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Abstract

Federated learning (FL) allows multiple clients to col-
lectively train a high-performance global model without
sharing their private data. However, the key challenge in
federated learning is that the clients have significant sta-
tistical heterogeneity among their local data distributions,
which would cause inconsistent optimized local models on
the client-side. To address this fundamental dilemma, we
propose a novel federated learning algorithm with local
drift decoupling and correction (FedDC). Our FedDC only
introduces lightweight modifications in the local training
phase, in which each client utilizes an auxiliary local drift
variable to track the gap between the local model parameter
and the global model parameters. The key idea of FedDC is
to utilize this learned local drift variable to bridge the gap,
i.e., conducting consistency in parameter-level. The exper-
iment results and analysis demonstrate that FedDC yields
expediting convergence and better performance on various
image classification tasks, robust in partial participation
settings, non-iid data, and heterogeneous clients.

1. Introduction

Federated learning (FL) is an emerging distributed ma-
chine learning paradigm that leverages decentralized data
from multiple clients to jointly train a shared global model
under the coordination of a central server, without sharing
the individuals’ raw data [4, 8, 19, 20, 31]. This makes FL
surpass traditional parallel optimization to avoid systemic
privacy risk [5,7, 15, 16,24]. FedAvg [19] is a widely used
FL aggregation algorithm, in which each client executes
multiple stochastic gradient descent (SGD) steps in each
communication round to minimize the local empirical risk.
After that, a central server updates the parameters of the
global model with the updates returned by the clients. How-
ever, recent researches [9, 17, 18] demonstrate that FedAvg
could not converge well with heterogeneous data (non-iid).

$Li Li (LLiLi@um.edu.mo) and Yingwen Chen (ywch@nudt.edu.cn)
are corresponding authors.

LiLi** Yingwen Chen’* Ming Xu!
2IHPC, ASTAR, Singapore.

Cheng-Zhong Xu?
3University of Macau, IOTSC, China.

The data distribution of clients in FL can be highly differ-
ential because clients independently collect the local data
with their own preferences and sampling space. The non-
iid distributed data leads to inconsistency in clients’ local
objective functions and optimization directions. The stud-
ies in [9, 10] prove that the data heterogeneity introduces
drift in clients’ local updates, which slows down the con-
vergence speed. The parameter drift between an FL model
and a centralized learning model comes from two parts: the
residual parameter drift in the last round, and the gradient
drift in the current round [30]. Due to the difference in data
distribution, there is a fundamental contradiction between
minimizing local empirical loss and reducing global empir-
ical loss. Therefore, in a highly heterogeneous environment,
FedAvg lacks a convergence guarantee, which only obtains
compromised convergence speed and model performance.

To address this client drift, some methods have been pro-
posed to reduce the variance of local updates [9, 17]. For
example, FedProx [17] adds a proximal term to force re-
duction of model differences between local and the global
model. However, the proximal term hinders the global
model from moving towards the global stationary point.
Scaffold [9] corrects client-drift with a control gradient vari-
ate. However, it only approximately reduces the gradient
drift in each round but it is not able to eliminate it. The
residual deviation would be accumulatively amplified dur-
ing training according to the research of [30], which is the
primary factor that slows down the convergence speed and
causes lower performance. In fact, most of the previous
FL methods force the local models to be consistent to the
global model. They finally get a model that neglects the in-
consistency between local objectives and global objectives.
They have a certain effect by reducing gradient drift, but the
gradually enlarged parameter deviation persists.

We admit the fact that the local optimal points of clients
are fundamentally inconsistent with the global optimal
point in the heterogeneous FL setup. The local stationary
points of clients can be arbitrarily different from the global
stationary point. Based on this observation, we propose a
new federated learning algorithm with local drift decou-
pling and correction (FedDC), to handle the inconsistent
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objectives with auxiliary drift variables to track the local
parameter drift between the local models and the global
model. Our FedDC dynamically updates the local ob-
jective function of each client, which contains (1) a con-
straint penalty term that indicates the relationship among
the global parameter, drift variables and the local parame-
ters, and (2) a gradient correction term to reduce the gra-
dient drift in each training round. We decouple the local
models and the global model in the training process by in-
troducing the drift variables, which reduces the impact of
the local drift to the global objective and makes it converge
quickly and reach better performance. We execute experi-
ments on several public datasets, including MNIST, fash-
ion MNIST, CIFAR10, CIFAR100, EMNIST-L, tiny Im-
ageNet and a synthetic dataset. The results demonstrate
that our FedDC achieves the best performance and signif-
icantly faster converge speed compared with the competing
FL methods (e.g., FedAvg [19], FedProx [17], Scaffold [9]
and FedDyn [1]) in both iid and non-iid client settings™.

2. Related Work

Recently, FL has become a hot research topic [3, 8, 1 1].
As a pioneering work, FedAVG [ 9] conducts weighted pa-
rameter averaging in order to update parameters from multi-
ple clients. The works in [10, 13] show that FedAvg reaches
asymptotic convergence for homogeneous clients. How-
ever, Woodworth et al. [25] demonstrate that the bound of
FedAVG convergence can be totally different for heteroge-
neous clients. The studies in [9, 1 8] claim that the client drift
in clients’ updates caused by non-iid data is the main cul-
prit that damages convergence rates in heterogeneous set-
tings. Prior works have shown that non-iid data would in-
troduce challenges in FL such as gradient divergence, op-
timization direction biases, and unguaranteed convergence.
Some works try to reduce the variance of clients’ updates
to speed up convergence. Minimizing the empirical risk
function using a uniform global model over different clients
which contains non-iid distributed data makes it difficult to
converge to a splendid global model. FedProx [17] sur-
mounts statistical heterogeneity and strengthens stability by
adding a proximal regularization on the local model against
the global model. The proximal term keeps the updated lo-
cal parameter close to the global model, in this way it re-
duces potential gradient divergence. However, it violated
the fact that the optimal points of local empirical objectives
are different from the global optimal point, leading to a low
performance. The major limitation of these methods is that
they ignore the differences in client models, leading to sub-
optimal performance and slowly converge speed in non-iid
data distributions.

*The code is available at https://github.com/gaoliangl3/
FedDC

In order to further analyze the correlation between client
drift and data heterogeneity, some works conduct personal-
ized local objectives with statistical variables. Scaffold [9]
customizes gradients for each client to fix the client drifts
between local models and the global model. Similarly, Fed-
Dyn [I] proposes a dynamic regularizer for each device
to align the global and device solutions and save trans-
mission costs. Another type of work tries to optimize the
parameter aggregation step on the central server to get a
better global model. [29] dynamic calculates the optimally
weighted combination of clients’ local model by figuring
out how much a client can benefit from the global model.
Reddi et al. [22] propose federated adaptive optimization
based on the interplay between client heterogeneity and
communication efficiency to prevent unfavourable conver-
gence behaviour. Yang er al. [27] achieve linear speedup
with non-iid data with two-sided learning rates in local up-
date and global update. These methods are compatible
with our method, which could be easily integrated into our
method. These improved methods achieve better speedup
in convergence and enjoy better performance than FedAvg.
However, the theory of Zhao et al. [30] indicates that the
parameter deviation would be accumulated and cause a sub-
optimal solution. In this paper, we propose the FedDC,
which decouples the local and global models by tracking
and bridging the local drift.

3. Local Drift in Federated Learning

In FL, we assume that there are [V clients in a federation,
and suppose D; is client 7’s private local dataset. The goal
is to get a global model w* training over the global dataset
D = U, ¢n Di that solves the ObJeCtIVC

w = argmlnL Z ||D (1)

where w is the parameter of the global model, L(w) is the
empirical loss on the global dataset D, the num-
ber of samples on D;, | D| is the number of samples on D,
Li(w) = E(zy)ep,l(w; (z,y)) is the local empirical loss
on client ¢’s local dataset |D;|. In order to avoid privacy
leaking, any client can not share its raw data with others.
FedAvg is proposed to coordinate multiple clients to coop-
eratively train the global model with a central server while
preserving data privacy [19]. Specifically, in FedAvg, for
each training round, all clients optimize their local models
on the local datasets, then the server takes the expectation
of the local model parameters to update the global model as

follows:
= DI

where w is the global model parameter, 6; is client i’s local
model parameters. Then, the updated global model param-
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Figure 1. Illustration of the local drift in FedAvg with a Sigmod
activation function f. w. is the parameter of the model trained
with centralized data (ideal model), wy is the parameter of the
model generated by FedAvg. 6, and 65 are the parameters of local
models of client 1 and client 2, respectively.

eter is broadcast to clients and utilized as the start point of
local models in the next round.

There is a drift between each client’s local model trained
on the local dataset and the global model trained on the
global dataset directly [17,23]. If the drift is ignored, the
server would get an skewed global model. FL faces the
challenge of heterogeneous data. With the highly skewed
non-I1ID data in FL, the performance of FedAvg is signif-
icantly reduced [17, 23], which indicates that the FedAvg
method that ignores local drift leads to the deviation of the
global model. In Figure 1, we show a simple example that
client’s local drift would result in a biased global model in
FedAvg. We suppose that there is a non-linear transforma-
tion function f (e.g., Sigmoid function in the activation
layer) in the model. Suppose #; and #, are local parame-
ters of client 1 and client 2, w, is the ideal model parameter
and wy is the model parameter generated through FedAvg.
The local drifts (denoted as h) of client 1 and client 2 are
(h1 = w.—01) and (hy = w.—6-), respectively. x is a data
point, the corresponding outputs on client 1 is y; = f (01, )
and yo = f(f2,2) on client 2. Then the model parameter
generated by FedAvg can be represented as wy = 01102
The centralized model is an ideal model that would get the
ideal output, that is, f(w.,z) = % Thus, the parameter
of centralized model is w, = f~'(23¥2) /z, where f~! is
the inverse function of f. Since f is a non-linear function,
we have wy # w, and f(wy,z) # LF¥2. That indicates
the global model in FedAvg is skewed, which is likely to
converge slowly and with poor accuracy. Therefore, we can
learn the local drift between the global model and the local
model, and bridge the local drift before uploading the lo-
cal model parameters to the server. This is in line with the
intuition of FL.

4. Proposed Method

Based on the above observation, we propose a novel fed-
erated learning algorithm with local drift decoupling and
correction (FedDC), which aims to improve the robustness

and speed of model convergence by learning the model drift
and bridging the drift on the client-side. Our FedDC intro-
duces lightweight modifications in the training phase to de-
couple the global model from clients’ local models using
the local drift. Specifically, in the local training phase, each
client learns a local drift variable that represents the gap be-
tween its local model and the global model. Then, the local
drift variable is used to correct the local model parameters
before the parameter aggregating phase. In this way, FedDC
decreases the distance between the local model parameters
and the global model parameters, which also decreases the
negative influence of the skewed local model on the global
model.

4.1. Objectives in FedDC

First, we define a local drift variable h; for each client.
In an ideal condition, the local drift variable should satisfy
the restriction: h; = w — 6;, where 0; is the parameter of
client 7’local model, and w is the parameter of the global
model. In the whole training process, we need to keep this
restriction to prevent the local drift variable from getting out
of our control. Therefore, for client ¢z, we further convert
this restriction as a penalized term as:

Ri(0;, hi,w) = ||h; + 0; —wl||?>,Vi € [N].  (3)
Each client utilizes this penalized term with its empirical
loss term on the corresponding dataset to train the model pa-
rameters and the local drift variables. In this way, we trans-
form an equation-constrained optimization problem into an
unconstrained optimization problem.

In FedDC, the objective function of each client contains
three components: the local empirical loss term, the penal-
ized term, and a gradient correction term. Specifically, for
client i (Vi € [N]), the local objective of 6; is to minimize
the following objective function:

F(0;; hi, Diyw) = Li(0;) + %Ri(ei; hi,w)+Gi(0:; gi, 9),

“)
where L; is the typical empirical loss, R; is the penal-
ized term in Eq. 3, « is a hyper-parameter that controls
the weight of R;, and G; is the gradient correction term
that controls the gradient stochastic optimization. Inspired
by Scaffold [9], we set the gradient correction term as
Gi(0:59:,9) = nini’ gi — g), where 7 is the learning rate,
K is the amount of training iterations in one round. g; is the
local update value of i-th client’s local parameters in last
round, g is the average update value of all clients’ local pa-
rameters in last round. In ¢-th round, we have g; = 9;5 —Hf_l
and g = E;c[n]gi, Where 6! and 95_1 are client ¢’s local
model parameters in ¢-th round and (¢ — 1)-th round, re-
spectively. The role of term G; is to reduce the variance of
local gradients.

Updating the local model parameters. At the begin-
ning of each round, the server first sends the global pa-
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rameters of the previous round to all clients. Each client
i (Vi € [N]) loads the global model parameter to the lo-
cal model (set §; = w) and then updates the local model
by minimizing the objective function in Eq. 4. We assume
each training round contains K local training iterations, in
k-th local training iteration of ¢-th round, the local model
parameter is updated as follows:

9§,k+1 _ ka B BF(HI’k, hﬁ,Di, wt)

' ’ aoL*

where 7 is the learning rate. The Eq. 5 is executed K times
in each round.

Updating the local drift variables. Then, we introduce
the updating method of the local drift variable h;. We use
the superscripted * symbol to indicate the updated param-
eters at -th local iteration. In FedDC, the local drift vari-
ables track the gaps between local models and the global
model. In a training round, we suppose the global model
parameter w is updated to w™T while the local model param-
eter is fixed. Then we can update the local drift variable
using b = h; + (w]” — w). However, it is impossible
to update the global model directly due to the unavailable
global data.

Another way to optimize h; is minimizing the objective
loss using the partial derivative of h; in Eq. 4 with 6; and
w fixed on the client-side. However, that costs K training
iterations of back-propagation. In order to reduce the calcu-
lation, assuming that we have first updated the local model
parameters from 6; to O;F which is a must-do step. Then we
consider the following two points: 1) at the beginning of
each round, the local model parameters is assigned with the
global model parameter: 6; = w. 2) for client ¢, the local
model parameter 0;‘ is an estimation of the updated global
model parameter wj . Thus, instead of hj = hi—i-(w;r —w),
we can approximately update the local drift variable using:
where 0, in Eq. 6 is the shorthand of 9?0 and 0" the short-
hand of Hf’K in ¢-th round. In this way, we reuse the updates
of local model parameter to update the local drift and avoid
performing the back-propagation process for h;.

Updating the global model parameters. To update
the global model parameters, before the model aggregation
phase each client corrects its local model parameters using
the local drift variables: (6;" + h;"). Then each client up-
loads the corrected local parameters to the server. Similar
to FedAvg, the server performs a weighted average of the
corrected local parameters to obtain the global model pa-

rameters:
N
wh =%
i=1

where | D;| is the sample amount on client 4, w™ is the up-
dated global model.

. ®)

'(6? +h), 7

|Di
D

Semm— = -

Each clienti,i € [N]

Figure 2. The training procedure of FedDC using Expectation-
Maximum (EM) algorithm. In each round, the local parameters
and the global parameters are iteratively updated on the client-side
(M-step) and the server-side (E-step) respectively.

4.2. Training Process

We summarize the training procedure of FedDC with the
Expectation-Maximum (EM) algorithm. The EM algorithm
is used to solve the parameter optimization problem in the
case there is missing information. In FedDC, the traditional
machine learning method of directly optimizing parameters
is not applicable as there are three types of variables. More-
over, the local parameters and the global parameters are up-
dated on different devices. We can iteratively fix two vari-
ables while optimizing the other one at a time. In this way,
we seek the extreme value of one variable one step, and fi-
nally, approach the extreme value of these variables step by
step. The training process of FedDC is shown in Figure 2.
In each round, we execute the Maximization step (M-step)
on the client-side to optimize the local model parameter 6;
and the local drift variables h;. Then we execute the Expec-
tation step (E-step) on the server-side to update the global
model parameter w.

4.3. Convergence of FedDC

We proved the convergence of FedDC in non-convex
case. For non-convex and [-Lipschitz smooth local em-
pirical loss function L;,Vi € [N], there exists a 84 > 0,
where @ = o — B4 > 0 and V2L; > —B41. We assume the
local empirical loss L; is non-convex and B-dissimilarity,
in which B(6") < B. The global empirical loss of FedDC
decreases as follows:

Ec,L(w') < L(w'™") = 2p|[VL(w' M|, (8)

where p = (3 — B2 _ SBCa)  S0p) B
2 2

BB (HQQJ(\?MH)) > 0, and C} is the active client set

in round ¢ which contains C clients. The more details of the
convergence guarantee are provided in Appendix B.

4.4. Discussion

Our FedDC appears has similar goal with the previous
methods like SCAFFOLD, FedProx and FedDyn as they
all try to reduce the gap between the local model param-
eters and the global model parameters caused by non-iid
data, but there are fundamental differences. The general ap-
proach of the previous methods (e.g. SCAFFOLD, FedProx
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and FedDyn) is to limit the local optimization direction to
reduce the parameter gap between the local models and the
global model, that is, restricting 6; to be close to w (that is
min ||6; —w||). However, restricting the optimization direc-
tion of the local model hinder it in fitting the local dataset
distributions, because the local distribution and global dis-
tribution can be inconsistent. In FedDC, we think learning
the parameter gap is better than limiting it. FedDC utilizes
the local drift variable to learn the parameter gap between
the local model and the global model. And then the local
drift variable is used to bridge the gap, where we learn the
local drift h; to achieve the goal min ||6; + h; — wl||. In
other words, FedDC does not hinder the local models from
learning local features and minimizing the local empirical
risks. We attribute the advantages of FedDC to that it learns
the local drift and well bridges the parameter gap without
hindering the local training process.

5. Experiments

In this section, we evaluate the effectiveness of FedDC
and compare FedDC with several advanced methods in var-
ious datasets and settings. Specifically, the evaluation is
mainly conducted from two perspectives: 1) convergence
speed and 2) model accuracy. Due to the space limitation,
more detailed experiment results and the ablation study are
given in Appendix A.

5.1. Dataset and Baselines

We explore on six benchmark datasets: MNIST [14],
fashion MNIST [26], CIFAR10, CIFAR100 [12], EMNIST-
L [2], Tiny ImageNet [21] and the Synthetic [17] datasets.
For all of them, we adopt the same training/testing splits as
previous works [1, 17, 19]. In the iid setting, training sam-
ples are randomly selected and equally assigned to clients.
All the clients have the same amount of training data, and
each client’s data points are evenly distributed in all cat-
egories. In the non-iid data settings, the label ratios fol-
low the Dirichlet distribution [28]. We set two non-iid
data settings, and they are denoted as D1 and D2 in which
the Dirichlet parameters are 0.6 and 0.3 respectively. Be-
sides, we produce unbalanced data by samplings samples
with a lognormal distribution, in which we set the vari-
ance as 0.3. For the Synthetic dataset, following the setting
in [1], we generate three types of data settings, including
homogeneity setting which is denoted as ”Synthetic(0,0)”,
objective heterogeneity setting which is denoted as “’Syn-
thetic(1,0)”, data heterogeneity setting which denoted as
”Synthetic(0,1)”. More detailed settings are given in Ap-
pendix A.

We verify the experimental results based on four net-
work architectures in order to emphasize the versatility of
the proposed method. We use a multi-class logistic clas-
sification model for the Synthetic dataset. For the MNIST

digit classification task, the same fully-connected network
(FCN) is adopted as [19]. A convolutional neural network
(CNN) is adopted to classify the samples on CIFAR10 and
CIFAR100, as used in [19]. On Tiny ImageNet, a pre-
trained ResNet18 [6] is adopted to show the efficiency of
FedDC on the pre-trained models.

We compare FedDC with several advanced methods, in-
cluding FedAvg [19], FedProx [17], Scaffold [9] and Fed-
Dyn [1]. FedProx uses the proximal term to reduce the gra-
dient variance. Scaffold attempts to correct the local up-
dates with a gradient correction term, and FedDyn aligns
the client models using a dynamic regularizer. Different
from FedDC, these methods all emphasize the consistency
of client models and the global model and ignore the local
drift in the parameter aggregation phase.

5.2. Hyper-parameter Settings

We apply the typical FL architecture, where multiple
clients get their local updates in each communication round
through training models with their local datasets, and a cen-
tral server aggregates client updates to update the global
model. We utilize the SGD algorithm as the local optimizer
for all methods. In addition, in order to maintain consis-
tency, for all methods on the true world datasets, we set
batch size as 50 in the local training phase, the local train-
ing epochs as 5 in each round, the initial learning rate as
0.1, and the decay rate as 0.998. All the above settings
follow the previous work [1]. We set the hyper-parameter
a = 0.01 of FedDC on CIFAR10, CIFAR100 and Tiny Im-
ageNet, « = 0.1 of FedDC on MNIST, fashion MNIST
and EMNIST-L. In the Synthetic dataset, we set the number
of clients as 20 and the local batch size as 10, « = 0.005
for FedDC. As for specific hyper-parameters of the base-
lines, we keep the same settings as their referred papers.
We set FedDyn’s hyper-parameter o = 0.01 and FedProx’s
hyper-parameter pn = 10~%. If there are parameter settings
different from the above described, it will be specifically
explained in the Appendix. We also explore the effect of
different values of v in FedDC (See Appendix A).

5.3. Results and Analysis

We run vast experiments to determine the superiority of
FedDC on the convergence speed and the model perfor-
mance. Besides, we also demonstrate the robustness and
superiority of FedDC in different participation levels, dif-
ferent client scale and different data heterogeneity. All re-
sults are reported based on the global model. As the base-
lines and FedDC consume the same computational resource
in each round, so that we report the number of communi-
cation rounds instead of the FLOPS. The goal of FedDC
mainly includes two perspectives: (1) speeding the model
convergence rate to reduce the communication cost, and
(2) improving the model performance trained on different
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Table 1. The communication rounds in different methods to achieve the same target accuracy. The left half is the result of full participation,
and the right is the result of partial participation, each of which includes one iid setting and two non-iid settings where the 0.6-Dirichlet
non-iid setting is denoted as ”D1”, and the 0.3-Dirichlet non-iid setting is denoted as ”D2”. In addition, we denote the communication
round of each method to achieve the target accuracy as ” R#”, the corresponding convergence speedup relative to FedAvg as 7S 1. We
use > sign to represent the method that could not achieve the target accuracy within the communication constraint.

Full Participation Partial Participation (15%)
Model DI D2 iid D1 D2 iid
R# [ St R# [ St R# St R# [ St R# [ St R# [ St
MNIST, 100 client, Target accuracy 98%
FedAvg 258 - 492 - 142 - 361 - >600 - 158 -
FedProx 263 0.98 x 480 1.03 % 136 1.04 % 383 0.94 % 418 1.44% 149 1.06 x
Scaffold 58 4.45% 58 8.48 x 53 2.68x 62 5.82x 72 8.33x 50 3.16x
FedDyn 46 5.61x 51 9.65x 27 5.26x 122 2.96x 153 3.92x 71 2.23%x
FedDC 35 7.37x% 37 13.3% 26 5.46x 60 6.02 % 62 9.68 x 46 343x%x
fashion MNIST, 100 client, Target accuracy 89%
FedAvg >300 - 273 - 112 - >300 - >300 - 144 -
FedProx >300 1x >300 0.91x 130 0.86% >300 1x >300 1x 128 1.13x
Scaffold 117 2.56x 169 1.61x 85 1.32x 133 226 >300 1x 108 1.33x%
FedDyn 150 2% 211 1.29x 38 2.95% >300 1x 267 1.12x 85 1.69 %
FedDC 86 3.49% 126 2.17x 24 4.67x 87 3.49x 252 1.19% 63 2.29%
EMNIST-L, 100 client, Target accuracy 94%
FedAvg 142 - 192 - 107 - 153 - 245 - 108 -
FedProx 135 1.05x 198 0.97x 92 1.16x 145 1.06 x 240 1.02x 105 1.03x
Scaffold 43 3.30x 52 3.69x 30 3.57x 44 3.48x% 68 3.6x 42 2.57x
FedDyn 30 4.73x 52 3.69x 27 3.96x 73 2.1x 81 3.06x 61 1.61x
FedDC 43 3.3x%x 60 3.2x 21 5.1x 48 3.19% 74 331x 47 2.3%x
CIFARI10, 100 client, Target accuracy 80%
FedAvg | >1000 - >1000 - 286 - 616 - >1000 - >1000 -
FedProx 474 2.11x >1000 1x 277 1.03x 459 1.34x  >1000 1x 307 3.28%
Scaffold 165 6.06 % 218 4.59 % 120 2.38% 200 3.08x 263 3.80x 126 7.93%
FedDyn 60 16.67x 75 17.54x 55 5.2x% 193 3.19%x 195 5.12x 145 6.9%
FedDC 53 18.86 % 70 14.28 x 43 6.65x 141 4.37x 143 6.99x 108 9.26x
CIFAR100, 100 client, Target accuracy 40%
FedAvg 476 - 847 - >1000 - 615 - 520 - 724 -
FedProx 502 0.95x% 507 1.67 % 273 3.66x 980 0.63 % 503 1.03x 650 1.11x
Scaffold 91 5.23x% 94 9.01x 84 11.9% 106 5.8% 114 3.56x 113 6.41x
FedDyn 51 9.33x 53 15.98 x 56 17.85x% 149 4.42x 148 3.51x 143 5.06x
FedDC 39 12.2x 41 20.65 x 37 27.03 x 102 6.03x 103 5.05x 100 7.04 %

Table 2.

The top-1 test accuracy on Tiny ImageNet with 20 clients

training for 10 rounds on iid and non-iid settings.

Method | D1 D2 iid

FedAvg | 43.86 | 42.62 | 44.30
FedProx | 43.55 | 42.25 | 44.11
Scaffold | 44.38 | 43.38 | 45.07
FedDyn | 45.37 | 44.71 | 45.61
FedDC 46.44 | 46.60 | 47.91

datasets. Our results highlight the benefit of FedDC com-
pared to the existing FL optimization approaches.

Fast convergence of FedDC. Table | compares the con-
vergence speed of FedDC and the mentioned baselines. The
results show that FedDC is the best one to handle the local
drift and speeds up the convergence speed compared with
other methods. Specifically, FedDC could achieve a tar-
get accuracy using fewer communication rounds than the
FedAvg, FedProx, Scaffold and FedDyn. For instance, in
the iid setting, FedDC spends 37 communication rounds to
achieve 40% accuracy while 100 clients full participating in
training on CIFAR100, while FedAvg spending over 1000
rounds to achieve 40% accuracy in the same setting. That
is, the convergence speed of FedDC relative to FedAvg is

faster over 27.03x. We may attribute this to the fact that
FedDC bridges the local drift and efficiently optimizes the
objectives. The convergence speedup also leads to propor-
tional communication-saving. And Figure 3 shows more
vivid results of the convergence plots, in which FedDC is
consistently the fastest one in all settings. Figure 3 (a, d)
show the convergence plots in iid settings on CIFAR10 and
CIFAR100. Figure 3 (b, e) are accuracy plots on non-iid set-
tings. From these convergence plots, we intuitively observe
that FedDC achieves better accuracy and greatly speeds up
the convergence speed than baselines. It is obvious that con-
vergence speedup of FedDC relative to baselines is larger
on non-iid settings than in iid settings. As the increasing
of data heterogeneity, the local models suffer from more
significant client drift. FedDC handles the drift by bridg-
ing the gap using the local drift variables that are learned
on the client-side, so that FedDC show an obvious advan-
tage in convergence speed over other baselines. The re-
sults confirm that FedDC has a stronger ability to handle
heterogeneous data. Figure 3 (c, f) are convergence plots
on unbalanced data set settings. The unbalanced data in-
troduces another type of system heterogeneity, making the
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Table 3. The top-1 test accuracy (%) on iid, non-iid and unbalanced data for full client participation and partial client participation (15%)
levels. There are three settings for the amount of clients: Setting 1 (100 clients), Setting 2 (500 clients) and Setting 3 (20 clients).

Method FedAvg FedProx Scaffold FedDyn FedDC | FedAvg FedProx Scaffold FedDyn FedDC
Setting 1 100 clients full participation 100 clients partial participation
CIFAR10-iid 82.16 81.85 84.61 85.26 86.18 81.67 82.16 84.68 84.50 85.71
CIFAR10-D1 80.42 80.70 84.13 85.26 85.64 81.05 81.32 83.57 84.10 84.77
CIFAR10-D2 79.14 78.89 82.96 84.14 84.32 79.717 79.84 82.53 82.30 84.58
CIFAR10-unbalance 81.37 81.90 84.45 85.68 86.31 81.68 81.88 84.44 84.30 85.35
CIFAR100-iid 39.68 40.39 51.26 52.07 55.52 40.80 40.67 49.80 51.20 55.40
CIFAR100-D1 40.48 40.15 51.16 52.84 55.34 41.76 41.83 50.01 51.75 54.65
CIFAR100-D2 40.11 40.93 50.44 51.89 54.86 41.81 41.84 50.25 51.13 53.91
CIFAR100-unbalance | 40.03 39.93 51.30 52.81 55.69 40.90 41.05 50.57 51.01 55.27
MNIST-iid 98.12 98.12 98.32 98.51 98.45 98.15 98.11 98.45 98.38 98.47
MNIST-D1 98.09 98.05 98.39 98.44 98.48 98.13 98.12 98.45 98.30 98.49
MNIST-D2 97.98 97.96 98.45 98.46 98.51 98.00 98.04 98.37 98.30 98.40
MNIST-unbalance 98.12 98.10 98.35 98.60 98.46 98.15 98.13 98.50 98.34 98.53
Setting 2 500 clients full participation 500 clients partial participation
CIFAR10-iid 73.43 72.717 81.56 84.07 84.93 73.26 72.58 81.58 82.49 84.19
CIFAR100-iid 26.03 28.22 45.62 50.22 54.25 27.36 26.50 30.45 44.11 50.61
Setting 3 20 clients full participation 20 clients partial participation
Synthetic(0,0) 98.65 98.65 98.65 99.25 99.35 98.75 98.70 98.65 99.32 99.57
Synthetic(1,0) 97.83 97.82 97.90 98.65 98.83 97.70 97.67 97.90 98.82 99.23
Synthetic(0,1) 97.75 97.75 97.90 99.10 99.30 98.52 98.50 98.58 99.30 99.62

convergence speed slower than in the balanced data. The re-
sults show FedDC’s superiority in both model performance
and convergence speed in unbalanced settings, we find that
FedDC also has the potential to handle the heterogeneity
caused by unbalanced data. In addition, a widespread trend
in these figures is that as the target accuracy improves, the
communication-saving of FedDC relative to other methods
become bigger. Another trend is that the improvement of
FedDC over baselines in CIFAR100 is bigger than in CI-
FAR10 in the same settings. We attribute it to the fact that
as the difficulty of optimization increases, FedDC’s robust-
ness advantage over other methods is further highlighted.
FedDC can utilize the local drift variable to capture the sys-
tem heterogeneity in clients’ local datasets and capture the
subtle features needed to classify confusing samples.

Better performance of FedDC. Table 3 compares
the best accuracy of FedDC with baselines on evalua-
tion datasets with various settings. On CIFAR10 and CI-
FAR100, FedDC always achieves the best test accuracy,
where FedAVG and FedProx have the least. For instance,
when training on the data of 0.3-Dirichlet distribution (Dw)
CIFAR10 with 100 clients full participating, the test accu-
racy of FedDC is 84.32%, the accuracy of FedAvg achieves
79.14% and the accuracy of Scaffolf achieves 82.96%.
FedDC also achieves appreciable improvement in top-1 test
accuracy on the unbalanced settings. Besides, the results
in setting 2 (500 clients) and setting 3 (20 clients) indicate
that FedDC is efficient in the practically relevant massively
distributed settings. The improvements of FedDC indicates
that tracking and correcting client drift effectively prevent
the model performance from decreasing. Compared with
Scaffold, FedDC not only uses the gradient correction term
to reduce gradient drift but also introduces the local drift
variable to track the deviation between the global model

and local models, so that FedDC is the best one to pre-
vent the accuracy reduction. Table 2 shows the accuracy
of ResNet18 that training for 15 rounds on Tiny ImageNet,
where the ResNet18 is started from an ImageNet pre-trained
model. The performance of FedDC significantly outper-
forms the baselines in all settings. This shows that FedDC
is still efficient in tasks that use pre-trained models.

Robustness on heterogeneous data. A more extensive
non-iid data or unbalanced data can greatly slow down the
model convergence [19]. Comparing the convergence plots
of Figure 3 (a,b,d,e), the results show that the data distribu-
tion has a prominent influence on both the model conver-
gence speed and accuracy. It reveals that the convergence
speed on the iid data is faster than on the non-iid data in
which the local dataset can not well approximate the over-
all distribution. As shown in Table 3, FedDC outperforms
baselines on iid, non-iid and unbalanced settings. FedDC
gets more communication-saving gains relative to other
methods when we increase the target accuracy or training
on a harder task. The data heterogeneity does damage to the
model performance of all methods. While training with 100
clients and full participation on CIFAR100, the accuracy
of FedDC is 85.71% in iid setting, 84.77% in 0.6-Dirichlet
(D1) distribution, and 84.58% in 0.3-Dirichlet distribution
(D2, it is more non-iid than 0.6-Dirichlet). However, even
in these heterogeneous data settings, FedDC maintains its
competitive advantage compared with baselines because it
is able to neutralize the local drifts.

Robustness to massive clients. We conduct experi-
ments to analyze the effectiveness of FedDC while adopt-
ing different amounts of clients to participate in the training
process. We report the model accuracy in Table 3 with 100
and 500 clients of both partial participation and full par-
ticipation on CIFAR10 and CIFARI100 datasets. FedDC
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Figure 3. Convergence plots for FedDC and other baselines in different settings that with 100 clients partial (15%) client participating on
iid, D2 non-iid (Dirichlet-0.3) and unbalanced data of CIFAR10 and CIFAR100 datasets. (a), (b) and (c) are training on CIFAR10 with
partial participation. (d), (e) and (f) are training on CIFAR100 with full participation.

achieved the best performance consistently. FedDC con-
verges to a better stationary point than other methods. In
the setting with 100 clients (setting 1) and full client partici-
pating, the test accuracy of FedDC is 84.93% on CIFAR10,
while FedAVG only achieves 74.43% (11.5% lower than
FedDC) on CIFARI10. Scaffold and FedDyn methods al-
ways get intermediate accuracy. Moreover, the performance
gap between FedDC and other methods increases when the
client size increases from 100 to 500. We attribute it to
that a smaller number of samples per device (with massive
clients) brings a greater risk of optimization dispersion.

Robustness to client sampling. The devices in FL are
heterogeneous and flexible, which may join and exit at any
time. To show that FedDC is resilient for clients sampling,
we set the experiments with full participation and partial
sampling participation (in this setting we randomly sample
15% client join training each round). We compared the fi-
nal performance of FedDC and the baseline algorithms in
Table 3. Partial client participating means the active data
is only a subset of all training data, which leads to unsta-
ble and slower convergence. In full clients participating,
the accuracy of FedDC with 100 clients on iid CIFARI0 is
86.18%, and in 15% client sampling, the accuracy decreases
to 85.71%. Moreover, the results turn out that keeping all
clients active is not necessary for FedDC, where the par-
tial client participating could achieve similar accuracy as the
full client participating. FedDC keeps the best accuracy in

partial client participation compared to the other methods.
Thus, FedDC is much resilient to client sampling compared
to baselines as it utilizes the clients’ parameter deviations to
improve the performance of the global model. The clients
in FedDC hold and update drift variables locally, so that
occasionally interrupted training does not cause the loss of
the drift state, which allows clients to train better in partial
client participation settings.

6. Conclusion

In this work, we proposed a novel FL algorithm with lo-
cal drift decoupling and correction, named FedDC, to solve
the problem of local drift which caused by the heteroge-
neous data. FedDC dynamically bridges the gap between
the local model and the global model with the learned lo-
cal drift variable. Through extensive experiments on vari-
ous image classification datasets, we demonstrated that our
FedDC provides better performance and faster model con-
vergence in FL. Moreover, FedDC is robust and efficient
in homogeneous or heterogeneous data, in both full client
participation and partial client participation.
Acknowledgement The work is supported by the National
Natural Science Foundation (NSF) under grant 62072306
and 61872372, Open Fund of Science and Technology
on Parallel and Distributed Processing Laboratory under
grant 6142110200407, and A*STAR AI3 HTPO Seed Fund
(C211118012).

10119



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

(14]

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew
Mattina, Paul Whatmough, and Venkatesh Saligrama. Fed-
erated learning based on dynamic regularization. In Inter-
national Conference on Learning Representations, 2021. 2,
5

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André
van Schaik. EMNIST: Extending MNIST to handwritten let-
ters. In 2017 International Joint Conference on Neural Net-
works (IJCNN), pages 2921-2926, 2017. 5

Ittai Dayan, Holger R. Roth, et al. Federated learning for pre-
dicting clinical outcomes in patients with COVID-19. Nature
Medicine, 27(10):1735-1743, oct 2021. 2

Chun-Mei Feng, Yunlu Yan, Huazhu Fu, Yong Xu, and Ling
Shao. Specificity-Preserving Federated Learning for MR Im-
age Reconstruction. arXiv, dec 2021. 1

Priya Goyal, Piotr Dolldr, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, Large Minibatch
SGD: Training ImageNet in 1 Hour. arXiv e-prints, page
arXiv:1706.02677, June 2017. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In [EEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770-778, 2016. 5

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf,
and Kurt Keutzer. FireCaffe: Near-Linear Acceleration of
Deep Neural Network Training on Compute Clusters. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2592-2600, 2016. 1

Peter Kairouz, H. Brendan McMabhan, et al. Advances and
Open Problems in Federated Learning. arXiv, dec 2019. 1, 2

Sai Praneeth Reddy Karimireddy, Satyen Kale, Mehryar
Mohri, Sashank Jakkam Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic Con-
trolled Averaging for Federated Learning. In International
Conference on Machine Learning (ICML), pages 5132—
5143, 2020. 1,2, 3,5

Ahmed Khaled, Konstantin Mishchenko, and Peter. Tighter
theory for local sgd on identical and heterogeneous data.
In International Conference on Artificial Intelligence and
Statistics, pages 4519-4529, 2020. 1, 2

Jakub Konec¢ny, H. Brendan McMahan, Daniel Ramage, and
Peter Richtarik. Federated Optimization: Distributed Ma-
chine Learning for On-Device Intelligence. arXiv e-prints,
page arXiv:1610.02527, Oct. 2016. 2

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

Kumar Kshitij Patel and Aymeric Dieuleveut. Communica-
tion trade-offs for synchronized distributed SGD with large
step size. arXiv e-prints, page arXiv:1904.11325, Apr. 2019.
2

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998. 5

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

10120

Li Li, Liang Gao, Huazhu Fu, Bo Han, Cheng-Zhong Xu,
and Ling Shao. Federated Noisy Client Learning. arXiv, jun
2021. 1

Mu Li, David G Andersen, Alex J Smola, and Kai Yu. Com-
munication efficient distributed machine learning with the
parameter server. In Advances in Neural Information Pro-
cessing Systems 27, volume 27, pages 19-27,2014. 1

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi,
Ameet Talwalkar, and Virginia Smith. Federated optimiza-
tion in heterogeneous networks. Proceedings of Machine
Learning and Systems, 2:429-450, 2020. 1, 2, 3,5

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and
Zhihua Zhang. On the convergence of fedavg on non-iid
data. arXiv preprint arXiv:1907.02189, 2019. 1, 2

Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Artificial Intelligence and Statistics, pages 1273-1282.
PMLR, 2017. 1,2,5,7

Viraaji Mothukuri, Reza M. Parizi, Seyedamin Pouriyeh,
Yan Huang, Ali Dehghantanha, and Gautam Srivastava. A
survey on security and privacy of federated learning. Future
Generation Computer Systems, 115:619-640, 2021. 1

Hadi Pouransari and Saman Ghili. Tiny imagenet visual
recognition challenge. 2014. 5

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary
Garrett, Keith Rush, Jakub Konecny, Sanjiv Kumar, and
H. Brendan McMahan. Adaptive federated optimization.
CoRR, abs/2003.00295, 2020. 2

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and
H. Vincent Poor. Tackling the objective inconsistency prob-
lem in heterogeneous federated optimization. In Advances
in Neural Information Processing Systems, volume 33, pages
7611-7623, 2020. 3

Shusen Wang, Fred Roosta, Peng Xu, and Michael W. Ma-
honey. GIANT: Globally Improved Approximate Newton
Method for Distributed Optimization. In Advances in Neural
Information Processing Systems, pages 2332-2342, 2018. 1
Blake E. Woodworth, Jialei Wang, Adam D. Smith, Bren-
dan McMabhan, and Nati Srebro. Graph oracle models, lower
bounds, and gaps for parallel stochastic optimization. In
Advances in Neural Information Processing Systems, vol-
ume 31, pages 8496-8506, 2018. 2

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,2017.
5

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear
speedup with partial worker participation in non-iid feder-
ated learning. In International Conference on Learning Rep-
resentations, 2021. 2

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh,
Kristjan H. Greenewald, Trong Nghia Hoang, and Yasaman
Khazaeni. Bayesian nonparametric federated learning of
neural networks. In International Conference on Machine
Learning, pages 7252-7261, 2019. 5

Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung,
and Jose M. Alvarez. Personalized federated learning with



(30]

(31]

first order model optimization. In International Conference
on Learning Representations (ICLR), 2021. 2

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon
Civin, and Vikas Chandra. Federated learning with non-iid
data. arXiv preprint arXiv:1806.00582, 2018. 1, 2

Hankz Hankui Zhuo, Wenfeng Feng, Qian Xu, Qiang Yang,
and Yufeng Lin. Federated reinforcement learning. CoRR,
abs/1901.08277, 2019. 1

10121



