
Characterizing Microservice Dependency and
Performance: Alibaba Trace Analysis

Shutian Luo
∗‡

Shenzhen Institute of Advanced

Technology, CAS

Univ. of CAS, Univ. of Macau

st.luo@siat.ac.cn

Huanle Xu
∗‡

University of Macau

huanlexu@um.edu.mo

Chengzhi Lu
‡

Shenzhen Institute of Advanced

Technology, CAS

Univ. of CAS

cz.lu@siat.ac.cn

Kejiang Ye
‡

Shenzhen Institute of Advanced

Technology, CAS

kj.ye@siat.ac.cn

Guoyao Xu

Alibaba Group

yao.xgy@alibaba-inc.com

Liping Zhang

Alibaba Group

liping.z@alibaba-inc.com

Yu Ding

Alibaba Group

shutong.dy@alibaba-inc.com

Jian He

Alibaba Group

jian.h@alibaba-inc.com

Chengzhong Xu
†‡

University of Macau

czxu@um.edu.mo

ABSTRACT
Loosely-coupled and light-weight microservices running in

containers are replacing monolithic applications gradually.

Understanding the characteristics of microservices is critical

to make good use of microservice architectures. However,

there is no comprehensive study about microservice and its

related systems in production environments so far. In this pa-

per, we present a solid analysis of large-scale deployments of

microservices at Alibaba clusters. Our study focuses on the

characterization of microservice dependency as well as its

runtime performance. We conduct an in-depth anatomy of

microservice call graphs to quantify the difference between

them and traditional DAGs of data-parallel jobs. In particular,

we observe that microservice call graphs are heavy-tail dis-

tributed and their topology is similar to a tree and moreover,

many microservices are hot-spots. We reveal three types of

meaningful call dependency that can be utilized to optimize
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microservice designs. Our investigation on microservice run-

time performance indicates most microservices are much

more sensitive to CPU interference than memory interfer-

ence. To synthesize more representative microservice traces,

we build a mathematical model to simulate call graphs. Ex-

perimental results demonstrate our model can well preserve

those graph properties observed from Alibaba traces.
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Liping Zhang, Yu Ding, Jian He, and Chengzhong Xu. 2021. Charac-
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1 INTRODUCTION
Loosely-coupled and light-weight microservices are gradu-

ally replacing monolithic applications [4]. Comparing with

previous monolithic applications, microservices have special

advantages in many aspects, such as cross-team develop-

ment, friendly deployment, and so on. Nowadays, leading

cloud service companies such as AWS and Alibaba start to

provide an off-the-shelf microservices architecture for users

to ease their application deployment [1, 3, 5].

To leverage microservice architecture, many benchmarks

such as Acme Air [33], 𝜇Suite [27], and DeathStarBench [16]

have been developed to explore the major characteristics

of microservices. These benchmarks compare microservices

and monolithic applications with respect to network over-

head [33], remote procedure calls efficiency [27], and perfor-

mance implications on resource management and hardware
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[16]. However, these studies only provide insights into rel-

atively small-scale clusters. The results do not necessarily

apply to production environments.

In this paper, we aim to make a comprehensive analysis of

the large-scale deployment of microservices in production

clusters. Specifically, we analyze the behaviors of more than

20,000 microservices in a 7-day period and profile their char-

acteristics, including anatomy of dynamic call graphs and

characterization of microservice dependency as well as the

runtime performance analysis. More importantly, we build

a stochastic model to simulate the dynamic dependencies

between microservices. We illustrate our studies and the

important findings in the following.

Microservice call graphs are substantially different
from traditional DAGs of data-parallel jobs. Although
a microservice call graph can be viewed as a direct graph, it

presents several distinct features as listed below.

• The size of microservice call graphs follows a heavy-tail

distribution. Around 10% of call graphs consist of more than

40 microservice stages, whereas most data-parallel jobs only

contain a few stages.

• A microservice call graph is topologically similar to a

tree. In Alibaba microservice traces, a majority of nodes have

in-degrees of one. By contrast, observations from big data

job traces imply traditional DAGs usually contain multiple

gather components [31].

• A non-negligible fraction of microservices are hot-spots.

Specifically, about 5% of microservices are multiplexed by

more than 90% of online services in Alibaba clusters. How-

ever, traditional DAG graphs do not share nodes with each

other.

• Microservices can form highly dynamic call dependen-

cies in runtime. In an extreme case, the same online service

can have more than nine classes of topologically different

graphs. As a comparison, traditional DAG graphs tend to be

static and do not change after a job is submitted.

Strong dependency betweenmicroservices provides
good opportunities for optimization of microservice
designs. A pair of twomicroservices can form a strong cyclic

dependency: The interface of an incoming call to upstream

microservice (UM) is the same as the reply interface of UM

for downstream microservice (DM) to call back. In this case,

coupling these two interfaces together can potentially avoid

unnecessary deadlocks. Moreover, a noticeable fraction of

microservice pairs have a strong coupled dependency. For

such pairs, the UM will repeatedly call the DM multiple

times whenever the UM is called by others. Coupling these

interfaces with a strong dependency may help to greatly

reduce the communication overhead.

Microservice performance is much more sensitive
toCPU interference thanmemory interference. Microser-

vices in Alibaba clusters are usually deployed with hundreds

of containers, which are co-located with batch applications

on multiple physical hosts. The resource utilization of mi-

croservice containers can be as low as 10% usually, and the

resulted response time (RT) does not vary much across dif-

ferent workloads. However, CPU interference can greatly

hurt RT performance. In particular, a host CPU utilization

of 30% can degrade the average RT by 20% when compared

to utilization of 10%. As a consequence, there is a strong

demand for more efficient job schedulers that can well bal-

ance the CPU utilization across different hosts. In addition,

we reveal that the RTs of microservices are highly graph

topology dependent.

Stochastic models can simulate dynamic microser-
vice call graphs quite well. Existing microservice bench-

marks have a very small scale since the number of microser-

vices does not exceed 40, e.g., [16, 27, 43]. Another great

limitation of these benchmarks is that, even though they

contain multiple online services but each service keeps a

fixed call graph topology that does not change often when

different requests are being processed. To mitigate these lim-

itations and generate microservice traces on a much larger

scale, we build a stochastic model to simulate microservice

call graphs aiming at preserving graph properties observed

from Alibaba traces. And this model relies on a good classifi-

cation of different types of microservices to generate graphs.

The experimental results demonstrate our graph simulator

can well preserve these graph properties.

To summarize, we have made the following contributions

in this paper:

• We conduct the first comprehensive study on large-

scale deployment of microservices in production clus-

ters. Our study covers both the structural properties of

microservice call graphs (§ 3) as well as microservice

call dependencies (§ 4).

• We make a thorough characterization of microservice

runtime performance, which provides deep insights

into microservice scheduling and resource manage-

ment. (§ 5)

• We build a graph model to efficiently generate mi-

croservice traces on a large-scale. More importantly,

we also conduct a theoretical analysis to characterize

structural properties in simulated graphs. (§ 6)

2 MICROSERVICE BACKGROUND AND
ALIBABA TRACE OVERVIEW

2.1 Microservices architecture
2.1.1 Call graph. A microservice usually runs in multiple

containers to serve users’ requests. The request from users

is called an origin request and this request is first sent to an

Entering Microservice, which then triggers a series of calls

between related microservices. We define the set of these

413



Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Stateless service

Memcached
Database

Stateful servicePart1

Part3

A

User

Part2

RPC

Message Queue

Inter-process 
Comm.

Web  Request

(a) Components of call graphs

A + +

A

(b) Two-tier invocations

Figure 1: Illustrations of microservices.

calls as a call graph. Thus, a call graph contains multiple

calls between different pairs of microservices. Here, a pair of

microservices contains one upstream microservice (UM) and

one downstream microservice (DM). For ease of illustration,

we sketch a call graph as shown in Fig. 1(a). User issues

an origin web request via HTTP to Entering Microservice A
which is a front-end web service. When replying to the origin
request, Microservice A shall call its DMs in turn further call

their downstream microservices.

Microservices can be categorized into two types, namely,

stateless (a circle in Fig. 1(a)) and stateful (a rectangle or

hexagon). Stateless services are isolated from state data while

stateful services such as databases [8] and Memcached [13]

need to store data. Stateful services often provide a small

number of uniform query interfaces such as reading or writ-

ing data, while stateless services tend to provide tens to

hundreds of evolving interfaces for different purposes.

There exist three types of communication paradigms be-

tween a pair of microservices, i.e., inter-process communi-

cation [30], remote invocation [28], and indirect communi-

cation [16]. Inter-process communication (IP) usually hap-

pens between stateless and stateful microservices. Remote

invocation such as Remote Procedure Call (RPC [30]) is a

two-way communication under which a DM must return a

result to its corresponding UM. By contrast, indirect com-

munication such as Message Queue (MQ) is one-way only

[30]. Under such communications, the UM sends a message

to the third entity, which will persist the message for relia-

bility, and the DM fetches the message on demand from the

third entity directly without a reply. Remote invocation has

a high efficiency while indirect communication maintains

good flexibility.

2.1.2 Hierarchical call dependencies and RTs. As shown in

Fig. 1(a), the call graph can be divided into several parts ac-
cording to the edge of indirect communication. Each part
can consist of multiple two-tier invocations with each con-

sisting of a UM and all the DMs it calls (Fig. 1(b)). The call
depth (aka the number of tiers) is defined as the length of the

longest path in a call graph, e.g., the call depth of the graph

illustrated in Fig. 1(a) is 5 (or it has 5 tiers).

6. UMs / DMs

Bare-metal Node
Pod
Container
Microservice

Pod
Secure 

Container

D

Pod Pod

Microservice System Metrics
2. Metrics 3. Values

5. Pod IP
1. TimeStamp
4. Microservices

E

2. TraceID
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10. Communication Paradigm

6. DM
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  Sampled Microservice Invocation
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F
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G

Batch Jobs
Batch Jobs

Figure 2: Alibaba microservice traces information.

The response time (RT) of a call is the length of the inter-

val from UM calling its DM to it receiving the response. Since

an indirect communication does not need to return a result,

RT of an origin request is dominated by the part associated

with its user (e.g., Part 1 in Fig. 1(a)). The same class of user

requests can trigger different microservice call procedures

and thus incur heterogeneous RTs. Take online ordering for

an example, depending on whether a user holds a coupon

ticket or whether there is a sale, the set of two-tier invoca-

tions involved in the ordering is quite a case dependent, so

is the time to complete this ordering.

2.2 Alibaba trace overview
In this paper, we analyze more than ten billion call traces

among nearly twenty thousand microservices in 7 days from

Alibaba cluster. We believe such a scale of samples can well

represent the wide deployment of all microservices in Al-

ibaba
1
. In the following, we shall give a detailed description

of these traces.

2.2.1 Physical running environment. Alibaba clusters adopt
Kubernetes [7] to manage the bare-metal cloud [39] and,

relies on the hardware-software hybrid virtio I/O system to

enhance cluster performance and achieve better isolation

between different services. As shown in Fig. 2(a), online ser-

vices and offline jobs usually coexist in the same bare-metal

node, so as to increase the cluster resource utilization. On-

line services (e.g., microservices) are running in containers,

which are managed by Kubernetes directly. By contrast, for

batch jobs, Kubernetes shall first allocate a certain amount of

pods (the basic resource scheduling unit under Kubernetes

[9]), which will then be delivered to Fuxi [41], a scheduler for

batch jobs in Alibaba, for further scheduling. Each of these

pods will run in a secure container [6, 10]to process batch

jobs. The adoption of bare-metal servers and deployment of

secure containers could alleviate the impact of interference

and provide a better guarantee to the service quality of mi-

croservices. However, stateful services including database

1
The trace is now open for public access as part of the Alibaba Cluster Trace

Program via https://github.com/alibaba/clusterdata.
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and Memcached are deployed in a dedicated cluster which is

not shared with other batch applications or stateless services.

2.2.2 Microservices system metrics. Alibaba makes use of

the Application Real-Time Monitoring Service system to col-

lect microservice traces [2], which is similar to Dapper [26].

As shown in Fig. 2(b), the microservice monitoring system

collects several system metrics for each container produced

in every minute and takes the average to record. These met-

rics range from hardware-layer such as cache misses per kilo

instructions and cycles per instruction to operating-system,

including CPU utilization and memory utilization, and also

contains application-layer index such as Java virtual machine

(JVM) heap utilization and JVM garbage collection (GC). Val-
ues denote the exact number of these metrics, and Timestamp
is the time when a corresponding metric is collected. Pod IP is

the IP address of the pod in where aMicroservice is deployed.
A microservice usually runs in hundreds of containers.

2.2.3 Microservice invocations in a call graph. The microser-

vice monitoring system also records in detail the call de-

pendency between related microservices within a call graph

as shown in Fig. 2(c). All invocations (or calls) between mi-

croservices triggered by the same user request share one

unique TraceID, which is the identifier of a call graph. More-

over, an upstreammicroservice (UM) shall call a downstream

microservice (DM) via a specific interface. The IP addresses

of the pods holding them are recorded by the system as well,

i.e., UM Pod_IP and DM Pod_IP. The trace also contains the

response time (RT ) of each call. Moreover, each call is identi-

fied by a unique rpcID, which contains the ID information of

a pair of microservices. For example, rpcID 0.1.1 and 0.1.2 de-
note two calls sent from the same UM to two different DMs.

To avoid running out of storage space, the monitoring sys-

tem only records a certain number of call graphs which are

sampled based on TraceID. For all calls in each TraceID, the
system also records their communication paradigm. Among

all the calls that happened between two stateless microser-

vices in the traces, RPC, MQ and IP account for 76%, 23% and

1% of communication paradigms respectively. As such, MQ

contributes to a non-negligible percentage of calls in pro-

duction clusters, which is quite different from the synthetic

benchmarks provided by the academic, since the latter rarely

adopts MQ as a communication paradigm.

2.2.4 Aggregate invocations. From a singlemicroservice point

of view, the monitoring system also records all the calls (re-

ceived from UMs or sent to DMs) related to each individual

microservice. As shown in Fig. 2(d), a microservice contains
multiple provided interfaces to be called by its UMs. It calls
DMs via different consumed interfaces. Correspondingly, call
times quantifies the number of calls generated from each

interface in one minute with the time recorded by TimeS-
tamp. It is worth noting that, these calls are produced by all

call graphs containing the target microservice and therefore,

the traces only present the aggregate results. In addition, RT
characterizes the average response time among all these calls

within one minute for each interface.

3 ANATOMY OF CALL GRAPHS
In this section, we present a comprehensive study about

the graph topology of microservice call graphs. We first

show these call graphs present several distinct features and

are substantially different from traditional DAG graphs of

batching processing jobs (§ 3.1). We then show how to apply

graph learning algorithms to cluster the call graphs of each

online service into multiple classes (§ 3.2). Last, we dissect

microservice call graphs to focus on smaller components in

each tier for generating new microservice benchmarks at a

large scale (§ 3.3).

3.1 Characteristics of microservice call
graphs

To explore how microservices differ from traditional batch

applications, we quantify the statistics of microservice call

graphs in terms of the number of microservices, the call

depth, and the in-degree (out-degree) of each microservice.

The size of microservice call graphs follows a heavy-tail dis-
tribution. While most call graphs contain a small number of

microservices and have three tiers, a non-negligible number

of graphs are big and deep. As shown in Fig. 3(a), the number

of microservices in a graph follows a Burr distribution [19].

In particular, more than 10% of call graphs contain more than

40 unique microservices. The largest call graph can even con-

sist of hundreds to thousands of microservices. This result

indicates that the scale of existing benchmarks is far smaller

than that in real traces [16, 27, 43]. For these call graphs of

large size (containingmore than 40microservices), about 50%

of their microservices are Memcacheds. We observe that this

percentage is 20% higher than that under those call graphs of

small size. Since getting (hot) data fromMemcacheds is much

faster than from databases, maintaining a large number of

Memcacheds can significantly reduce the RT of complicated

services.

We proceed to study the graph depth of each call graph.

Interestingly, as depicted in Fig. 3(b), a common graph depth

inAlibaba traces is three. The reason behind this is that, when

serving an online request in Alibaba cluster, a microservice

usually calls multiple downstream microservices, which will

then query data from MCs directly as such data is usually

hot data that is frequently accessed by other requests and

cached in Memcacheds, e.g., the information of goods in an

online store. Quantitatively, the call graphs have an average
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Figure 3: Statistics of all microservice call graphs in Alibaba traces. (a) Cumulative distribution of the number of microservices

in each call graph. For ease of presentation, we cut off the long tail to only count those numbers that are within the 99th

percentile. (b) The distribution of call depth in all call graphs. (c) The maximum call depth (95th percentile) under a fixed

number of microservices.
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Figure 4: Distribution of the degree of stateless microser-

vices in individual graphs and aggregate calls.

depth of 4.27, with a stand derivation of 3.25. As such, the

call depth of microservice graph is in general shorter than

the critical path length presented by DAG graphs from batch

applications in Alibaba clusters, which is reported in [31].

Nevertheless, more than 4% of call graphs present a call depth

of more than ten. In such cases, it is extremely challenging to

configure the right number of containers for all microservices

in production clusters, using conventional deep-learning

based approaches, like those in [17, 40]. These approaches

encode all the associated microservices of different tiers in a

graph with timely resource allocations as the input vector

to a neural network. As a result, they can easily yield a

large model size and lead to overfitting since the number of

samples with each one having both a large graph size and

a negative label (e.g., RT violation) is small. It is therefore

desirable to find an alternative approach that can efficiently

allocate resources for microservices in a large call graph.

Microservice call graph behaves likes a tree and many of
them only contain a long chain. As shown in Fig. 3(c), the call

depth stagnates when the number of microservices increases.

This is due to that a microservice graph tends to branch out

quickly like a tree to include more two-tier invocations. Once

a call is sent to a stateful microservice, it will not incur further

calls. Again, this scattering property is different from that

observed from traditional DAG graphs, which usually con-

tain both scatter and gather components. To further validate

this argument, we present the distribution of both in-degree

and out-degree of microservices in call graphs and show the

result in Fig. 4. More than 10% of stateless microservices have

an out-degree of at least 5, while most microservices have

an in-degree of one (i.e., only one UM in a call graph). As a

comparison, more than 99% of vertices in DAG graphs have

out-degrees no more than 3 while their in-degrees follow a
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Figure 5: The distributions of the number of microservices

in different tiers.

long-tail distribution. When we examined the distribution of

the number of microservices in each tier, we found that many

tiers have only one microservice. As shown in Fig. 5, as long

as the depth becomes larger than two, the corresponding

tier includes only one microservice with a high probability

(above 60%). As such, many deep graphs can be represented

by one long chain. For these graphs, detecting the bottle-

necked microservice is relatively easy. One can efficiently

derive the processing time of each individual microservice

along the chain and check whether an overload occurs based

on information from historical traces.

Many stateless microservices are hot-spots. To quantify to

what extent a single microservice can be shared by all call

graphs, we explore the distribution of in-degree (out-degree)

of stateless microservices in aggregate calls. Aggregate calls

count all the invocations related to each individual microser-

vice from all call graphs. As depicted in Fig. 4, more than 5% of

microservices have in-degrees of 16 in aggregate calls. These

super microservices appear in nearly 90% of call graphs and

handle 95% of total invocations in Alibaba traces. This result

implies that, the loosely-coupled microservice architecture

leads to a significant unbalance of workload across different

microservices. This is beneficial for resource scaling since

the system manager shall only focus on the scaling of indi-

vidual microservices and allocate much more containers to

these super microservices.

Microservice call graphs are highly dynamic. Another dis-
tinction of microservice call graphs is that they are dynamic,

in other words, they can present significant topological dif-

ferences between each other even among all the graphs gen-

erated by the same online service. Each online service is

represented by an entering microservice which is called by

a user directly (e.g., Microservice A in Fig. 1(a)) and there

416



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Shutian Luo, Huanle Xu, et al

2 3 4 5 6 7 8 9
Number of Cluster

0
20
40
60

Pe
rc

en
ta

ge
(%

)

Figure 6: The distribution of the number of classes of graph

topologies in all online services.

are more than 3000 different services in total in Alibaba

traces. Once a call is sent to an entering microservice, the

subsequent calls can be quite complicated depending on the

status of a user (e.g., whether a user holds a coupon ticket

when making an online ordering). We apply graph learning

algorithms to cluster microservice call graphs into different

clusters based on their topology (§ 3.2). As shown in Fig. 6, all

online services have at least two classes of graph topologies.

In particular, more than 10% of services are implemented

in nine clusters. This further imposes a great challenge on

graph-based prediction tasks on microservices. The existing

CNN-based approach for microservice resource management

fails to characterize these dynamics and is not applicable to

real-life industry applications, (e.g., [17, 40]).

3.2 Graph learning algorithms
In this part, we present the graph learning algorithms that

are used to classify the call graphs of each microservice into

different classes. Our learning algorithms can differentiate

graphs based on their topology as well as the composition of

microservices. The key step is to encode each microservice

call graph into a vector. To achieve this, we adopt the re-

cently developed graph learning scheme, i.e., InfoGraph [29].

InfoGraph is an unsupervised approach that takes both the

node information (e.g., the type of a microservice) and the

edge attribute (i.e., the communication paradigm) along with

the adjacent matrix as an input to the deep neural network.

By maximizing the mutual information conveyed in a train-

ing set, InfoGraph manages to generate an embedded vector

for each graph. We train each online service separately and

apply K-means clustering on the embedded 20-dimensional

vectors to group all the call graphs generated by this ser-

vice into multiple classes. The number of classes is set to

the candidate in the range [2,10] that can yield the highest

Silhouette score.

For examining the goodness of these clustering results, we

further apply a widely-adopted method, i.e., Graph Kernel to
compute the similarity between any two graphs of a service.

Graph Kernel defines a kernel that captures the semantics

inherent in the graph structure and is reasonably efficient

to evaluate [36]. We quantify both the intra-cluster and the

inter-cluster similarity for each service. In the former, we

compute the similarity between any two graphs within each

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0
0.2
0.4
0.6
0.8
1.0

CD
F intra-cluster

inter-cluster

Figure 7: Intra-cluster similarity v.s. inter-cluster similarity.

cluster and take the weighted average whereas in the latter,

we average the similarities between any two graphs gener-

ated by a service. The whole clustering process is described

in Algorithm 1. In Step 3, we randomly sample 𝑚 graphs

in each cluster for better scalability since the Graph Kernel
method has a complexity of 𝑂 (𝑛4) where 𝑛 is the number

of nodes. We quantify the similarity between the clustered

graphs in Fig. 7 (𝑚 = 50) and it shows that the intra-cluster

similarity is 30% higher (in average) than the inter-cluster

similarity, suggesting the designed clustering algorithm is

quite effective to distinguish between different call graphs.

Algorithm 1: Clustering microservice call graphs

input :𝐺 : a set of Graphs for a service, 𝑙 :
embedding length,𝑚: sample number

output :Clustering result 𝐶 , Graph similarity 𝑆

1 𝐺𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 = InfoGraph(𝐺 , 𝑙 ) ;

2 𝐶 = Kmeans(𝐺𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔) ;

3 𝐺𝑠𝑎𝑚𝑝𝑙𝑒 = Sample(𝐶 , m) // sample 𝑚 graphs

randomly in each cluster

4 𝑆𝑖𝑛𝑡𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑒𝑟 , 𝑆𝑖𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = S(𝐺𝑠𝑎𝑚𝑝𝑙𝑒 )

3.3 Anatomical analysis
To inspect how a call graph is formed and guide the gen-

eration of new microservice benchmarks, we study in this

section the detailed structure of two-tier invocations in dif-

ferent tiers among all call graphs.

The call patterns of stateless microservices vary a lot over
different tiers. In the traces, a noticeable fraction of stateless

microservices are blackholes since they have no DM. When-

ever a call is sent to a blackhole, the call graph will stop to

branch out. On the contrary, there exists another type of

relays microservices that will inevitably call others to serve

the user requests. The rest of microservices (or normals) shall
call their DMs with a certain probability. Moreover, the dis-

tribution of these three types varies over different tiers. As

shown in Fig. 8(a), the percentage of black holes (relays) in-
creases (decreases) with the call depth growing, which is in

line with the observation that the expected call depth in a

call graph is short. To make things even more complicated,

the probability that whether a normal microservice will call

other microservices is still tier specific. Similar to the pat-

terns of relays, one may also expect the probability that a

417



Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis SoCC ’21, November 1–4, 2021, Seattle, WA, USA

2 4 6 8 10 12 14
Call Depth

0

20

40

60

80

Pe
rc

en
ta

ge
 (%

)

Black Hole
Relay
Normal Leaf
Normal Relay

(a)

2 4 6 8 10
Call Depth

0
20
40
60
80

Pe
rc

en
ta

ge
 (%

)

IP(S2D)
IP(S2M)
IP(S2)

RPC
MQ

(b)
Figure 8: Tier-level microservice statistics. (a) The percent-

age of different types of stateless microservices changes over

tiers. (b) The distributions of communication paradigms in

different tiers.

normal proceeds to call DMs (i.e., the percentage of normal
relays in Fig. 8(a)) decreases over tiers. Contrary to this ex-

pectation, when the call depth is above 8, such a probability

increases over tiers. In a conclusion, microservice graphs

have a lot of distinct features and it is quite challenging to

simulate production call graphs using simple mathematical

models.

MQ contributes greatly to reducing the end-to-end RT in
deep graphs. In addition to the number of microservices, the

communication paradigm also varies significantly over tiers.

As depicted in Fig. 8(b), the percentage of communications

between stateless microservices and Memcacheds (i.e., S2M)

reduces linearly in call depth when the depth is above three.

It indicates the cache miss rate of queries increases quickly

when call graphs become deeper and deeper. When the data

misses a hit in caches, this query will be sent to database ser-

vice. This is in line with the result illustrated in Fig. 8(b). The

percentage of communications between stateless microser-

vices and databases (i.e., S2D) increases sublinearly when

the depth increases. The gap between the change rates of

these two communication paradigms is filled by MQ, whose

percentage also increases in call depth. Since MQ is an indi-

rect one-way communication under which the call can be

handled in the backend without immediate reply, a large

percentage of MQs can help to greatly reduce the end-to-end

RT when the call graph is deep.

4 DEPENDENCY BETWEEN STATELESS
MICROSERVICES

Light-weight microservices form complicated and dynamic

call dependencies. These are fundamentally different from

DAG dependencies [12, 15, 38]. In this section, we explore the

call dependencies between stateless microservices to develop

understandings of how to optimize microservice designs, so

as to reduce the communication overhead and avoid possible

deadlocks.

Table 1: Cyclic dependency between a pair of microservices

via different communication paradigms.

UM

DM

RPC MQ

RPC 7.6% 0.0016%

MQ 0.00167% 0.22%

UM DM
I1

I2

I3
Figure 9: Cyclic dependency between a pair of microser-

vices.

4.1 Cyclic dependency
In this part, we show how easily a cyclic dependency can

occur in Alibaba microservice traces. An example of cyclic

dependency is illustrated in Fig. 9 where a DM replies to

its UM immediately without involving other microservices.

Furthermore, cyclic dependency can be categorized into two

classes, i.e., strong dependency and weak dependency [22].

In the strong case, the entering interface of UM is the same

as the reply interface for DM calls to call (i.e., 𝐼1 = 𝐼3). By

contrast, these two interfaces are different in weak depen-

dency (i.e., 𝐼1 ≠ 𝐼3). Strong cyclic dependency can lead to a

deadlock if not designed carefully and would be better off

shipping the cyclic bits together as a larger service [18].

Cyclic dependencymakes up a non-negligible fraction among
all dependencies. As quantified in Table 1, cyclic dependency

contributes to more than 7.8% of the total microservice de-

pendencies and most are via RPC calls. Among all these

cyclic dependencies, 2.7% of them are strong dependencies.

Moreover, for each pair of microservices that have a strong

dependency, whenever an interface of a UM calls a DM, the

DM would call back the UM subsequently via the same inter-

face with a probability as high as 83%.We also investigate the

number of cyclic calls involving three microservices and this

number is relatively small, i.e., less than 200 among all the

traces with billions of calls. As such, long cyclic calls rarely

happen. As a consequence, the service provider should only

pay much attention to those pairs of two microservices that

form a strong dependency and validate whether there is a

strong need to combine the two interfaces into a single one

(e.g., 𝐼1 and 𝐼2) so as to avoid deadlocks.

4.2 Coupled dependency: dependency with
high call probability and large call time

Prior online service systems assume an upstream service

calls its downstream services following a fixed probability

distribution, e.g., [20], [34]. However, this assumption may

not hold in practice in microservice systems since a UM can

repeatedly call the same DM multiple times in a two-tier

invocation. To model such a dependency, we adopt call time
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Figure 10: Cumulative distribution of the product of Call

Probability and Call Time between all pairs of microservices.

A high product means the DM will be called by UM within

the same pair repeatedly with a high probability.

as a complementary metric to call probability as follows:

Call Probability(𝑌2𝑋 ) = Count(𝑋 ) / Sum. (1)

Call Time(𝑌2𝑋 ) = Count(𝑋 ) / 𝑁 . (2)

where Count(𝑋 ) is the number of times that UM 𝑌 calls

DM 𝑋 (note that a DM may be called multiple times by Y

within the same two-tier invocation), and Sum denotes the

number of two-tier invocations trigger by Y in all call graphs.

In Eq. (2), 𝑁 is the number of those two-tier invocations in

which DM 𝑋 was called.

Call probability measures for each pair of microservices

how likely the DM is called while call time quantifies how

many times the DM is called in each two-tier invocation

initiated by the UM. When both of Call Probability(𝑌2𝑋 )
and Call Time(𝑌2𝑋 ) are large and beyond certain thresholds,
i.e., 2 and 0.9 respectively, 𝑌 and 𝑋 and their corresponding

interfaces then form a strong coupled dependency.

A noticeable fraction of pairs have strong coupled depen-
dency and their interfaces could be coupled together for perfor-
mance optimization.We show the distribution of the product

of Call Time and Call Probability in Fig. 10. Surprisingly,

more than 10% of pairs of microservices have a product of

no less than five, implying that a lot of microservice pairs

in Alibaba cluster have a strong coupled dependency. We

continue to quantify the percentage of these pairs whose

DM are not called by other microservices (i.e., the DM has

an in-degree of one). The result indicates that 17% of pairs

with strong coupled dependency do not share DM with any

other microservice. For these pairs, coupling the called inter-

face of DM with the corresponding interface of UM together

can substantially reduce the communication overhead since

coupling can replace a remote call with a local self-call to

reduce network traffic.

4.3 Parallel dependency
In a two-tier invocation, a UM calls its multiple DMs either

in a sequential manner or in parallel. Parallel dependency

can help to greatly reduce the RT of upstream microservices.

For ease of analysis, in this part, we only examine parallel de-

pendency between each pair of two microservices in Alibaba

traces.

0.2 0.4 0.6 0.8 1.0
Probability of Parallel Dependencies

0.90
0.92
0.94
0.96
0.98
1.00

CD
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Figure 11: Cumulative distribution of the probability of par-

allel dependency between all pairs of microservices. A par-

allel dependency with high probability means a pair of mi-

croservices will be called by others in parallel in most times.

Strong Parallel Dependency rarely exists in Alibaba traces.
The probability of a parallel dependency measures how often

a pair of microservices shall be called by a UM in parallel

among all the two-tier invocations involving this pair. We

measure the probability of parallel dependency for all pairs

of microservices. Fig. 11 depicts the CDF of these probabili-

ties and it shows that, 10% of pairs of microservices have a

parallel dependency with probability larger than 0.05. How-

ever, only 0.6% of pairs show a strong parallel dependency

(with a probability larger than 0.9). To sum up, there is a

small number of strong parallel dependencies in Alibaba

traces. However, in case of such dependency, it is suggested

to couple the two called interfaces into a single microservice

such that, a UM only needs to call one microservice instead

of calling two interfaces in parallel from different microser-

vices. By doing so, the communication overhead can also be

reduced.

5 MICROSERVICE RUNTIME
PERFORMANCE

Understanding the runtime performance of microservices is

critical to ensure the quality of services. Since microservices

run in hundreds to thousand of containers in a hybrid clus-

ter and serve time-varying requests with highly dynamic

call dependencies, several factors can affect the RT perfor-

mance of microservices. In this section, we study the impact

of graph topology and resource interference together with

microservice call rates (MCR) on the RT performance. We

also characterize the relationship between MCR and sev-

eral OS-level and application-level metrics to quantify the

resource pressure in Alibaba clusters.

5.1 Microservice call rate
Microservice call rate (MCR) measures the number of calls

received by a microservice in each minute per container. It is

expected that the resource utilization of a running container

highly relates to MCR and therefore, a large MCR will lead

to a high resource pressure. To examine this, we adopt Spear-

man Correlation as an evaluation metric, which measures

between MCR sequences and the container running metric
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Figure 12: The correlation between microservice call rate

and different performance metrics.

sequences for each microservice. In Fig. 12, we plot the distri-

bution of Spearman Correlations between MCR and multiple

different metrics in both OS-level and application-level.

Microservice call rates highly correlate with CPU utilization
and Young GC but not with memory utilization.As illustrate in
Fig. 12, all microservices show a positive correlation between

the CPU utilization and MCR and more than 80% of them

yield a strong correlation (with Spearman Correlation bigger

than 0.6). YongGC Count and YoungGC Time also show a

strong correlation with MCR. By contrast, more than 20%

of microservices have a negative correlation between MCR

and memory utilization. This implies that CPU utilization

and Young GCs are much better indicators to reflect resource

pressures of running containers of a microservice comparing

to memory utilization. A key reason behind is that, the mem-

ory utilization is almost stable at runtime in most containers

in Alibaba microservice traces (with a variance of less than

10%). Our finding also matches the observation found in [21],

i.e., most containers exhibit steady memory but their CPU

utilization varies in production clusters.

5.2 Microservice RT performance
In this part, we investigate how the microservice response

time (RT) can be impacted by other factors including the

complexity of call graph, resource interference, and MCR,

and to what extent these impacts can be.

End-to-End RTs of an online service are stable among call
graphs of similar topologies but vary significantly across dif-
ferent topologies. We apply Algorithm 1 to cluster all the call

graphs of each service into multiple classes. As stated in

§ 3.2, the features selected by InfoGraph include the graph

topology along with the types of microservices in a graph.

As such, each class contains graphs of similar topology and

call paths. Within each class, we compute both the stan-

dard derivation and the mean of the end-to-end RTs (i.e.,

RTs of the Entering Microservice) and then take the ratio be-

tween them as a measurement of the intra-cluster-variance.

Similarly, we collect all end-to-end RTs from all classes of

a service to measure the inter-cluster-variance. We plot in

Fig. 13 the cumulative distribution of intra-cluster-variance

to inter-cluster-variance ratios. The results show that more
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Figure 13: Cumulative distribution of RT intra-cluster vari-

ance to RT inter-cluster variance ratios.
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Figure 14: Performance degradation due to resource inter-

ferences on the same physical host. X-axis represents the

host CPU (memory) utilization while Y-axis quantifies the

75th percentile normalized RT among all microservices.

than 90% of online services have a small ratio (less than 0.6),

indicating the RTs within each cluster are much more stable

than that across different clusters. This further implies the

graph topology has a heavy impact on the end-to-end RT

and moreover, our designed graph learning algorithm can

be applied to predict the RT performance.

RT performance can be greatly degraded due to a high host
CPU utilization. In Alibaba clusters, online microservices usu-

ally co-exist with batch processing jobs on the same phys-

ical host to improve cluster utilization. As such, resource

interference can easily occur. In this part, we continue to

evaluate how seriously resource interference can impact the

response of a microservice. Indeed, requests to a microser-

vice deployed in a host can further call multiple downstream

microservices (DM) which are deployed in different hosts.

However, these requests are evenly distributed to all the in-

stances of each DM. In this sense, the impact of downstream

hosts can be treated as a constant when the utilization of

this host changes. To cancel the effect caused by different mi-

croservice call rates, we collect for each fixed call rate (MCR)

all the RTs under different host utilization. We then take the

RT under a low host utilization (i.e., 10%) as a baseline and

measure the normalized RTs under different host utilization

for a fixed MCR. We then average all the normalized values

across different MCRs under each host utilization. Finally,

we compute the 75th percentile normalized RT among all

microservices. Fig. 14 depicts the normalized RTs under dif-

ferent host CPU and memory utilization. One can observe

that the host CPU utilization has a heavy impact on the RT

performance. When the host CPU utilization exceeds 40%

(80%), the RT of a microservice can be degraded by more
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Figure 15: RT performance under different normalized mi-

croservice call rates.

than 20% (30%) in average. However, the host memory uti-

lization has a much lighter impact on the RT. When the host

memory utilization is below 60%, the interference can be ig-

nored. These results indicate most online microservices are

sensitive to CPU interference and there is a strong demand

for a more efficient resource scheduler that can well balance

the CPU utilization across different hosts. We observe from

traces that the variance of CPU utilization across hosts in

each minute can be as high as 20%, implying there is a large

room to balance the batch workload across hosts.

RTs of a microservice are stable when the call rate varies.
From a modeling perspective, the response time of a system

is a function of the request arrival rate and the amount of

allocated resources. Since Alibaba cluster applies the same

configuration to all the running containers deployed for each

microservice and perform load balance among all containers,

the resulted RT should only depend on the microservice call

rate per container (MCR), when fixing the type of graph

topology and the host resource utilization. To investigate

such an effect, we characterize for each microservice the

impact of MCR on RT performance by averaging all the RTs

under each normalized MCR. We take the 75th percentile

RT among all microservices and plot the result in Fig. 15. It

shows that RTs of most microservices are stable when the

call rate varies. This is due to most calls in Alibaba clusters

can be processed immediately without any queueing delay.

Even for a large MCR (95th percentile), the CPU utilization

of most running containers within a minute is below 10%.

These results also indicate there is a large room to improve

the resource utilization of microservices by resizing a proper

number of running containers.

6 PROBABILISTIC MODEL FOR
MICROSERVICE GRAPH GENERATION

Having figured out several statistical properties of microser-

vice call graphs, in this section, we investigate a probabilistic

model to mathematically formulate the simulation of new

microservice graphs that can well preserve these observed

properties from Alibaba traces. We believe such a simulation

is beneficial for the generation of other large-scale microser-

vice benchmarks that can be used for research on microser-

vice resource scheduling problems, e.g., [17, 23, 40].

6.1 Stochastic graph modeling
As investigated in § 3.1, a microservice call graph is scat-

tered to include multiple two-tier invocations. Following

this observation, a graph 𝐺𝑠 = (𝑉𝑠 , 𝐸𝑠 ) is initialized by a

starting service 𝑠 and can grow with more and more two-

tier invocations involved. Each microservice 𝑣 ∈ 𝑉𝑠 has a

tier number (call depth) 𝑑 (𝑣), e.g., the tier number of 𝑠 is

𝑑 (𝑠) = 1. The largest tier number in 𝐺𝑠 is denoted by ℎ𝑠 .

Each edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 )𝑖< 𝑗 ∈ 𝐸𝑠 is directed and formed by one

parent 𝑣𝑖 and one child 𝑣 𝑗 . In addition, each 𝑣 ∈ 𝑉𝑠 has a

label 𝑙 (𝑣) that denotes its type of service, i.e., 𝑙 (𝑣) ∈ L ={
database,Memcached, blackhole, relay, normal

}
. Since most

edges in Alibaba traces only span two adjacent tiers, we

consider 𝑑 (𝑣 𝑗 ) = 𝑑 (𝑣𝑖 ) + 1 whenever 𝑒 (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸𝑠 .

Let 𝐶 (𝑣) =
��𝑣𝑐 : (𝑣, 𝑣𝑐 ) ∈ 𝐸𝑠

��
denote the children set

of 𝑣 . For 𝑣 ∈ 𝑉𝑠 with 𝑑 (𝑣) = ℎ, |𝐶 (𝑣) | follows a random

distribution given by:

Pr

(
|𝐶 (𝑣) | = 𝑗

)
= 𝐹ℎ ( 𝑗), (3)

where 𝐹ℎ is the distribution of the number of microservices

in a two-tier invocation starting from tier ℎ in Alibaba traces.

Once node 𝑣 branches out to contain 𝑗 children, i.e., |𝐶 (𝑣) | =
𝑗 , all the children in |𝐶 (𝑣) | share the same tier number of

ℎ + 1. Furthermore, each child 𝑣𝑐 ∈ 𝐶 (𝑣) takes a label from L
randomly based on the following distribution:

Pr

(
𝑙 (𝑣𝑐 ) = 𝜙

)
= 𝐺ℎ+1 (𝜙), ∀𝜙 ∈ L, (4)

where 𝐺ℎ+1 (𝜙) can be simply derived by combining results

from Fig. 8(a) and Fig. 8(b). More specifically, when 𝜙 =

DB (MC), 𝐺ℎ+1 (𝜙) is the percentage of S2D (S2M) commu-

nications in tier ℎ + 1 in Fig. 8(b). By contrast, when 𝜙 =

blackhole,𝐺ℎ+1 (𝜙) is the percentage of RPC communications

(quantified in Fig. 8(b) multiplied by the percentage of black-
hole Fig. 8(a) in tier ℎ+1. Similar results hold when 𝜙 = relay
or normal. 𝑣𝑐 continues to branch out following the same

procedure when its label 𝑙 (𝑣𝑐 ) is a relay. In addition, when

𝑙 (𝑣𝑐 ) = normal, 𝑣𝑐 also has a chance to branch out and the

probability is the same as the percentage of normal relays in
each layer as illustrated in Fig. 8(a).

6.1.1 Graph refinement. In the model described above, each

child can only keep one parent. Indeed, the result uncovered

in § 3.1 suggests that most DMs only have one UM (i.e.,

with in-degrees of one). However, there still exists a lot of

exceptions under which the in-degree of a DM is much larger

than one. To take into account this fact, we continue to

make refinement of the graph model. More specifically, we

adopt the result that quantifies the number of microservices

distributed in each tier to allow some nodes to have more

than one parent.

Let 𝑁ℎ be the original set of nodes generated in 𝐺𝑠 in tier

ℎ before refinement and 𝑅ℎ be the number of nodes after

refinement. Further denote by 𝑃ℎ−1 the set that contains

421



Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis SoCC ’21, November 1–4, 2021, Seattle, WA, USA

nodes in tier ℎ − 1 with each connected to at least one child,

we have 𝑁ℎ =
⋃

𝑝∈𝑃ℎ−1 𝐶 (𝑝) and∑
𝑝∈𝑃ℎ−1

��𝐶 (𝑝)�� = ��𝑁ℎ

��. (5)

𝑅ℎ shall be sampled from a random distribution, i.e.,

Pr

(
𝑅ℎ =𝑚

)
= Φℎ (𝑚), (6)

whereΦℎ is the distribution of the number of services in tierℎ

(illustrated in Fig. 5). The refinement is necessary only when

𝑅ℎ < |𝑁ℎ |. In this case, refinement is conducted by merging

𝑅ℎ − |𝑁ℎ | node pairs into 𝑅ℎ − |𝑁ℎ | individual nodes in tier ℎ.

It is worth noting that, all the nodes in each node pair share

the same label and their parents are different with each other

before merging. We choose these node pairs in a sequential

manner. Each time, we randomly select two parents and

merge two children of them if they share the same label. The

merged node will then connects to two parents.

6.1.2 Generator of call graphs calls. Based on the built sto-

chastic graph model, we implement a graph generation algo-

rithm in this section to synthesize large-scale microservice

traces. To mimic the call dependency, our generator relies

on combining several two-tier invocations together in a se-

quential manner to add more and more calls, i.e., Step 15 in

Algorithm 2. Each call has a communication paradigm (i.e.,

comPara in Step 12) and a unique identifier represented by

a rpcId (i.e., Step 13). rpcId can help to capture the depen-

dency of all pairs of microservices in the whole graph. Each

two-tier invocation is generated in three steps. Firstly, the

generator will check whether a stateless service UM with

a generated call depth based on a rpcId (Step 8) is a relay
or normal relay in Step 9. Secondly, the generator will yield

a random number of DMs following a distribution in the

corresponding tier in Step 10. Thirdly, the generator will de-

termine the comPara of each pair of microservices in Step 12.

These three steps shall iterate and be terminated when the

queue that stores all stateless services (in Step 17) is empty.

Finally, the generator will perform the graph refinement, i.e.,

Step 18 to Step 24.

6.2 Theoretical analysis
To validate whether the graph model in § 6.1 can well pre-

serve these graph properties explored from Alibaba traces,

we turn to the theoretical characterization of its stochastic

properties. Since the graph modeling is based on the distri-

bution of microservice degrees, we focus on quantifying the

other two distributions, i.e., the distribution of graph depth

and the number of nodes in a graph. Our major results are

illustrated in the following theorems.

Theorem 6.1. In the graph model, let Γ(𝑘) = 𝑃𝑟 (ℎ𝑠 = 𝑘)
be the probability that a randomly generated graph 𝐺𝑠 has
exactly 𝑘 tiers, when 𝑘 ≥ 2, Γ(𝑘) is expressed by:

Algorithm 2: Call Graph Generator

1 𝐿 Call Graph List: [𝑟𝑝𝑐𝐼𝑑 ,𝑈𝑀 , 𝐷𝑀 , 𝐶𝑜𝑚𝑃𝑎𝑟𝑎];

2 𝑄 Queue for Stateless Services;

3 𝐿.𝑎𝑑𝑑 (0,𝑈 𝑠𝑒𝑟, 𝐸𝑛𝑡𝑒𝑟𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠, 𝐻𝑡𝑡𝑝);
4 𝑄.𝑝𝑢𝑠ℎ( [0, 𝐸𝑛𝑡𝑒𝑟𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠]);
5 /* Graph Generator */

6 while !𝑄.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 () do
7 [𝑟𝑝𝑐𝐼𝑑,𝑈𝑀] = 𝑄.𝑝𝑜𝑝 ();
8 𝑑𝑒𝑝𝑡ℎ = 𝐷𝑒𝑝𝑡ℎ(𝑟𝑝𝑐𝐼𝑑) + 1;

9 if 𝑅𝑒𝑙𝑎𝑦 (𝑑𝑒𝑝𝑡ℎ) then
10 𝑛𝑢𝑚 = 𝑁𝑜𝑑𝑒 (𝑑𝑒𝑝𝑡ℎ);
11 for 𝑖 ∈ 𝑛𝑢𝑚 do
12 𝑐𝑜𝑚𝑝𝑎𝑟𝑎 = 𝐶𝑜𝑚𝑃𝑎𝑟𝑎(𝑑𝑒𝑝𝑡ℎ);
13 𝑟𝑝𝑐𝐼𝑑𝐶ℎ𝑖𝑙𝑑 = 𝑅𝑝𝑐𝐼𝑑𝐸𝑥𝑡𝑒𝑛𝑑 (𝑟𝑝𝑐𝐼𝑑, 𝑖);
14 𝐷𝑀 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑎𝑚𝑒 (𝑟𝑝𝑐𝐼𝑑𝐶ℎ𝑖𝑙𝑑);
15 𝐿.𝑎𝑑𝑑 (𝑟𝑝𝑐𝐼𝑑𝐶ℎ𝑖𝑙𝑑,𝑈𝑀, 𝐷𝑀, 𝑐𝑜𝑚𝑃𝑎𝑟𝑎);
16 if 𝐷𝑀 is stateless then
17 𝑄.𝑝𝑢𝑠ℎ( [𝑟𝑝𝑐𝐼𝑑𝐶ℎ𝑖𝑙𝑑, 𝐷𝑀]);

18 /* Graph Refinement */

19 for 𝑖 ∈ 𝑐𝑎𝑙𝑙𝐷𝑒𝑝𝑡ℎ − 1 do
20 𝑗 = 𝑖 + 1;

21 𝑃 𝑗 = 𝑃𝑎𝑖𝑟 (𝐿, 𝑗);
22 for 𝑝 ∈ 𝑃 𝑗 do
23 if 𝑅𝑒 𝑓 𝑖𝑛𝑒 (𝑝) then
24 𝐷𝑀𝑢 = 𝑅𝑒𝑛𝑎𝑚𝑒 (𝑝1

𝐷𝑀
, 𝑝2

𝐷𝑀
)

𝑢𝑝𝑑𝑎𝑡𝑒 (𝐿, 𝐷𝑀𝑢, 𝑝
1

𝐷𝑀
, 𝑝2

𝐷𝑀
)

Γ(𝑘) =
(
1−

𝑘−1∑
ℎ=1

Γ(ℎ)
)
·
𝑈∑
𝑛=1

Φ𝑘 (𝑛)
(
1−𝐺𝑘 (r) −𝐺𝑘 (nr)

)𝑛
, (7)

where𝐺𝑘 (r) (𝐺𝑘 (nr)) given by Eq.(4) quantifies the probabil-
ity that a microservice is a relay (normal relay) in tier 𝑘 . And
Φ𝑘 (𝑛) given by Eq.(6) denotes the probability that there are
exactly 𝑛 microservices in tier 𝑘 .𝑈 is an upper bound for the
number of microservices in each tier.

Proof. We prove this theorem by mathematical induction.

When 𝑘 = 2, i.e., the graph only has two tiers, it must be

the case that all the microservices in Tier 2 are not relays. In
addition, when a microservice is a normal, it can not branch

out. By conditioning on the number of microservices in Tier

2, we have:

Γ(2) =
𝑈∑
𝑛=1

𝑃𝑟 (𝑅2 = 𝑛) · 𝑃𝑟 (ℎ𝑠 = 2

��𝑅2 = 𝑛)

(𝑎)
=

𝑈∑
𝑛=1

Φ2 (𝑛)
(
1 −𝐺2 (r) −𝐺2 (nr)

)𝑛
,

(8)
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where (a) is due to the probability that each microservice

cannot branch out is equal to

(
1 −𝐺2 (r) −𝐺2 (nr)

)
. As such,

Theorem 6.1 holds for 𝑘 = 2.

Assume this result holds for all 𝑘 ≤ 𝜌 − 1. When 𝑘 = 𝜌 ,

let E𝜌 denote the event that all nodes in tier 𝜌 do not branch

out, we have:

Γ(𝜌) = 𝑃𝑟 (ℎ𝑠 ≥ 𝜌) · 𝑃𝑟 (E𝜌 |ℎ𝑠 ≥ 𝜌). (9)

Similar to the argument as that in Eq. (8), the second term in

the R.H.S. of Eq.(9) is given by:

𝑃𝑟 (E𝜌 |ℎ𝑠 ≥ 𝜌) =
𝑈∑
𝑛=1

Φ𝜌 (𝑛)
(
1 −𝐺𝜌 (r) −𝐺𝜌 (nr)

)𝑛
. (10)

Combining Eq.(9) and Eq.(10) together immediately implies

the result, this completes the proof of Theorem 6.1. □

Theorem 6.2. Let Ψ(𝑛) = 𝑃𝑟 ( |𝑉𝑠 | = 𝑛) be the probability
that a randomly generated graph𝐺𝑠 has exactly 𝑛 nodes, Ψ(𝑛)
is given by:

Ψ(𝑛) =
𝐷∑
𝑘=1

Γ(𝑘) ·
∑

∑𝑘
𝑖=1 𝑛𝑖=𝑛

𝑘∏
𝑖=1

Φ𝑖 (𝑛𝑖 ), (11)

where Φ𝑖 (𝑛𝑖 ) is the probability that there are 𝑛𝑖 microservices
in tier 𝑖 and 𝐷 is the maximum call depth in a graph.

Proof sketch. By conditioning on the number of tiers

that 𝐺𝑠 has and enumerating all possible combinations of

the node distributions in each tier, Theorem 6.2 follows.

6.3 Evaluation
In this section, we evaluate the effectiveness of our graph

generator algorithm as well as the correctness of the theoreti-

cal analysis. In particular, we quantify the distribution of call

depth as well as the number of microservices in the generated

graphs, and compare them to the numerical results derived

based on the theoretical analysis and true distributions in

Alibaba traces.

As shown in Fig. 16, in terms of the distribution of call

depth, the generated call graphs match quite well with the

theoretical analysis and almost preserve the ranking between

the probabilities of all depths in Alibaba traces (with a KL-

divergence of 0.16). One mismatching is that, the probability

of having a depth of two in the generated graphs is larger

than that in traces. A major reason is that, Alibaba traces

are incomplete, e.g, a few calls are lost due to missing of

microservice IDs. Fig.17 depicts the distribution of the num-

ber of microservices. It shows that the generated graphs

are close to real call graphs in terms of this metric (with a

KL-divergence of 0.05). Since we set an upper bound for the

number of microservices in each tier to 20 in the theoretical

analysis (per Eq.(11)) for a better computation efficiency, the

resulted numerical result yields a small probability when the
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Figure 16: Distribution of call depths under the simulated

microservice call graphs.
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Figure 17: Distribution of the number of microservices un-

der the simulated microservice call graphs.

microservice number exceeds 20. Nevertheless, it succeeds

in capturing the long tail of true distributions (with a KL di-

vergence of 0.06). These results demonstrate our built graph

model is efficient to simulate microservice call graphs that

can well preserve the major features of real traces.

7 RELATEDWORK
Microservice benchmarks. Prior works use benchmarks,

such as DeathStarBench [16], 𝜇Suite[27] and Acme Air [33]

to study microservices in many different aspects. In particu-

lar, Gan et al. analyzed the difference between microservices

and monolithic applications among networking, operating

systems, cluster management, and programming frameworks

in DeathStarBench [16]. Ueda et al. focused on the network

overhead and explored how to reduce it under the microser-

vice architecture [33]. Sriraman et al. found that the sub-

ms-scale threading tends to be a new performance bottle-

neck for microservices under the three-tier microservice

architecture since the latency of an RPC call is expected to

be sub-milliseconds [28]. To tackle this issue, an automatic

threading adaptation system was developed to enhance the

performance of the RPC framework. However, all of these

benchmarks are of a small scale and cannot reflect how mi-

croservices actually run in production environments.

Serverless benchmarks. Most recently, Yu et al. built
a serverless benchmark to study the behavior of function

as service [37]. This work shows that inter-function paral-

lelization can lead to a better concurrency than in-function

parallelization since the latter only runs the function in one

instance with limited resource. As an implication, decoupling

the parallelizable part in an application may help to speed

up the process. In this paper, we provided insights on how
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to couple interfaces from different microservices together so

as to reduce the communication overhead.

Cloud workloads. There exist several public traces re-
leased from production clusters including Google Trace [24,

32], Alibaba Trace [21, 31], Azure Trace [14, 25], and so on.

However, these traces contain batch jobs, online services,

function as a service (FaaS), or even jobs running in a vir-

tual machine. They are not for microservice architecture

or lack of detailed information about microservices such as

call dependencies between services. Recently, Zhou et al.
designed DAGOR, a proactive load balancing system, to ad-

dress the overload problem of microservices built for serving

the WeChat system [42]. One fundamental limitation of this

work is that, it does not conduct any analysis related to mi-

croservices in other aspects such as the call graphs. Shahrad

et al. began to investigate the characteristics of FaaS work-

load of Azure Functions about their invocation frequencies

[35], but they did not analyze the invocation dependencies

between different functions.

Cloud trace analysis. In the literature, there exist a bunch
of works that focus on the analysis of cloud workload, e.g.,

[11, 14, 21, 24]. However, they lack investigations on graph

structures. Recently, Tian et al. conducted a comprehensive

analysis of Alibaba DAG job traces [31]. While this work

focuses on the characterization of task dependencies in DAG

graphs as well as the trace synthesis, their observations are

quite different from our findings on microservice call graphs.

More importantly, we built a stochastic model to simulate

call graphs based on a new classification of microservice

types, which are fundamentally different from the graph syn-

thesis in [31]. Moreover, we also conducted a solid analysis

to validate the effectiveness of our model.

Performance characterization of online services. Ex-
isting works also adopt Markov Chain to simulate call de-

pendencies between different online services [14, 20, 34].

However, Markov-chain based analysis does not apply to

traces in a production cluster since microservices will re-

peatedly call the same downstream microservice multiple

times with a specific order. To get away from complex call

dependencies, many works adopt the queuing time in differ-

ent layers, including operation system such as thread pools

[42], software such as socket or hardware such as NIC [17],

as the metrics to detect performance bottlenecks of microser-

vices. However, the existing tracing systems cannot provide

these metrics directly. In addition, the recently developed

machine learning schemes are either based on CNN neural

networks or reinforcement learning approaches, which can-

not capture the dynamic dependency of microservice call

graphs [17, 23, 40]. In this paper, we applied graph learning

algorithms to represent the topology of graph dependency

using an embedded vector, which can be used to analyze the

RT performance of online services.

8 DISCUSSION AND CONCLUSION
In this paper, we conduct a comprehensive study of large-

scale microservices deployed in Alibaba clusters. To the best

of our knowledge, we are the first one to characterize in-

depth the structural properties of microservice call graphs.

Our study has revealed several important graph properties,

i.e., microservice graphs are dynamic in runtime, most graphs

are scattered to grow like a tree, and the size of call graphs

follows a heavy-tail distribution. In this sense, existing open-

sourced microservice benchmarks fail to preserve these prop-

erties since their scale is quite small and graph topology

produced by an online service does not change much.

Our characterization of three types of call dependency

between a pair of microservices shall provide insights on

how to optimize microservice designs, such as balancing

trade-offs between communication overheads and the ease

of service development brought by the light-weight coupling.

Our study onmicroservice run-time performance provides

several good implications on microservice scheduling and

cluster resource management. In particular, the conclusion

that most microservices are sensitive to CPU interference

rather thanmemory interference can be leveraged to simplify

the scheduling problem, i.e., it is significant to focus on the

balance of CPU utilization across different hosts. In addition,

the observation that RTs of online services highly depend

on the call graph topology necessitates topology awareness

for more efficient microservice schedulers, which however

is quite challenging.

Our stochastic graph modeling makes a first attempt to

simulate microservice call graphs in a large-scale. The con-

ducted theoretical analysis provides a possible solution for

quantifying properties of graphs with a well layered struc-

ture. One limitation, however, is that the graph model cannot

handle the node sharing between different graphs, i.e., one

node may appear in multiple graphs. This requires a further

step towards matching nodes between all graphs based on

the statistics collected from aggregated invocations. We shall

leave this step as future work.

Another possible research direction is to apply our de-

veloped graph clustering algorithm as a starting point for

implementing graph-based scheduling algorithms aiming at

optimizing the end-to-end service response time.
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