted of two 1-min epochs with
eye open and two 1-min epochs with eye closed. There were
10-s intervals between epochs. The protocol of the NF training
is shown in Fig. 1.

Since the occipital lobe is the visual processing center of the
human brain [65], [66], this study utilized the Oz channel for
the visual feedback based alpha down-regulation NF training.
Due to large individual differences in the alpha frequency, the
NF training focused on the IAB ranged from the low transition
frequency (LTF) to the high transition frequency (HTF) where
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Fig. 1. Experimental protocol of the NF training on two days.

the LTF and the HTF were determined for each subject through
the amplitude band crossing of the eye-open and eye-closed
baseline recordings [62].

The training parameter was the relative amplitude of the
IAB calculated by

have been filtered to the frequency range of interest, and their
analytic signals in the form of z;(t) = A;(t)e??() obtained
from

zi(t) = si(t) + JHT {s;(t)}, (2)

where ¢« = {1,2}, 5 = +/—1, and HT{-} is the Hilbert

HTE/Af 30/Af transform, the PLV calculated as
IS CIVENE i
. . _ k=LTF/Af =0.5/Af 1 ) B
Relative IAB amplitude = HTF — LTF 30— 05 PLV = = Z el ()=o) (3)
t=1

(1
where X (k) is the frequency spectrum amplitude calculated by
the fast Fourier transform (FFT) with a 1-s sliding window that
shifted forward every 0.125 s, Af is the frequency resolution
of the FFT, and k is the spectrum index [62].

The real-time visual feedback contained a sphere and a cube
that displayed on a computer screen. The radius of the sphere
reflected the real-time feedback of the training parameter. If
the training parameter was below the pre-defined threshold, the
sphere changed its color from white to purple and increased
its size, which is denoted as Goal 1. In addition, the height
of the cube increased when the feedback parameter stayed
below the threshold for more than 2 s, which is denoted as
Goal 2. Participants were asked to achieve these two goals
for their alpha reduction by applying spontaneous mental
strategies [62]. In the experiments, we did not prescribe any
specific strategies. Participants could perform any kind of
mental strategies they like. Only one cognitive strategy should
be performed in each trial, but it could vary between trials if
a current strategy was not being successful.

D. Network calculations and graph theoretical analysis

The functional connectivity between a pair of electrodes is
measured by the PLV that is frequently used to characterize the
phase synchronization between two narrow-band signals [67],
[68]. Considering a pair of real signals s1(¢) and so(t) that

where T is the total number of samples, and ¢;(t) is the phase
of z;(t) [46], [68]. When calculating the functional connectiv-
ity, the sliding window acted as a filter method. In each trial,
one-min EEG signal was analyzed using a non-overlapping
sliding window of one-second length and was divided into
sixty windows. In each window, (3) was applied to compute
the PLV values of all channel pairs. Then, we calculated the
averaged PLV matrices of all windows in one trial as the PLV
matrix of the corresponding trial. Finally, the PLV matrices
of 3 trials were averaged as the functional connectivity of the
corresponding block. The estimated functional connections are
normally non-zero. These non-zero estimations of connectivity
in the absence of true neuronal interactions are known as the
spurious estimates [46]. To reduce the number of spurious
edges, a threshold was applied in this study. We selected top
80% connection strengths and set rest edges to 0. With this
method, the resulting networks had the same number of edges.

After the mean functional connectivity of each block was
calculated, the network properties were evaluated by adopting
the theoretical graph analysis to measure the brain networks.
In this study, we focused on the weighted network analysis.
Each weight that is the PLV between two channels indicates
the connectivity strength and reflects a difference in the
capacity and intensity of the connectivities between nodes
[69]. Three network properties, i.e. the network clustering
coefficient (CC), the characteristic path length (CPL), and the
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Fig. 2. Relative IAB amplitude at Oz during the NF training.

global efficiency (GE), were calculated by using the Brain
Connectivity Toolbox [70].

In an N-by-N weighted network, the CC denotes the extent
of the density or cliquishness of the network [71], and can be
calculated as

1/3
| X _}ZN(wijwihwjh)/

cC = — J,h€
L

)

“4)

where N = {1,2,--- | N}, w;; is the weight between node ¢
and node j, and k; is the degree of node i.

The CPL of a network measures the global communication
efficiency of a network by the harmonic mean length between
pairs, and can be computed as

1
1 b
oo 2 UL
i,jEN
i#]
where L;; is the shortest path length between two nodes, and
the length of each edge is defined as the inverse of the weight
[72]-[74].
The GE measures the global efficiency of parallel informa-
tion transfer in the network. It is defined by the inverse of the

harmonic mean of the shortest path length between each pair
of nodes, and can be computed as [73], [74]

1
N 2 M
i,jEN
i#]
Comparing equations Eq. (5) and Eq. (6), the GE is the inverse
of the CPL [73]. This study does not focus on exact values but
focuses on relationships between temporal changes of network
properties. Therefore, to avoid obtaining extreme values and
keep the inverse relationship of the GE and the CPL, the GE
is calculated as GE = 1 — CPL.

CPL =

®)

GE = (6)

E. Statistical analysis method

To verify the effect of blocks for the NF training per-
formance and the network properties, an one-way repeated
measures ANOVA with Block as within-subject factor is
applied. The null hypothesis of the one-way ANOVA is that
the average values of the tested index in different blocks.
Moreover, to further evaluate the significances of local changes

between blocks, the paired ¢-test is applied, while the p-value
is corrected by the Bejnamini-Hochberg false discovery rate
(FDR) procedure [75]. The null hypothesis of the paired ¢-test
assumes that the mean difference of the tested index in two
specific blocks is equal to zero. In statistics, the null hypothesis
is rejected when the p-values are smaller than 0.05.

III. RESULTS

This study analyzes the short time NF training from three
aspects. First, the training performance and the learning curve
of the short time NF protocol during the training process is
evaluated by using the relative IAB amplitudes. Then, the
dynamics of the functional connectivity networks based on the
PLV are computed to investigate the phase synchrony changes
during the EEG learning process. In addition, these changes
are quantified by network properties for better understanding
of the mechanism of the NF training. Finally, the relationship
between the training performance and the network properties
are verified.

A. Dynamics of relative IAB amplitude during NF training

In this study, the NF training protocol is designed to down-
regulate the relative IAB amplitude at Oz. Therefore, the
relative IAB amplitude at Oz is first analyzed, which can be
applied to evaluate the training performance and the learning
curve in this study. It is calculated for each subject in each
block, and the averages in each block across subjects are
illustrated in Fig. 2. The blue piecewise lines connect the
mean relative IAB amplitude in each block. The red straight
lines denote the linear regression result of the mean relative
IAB amplitudes and the block numbers. It can be seen that
the relative IAB amplitudes have a decrease trend over two-
days training periods. In these two days, there are significant
negative correlations between the mean IAB amplitudes and
the block numbers (first day: » = —0.969, p = 0.007; second
day: r = —0.963, p = 0.009). According to the analysis
result of one-way repeated measures ANOVA, the Block
factor has a significant effect on the relative IAB amplitudes
(F'(9,270) = 3.54, p = 0.0004). In the first day, the relative
IAB amplitude in block 5 is significantly smaller than that
in block 1 (¢(27) = 3.612, p = 0.0006). In the second day,
the reduction of the relative IAB amplitude in block 10 is
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significant compared to the relative IAB amplitude in block 6
(t(27) = 2.855, p = 0.004).

From Fig. 2, differences between the trends in the first
and second days can be observed. The mean relative IAB
amplitudes of 5 blocks have significant differences between
two days (¢(27) = 3.96, p = 0.0002). From Fig. 2, we can see
that the differences between the trends in the first and second
days are mainly due to the stagnation of the decreasing trend
in the second day. According to the paired #-test results, the
relative JAB amplitude in block 8 is significantly smaller than
that in block 6 (¢(27) = 2.454, p = 0.010). However, such
significant change is not continued from block 8 (change from
block 8 to block 9: ¢(27) = 0.0004, p = 0.500; change from
block 8 to block 10: ¢(27) = 1.074, p = 0.146). The mean
relative IAB amplitude even slightly increases from block 8
to block 9.

B. Dynamics of PLV functional brain network in IAB during
NF training

After evaluating the NF training performance directly by
using the feedback index that is the relative IAB amplitude in
single channel, the functional connectivity network is adopted
to investigate the dynamics of brain activities during the
NF training from the multi-channel phase synchronization
viewpoint. The functional connectivity strengths are assessed
by the PLV for each subject in each block. Then, the paired z-
test with the Benjamini-Hochberg FDR procedure is applied to
verify the significances of the strength differences over blocks
from two aspects. In this part, we focus on those connectivity
links which have the significant changes (p < 0.05).

In the first aspect, the significant differences of the PLV
connectivities between adjacent blocks within each day are
investigated and illustrated in Fig. 3, which shows the local
changes of the phase synchronization over blocks. As shown
in Fig. 3A, the PLV connectivities between channels in the
frontal region as well as those between channels in the frontal
and occipital regions decrease in the beginning blocks, and
then increase gradually in the succeeding blocks. In the second
day, the rising trend is still maintained at the beginning
blocks. However, after the block 8, most PLV connectivities
are changed to a declining trend. The time of changing the
trend is similar to the relative IJAB amplitude as shown in
Section III-A.

In the second aspect, the significant differences of PLV
connectivities between the first block and the last block in
each day, as illustrated in Fig. 4, show the global change
of the phase synchronization within one day. There are large
differences between the PLV connectivities in the first day NF
training and the second day NF training. In the first day, most
weights are significantly increased. However, in the second
day, comparing the PLV connectivities in the first block (block
6) and the last block (block 10), most weights do not have
significant changes. In addition, some weights in the parietal-
occipital region are reduced. Since Fig. 3B illustrates a trend
change of the PLV connectivity from block 8 in the second
day, the differences of the PLV connectivities between block
6 and block 8 as well as those between block 8 and block 10
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are also evaluated and shown in Fig. 4. It is clear that, in the
second day, the rising trends of most weights are continued
at the beginning blocks. The trends are changed from block
8, which matches the results of the relative IAB amplitude in
Section III-A.

C. Dynamics of network properties in IAB during NF training

After evaluating the functional connectivity strengths, three
network properties are computed to quantify the states of the
functional connectivity networks. These network properties
are evaluated for each subject in each block. Averages of
these network properties in each block across subjects are
illustrated in Fig. 5. Blue piecewise lines connect the mean
property values across all subjects in 5 blocks of each day.
Red straight lines show the linear regression result of the mean
property values and block numbers for all 5 blocks in each
day. According to the results of the paired ¢-test, the averaged
CC, CPL, and GE of 5 blocks have significant differences
between two days (CC: ¢(27) = —1.802, p = 0.0414;
CPL: t(27) = 1.773, p = 0.0438; GE: ¢(27) = —1.817,
p = 0.0402). In the first day, the CC and GE show rising trends
(CC: r =0.930, p = 0.022; GE: r = 0.933, p = 0.021). The
corresponding CPL shows a declining trend (r = —0.926,
p = 0.024). However, such significant changes cannot be
observed in the second day, which is mainly due to the trend
changes between blocks.

According to the results of one-way repeated measures
ANOVA, the Block factor has significant effects on the CC,
the CPL and the GE (CC: F(9,270) = 3.15, p = 0.0013;
CPL: F(9,270) = 2.8, p = 0.0038; GE: F(9,270) = 3.1,
p = 0.0015). From the results of the paired #-test, in the first
day, the differences of the CC, the CPL, and the GE between
block 1 and block 5 are all significant (CC: #(27) = —1.820,
p = 0.040; CPL: #(27) = 1.868, p = 0.036; GE: t(27) =
—1.823, p = 0.040). In the second day, the significant changes
still can be observed from the differences of the CC, the
CPL, and the GE between block 8 and block 1 (CC: ¢(27) =
—1.763, p = 0.043; CPL: ¢(27) = —1.713, p = 0.043; GE:
t(27) = —1.825, p = 0.041). However, the differences of
the CC, the CPL, and the GE between block 10 and block
1 are not significant (CC: t(27) = —0.445, p = 0.054; CPL:
t(27) = —0.463, p = 0.052; GE: t(27) = —0.555, p = 0.051).

Such trend changes in block 8 could be observed more
clearly from the comparisons of the linear regression slopes.
The 2-day NF training is divided into three stages. The first
stage is the first day training from block 1 to block 5. The
second stage is the second day training before block 8. The
third stage is the second day training after block 8. For each
participant, the linear regressions of three network properties
in these stages are evaluated. The mean values and variances of
the linear regression slopes across participants are illustrated in
Fig. 6. Analysis results of three network properties are shown
in three figures respectively. Three blue bars in one figure
denote the averaged linear regression slopes of corresponding
network properties in three stages. According to results of
the paired #-test, the differences between the linear regression
slopes from block 6 to block 8 and those from block 1 to
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Fig. 3. Local changes in PLV functional connectivity weights of IAB between two consecutive blocks (A) in the first day and (B) in second day. The
significance is verified by the paired 7-test with the Benjamini-Hochberg FDR procedure. Red lines show the PLV connections that have the significant

increases. Blue lines show the PLV connections that have significant reductions.

lvs.5 6vs. 10

7
A

A T4
4

\
7
| | | |

| | | | >

Block 1 Block 5 Block 6 Day 2 Block 10

p

Block 6 Block 8 Block 10

=== Significant increased weight

= Significant decreased weight
Fig. 4. Global changes in PLV functional connectivity weights of IAB in the first day, the second day as well as before and after block 8. The significance

is verified by the paired 7-test with the Benjamini-Hochberg FDR procedure. Red lines show the PLV connections that have the significant increases. Blue
lines show the PLV connections that have significant reductions.
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block 5 are not significant (CC: ¢(27) = —0.321, p = 0.375;
CPL: t(27) = 0.0394, p = 0.484; GE: t(27) = —0.202,
p = 0.421). From block 8, the trends of the CC, the CPL, and
the GE are changed to the opposite directions significantly
(CC: t(27) = 3.1746, p = 0.002; CPL: ¢(27) —2.800,
p = 0.0049; GE: ¢(27) = 2.951, p = 0.003).

D. Relationship between relative amplitude and network prop-
erties of IAB during NF training

Besides the changes of the relative IAB amplitude and the
functional network of the IAB, the correlations of the mean
relative IAB amplitude across subjects and the mean network
properties across subjects are evaluated and illustrated in Fig.
7. The blue circles show the mean relative IAB amplitudes
and the mean network properties of 10 blocks of 2-day NF
training. The red straight lines indicate the linear regression
results of the mean relative IAB amplitudes and the mean
network properties. The CC and the GE have significant
negative correlations with the relative IAB amplitudes (CC:
r = —0.694, p = 0.026; GE: r = —0.726, p = 0.018). In
addition, there is a significant positive correlation of the CPL
and the relative IAB amplitude (r = 0.687, p = 0.028).

IV. DISCUSSION

We adopt the relative IAB amplitude and the phase synchro-
nization to investigate the dynamics of brain activities during

2-day NF training, and identify differences of constructing
functional connectivity networks in these two days. These
results show that (a) participants can successfully construct
related brain networks to regulate their relative IAB amplitudes
in the first day, (b) the similar networks can be reconstructed
efficiently and enhanced in the second day, and (c) interest-
ingly, the relative IAB amplitudes and functional connectivity
networks both have stagnations started from the middle of
the second day. According to these results, the whole process
can be divided into three parts. The relative IAB amplitude
can reflect the NF training performance. A rough learning
curve can be observed from the following discussion of the
changes of the NF training performance. In order to further
verify this learning curve and find the relationships between
the NF training performance and the mental states, the changes
of the phase synchrony between channels will be further
discussed. The learning stagnation in the second training day
will be pointed out. Referring to the related literature as well
as the relationships between the observations and the mental
states, some possible reasons will be provided. Finally, some
limitations of this study will be listed.

A. Learning curve of NF training performance

In this study, the protocol is to down-regulate the relative
IAB amplitude. According to the training goals, the perfor-
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mance of the NF training can be quatified by the measurements
of the relative IAB amplitude, which reflects the learning curve
of the NF training. The significant reductions of the relative
IAB amplitude from block 1 to block 5 as well as those from
block 6 to block 8 as shown in Fig. 2 indicate that participants
can successfully learn the self-regulation of the NF training
parameter over the first day training as well as can apply
and further enhance the ability in the second training day.
Moreover, after block 8, the declining change of the relative
IAB amplitude becomes slow, which indicates the learning
stagnation of the NF training.

A similar learning stagnation of the NF training with the
down-regulation of the relative IAB amplitude can also be
observed in our previous work [62]. In addition, other NF
related studies also show the similar stagnation of the NF
training performance. Due to different training protocols, e.g.
training parameter, time intervals between blocks, and number
or duration of blocks, the time points of such stagnations of
the NF parameters may be different [6], [8], [15]-[17]. In
order to observe the learning curve clearer and investigate
the relationships between the observations and the changes
of the brain activities, the PLV based functional connectivity
networks are discussed below.

B. Changes of phase synchrony and related mental states

The timing of activation processes is functionally related
to the phase, which describes the time and direction of a
change in inhibition or excitation process for information pro-
cessing. According to previous studies, the phase synchrony
is essential in the formation of transient neuronal assemblies,
communication therein, and large-scale integration [42], [76].
Therefore, the understanding of the phase interaction can
provide information about the functional significance of the
alpha-frequency band oscillations [43], [76]. In addition, the
top-down modulation can be mediated by the phase inter-
actions of the alpha frequency band [41]. In particular, the
phase dynamics of the alpha frequency band can figure out
a direct and active role in the mechanisms of attention and
consciousness [43].

Owing to these advantages, the dynamics of brain activities
across 5 blocks in each day can be reflected by the phase
synchrony between pairs of channels measured by the PLV.
From block 1 to block 2, the weights around the occipital
and parietal-occipital regions were significantly increased. The
alpha activity in these regions are associated with the perfor-
mance for visual task [77], [78]. Since participants were not
familiar with the NF training, they would like to focus on the
visual feedback and thus tried to construct the brain networks
that support their visual tasks in the visual feedback. At the
same time, parts of phase synchronizations between frontal and
central regions were reduced. The phase synchrony in alpha
frequency band in these regions is related to the memory-load
and working-memory [79], [80]. The reason that the memory
related functions was inhibited may lie in that, at the beginning
blocks, participants paid more attention on the visual feedback
and changed their mental strategies frequently to test which
one was more suitable for achieving the training goals. Then,

from block 2 to block 4, the weights between the frontal and
occipital regions as well as those between the central and
occipital regions were successively increased. Previous studies
reported that the phase coupling between the prefrontal cortex
and posterior sites is highly related to the attention [80], [81].
In particular, the attention related brain network is built by the
prefrontal cortex and posterior regions together and might be
controlled by the prefrontal cortex [82], [83]. Moreover, the
topographic localization over central electrodes also reveals
the involvement in the attention [84]. Therefore, the visual
attention related brain networks enhanced from block 2 to
block 4 may further support the visual tasks in the visual NF
training. Besides the attention, some other complex cognitive
tasks, such as manipulation or maintenance of information in
the working memory, or perception of meaningful objects, can
also increase the alpha phase coupling [85], [86]. [80] and
[87] reported that the long-range phase synchrony, especially
alpha phase coupling between fronto-parietal brain regions,
is modulated by the attention or the working memory and
can be applied to the prediction of the stimulus identification
and the individual working memory capacity. The reason that
the memory related functions were excited may lie in that,
in this stage, participants needed recalling memories to avoid
applying previous wrong mental strategies that did not lead to
the training goals, and to actively apply previous right mental
strategies that were helpful for achieving the training goals.
In the final stage of the first day training, the increase of
the PLV connectivities in the whole brain from block 4 to
block 5 may indicate that participants successfully learned the
abilities of adopting suitable brain functions to regulating their
TIAB. Moreover, these observations also revealed that the NF
engaged more than one distinct neural networks or overlapping
networks, which was also mentioned by [1].

For the second day training, comparing the beginning blocks
in the first day and the second day, it can be found that the
phase synchronization between the frontal region and occipital
region was fired faster in the second day. Such fast increases
of the PLV connectivities in the second day indicate that,
through one night resting, subjects did not lose the ability
of regulating their alpha EEG and can successfully apply and
further improve it in the second day training to generate the
visual attention and memory related brain networks quickly.
However, such rising trend of the PLV connectivity was
blocked gradually and turned to the opposite direction from
block 8.

As measurements of the brain networks, the changes of
these two day training can be observed more clearly from the
network properties. In literature, a shorter CPL and a higher
GE indicate more efficient parallel information transfer and
integration in the brain [72]. A larger CC indicates larger
information processing [71]. Moreover, the high attentional
performance is related to the high efficiency of the brain net-
work [88], [89]. Changes of the GE, CC, and CPL in the first
day suggest that participants tried to enhance the efficiency
of the network organization and thus increase the attention
for achieving the training goals. Starting from the middle
of the second training, participants cannot keep increasing
the efficiency of the brain network. From the block 8, the
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Fig. 8. Threshold setting during the NF training.

trends of the CC, the CPL, and the GE are changed to their
opposite directions. These observations match the changes of
the relative IAB amplitudes in Fig. 2 and above analysis of
dynamics of brain networks. It should be noticed that the
learning plateau in the second day training has large effects on
the training performance from the network property point of
view since it counteracts the changes of the network properties
in the beginning blocks of the second day.

To explain the trend changes of the PLV connectivities
in the second day, two possible reasons could be proposed.
The first possible reason for the trend changes of the relative
IAB amplitude and PLV connectivities is that, participants
restarted the optimization process of achieving the related
brain functions to achieve the difficult training goals in the
second day training. From the first day training, participants
already obtained the ability of regulating their alpha EEG. In
the second day training, they just needed to further consolidate
and practice this ability, and thus could directly adopt the
related brain functions to achieve the training goals efficiently.
After they achieved the old training goals that were set for
the first day training, the threshold of the NF training was
further adjusted as shown in Fig. 8 that illustrates the threshold
settings during the NF training. It can be seen that, before
block 8, the thresholds in the second day were higher than
the final threshold of the first day. After block 8, since
participants could achieve the training goals, there was a
significant decreasing of the mean thresholds from block 8
to block 9. In addition, the final threshold of the second day
was significantly lower than that of the first day. Participants
needed to resume their learning processes in order to achieve
the new training goals in the second day. The similar possible
reason related to practicing newly acquired skills beyond the
point of initial mastery was also mentioned by [90] and [17].
The second possible reason for the trend changes of the relative
IAB amplitude and PLV connectivities is that participants
could not concentrate on the NF training from the middle of
the second day. In the experimental results, the decreases of
the phase coupling between the prefrontal cortex and posterior
sites from block 8 to block 10 are related to the attention loss
[80], [81]. From the first day training, participants had already
been familiar with the training protocol and consequently they
lost their attention in a shorter time in the second day training.
The similar possible reason related to the attention losing
during the NF training was also mentioned by [16], [17] and

[23]. These two possible explanations indicate that participants
were able to get the experience or even obtain the ability
of down-regulating their alpha EEG from the first day short
time NF training, and would achieve their learning plateaus
in the second day training. Therefore, the training protocol
could be further optimized to avoid the learning plateau.
Moreover, besides the NF training, the similar overtraining
phenomenon affecting the effectiveness of learning can also
be found in other self-regulatory process, such as studies and
sport training [91]-[93]. These evidences support that a careful
time management is essential for creating a focused approach
in the self-regulatory process.

C. Relationship between relative amplitude and phase syn-
chrony of IAB

The negative correlation of the alpha amplitude and alpha
phase synchrony for the top-down mental processing, espe-
cially for the attention, has been reported in literature. [94]
verified that there is clearly higher alpha amplitude at sites
ipsilateral to the attended location than contralateral to it. The
alpha amplitude related studies [77], [95] and the inter-areal
alpha phase synchrony related studies [96], [97] show that
the alpha amplitude and alpha phase synchrony have opposite
correlations with cortical excitability and task performance in
sensory cortices. In addition, an accumulating data directly
shows that the alpha amplitude suppression is associated with a
concurrent increase in alpha band phase synchrony [85], [98],
[99]. The results in this study further confirm the negative
correlation between the relative IAB amplitude and the phase
synchronization during the NF training.

D. Limitations

In this study, the phase synchrony is only evaluated by the
PLV that has the problems caused by the volume conduction.
Since the volume conduction in two blocks with performing
the same NF training protocol affects the connectivity in
a similar way, which can be treated as a common error
[46], the experimental contrasts between blocks measuring
the temporal changes of the PLV is immune to the volume
conduction influence. In the future, other measures, like phase
lag index (PLI) [100], phase slope index (PSI) [68], [101],
and pairwise phase consistency (PPC) [102], can be applied
to further verify findings in this study as well as explore the
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detailed information of the functional connections during the
NF training.

Moreover, we investigated functional connectivity changes
across all participants in this experiment. Due to individual
differences, it cannot rule out that there were different func-
tional connectivity changes for all participants. Furthermore,
this study focuses on analyzing the dynamics of brain activities
during the short time NF training. The effects after this NF
training, e.g. the baseline changes and the long-term effects,
can be investigated in the future.

The lack of the control group is another limitation of this
study. The NF training protocol applied here is based on our
previous study, in which the down-regulating IAB activity was
found to enhance the performance of the subjects in using the
SSVEP-based BCI by comparing the control and experimental
groups [62]. However, how the learning progressed was not
explored due to the limited numbers of subjects and EEG
channels therein. By following the NF training protocol and
procedures, the NF training results in this work were found
consistent with its predecessor. As the main objective is to
study how the learning progresses and how the brain networks
change during the NF training, the control group was not
considered for simplicity in this study. However the control
group should be included to further confirm whether the effect
comes from the NF rather than other factors such as some tasks
or reward or mistaken learning.

V. CONCLUSIONS

In this paper, the functional connectivity method is applied
to illustrate the brain network dynamics and analyze the
learning curve during 2-day NF training for down-regulating
IAB EEG. Experimental results of the relative IAB amplitude
and the PLV-based brain network show that participants were
able to construct more than one distinct or overlapping suitable
neural networks to down-regulate their IAB amplitude, and
successfully applied this learned ability for the second day
training to achieve a more efficient training process. Moreover,
the stagnation of the learning curve for the relative IAB
amplitude in the second day short time NF training was
identified. Based on the relationships between brain functions
and corresponding brain network dynamics, possible reasons
for the trend changes of the learning curve are discussed.
The observed learning curve and PLV brain network dynam-
ics indicate the effectiveness and cost-efficiency of the self-
organization in the NF training could be further improved by
optimizing the parameter design of NF training. From this
study, a better understanding of the detailed brain network
dynamics during the NF training can be obtained, which would
be helpful for establishing more efficient learning protocol of
the NF training.

REFERENCES

[1] R. Sitaram, T. Ros, L. Stoeckel, S. Haller, F. Scharnowski, J. Lewis-
Peacock, N. Weiskopf, M. L. Blefari, M. Rana, E. Oblak, N. Birbaumer,
and J. Sulzer, “Closed-loop brain training: the science of neurofeed-
back,” Nat. Rev. Neurosci., vol. 18, no. 2, pp. 86-100, 2017.

[2] J. H. Gruzelier, “EEG-neurofeedback for optimising performance. I:
a review of cognitive and affective outcome in healthy participants,”
Neurosci. Biobehav. Rev., vol. 44, pp. 124-141, 2014.

(3]

[4]

[3]

[6

=

[7

—

[8

—_

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

11

W. Nan, F. Wan, M. L. Vai, and A. C. Da Rosa, “Resting and initial beta
amplitudes predict learning ability in beta/theta ratio neurofeedback
training in healthy young adults,” Front. Hum. Neurosci., vol. 9, no.
December, pp. 1-9, 2015.

S. Enriquez-Geppert, R. J. Huster, and C. S. Herrmann, “EEG-
neurofeedback as a tool to modulate cognition and behavior: a review
tutorial,” Front. Hum. Neurosci., vol. 11, no. February, pp. 1-19, 2017.
E.-J. Cheon, B.-H. Koo, W.-S. Seo, J.-Y. Lee, J.-H. Choi, and S.-
H. Song, “Effects of neurofeedback on adult patients with psychiatric
disorders in a naturalistic setting,” Appl. Psychophysiol. Biofeedback,
vol. 40, no. 1, pp. 17-24, 2015.

B. Zoefel, R. J. Huster, and C. S. Herrmann, “Neurofeedback training
of the upper alpha frequency band in EEG improves cognitive perfor-
mance,” Neuroimage, vol. 54, no. 2, pp. 1427-1431, 2011.

W. Nan, J. P. Rodrigues, J. Ma, X. Qu, F. Wan, P. I. Mak, P. U. Mak,
M. I. Vai, and A. Rosa, “Individual alpha neurofeedback training effect
on short term memory,” Int. J. Psychophysiol., vol. 86, no. 1, pp. 83—
87, 2012.

T. Ros, A. Michela, A. Bellman, P. Vuadens, A. Saj, and P. Vuilleu-
mier, “Increased alpha-rhythm dynamic range promotes recovery from
visuospatial neglect: a neurofeedback study,” Neural Plast., vol. 2017,
2017.

T. V. Matthews, “Neurofeedback overtraining and the vulnerable pa-
tient,” J. Neurother., vol. 11, no. 3, pp. 63—66, 2008.

V. R. Ribas, R. d. M. G. Ribas, D. C. L. de Oliveira, C. L. S. Regis,
P. C. d. N. Filho, T. d. S. R. Sales, H. A. d. L. Martins, and P. V.
Deusen, “The functioning of the brain trained by neurofeedback with
behavioral techniques from a learning curve perspective,” J. Psychol.
Psychother. Res., vol. 3, pp. 12-19, 2016.

I.-T. Yang, “Chance-constrained timecost tradeoff analysis considering
funding variability,” J. Constr. Eng. Manag., vol. 131, no. 9, pp. 1002—
1012, 2005.

H. A. Abdelkhalek, H. S. Refaie, and R. F. Aziz, “Optimization of time
and cost through learning curve analysis,” Ain Shams Eng. J., vol. 11,
pp- 1069-1082, 2020.

A. R. Bakhshayesh, S. Hinsch, A. Wyschkon, M. J. Rezai, and
G. Esser, “Neurofeedback in ADHD: a single-blind randomized con-
trolled trial,” Eur. Child Adolesc. Psychiatry, vol. 20, no. 9, pp. 481—
491, 2011.

K. Dohrmann, N. Weisz, W. Schlee, T. Hartmann, and T. Elbert,
“Neurofeedback for treating tinnitus,” Prog. Brain Res., vol. 166, pp.
473-554, 2007.

M. K. Dekker, M. M. Sitskoorn, A. J. Denissen, and G. J. van Boxtel,
“The time-course of alpha neurofeedback training effects in healthy
participants,” Biol. Psychol., vol. 95, no. 1, pp. 70-73, 2014.

F. Robineau, S. Rieger, C. Mermoud, S. Pichon, Y. Koush, D. Van
De Ville, P. Vuilleumier, and F. Scharnowski, “Self-regulation of inter-
hemispheric visual cortex balance through real-time fMRI neurofeed-
back training,” Neuroimage, vol. 100, pp. 1-14, 2014.

A. Zuberer, D. Brandeis, and R. Drechsler, “Are treatment effects of
neurofeedback training in children with ADHD related to the successful
regulation of brain activity? A review on the learning of regulation of
brain activity and a contribution to the discussion on specificity,” Front.
Hum. Neurosci., vol. 9, no. March, pp. 1-15, 2015.

N. Evans, S. Gale, A. Schurger, and O. Blanke, “Visual feedback
dominates the sense of agency for brain-machine actions,” PLoS One,
vol. 10, no. 6, p. e0130019, 2015.

P. Sepulveda, R. Sitaram, M. Rana, C. Montalba, C. Tejos, and S. Ruiz,
“How feedback, motor imagery, and reward influence brain self-
regulation using real-time fMRL” Hum. Brain Mapp., vol. 37, no. 9,
pp. 3153-3171, 2016.

J. J. Maclnnes, K. C. Dickerson, N. kuei Chen, and R. A. Adcock,
“Cognitive neurostimulation: learning to volitionally sustain ventral
tegmental area activation,” Neuron, vol. 89, no. 6, pp. 1331-1342, 2016.
K. C. Kadosh and G. Staunton, “A systematic review of the psy-
chological factors that influence neurofeedback learning outcomes,”
Neuroimage, vol. 185, pp. 545-555, 2019.

J. D. Gunkelman and J. Johnstone, “Neurofeedback and the brain,” J.
Adult Dev., vol. 12, no. 2-3, pp. 93-98, 2005.

V. R. Ribas, R. d. M. G. Ribas, and H. A. d. L. Martins, “The learning
curve in neurofeedback of Peter Van Deusen: a review article,” Dement.
Neuropsychol., vol. 10, no. 2, pp. 98-103, 2016.

C. J. Stam, W. De Haan, A. Daffertshofer, B. F. Jones, I. Manshanden,
A. M. Van Cappellen Van Walsum, T. Montez, J. P. Verbunt, J. C.
De Munck, B. W. Van Dijk, H. W. Berendse, and P. Scheltens,
“Graph theoretical analysis of magnetoencephalographic functional

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2021.3125948, IEEE

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Cognitive and Developmental Systems

connectivity in Alzheimer’s disease,” Brain, vol. 132, no. 1, pp. 213—
224, 2009.

L. Cai, X. Wei, J. Wang, H. Yu, B. Deng, and R. Wang, “Reconstruction
of functional brain network in Alzheimer’s disease via cross-frequency
phase synchronization,” Neurocomputing, vol. 314, pp. 490-500, 2018.
P-Z. Li, L. Huang, C.-D. Wang, C. Li, and J.-H. Lai, “Brain network
analysis for auditory disease: A twofold study,” Neurocomputing, vol.
347, pp. 230-239, 2019.

H. Chen, Y. Song, and X. Li, “A deep learning framework for
identifying children with ADHD using an EEG-based brain network,”
Neurocomputing, vol. 356, pp. 83-96, 2019.

A. Mottaz, T. Corbet, N. Doganci, C. Magnin, P. Nicolo, A. Schnider,
and A. G. Guggisberg, “Modulating functional connectivity after stroke
with neurofeedback: effect on motor deficits in a controlled cross-over
study,” Neurolmage Clin., vol. 20, no. February, pp. 336-346, 2018.
Z. Zhao, S. Yao, K. Li, C. Sindermann, F. Zhou, W. Zhao, J. Li,
M. Liihrs, R. Goebel, K. M. Kendrick, and B. Becker, ‘“Real-time
functional connectivity-informed neurofeedback of amygdala-frontal
pathways reduces anxiety,” Psychother. Psychosom., vol. 88, no. 1, pp.
5-15, 2019.

J. L. Terrasa, G. Alba, L. Cifre, B. Rey, P. Montoya, and M. A. Muiioz,
“Power spectral density and functional connectivity changes due to
a sensorimotor neurofeedback training: a preliminary study,” Neural
Plast., pp. 1-12, 2019.

H. S. Courellis, A. S. Courelli, E. V. Friedrich, and J. A. Pineda, “Using
a novel approach to assess dynamic cortical connectivity changes
following neurofeedback training in children on the autism spectrum,”
in Neurotechnology Brain Stimul. Pediatr. Psychiatr. Neurodev. Disord.,
2019, ch. 11, pp. 253-276.

C. A. Stefano Filho, L. T. de Menezes, J. O. F. Pigatto, and G. Castel-
lano, “EEG functional connectivity patterns over the course of neuro-
feedback attention training for healthy subjects: a pilot study,” in XXVI
Brazilian Congr. Biomed. Eng., vol. 70/2. Springer, Singapore, 2019,
pp. 167-173.

X. Chen, M. Wang, J. He, and W. Li, “Dynamic brain network evolution
in normal aging based on computational experiments,” Neurocomput-
ing, vol. 219, pp. 483-493, 2017.

K. Rubia, M. Criaud, M. Wulff, A. Alegria, H. Brinson, G. Barker,
D. Stahl, and V. Giampietro, “Functional connectivity changes as-
sociated with fMRI neurofeedback of right inferior frontal cortex in
adolescents with ADHD,” Neuroimage, vol. 188, pp. 43-58, 2019.

S. Haller, R. Kopel, P. Jhooti, T. Haas, F. Scharnowski, K.-O. Lovblad,
K. Scheffler, and D. Van De Ville, “Dynamic reconfiguration of
human brain functional networks through neurofeedback,” Neuroimage,
vol. 81, pp. 243-252, 2013.

M. Murias, J. M. Swanson, and R. Srinivasan, “Functional connectivity
of frontal cortex in healthy and adhd children reflected in EEG
coherence,” Cereb. Cortex, vol. 17, no. 8, pp. 1788-1799, 2007.

G. Zhou, P. Liu, J. He, M. Dong, X. Yang, B. Hou, K. M. Von
Deneen, W. Qin, and J. Tian, “Interindividual reaction time variability
is related to resting-state network topology: an electroencephalogram
study,” Neuroscience, vol. 202, pp. 276-282, 2012.

C. Zhang, L. Sun, F. Cong, and T. Ristaniemi, “Spatio-temporal
Dynamical Analysis of Brain Activity during Mental Fatigue Process,”
IEEE Trans. Cogn. Dev. Syst., vol. 8920, 2020.

T.-t. N. Do, Y.-k. Wang, and C.-t. Lin, “Increase in brain effective
connectivity in multitasking but not in a high-fatigue state,” IEEE
Trans. Cogn. Dev. Syst., vol. 8920, 2020.

H. Wang, X. Liu, J. Li, T. Xu, A. Bezerianos, Y. Sun, and F. Wan,
“Driving Fatigue Recognition with Functional Connectivity Based on
Phase Synchronization,” IEEE Trans. Cogn. Dev. Syst., vol. 8920, 2020.
A. von Stein, C. Chiang, and P. Konig, “Top-down processing mediated
by interareal synchronization,” Proc. Natl. Acad. Sci., vol. 97, no. 26,
pp. 14748-14753, 2000.

P. Fries, “A mechanism for cognitive dynamics: neuronal communica-
tion through neuronal coherence,” Trends Cogn. Sci., vol. 9, no. 10,
pp. 474480, 2005.

S. Palva and J. M. Palva, “New vistas for a-frequency band oscilla-
tions,” Trends Neurosci., vol. 30, no. 4, pp. 150-158, 2007.

C. Hua, H. Wang, J. Chen, T. Zhang, Q. Wang, and W. Chang, “Novel
functional brain network methods based on CNN with an application
in proficiency evaluation,” Neurocomputing, 2019.

J.-P. Lachaux, E. Rodriguez, J. Martinerie, and F. J. Varela, “Measuring
phase synchrony in brain signals,” Hum Brain Mapping, vol. 8, pp.
194-208, 1999.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

12

A. M. Bastos and J.-M. Schoffelen, “A tutorial review of functional
connectivity analysis methods and their interpretational pitfalls,” Front.
Syst. Neurosci., vol. 9, no. January, pp. 1-23, 2016.

R. Quian Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger, “Perfor-
mance of different synchronization measures in real data: A case study
on electroencephalographic signals,” Phys. Rev. E, vol. 65, p. 041903,
2002.

R. Brua, F. Maest, and E. Pereda, “Phase locking value revisited:
teaching new tricks to an old dog,” J. Neural Eng., vol. 15, p. 056011,
2018.

Y. Dasdemir, E. Yildirim, and S. Yildirim, “Analysis of functional brain
connections for positivenegative emotions using phase locking value,”
Cogn Neurodyn, vol. 11, pp. 487-500, 2017.

Z. Wang, Y. Tong, and X. Heng, “Phase-locking value based graph
convolutional neural networks for emotion recognition,” IEEE Access,
vol. 7, pp. 93711-93722, 2019.

N. T. Duc and B. Lee, “Microstate functional connectivity in EEG
cognitive tasks revealed by a multivariate Gaussian hidden Markov
model with phase locking value,” J. Neural Eng., vol. 16, p. 026033,
2019.

V. Benzy and A. P. Vinod, “Classification of motor imagery hand
movement directions from EEG extracted phase locking value features
for brain computer interfaces,” in 2019 IEEE region 10 conference
(TENCON). Kochi, India: IEEE, 2019, pp. 2315-2319.

Z.-M. Wang, R. Zhou, Y. He, and X.-M. Guo, “Functional integration
and separation of brain network based on phase locking value during
emotion processing,” IEEE Trans. Cogn. Dev. Syst., 2020.

Y. Peng, Z. Wang, C. M. Wong, W. Nan, A. Rosa, P. Xu, F. Wan, and
Y. Hu, “Changes of EEG phase synchronization and EOG signals along
the use of steady state visually evoked potential-based brain computer
interface,” J. Neural Eng., vol. 17, no. 4, p. 045006, 2020.

W. Nan, A. P. B. Dias, and A. C. Rosa, “Neurofeedback training for
cognitive and motor function rehabilitation in chronic stroke: Two case
reports,” Front. Neurol., vol. 10, p. 800, 2019.

W. Klimesch, “Memory processes, brain oscillations and EEG synchro-
nization,” Int. J. Psychophysiol., vol. 24, pp. 61-100, 1996.

——, “EEG alpha and theta oscillations reflect cognitive and memory
performance: a review and analysis,” Brain Res. Rev., vol. 29, no. 2-3,
pp. 169-195, 1999.

W. Nan, F. Wan, Q. Tang, C. M. Wong, B. Wang, and A. Rosa, “Eyes-
closed resting EEG predicts the learning of alpha down-regulation in
neurofeedback training,” Front. Psychol., vol. 9, p. 1607, 2018.

S. E. Kober, D. Schweiger, J. L. Reichert, C. Neuper, and G. Wood,
“Upper alpha based neurofeedback training in chronic stroke: Brain
plasticity processes and cognitive effects,” Appl. Psychophysiol.
Biofeedback, vol. 42, pp. 69-83, 2017.

W. Peng, Y. Zhan, Y. Jiang, W. Nan, R. C. Kadosh, and F. Wan,
“Individual variation in alpha neurofeedback training efficacy predicts
pain modulation,” Neurolmage: Clinical, vol. 28, p. 102454, 2020.
W. Nan, L. Yang, F. Wan, F. Zhu, and Y. Hu, “Alpha down-regulation
neurofeedback training effects on implicit motor learning and consol-
idation,” J. Neural Eng., vol. 17, no. 2, p. 026014, 2020.

F. Wan, J. N. da Cruz, W. Nan, C. M. Wong, M. I. Vai, and
A. Rosa, “Alpha neurofeedback training improves SSVEP-based BCI
performance,” J. Neural Eng., vol. 13, no. 3, p. 036019, 2016.

J. A. Urigen and B. Garcia-Zapirain, “EEG artifact removalstate-of-
the-art and guidelines,” J. Neural Eng., vol. 12, p. 031001, 2015.
Wim De Clercq, A. Vergult, B. Vanrumste, W. Van Paesschen, and
S. Van Huffel, “Canonical correlation analysis applied to remove
muscle artifacts from the electroencephalogram,” IEEE Trans. Biomed.
Eng., vol. 53, pp. 2583-2587, 2006.

R. F. Dougherty, V. M. Koch, A. A. Brewer, B. Fischer, J. Modersitzki,
and B. A. Wandell, “Visual field representations and locations of visual
areas V1/2/3 in human visual cortex,” J. Vis., vol. 3, no. 10, p. 1, 2003.
A. A. Brewer, J. Liu, A. R. Wade, and B. A. Wandell, “Visual field
maps and stimulus selectivity in human ventral occipital cortex,” Nat.
Neurosci., vol. 8, no. 8, pp. 1102-1109, 2005.

S. Aydore, D. Pantazis, and R. M. Leahy, “A note on the phase locking
value and its properties,” Neuroimage, vol. 74, pp. 231-244, 2013.

J. Sun, Z. Li, and S. Tong, “Inferring functional neural connectivity
with phase synchronization analysis: A review of methodology,” Com-
put. Math. Methods Med., vol. 2012, pp. 1-13, 2012.

D. Guo, F. Guo, Y. Zhang, F. Li, Y. Xia, P. Xu, and D. Yao, “Periodic
visual stimulation induces resting-state brain network reconfiguration,”
Front. Comput. Neurosci., vol. 12, pp. 1-11, 2018.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2021.3125948, IEEE

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Cognitive and Developmental Systems

M. Rubinov and O. Sporns, “Complex network measures of brain
connectivity: uses and interpretations,” Neuroimage, vol. 52, no. 3, pp.
1059-1069, 2010.

J.-P. Onnela, J. Saramiki, J. Kertész, and K. Kaski, “Intensity and
coherence of motifs in weighted complex networks,” Phys. Rev. E,
vol. 71, no. 6, p. 065103, 2005.

M. E. J. Newman, “The structure and function of complex networks,”
SIAM Rev., vol. 45, no. 2, pp. 167-256, 2003.

Y. Zhang, P. Xu, Y. Huang, K. Cheng, and D. Yao, “SSVEP response is
related to functional brain network topology entrained by the flickering
stimulus,” PLoS One, vol. 8, no. 9, p. €72654, 2013.

Y. Zhang, D. Guo, K. Cheng, D. Yao, and P. Xu, “The graph theoretical
analysis of the SSVEP harmonic response networks,” Cogn. Neurodyn.,
vol. 9, no. 3, pp. 305-315, 2015.

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
a practical and powerful approach to multiple testing,” J. R. Stat. Soc.
Ser. B, vol. 57, no. 1, pp. 289-300, 1995.

F. Varela, J.-P. Lachaux, E. Rodriguez, and J. Martinerie, “The brain-
web: phase synchronization and large-scale integration,” Nat. Rev.
Neurosci., vol. 2, no. 4, pp. 229-239, 2001.

V. Romei, V. Brodbeck, C. Michel, A. Amedi, A. Pascual-Leone,
and G. Thut, “Spontaneous fluctuations in posterior alpha-band EEG
activity reflect variability in excitability of human visual areas,” Cereb.
Cortex, vol. 18, no. 9, pp. 2010-2018, 2008.

V. Romei, J. Gross, and G. Thut, “On the role of prestimulus alpha
rhythms over occipito-parietal Areas in visual input regulation: cor-
relation or causation,” J. Neurosci., vol. 30, no. 25, pp. 8692-8697,
2010.

S. Palva and J. M. Palva, “Functional roles of alpha-band phase
synchronization in local and large-scale cortical networks,” Front.
Psychol., vol. 2, p. 204, 2011.

S. Hanslmayr, J. Gross, W. Klimesch, and K. L. Shapiro, “The role of
alpha oscillations in temporal attention,” Brain Res. Rev., vol. 67, no.
1-2, pp. 331-343, 2011.

S. Sadaghiani, R. Scheeringa, K. Lehongre, B. Morillon, A.-L. Giraud,
M. D’Esposito, and A. Kleinschmidt, “Alpha-band phase synchrony is
related to activity in the fronto-parietal adaptive control network,” J.
Neurosci., vol. 32, no. 41, pp. 14305-14 310, 2012.

I. C. Griffin and A. C. Nobre, “Orienting attention to locations in
internal representations,” J. Cogn. Neurosci., vol. 15, no. 8, pp. 1176—
1194, 2003.

D. Small, D. Gitelman, M. Gregory, A. Nobre, T. Parrish, and M.-
M. Mesulam, “The posterior cingulate and medial prefrontal cortex
mediate the anticipatory allocation of spatial attention,” Neuroimage,
vol. 18, no. 3, pp. 633-641, 2003.

B. Xuan, M.-A. Mackie, A. Spagna, T. Wu, Y. Tian, P. R. Hof, and
J. Fan, “The activation of interactive attentional networks,” Neuroim-
age, vol. 129, pp. 308-319, 2016.

R. Freunberger, W. Klimesch, B. Griesmayr, P. Sauseng, and W. Gru-
ber, “Alpha phase coupling reflects object recognition,” Neuroimage,
vol. 42, no. 2, pp. 928-935, 2008.

T. Mima, T. Oluwatimilehin, T. Hiraoka, and M. Hallett, “Transient in-
terhemispheric neuronal synchrony correlates with object recognition,”
J. Neurosci., vol. 21, no. 11, pp. 3942-3948, 2001.

C. Kranczioch, S. Debener, A. Maye, and A. K. Engel, “Temporal
dynamics of access to consciousness in the attentional blink,” Neu-
roimage, vol. 37, no. 3, pp. 947-955, 2007.

P. Lin, J. Sun, G. Yu, Y. Wu, Y. Yang, M. Liang, and X. Liu, “Global
and local brain network reorganization in attention-deficit/hyperactivity
disorder,” Brain Imaging Behav., vol. 8, no. 4, pp. 558-569, 2014.
M. Xiao, H. Ge, B. S. Khundrakpam, J. Xu, G. Bezgin, Y. Leng,
L. Zhao, Y. Tang, X. Ge, S. Jeon, W. Xu, A. C. Evans, and S. Liu,
“Attention performance measured by attention network test is correlated
with global and regional efficiency of structural brain networks,” Front.
Behav. Neurosci., vol. 10, pp. 1-12, 2016.

D. C. Hammond, S. Stockdale, D. Hoffman, M. E. Ayers, and J. Nash,
“Adverse reactions and potential iatrogenic effects in neurofeedback
training,” J. Neurother., vol. 4, no. 4, pp. 57-69, 2001.

E. A. Plant, K. A. Ericsson, L. Hill, and K. Asberg, “Why study time
does not predict grade point average across college students: implica-
tions of deliberate practice for academic performance,” Contemp. Educ.
Psychol., vol. 30, no. 1, pp. 96-116, 2005.

F. A. Cadegiani and C. E. Kater, “Hormonal aspects of overtraining
syndrome: a systematic review,” BMC Sports Sci. Med. Rehabil., vol. 9,
no. 1, p. 14, 2017.

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

13

J. Kreher, “Diagnosis and prevention of overtraining syndrome: an
opinion on education strategies,” Open Access J. Sport. Med., vol. 7,
pp. 115-122, 2016.

P. Sauseng, J. F. Feldheim, R. Freunberger, and F. C. Hummel, “Right
prefrontal TMS disrupts interregional anticipatory EEG alpha activity
during shifting of visuospatial attention,” Front. Psychol., vol. 2, p.
241, 2011.

S. Sadaghiani, R. Scheeringa, K. Lehongre, B. Morillon, A.-L. Gi-
raud, and A. Kleinschmidt, “Intrinsic connectivity networks, alpha
oscillations, and tonic alertness: a simultaneous electroencephalog-
raphy/functional magnetic resonance imaging study,” J. Neurosci.,
vol. 30, no. 30, pp. 10243-10250, 2010.

J. Kujala, K. Pammer, P. Cornelissen, A. Roebroeck, E. Formisano,
and R. Salmelin, “Phase coupling in a cerebro-cerebellar network at
8-13 Hz during reading,” Cereb. Cortex, vol. 17, no. 6, pp. 1476-1485,
2007.

C. D. Gilbert and M. Sigman, “Brain states: top-down influences in
sensory processing,” Neuron, vol. 54, no. 5, pp. 677-696, 2007.

S. Palva, S. Monto, and J. M. Palva, “Graph properties of synchro-
nized cortical networks during visual working memory maintenance,”
Neuroimage, vol. 49, no. 4, pp. 3257-3268, 2010.

J. M. Palva, S. Monto, S. Kulashekhar, and S. Palva, “Neuronal
synchrony reveals working memory networks and predicts individual
memory capacity,” Proc. Natl. Acad. Sci., vol. 107, no. 16, pp. 7580—
7585, 2010.

C. J. Stam, G. Nolte, and A. Daffertshofer, “Phase lag index: Assess-
ment of functional connectivity from multi channel EEG and MEG with
diminished bias from common sources,” Hum. Brain Mapp., vol. 28,
no. 11, pp. 1178-1193, 2007.

G. Nolte, A. Ziehe, V. V. Nikulin, A. Schlogl, N. Krdmer, T. Brismar,
and K.-R. Miiller, “Robustly estimating the flow direction of informa-
tion in complex physical systems,” Phys. Rev. Lett., vol. 100, no. 23,
p. 234101, 2008.

M. Vinck, R. Oostenveld, M. van Wingerden, F. Battaglia, and C. M.
Pennartz, “An improved index of phase-synchronization for electro-
physiological data in the presence of volume-conduction, noise and
sample-size bias,” Neurolmage, vol. 55, pp. 1548-1565, 2011.



