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4.1 Introduction

Breast cancer is the leading cause of death in women between the ages of 35
and 55. The National Cancer Institute estimates that one out of eight women
in the United States will develop breast cancer at some point during her
lifetime.! The mortality rate of 30% in the U. S. and 45% in Europe has been
demonstrated by repeated, randomized, and controlled trials.> Currently,
there are no effective ways to prevent breast cancer.>* However, treatments of
breast cancer in the early stages are more successful; therefore, early detection
is an important and effective method to significantly reduce mortality. There
are several imaging techniques for breast examination, including magnetic
resonance imaging (MRI), ultrasound imaging, positron emission tomography
(PET) imaging, computed tomography (CT) imaging, optical tomography/
spectroscopy, and x-ray imaging. Among them, mammography (x-ray image)
is the most-common technique that radiologists use to detect and diagnose
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breast cancer.”® Two types of mammography are currently used: film
mammography and digital mammography. Digital mammography is preferred
by physicians’® because it has better image quality, requires a lower x-ray
dose,® provides interpretations with greater confidence in difficult cases, and
offers faster diagnosis for routine cases.”

Due to the limitations of the x-ray hardware systems, screened
mammograms—even when using digital mammography—may present low
resolution or low contrast, making it difficult to detect tumors at an early
stage. Important indicators of early breast cancer,'®™!'! such as irregularly
shaped microcalcifications, are very small calcium deposits that appear as
bright, granular spots in mammograms.'>'? The distinction between the tiny
malignant tumors and the benign glandular tissue is not readily discernable;
misinterpretation results in unnecessary additional examinations and
biopsy.'* The situation becomes worse when radiologists routinely interpret
large numbers of mammograms and can misdiagnose a condition.'”

To improve the visual quality of mammographic images, more image data
can be collected at the data acquisition stage, thus improving the image
resolution. However, this significantly increases the overall acquisition time,
the amount of radiation that a patient is exposed to, and hardware costs.'® On
the other hand, the image visual quality can be enhanced during the post-
image-processing stage in medical imaging systems. It utilizes different image
enhancement techniques to enhance the contrast of mammograms. In this
way, the visual quality of mammograms is improved without affecting the
acquisition process or increasing the hardware costs.

The underlying concept of mammogram enhancement involves applying
image enhancement algorithms to improve the contrast of suspicious regions
and objects in mammograms, and then use a threshold to separate them from
their surroundings.!' To employ it in the medical imaging system, two
problems need to be addressed: (1) How to automatically choose the best
enhancement algorithm, and (2) how to automatically select the thresholding.

Several algorithms for mammogram enhancement have been developed
recently. They can be classified into two main categories: frequency domain
methods and spatial domain methods.

* Frequency domain methods are based on different transforms or fuzzy
logic theory. These transforms include the discrete Fourier transform
(DFT),!” % discrete cosine transform (DCT),** ¢ discrete wavelet
transform (DWT),>”* and other transforms.*3-%-4>4¢

The DWT-based enhancement algorithms for mammograms first
decompose mammograms into a multiscale subband representation
using the contourlet transform>® or other wavelet transforms such as the
discrete dyadic wavelet transform,>**>° integrated wavelets,*® or
redundant discrete wavelet transform.>’ Next, the transform coefficients
in each subband of the multiscale representation are modified using
different technologies, including nonlinear filtering,*® regression-based
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extrapolation,” adaptive unsharp masking,*® the wavelet shrinkage
function,! or direct contrast modification.*? Finally, the enhanced
mammograms can be obtained from the modified coefficients. However,
it has been reported that a wavelet representation does not efficiently show
the contours and the geometry of edges in images.*”

Fuzzy set theory has been used to enhance the contrast of
mammograms because it is suitable for dealing with the uncertainty
associated with the definition of image edges, boundaries, and
contrast.**"* Fuzzy logic has also been successfully integrated with
other techniques such as histogram equalization for enhancing medical
images*® and structure tensor for contrast enhancement of micro-
calcifications in digital mammograms.** However, the frequency
domain methods have limitations. They may introduce artifacts called
“objectionable blocking effects”!” or enhance images globally but not
enhance all local details/regions in the image very well. Furthermore, it
is very difficult to apply them to automatic image enhancement
procedures. '

» Spatial domain methods are based on the human visual system
(HVS),>* >  empirical decomposition,>* >’ histogram equaliza-
tion,*8:52:58-62 logarithmic framework,®**® nonlinear ﬁltering,43 »53,67-70
adaptive neighborhood,”!'>”"7? or unsharp masking.”* "

Because nonlinear filtering is known for its ability to obtain more
robust characteristics for suppressing noise and preserving edges and
details, it is a desirable technique that can be used to enhance
mammographic images and other types of medical images. Examples
include utilizing the adaptive density-weighted filter,®’ tree-structured
nonlinear filters,*’ and also adaptive anisotropic filtering.”®

Several other algorithms have been developed for mammogram
enhancement using adaptive neighborhood (or region-based) contrast
enhancement (ANCE).”!>7172 ANCE is intended to improve the
contrast of specific regions, objects, and details in mammograms based
on the local-region background and contrast. The region contrast is
calculated and enhanced according to the region’s contrast, its
background, its neighborhood size, and its seed pixel value.’

Unsharp masking (UM) is another interesting enhancement
technique belonging to spatial domain methods. The traditional UM
has good performance to enhance the fine details in the original images.
However, it also amplifies noise and overshoots the sharp details at the
same time.”>’” To overcome this problem, several modification schemes
have been developed by replacing the high-pass filter with the adaptive
filter,”” quadratic filter,”® and its derived filtering operators, called
rational unsharp masking”> and cubic unsharp masking.”’ Other
algorithms using unsharp masking techniques for mammogram
enhancement have been developed.*">"* A set of measure metrics for
mammogram enhancement is introduced in Singh and Bovis.*
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This chapter introduces a new nonlinear unsharp masking (NLUM)
scheme for mammogram enhancement by combining the nonlinear filtering
and unsharp masking techniques. Leveraging the advantages of these two
techniques, the new scheme can enhance the contrast of suspicious regions,
objects, and details to achieve better visibility of mammographic images for
human observers (radiologists). Furthermore, to address the two questions
posed earlier concerning the automatic selection of the best enhancement
algorithm and of the threshold, a new enhancement measure called the
second-derivative-like measure of enhancement (SDME) is introduced.
Different parameters in the enhancement algorithm are varied, and the
results are measured automatically to choose the best one to present. The
NLUM enhancement performance is demonstrated by comparison with other
existing enhancement algorithms, quantitative evaluation using the SDME
measure, and receiver operating characteristic (ROC) analysis based on a
medical doctor’s inspection.

Section 4.2 reviews several existing enhancement algorithms that are to be
compared with the new NLUM scheme, and the operations of the
parameterized logarithmic image processing (PLIP) to be consistent with
the human visual system. Section 4.3 introduces the new NLUM scheme.
Section 4.4 introduces the new enhancement measure after reviewing several
existing ones for quantitatively evaluating the performance of enhancement
algorithms. Section 4.5 shows the parameter design and optimization for the
NLUM scheme using the SDME measure, compares the NLUM scheme with
three existing enhancement algorithms, and evaluates the NLUM using the
thresholding technique and ROC analysis. Section 4.6 reaches a conclusion.

4.2 Background

This section briefly discusses traditional unsharp masking and four existing
enhancement algorithms including rational unsharp masking (RUM),” adaptive
neighborhood contrast enhancement (ANCE),? contrast-limited adaptive histo-
gram equalization (CLAHE),”® and direct image contrast enhancement
(DICE).** Those algorithms will form the basis for comparison to the new
NLUM scheme. The arithmetic operations of parameterized logarithmic image
processing (PLIP) are also presented here and will be used as an operator in the
presented NLUM scheme to better represent the human visual system response.

4.2.1 Traditional unsharp masking

The foundation of the traditional unsharp masking (UM) technique involves
subtracting a low-pass filtered signal from its original. The same results can be
achieved by adding a scaled high-frequency part of the signal to its original. This is
equivalent to adding the scaled gradient magnitude back to the original signal.”®

The unsharp masking is used to improve the visual quality of images by
emphasizing their high-frequency portions that contain fine details as well as
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Figure 4.1 The block diagram of the traditional unsharp masking.

noise and sharp details. The scheme for image enhancement is shown in
Figure 4.1.
The output enhanced image E(m,n) is defined by

E(m,n) = I(m,n) + oF (m,n), (4.1)

where the constant « is a scaling factor, and F(m,n) is a high-pass filtered
image obtained from the original 7 (m,n).

The high-pass filter and scaling process in traditional UM amplify those
high-frequency portions of original images that contain fine details as well as
noise and sharp details. Therefore, due to the fact that traditional UM
enhances fine details in images, it also amplifies noise while overenhancing the
steep edges.

4.2.2 The RUM algorithm

Rational unsharp masking’> (RUM) uses a rational function operator to
replace the high-pass filter in traditional unsharp masking, shown in
Figure 4.2. The rational function is the ratio of two polynomials of the input
variables. This scheme is intended to enhance the details in images containing
low and medium sharpness without significantly amplifying the noise or
affecting the steep edges. The enhanced image is defined by

E(m,n) = I(m,n) + N[Cx(m,n)Fy(m,n) + C,(m,n)F,(m,n)), (4.2)
where \ is the scaling factor, and

[I(m,n+1) = I(m,n—1))?

) = o = 1) — Timn — 1) 24" (43)

Cy(mm) = [I(m+1,n) —I(m— 1,n1]2 7 (4.4
kiIim+1,n) —I(m—1,n)]"+h

Fy(m,n) =21(m,n) — [(m,n—1) — I(m,n+1), (4.5)

F,(m,n) =2I(m,n) —I(m—1,n) — I(m+ 1,n), (4.6)

where k and /& are proper positive factors.
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4.2.3 The ANCE algorithm

The adaptive neighborhood contrast enhancement (ANCE) method® was
developed to improve the contrast of objects and features with varying sizes
and shapes. In this algorithm, each pixel in an image is considered a seed
pixel for a region-growing process. Including those neighboring pixels whose
gray values are within a specified gray-level deviation (known as the growth
tolerance k) from the seed, a local region—called the foreground—is
generated around the seed pixel. Another region—called the background—
consists of those neighboring pixels that are outside the range of a specified
gray-level deviation. The background, which surrounds the foreground,
contains nearly the same number of pixels as the foreground. The region
contrast is defined by

f=b

f+b°
where f and b are the mean gray-level value of the foreground and
background, respectively.

The contrast equation in Eq. (4.7) is similar to Weber’s ratio®”
W = AL/L, where AL is the luminance difference between the central
region and the overall image luminance L. The minimum contrast of
the region is Cui, = k/2, and k is the growth tolerance. A Weber’s rate
of approximately 0.02 for a just-noticeable object under standard
light conditions indicates that the growth tolerance should be at most
0.04 if regions or objects are to be distinguishable from their
background.

The region’s contrast is enhanced by increasing its foreground value when
the following conditions are satisfied:

C (4.7)

1. The region’s contrast is low, i.e., 0.02 < C < 0.4; and
2. The pixels in the region’s background have a standard deviation normalized
by their mean values less than 0.1.

The background in the second condition is defined as a region three pixels
thick, molded to the original region in shape. The new foreground value is
defined by

, 1+
f=br—a (4.8)
where C’ is the increased contrast based on an empirical look-up table
described by Morrow et al.”

Therefore, only regions with low contrast are enhanced, whereas the
high-contrast regions, such as steep edges, remain unaffected. In order to
save computational costs, the redundant pixels in the foreground regions,
which have the same values as the seed pixels, are changed to the same new
values.
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4.2.4 The CLAHE algorithm

The contrast-limited adaptive histogram equalization®® (CLAHE) is a
well-known technique for adaptive contrast enhancement. The normal and
adaptive histogram equalizations enhance images using the integration
operation. This operation yields large values in the enhanced image if the
histogram of the nearly uniform regions of the original image contain
several high peaks. As a result, those enhancement methods may
overenhance noise and sharp regions in the original images. To solve this
problem, the CLAHE algorithm uses a clip level to limit the local
histogram in such a way that the amount of contrast enhancement for
each pixel can be limited. This clip level is a maximum value of the local
histogram specified by users. An interactive binary search process is used
to redistribute those pixels that are beyond the clip level. The CLAHE
algorithm has the following steps:

1. Divide the original image into contextual regions,

2. Obtain a local histogram for each pixel,

3. Clip the histogram based on the clip level,

4. Redistribute the histogram using binary search, and

5. Obtain the enhanced pixel value by histogram integration.

4.2.5 The DICE algorithm

The direct image contrast enhancement (DICE) algorithm was introduced to
enhance screening mammograms in the wavelet domain.** It directly amplifies
the vertical, horizontal, and diagonal subband components of the original
image at different levels of the wavelet decomposition and then reconstructs
them to obtain the enhanced image.

4.2.6 The PLIP operations

The parameterized logarithmic image processing (PLIP) model was
introduced to provide a nonlinear framework for image processing.®* The
PLIP model can process images as absorption filters using the gray-tone
function of images, which is a more-precise approach from a human visual
system perspective, while keeping the image pixel values within the range
[0, ). Operations use the human visual system characteristics that are listed
in Table 4.1, where f(i,j) is the original image; g(i,j), g, g1, and g, are
the gray-tone functions to generate negative photos of the original images;
3, @, ®, and ¥ are PLIP addition, subtraction, scalar multiplication, and
image multiplication, respectively; ¢ and B are constants; and w, vy, k, and N\
are parameters that can be selected as the maximum value of images or other
values. Note that the PLIP addition and scalar multiplication use the same
parameter vy because the scalar multiplication is an extension of addition,
adding the image to itself ¢ times.®?
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Table 4.1 The PLIP operations.

PLIP Operation Definition
Gray-tone function g(i,)) = —f(i,))
Addition a1 & =g +g — 8182

. P 81— &
Subtraction 10g, = k=—-==

£19¢g k—g
c

Scalar multiplication cBg=v—r (1 - %)
Image multiplication g1 ¥g = 671 <¢ (g1) 'ﬁ(gz)),

where g(g) = —\ - lnﬁ(l - %) and

g (g =\ (1 Cexp (%g>1/s>

4.3 Nonlinear Unsharp Masking

Integrating the nonlinear filtering operation with the unsharp masking
technique, this section introduces a new unsharp masking scheme, called
nonlinear unsharp masking (NLUM), for mammogram enhancement. This is
a complex unsharp masking scheme. It is good at enhancing suspicious
regions in mammographic images.

4.3.1 The new NLUM scheme

The block diagram of the NLUM scheme is shown in Figure 4.2. The
original mammogram /(m,n) is filtered by a nonlinear filter. The filtered
mammogram F(m,n) is then normalized and combined with the original
mammogram using the fusion #1 and #2 to obtain an enhanced mammogram
E(m,n).

The nonlinear filtering operation applies a nonlinear operation to the
pixels within a 3 x 3 window. Depending on the different applications, the
filtering operation and fusion #1 and #2 can be selected as the arithmetic
operations, the PLIP operations, or the nonlinear operations such as the mean
square root or logic operations. This property makes the NLUM scheme
more general, meeting more-complicated requirements for different objects
and applications.

Original Enhanced
Mammogram Fusion #2 FFusion #1 —» Mammogram
I(m,n) E(m,n)
P i

Fusion #2 [¢——4,

Nonlinear | riom,n) I
> Filtering Normalization

Operation

Y

Figure 4.2 Block diagram of the proposed NLUM scheme.
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I(m,n) 4 l_\_F E(mn)

4
Nonlinear | #,»)
L»| Filtering »| Normalization
Operation

(d)

Figure 4.3 Practical examples of the proposed NLUM scheme (a) using the arithmetic
operations and (b) using the PLIP operations.

If the NLUM scheme uses the arithmetic operations and fusion #1 and #2
are set to be the arithmetic addition and multiplication, respectively, then the
NLUM scheme will resemble the flow shown in Figure 4.3(a). The enhanced
mammogram is defined by

F(m,n)
|F]
where 4, and A, are the scaling factors, and |F|,,, is the maximum absolute

value of the mammogram F(m,n) filtered by a 3 x 3 nonlinear filter
defined by

E(m,n) = A1I(m,n) + A, I(m,n), (4.9)

max

F(m,n) = woly —wil} — waly, (4.10)
where constants wg, wy, wy > 0 are weight coefficients, and
Iy = I**(m,n),
L =1P%(m—1,n)+ P (m+1,n) + P (mn— 1)+ > (mn+1), (4.11)
L=r%m-1n-1)+r°m+1ln—1)+Pm+1L,n-1)+*m+1,n+1),

where o, oy, oy are exponential coefficients, and /() is the image pixel
intensity value.

On the other hand, if NLUM chooses the PLIP operations and fusion #1
and #2 are selected as the PLIP addition and multiplication, respectively, then
the NLUM scheme follows the flow shown in Fig. 4.3(b). The NLUM output
will change to

F(m,n) .

E(m,n) = A, &I (m,n) @Ay?{)(—*l(m,n)), (4.12)
|F‘max
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where the filtered mammogram F(m,n) is defined as

F(m,n) = wy @IO(:)wl @Il(:)wz QDb (4.13)
and
I) = Izao(m,n)
L =14 (m—1,n) &P (m+ 1,n) &1 (myn — 1) 12 (m,n + 1) (4.14)

L=rm-1,n—1)8rm+1,n—1)&r°m+1,n—1)3m+1,n+1),

where &, @, ®, ¥ are PLIP addition, subtraction, scalar multiplication, and
image multiplication, respectively, and A4y, 4>, wo, w1, wa, o, &, @ are weight
coefficients.

A pseudo-code implementation of the NLUM scheme appears below.

Input the original image I(m,n)
Set values for parameters A4, Ao, Wo, W1, Wa, &g, &7, Qo
Switch (operation)
Case: linear operation
If (Fusion #1 = arithmetic addition) && (Fusion #2 =
arithmetic multiplication)
F(m,n) < apply Eq. (4.2) to input image I(m,n)
E(m,n) < Eq. (4.1)
End
Case: PLIP operation
If (Fusion #1 = PLIP addition) && (Fusion #2 = PLIP
multiplication)
F(m,n) < apply Eq. (4.5) to input image I(m,n)
E(m,n) < Eq. (4.4)
End
End
Output the enhanced image E(m,n)

4.3.2 Discussion

NLUM is a complex unsharp masking scheme because there are eight coefficients
to be specified for practical applications. However, more coefficients offer
NLUM more power and design flexibility to meet more-complex and specific
requirements in real-world applications. The nonlinear filtering operation in the
NLUM scheme can be designed as a combination of two different types of filters,
which offers NLUM more-robust characteristics. For example, the coefficients
wo, w1, wo can be designed as a high-pass filter, and «g, o, @ can be chosen as a
center-weighted mean filter.

The users can manually/experimentally select all of the NLUM
coefficients. However, this is a time-consuming method that makes it
difficult to reach the best enhancement results due to a lack of criteria for
quantitative evaluation. Alternatively, the NLUM coefficients could be
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represented by one or two variables based on some reasonable assumptions
to simplify the NLUM design and reduce the number of its coefficients in
practical applications. An enhancement measure approach could then be
used to optimize the coefficients, thus obtaining the best enhancement result.
(This method is discussed in Section 4.5.2.)

In summary, the presented new NLUM scheme can be an embodiment of
the following scenarios:

1. The fusion operators can be defined as different linear or nonlinear operations.

2. The new nonlinear filtering operator can be designed as a combination of
different types of filters.

3. The coefficients allow users to change the NLUM properties to better
meet application specific requirements.

These scenarios offer users more design flexibility to adapt the scheme to
more specific and complicated requirements in real-world applications. The
proposed NLUM can also be applied to other imaging modalities.

4.4 New Enhancement Measure

Developing a good quantitative measure to assess image enhancement is
extremely difficult because the improvement in the enhanced images is often
subjective and hard to measure. On the other hand, a good quantitative measure
is important in order to select the best enhancement results for computer-aided
detection (CAD) systems. This section reviews several existing methods of
measuring the quality of image enhancement and then introduces a new
enhancement measure using the concept of the second derivative.

4.4.1 Discussion

Several measures of image enhancement have been developed by using a contrast
measure. The EME (measure of enhancement)®! and the EMEE (measure of
enhancement by entropy) have been developed by Agaian et al.'® These two
measures are based on a Weber-law-based contrast measure. Including the
Michelson contrast law,** the AME (Michelson—Law measure of enhancement)
and AMEE (Michelson—Law measure of enhancement by entropy) were later
introduced to improve the measure performance of the EME and EMEE."
Because PLIP subtraction has been shown to be consistent with Weber’s contrast
law and characteristics of the human visual system,®’ the contrast information can
be presented and processed more accurately. Including the PLIP operators to
further improve these measures, Panetta et al.”'** have developed the logAME
(logarithmic Michelson contrast measure) and logAMEE (logarithmic AME by
entropy). The improved versions of the logAME are the SAME (similarity-
based logAME) proposed by Wharton et al.** and the Global LogAMEE by
Gao et al.%”’

All of these enhancement measures divide an image into k; X k» blocks
and then calculate the average values of the measure results of all blocks in the
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entire image. The definitions of these measures are listed in Table 4.2, where
the image [/ is divided into k| x k> blocks, and « is constant. I.x and Iy, are
the maximum and minimum of the intensity values in these blocks,
respectively. However, these enhancement measures only calculate the
maximum and minimum values of the small regions or blocks in images.
As a result, they are sensitive to noise and to steep edges in images.

Other enhancement measures include region contrast of a region in an
image** I(x,y) and contrast in the DCT domain.*> A new enhancement
measure is introduced here using the concept of the second derivative because
it measures the change ratio of the variation speed of pixel values.

4.4.2 New enhancement measure: SDME

Integrating the idea of the second-derivative-like visibility operator** with the
strengths of the earlier reviewed measures, a new enhancement measure called
the second-derivative-like measure of enhancement (SDME) is introduced
here. It is defined by

ki

1
SDME = —@;;20 In

Imax,k,l - ZIcenter,k,l + Imin,k,l (4 15)
Imax,k.l + 2Icenter,k,l + Imin,k,l ’

where an image is divided into k; x k, blocks, Inax k.75 Imin.k.; are the maximum
and minimum values of the pixels in each block separately, and Z.enzer k. 1s the
intensity of the center pixel in each block. Thus, the size of the blocks should be
an odd number of pixels, such as 3x3 or 5x5.

Because Lener.ii1 7 i% (Imax.k.; + Imin k) according to the SDME defini-
tion, the blocks with Z.enser k. = j:%(lmaqu,; + Lnink.) Will be discarded when
calculating the SDME of an image. Therefore, when I ..t approaches
+ 1 (Lnax it + Imink), the SDME value will approach infinity; when

2
Leenser.ic; = 0 for all blocks, the minimal SDME value is zero.

4.5 Simulation Results and Evaluations

This section provides experimental results to discuss the SDME measure
performance, the NLUM parameter optimization, and the NLUM enhance-
ment analysis, comparison, and evaluation.

4.5.1 Comparison of enhancement measures

The SDME is compared with six existing measure methods. The measure
performance of each method is determined by the consistency of the measure
results and subjective evaluation of visual quality of mammograms.

The subjective evaluation method uses the mean opinion score (MOS)
recommended by the International Telecommunication Union Telecommuni-
cation Standardization Sector (ITU-T).®¢ The MOS intends to determine
which results are the most visually pleasing for a human observer. In this
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subjective test, seven human observers visually evaluated all original and
enhanced mammograms. Each mammogram was given a MOS score of 1-5,
where a score of five indicates the best visual quality.

A set of 19 test mammograms was randomly selected from the Internet
and the mini-MIAS database of mammograms.®’ They were enhanced using
four algorithms: NLUM, RUM, ANCE, and CLAHE. Therefore, including
the original and enhanced mammograms, there were 95 test images in total
(19 x 5 = 95) for this comparison. They were evaluated according to the
subjective method and enhancement measures.

Table 4.3 shows the average subjective evaluation scores of each observer for
the test mammograms. The bottom row lists the average evaluation scores of all
human observers on enhanced images categorized by enhancement algorithms.
Based on the scores, NLUM gives the best overall visual quality with a score of
4.6857, whereas CLAHE obtains the worst quality with a score of 1.9048.

The SDME and six existing measures are then used to measure the quality
of all 95 test images. Each individual enhancement measure has its own data
range; a good measure method should yield higher measure results for images
with higher visual quality, and vice versa.

As shown in Table 4.4, different measures have diverse evaluation results
for these enhancement algorithms. For example, the EME evaluates CLAHE-
enhanced images as the best, whereas the AME gives the highest value to the

Table 4.3 Subjective evaluation for the enhanced results by different algorithms. The rating
scale: 1 = bad, 2 = poor, 3 = fair, 4 = good, 5 = excellent.

Observer Original NLUM RUM ANCE CLAHE
#1 3.5556 4.6111 3.3333 2.6111 1.4444
#2 3.6667 4.9444 3.0000 2.5556 1.7222
#3 3.4444 4.2222 3.1111 2.3889 1.6667
#4 3.7778 4.6889 3.0000 2.3333 2.0000
#5 3.3333 4.8889 3.2222 2.6667 2.6111
#6 3.8889 4.7778 3.2778 2.0000 2.1111
#7 4.1111 4.6667 3.4444 2.4444 1.7778
Average 3.6825 4.6857 3.1984 2.4286 1.9048

Table 4.4 Comparison of measure results based on different algorithms. For each individual
enhancement measure, a higher score indicates better enhancement performance.

Enhancement Original NLUM RUM ANCE CLAHE
Measure

EME 0.9129 1.0833 1.0024 1.0023 2.5425
EMEE 0.0560 0.0688 0.0715 0.0614 0.1961
AME 26.4940 25.1455 26.3165 25.6358 17.4429
AMEE 0.0611 0.0679 0.0619 0.0653 0.1105
logAME 0.0526 0.0485 0.0522 0.0506 0.0316
logAMEE 0.0894 0.0993 0.0894 0.0942 0.1366

SDME 43.6388 47.2091 43.3729 42.2219 35.5386
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original images. Comparing the MOS evaluation results in Table 4.4, the SDME
is the only measure whose results are consistent with the MOS evaluation results.
The rest of this chapter uses the SDME to assess the enhancement performance
of different algorithms.

4.5.2 Parameter optimization

To demonstrate how to design and automatically optimize the NLUM
parameters using the proposed SDME, one mammogram obtained from the
Internet is used as an example; HVS-based image decomposition is then
applied for the visualization and analysis of the enhanced results. The SDME
is also used to measure and evaluate the performance of the NLUM for
mammogram enhancement.

To assess the enhancement performance of the presented NLUM scheme,
the users have the flexibility to use any existing measure approach to establish
a qualitative metric of mammogram enhancement. The enhancement measure
can also be used to optimize all of the NLUM coefficients to achieve the best
enhanced results. Here, the SDME is selected to measure and evaluate the
performance of NLUM for mammogram enhancement.

There are eight coefficients in NLUM: To reduce the number of
parameters, the user can make assumptions according to the practical design
requirements, for example, (1) 4> =1/41, wo =2, a9 =8h, oy =y =h,
and Wy = Wy = —0.125; or (2) A2 = 20141, wo = 8/’1, Q) = 12/1, o] = h,
oy = 2h, and w; = wy, = —h. These assumptions design the nonlinear filter
as a combination of a high-pass filter (wg,w;,w;) and a low-pass filter
(20, 1, 22). More weight is given to the filtered image in order to enhance the
fine details in images. With these assumptions, all of the NLUM coefficients
are correlated with the parameters 4 and /4. Assumption (1) is selected here to
demonstrate how to automatically design NLUM.

By automatically changing the parameters A; and /4, several enhanced
mammograms are generated and then measured by the SDME; the measure
results are then plotted as a graph. The parameters giving the best enhanced result
can be located at the points where the SDME curve reaches the local extrema.

Different fusion operations can be used in the NLUM scheme; compare
the arithmetic operation with the PLIP version. Taking Figure 4.4(a) as a test
image, the SDME measure results of the enhanced mammograms by NLUM
with arithmetic and PLIP operations are plotted in Figure 4.5. The measure
results allow one to find the location of parameters 4; and /4 that yield the best
enhanced result for each operation.

Using the parameters obtained from the measure in Figures 4.5(a) and
(b), the original mammogram is enhanced by NLUM with arithmetic addition
and PLIP addition, respectively. The enhanced mammograms and their
cropped suspicious regions are shown in Figure 4.4. The visual quality and
local contrast of the enhanced mammograms are much better than those of
the original. Fine details such as microcalcifications and masses in the original



114 Chapter 4

(b)

(d) (©

Figure 44 Mammogram enhancement: (a) the original mammogram, (b) the NLUM-
enhanced mammogram with arithmetic operation, (c) the NLUM-enhanced mammogram
with PLIP operation, (d) the cropped region of (a), (e) the cropped region of (b), and (f) the
cropped region of (c).

SDME

Figure 4.5 The SDME measure plots of mammogram enhancement based on different
values of Ay and h: (a) a SDME measure graph by arithmetic operation and (b) a SDME
measure graph by PLIP operation.

mammogram are significantly improved, and the suspicious regions are more
recognizable in the enhanced mammograms.

Compared with the enhanced results obtained by using two types of fusion
operations in Figure 4.4, the arithmetic operation shows better performance
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(a) (®

Figure 4.6 Enhancement analysis: (a) the enhanced region cropped from the mammo-
gram in Figure 4.4(b), (b) the threshold image of (a), and (c) the negative photo of (a).

because the NLUM based on PLIP operation slightly overenhances the mass
region, as shown in Figure 4.4(c). Therefore, the arithmetic operation is
chosen for NLUM to enhance mammograms in the rest of this chapter.

4.5.3 Enhancement analysis

There are many different methods used to analyze the enhanced images.
Figure 4.6 provides two examples: the negative view and thresholding of the
specific region of interest (ROI). The shape of the suspicious regions is very clear
and easily discernable. This demonstrates that NLUM performs well in improving
the contrast of suspicious regions, objects, and details in mammograms.

4.5.4 HVS-based analysis and visualization

While the user can view the entire image’s enhanced results, the process would
be improved if only the suspicious regions could be emphasized during
analysis. Instead of using the segmentation algorithms, HVS-based decompo-
sition can be used as an alternative method to provide visualization of results
that isolate ROIs, mainly suspicious regions.

By using the background intensity and the rate of information change,
HVS-based decomposition separates images into four subimages based on
four defined regions: (1) region 1: the saturation region for overilluminated
areas; (2) region 2: the Weber region for properly illuminated areas; (3) region 3:
the Devries—Rose region for underilluminated areas; (4) region 4: the fourth
region for all pixels containing the least informative pixels.®**® This section
extends its application to enhancement analysis and visualization.

Figures 4.7 and 4.8 show the HVS-based decomposition results of the
enhanced mammogram and its negative (tonal inversion), respectively. In
general, the mass regions can be segmented by HVS-based decomposition in
one subimage without involving any segmentation algorithms. The results are
shown in Figures 4.7(b) and 4.8(d). Therefore, HVS-based decomposition can
be used for segmentation and classification of pathological cases in a CAD
system.
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Figure 4.7 HVS-based decomposition of the enhanced mammogram: (a) the enhanced
mammogram, (b) the first subimage, (c) the second subimage, (d) the third subimage, and
(e) the fourth subimage.

(@ (b) (d) (e)

(2) (®) (©) (C)) (e)

Figure 4.8 HVS-based decomposition of the inversed mammogram: (a) the negative of the
image of the enhanced mammogram; (b) the first subimage; (c) the second subimage; (d)
the third subimage; and (e) the fourth subimage.

4.5.5 Comparison of enhancement performance

After demonstrating how to automatically optimize the parameters in
NLUM, this section applies it to more mammograms and compares it with
other well-known enhancement algorithms.

The mammograms for this comparison were obtained from the mini-
MIAS database of mammograms.?” The database consists of 322 mammo-
grams, and the cases of patient records range from fairly dense to
extraordinarily dense breast parenchyma. Some cases are completely fatty.
Most masses are ill-defined, indistinct, or speculated.

All test mammograms are cropped into smaller-size images for analysis
such that the resulting cropped mammographic images contain most of the
microcalcifications, masses, and suspicious regions that may be interesting to
radiologists. These mammograms have a limited black background, which
contains nonobject regions and background project noise.

Six mammograms were used as examples, and the enhanced results are
shown in Figures 4.9 and 4.10. They clearly show how the enhancement
algorithms change fine details and suspicious regions in images. Their SDME
results are shown in Table 4.5.
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(b)

Figure 4.9 Comparison of mammogram enhancement using different algorithms:
(a) Original mammograms (Mam_1 to Mam_3), (b) NLUM-enhanced results, (c) RUM-
enhanced results, (d) ANCE-enhanced results, (€) CLAHE-enhanced results, and (f) DICE-
enhanced results.
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®

Figure 4.10 Comparison of mammogram enhancement using different algorithms:
(a) Original mammograms (Mam_4 to Mam_6), (b) NLUM-enhanced results, (c) RUM-
enhanced results, (d) ANCE-enhanced results, (€) CLAHE-enhanced results, and (f) DICE-
enhanced results.
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Table 4.5 SDME results of mammograms enhanced by different algorithms. A higher
score indicates better enhancement performance.

Original NLUM RUM ANCE CLAHE DICE
Mam_1 44.7378 47.4100 44.5905 41.9886 36.1296 39.748
Mam_2 42.4422 44.7627 42.1725 42.4422 34.2108 37.12654
Mam_3 44.1716 46.9127 44.1132 42.0401 35.8518 39.03196
Mam_4 45.3980 47.6609 45.2934 42.0689 36.2382 39.94165
Mam_5 46.7206 49.7931 46.6719 44.6588 37.5773 41.72588
Mam_6 45.0838 47.6866 44.9040 42.1152 35.9426 39.9139

* RUM slightly improves the visual quality of images, but it generates
spot artifacts, as shown in Figures 4.8(c) and 4.9(c).

* ANCE has very limited visual improvement and produces many textile
artifacts in the mammograms.

* CLAHE overenhances the background of all mammograms, making
microcalcifications and/or masses more unrecognizable than the
original ones.

» As evident from Figures 4.9(f) and 4.10(f), DICE improves the contrast
of the microcalcifications, but it fails to enhance mass regions. It also
generates background noise and textile artifacts.

The measure results in Table 4.5 support these observations. The
presented NLUM outperforms the others because it improves the contrast
of mammograms and visual quality of suspicious regions such as masses and/
or microcalcifications, which is useful for detecting and diagnosing diseases or
breast cancer at an early stage. The enhanced mammograms have no detail
information loss. The measure results in Table 4.5 verify the excellent
enhancement performance of NLUM.

4.5.6 ROC evaluation

The receiver operating characteristic curve was originally developed for
signal-detection theory. It is a well-known evaluation methodology used for
medical decision making and medical diagnostic imaging systems.”®! The
ROC curve is a graphical plot of the true positive rate (a fraction of true
positives over the positives) versus the false positive rate (a fraction of false
positives over the negatives). To determine whether a person has a specific
disease in the clinical diagnosis, a true positive case occurs when the person
tests positive and actually has the disease. A false positive case, on the other
hand, occurs when the person tests positive but does not actually have the
disease.”” The MATLAB® implementation of the ROC analysis is addressed
in references.”%*

This section uses the ROC curve to evaluate the NLUM enhancement
performance. 60 mammograms were selected from the mini-MIAS database.
They consist of 30 normal mammograms (which do not contain suspect
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Figure 4.11 The ROC curves of the original and enhanced test mammograms.

regions such as calcifications and masses) and 30 suspicious mammograms.
All mammograms were cropped into smaller-size images such that the
resulting images have minimal background or contain most of abnormal
regions such as microcalcifications and masses.

All mammograms were enhanced by NLUM and then divided in two
groups: original and enhanced mammograms. They were inspected by a
medical doctor who has a great deal of clinical experience with viewing
mammograms. The doctor marked each mammogram with the case type
(‘0” for the truly negative case indicating a completely normal mammogram
and ‘1’ for the truly positive case referring to an abnormal mammogram.)
and the confidence rate for each case type. The confidence rate is from 1-5,
where ‘1’ indicates a definitely negative case, and ‘5’ means definitely
positive.”

Using an online code of the ROC analysis developed by Eng,’* the
doctor’s inspection results were individually plotted into ROC curves for
the original and enhanced mammograms. The results are shown in
Figure 4.11.

The area under the ROC curve (AUC) is used to quantitatively evaluate the
classification performance of the diagnosis system.’”*! The AUC value is always
between 0 and 1. A higher AUC value indicates better classification performance.
The AUC for the enhanced mammogram is 0.957, whereas the AUC for the
originals is 0.874. This demonstrates that the NLUM enhancement improves the
doctor’s diagnosis. It could potentially improve cancer breast diagnosis and
detection in the CAD systems.

4.6 Conclusion

This chapter introduced a new nonlinear unsharp masking scheme for
mammogram enhancement. NLUM has been shown to provide more design
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flexibility that makes it possible to meet more specific and complex requirements
in real world applications. The simulation results have demonstrated that the
NLUM parameters can be optimized by the enhancement measure to obtain
the better enhanced result for clinical applications. Enhancement comparison has
proven that the NLUM shows better performance for improving the local
contrast of suspicious regions and fine details in mammograms. NLUM has
potential applications of improving the automatic disease detection and diagnosis
in CAD systems.

To quantitatively evaluate NLUM performance for mammogram
enhancement, we have introduced a new enhancement measure called the
second-derivative-like measure of enhancement. Compared with other
existing measure methods, the SDME shows better performance for
enhancement measurement and assessment. HVS-based decomposition has
been verified to be a useful tool to analyze and display suspicious regions in
mammograms.
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