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Capitalizing on RGB-FIR Hybrid
Imaging for Road Detection

Yigong Zhang", Jin Xie, José M. Alvarez"”, Cheng-Zhong Xu", Fellow, IEEE, Jian Yang", and Hui Kong

Abstract— Traditionally, road detection approaches mostly
capitalize on RGB images, 3D LiDAR point cloud or their
fusion. However, RGB camera is sensitive to light conditions,
while LiDAR point cloud is sparse compared with dense image
pixels. In this work, a new hybrid image dataset is provided for
the task of road detection based on cameras. In this dataset,
the hybrid images are acquired by an optically aligned hybrid
imaging device, consisting of a far-infrared (FIR) imager and an
RGB camera to output pixel-wise registration of thermal and
RGB frames. Then we investigate on three methods based on
fully convolutional neural network (F-CNN) to demonstrate the
advantages by fusing RGB-FIR images in road detection. First,
a middle-fusion based model is built, where the output feature
maps of encoder branches from RGB and FIR images are directly
concatenated into a single-fusion branch as the decoder. Next,
the originally discarded layers after fusion operation for both
RGB and FIR branches are recovered as the mimic branches to
imitate the distributions of the fusion outputs, which constitutes
an extended cross model (ECM). Moreover, the outputs of
mimic branches at different scales are also used to imitate the
corresponding outputs in the fusion branch, called a hierarchical
cross model (HCM). The experimental results demonstrate the
effectiveness and efficiency of our fusion strategies.

Index Terms— RGB-FIR fusion, road detection, CNN, extended
cross model, hierarchical cross model.

I. INTRODUCTION
ITH the rapid development of sensor technology and
Wcomputer vision, autonomous driving technique has
become a research hot-shot in recent years. For an autonomous
vehicle, one of the most critical task is road detection.
It provides free space for planning motion and navigation.
In spite of various achievements based on different types of
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sensors, there still exist some problems for accurate and robust
detection, such as the ones caused by illumination conditions
and significant changes in driving scenarios.

RGB camera is one of the most widely-used sensors for
road detection. It outputs images with rich color and texture
information in high resolution. However, RGB camera is very
susceptible to illumination variation. Night, over-exposure or
shadows all result in poor imagery, which is hard to be
applied to robust road detection. Another widely used sensor
for road detection is Light Detection and Ranging (LiDAR).
It can emit multiple rays of laser light to obtain accurate 3D
structure of the scene in a form of 3D point cloud, but it is
sparse and unordered for users. The high expense of multi-
ray LiDAR sensor also restricts its wide usage on the existing
commercial.

Far infrared (FIR) or thermal camera is also a kind of pop-
ular sensor. It captures temperature information of the scene,
achieving insensitivity to illumination variation. Compared
with multiple-ray LiDAR sensors, the cost of FIR camera
is cheaper, and the output image is as dense as that of
RGB camera. Some exemplar images are shown in Figure 1.
No matter during the day or night, or in the sunlight or
shadow, FIR camera could provide clear images. Nevertheless,
unlike the RGB images taken at daytime exhibiting rich
colors and abundant textures, FIR images lack color and rich
texture information. Little difference in temperature or infrared
radiation may blur the boundaries of objects, such as the
brick sidewalk in the first column of Figure 1(a), the white
motorcycle body and the white guardrails in the last two
columns of Figure 1(b). Intuitively, it is wise to use both
RGB and FIR images for road detection because they can
offer complementary information to improve performance for
road scene perception.

Owing to the recent progress in developing coaxial cam-
era system [l], [2], it is much easier to acquire pixel-
wisely aligned RGB and FIR images. Whereas, most of
the current studies focused on pedestrian detection [3]-[5],
re-identification [6]-[8], face recognition [9], [10] and track-
ing [11], [12]. As far as we know, there are very few research
works on road detection yet.

On the other hand, most of the F-CNN based road detection
approaches generally merge the feature maps from different
sensors into a single fusion branch to provide the final results,
in which the original output branches for each sensor are
omitted. Nevertheless, we find that some regions may be
recognized correctly by a single sensor while be wrongly
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Fig. 1.

Some exemplar images in our RGB-FIR road dataset captured during (a) the daytime and (b) the night. For each sub-figure, the top row shows RGB

images, the ones in the middle row are FIR images, and the ones in the bottom row are ground-truth images.

classified by sensor fusion. That means, some unique useful
information can be extracted from a single specific sensor
for road detection, but not learned by fusion during the
learning process. Moreover, due to the various sceneries, it is
impossible and unreasonable to directly choose which sensor
is the most proper for a specific road scene.

To address these issues, we concentrate on utilizing RGB-
FIR information for road detection. An RGB-FIR hybrid
image dataset with ground-truth labeling is provided for road
detection task, which is pixel-wisely aligned and attenuates
the ghost phenomena caused by camera’s rolling shutter.
To our best knowledge, this is the first RGB-FIR dataset
for road detection task. Then we investigate on three fusion
strategies. First, we construct a simple concatenation based
fusion model, which directly concatenates the output feature
maps from the RGB and FIR branches into a single fusion
branch. Inspired by the work [13], we restore the layers of
RGB and FIR branches that has been removed after fusion
operation as the mimic branches to imitate the distributions
of the fusion outputs, which constitutes an extended cross
model (ECM). By balancing the cross model difference and the
segmentation loss, the network obtains the private information
from each individual sensor can also provide better results.
Moreover, because the decoder of an image based semantic
segmentation network has feature maps at different scales, the
outputs of mimic branches of different scales are also used to
imitate the corresponding outputs in the fusion branch, called
a hierarchical cross model (HCM).

Our contributions are listed as follows:

« We build a new RGB-FIR image dataset for road detec-
tion. The dataset consists of various types of road scenes
under different illumination conditions. We also provide
a strategy to reduce the ghost phenomenon.

o« We design two network structures, the ECM and HCM
for RGB-FIR fusion. These make the network get more
specific and unique information from each individual
Sensor.

o« On our road dataset, we validate several concatenation-
based fusion models which are concatenated at different
stages. The results indicate that the middle-fusion based
method could acquire the best performance.

o« We compare our middle-fusion based ECM and HCM
models with the state-of-the-art (SOTA) methods on our
RGB-FIR road dataset. Our methods obtain the two best
achievements.

The rest of our paper is organized as follows: the related
works are reviewed in Section II. In Section III, we briefly
introduce how to get pixel-wisely aligned RGB and FIR
images with less ghost phenomena based on the designed
hybrid camera. The middle-fusion based model, the architec-
tures of the ECM and HCM models are described in details in
Section IV. Section V provides the experiment results on our
RGB-FIR road dataset. The quantitative comparisons of differ-
ent fusion models and the experimental analyses for our ECM
and HCM models are also provided in this section. The con-
clusions are drawn in Section VI. The dataset can be viewed
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at https://drive.google.com/drive/folders/IMSUM4XRTV4P_
TLsEssOkwaENkHfBoFHi?usp=sharing.

II. RELATED WORKS
A. Road Detection

In the literature, most road detection approaches depend
on RGB cameras. Due to the perspective effect, the parallel
road boundaries will intersect to a point (vanishing point) in
the image space. Thus, some early road detection methods
[14]-[16] concentrate on the detection of vanishing point and
the road boundaries. However, there will exist no vanishing
point at the T-junction or multiple vanishing points at the fork
road cross in the road image. Besides, the road boundaries are
not always straight. Though some methods are proposed to fit
the road boundary into a complex shape [15], [17], it is hard
to obtain an exact road boundary, especially when the obsta-
cles are located on the road region. Some methods assume
that the road regions have some similar characteristics based
on some hand-crafted features, such as context [16], [18],
color [19], [20] and intensity-invariant feature [21]-[23].
Unfortunately, road patches, shadows and water puddles may
destroy the characteristic consistency. Moreover, the hand-
crafted features cannot extract more delicate information. Due
to the development of deep learning and powerful capability
in feature extraction, convolutional neural network (CNN)
has become a main tool for image-based road detection in
recent years, e.g. CN [24], DDN [25], DEEP-DIG [26] and
KittiSeg [27]. To further improve performance, some other
related tasks are also incorporated into networks. Based on
KittiSeg, MultiNet [27] directly segments the road region
and detects vehicles simultaneously. RBNet [28] generates the
road region and boundaries together. SSLGAN [29] predicts
the road region and shape together. Although these methods
have achieved good performance on the benchmarks, their
performance is always constrained by image quality, and
these methods are lack of robustness to variant-illumination
conditions.

LiDAR sensor is also a widely used device for road detec-
tion. On account of its high accuracy, it is easy to fit a road
region based on the output 3D point cloud [30], [31]. But
the real road is hard to be treated as a regular 3D shape.
Additionally, the original 3D point cloud is not convenient
to directly use due to its sparsity and lack of structures.
Chen et al. [32] reorganize sparse 3D points into a sphere
coordinate frame and generate a dense LiDAR imagery. Based
on this imagery, Zhang et al. [33] propose a scanning based
method to detect the road region. Wu et al. [34], [35] and
Xu et al. [36] both build an F-CNN followed by a CRF-
like recurrent neural network (RNN) to directly process the
LiDAR imagery. Besides, Caltagirone et al. [37] just project
unstructured 3D points onto the top view and feed the top view
image into a fully convolutional network. However, LiDAR
points in the top view are very sparse in the depth direction,
leading to rougher predictions of road boundaries.

Considering the limitation of each individual sensor, it is
preferable to fuse information from both LiDAR and RGB
cameras. Earlier approaches [38]-[40] usually first obtain the
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respective segmentation results from RGB images and LiDAR
based on hand-crafted features and traditional classifiers, then
fuse the results based on a CRF model. It usually takes these
methods much time for feature extraction and CRF compu-
tation. Recently, F-CNN has been utilized to obtain fusion
results in an end-to-end manner in real time. In PLARD [41],
both RGB images and the proposed dense altitude difference
images (ADI) are fed into a ResNet-based fusion network.
After each ResNet block, the feature maps from ADI images
are adaptively fused with the corresponding feature maps
from RGB images, and then the fused feature maps are
also incorporated into the RGB branch. Fan et al. [42] and
Wang et al. [43] use the RGB image and dense normal vector
map as input. The encoder of fusion network is also based on
ResNet, while the feature maps from normal vector are also
incorporated into the RGB branch after each ResNet block.
At last these feature maps at different scales are fed into a
dense cascaded decoder for upsampling and prediction. The
above two methods both need upsampling for LiDAR data,
which restricts the segmentation accuracy. Lv et al. [44] also
design a two-stream based network where one is for the RGB
image in the perspective view and the other is for the artificial
features of LiDAR in the bird’s eye view, while the perspective
feature maps are fused into the bird’s eye view for the
decoder by a bird’s eye transformation [45]. Yang et al. [46]
create the spatial propagation and transformation to obtain the
segmentation in both the perspective and bird’s eye views,
while the fusion is conducted during the view transformation.
However, due to the height difference in the road region,
the correspondence between the perspective view and bird’s
eye one is not quite accurate, which may reduce fusion
performance.

B. Multimodal Semantic Segmentation

Road detection can be treated as a two-class segmentation,
thus we also review some recent multimodal semantic seg-
mentation works. FuseNet [47] is a classical RGB-D-based
encoder-decoder network, where the encoder includes two
branches for each modality, while the feature maps from
depth branch are incorporated into the RGB branch after
each VGG-16 convolutional block. RFNet [48] also uses
two branches in the encoder, where the feature maps from
depth branch are incorporated into the RGB branch by using
attention-feature complementary modules. In ACNNET [49],
the encoder consists of three parallel parts: the RGB, depth
and fusion branch. The feature maps in the fusion branch
incorporate the outputs of the previous ResNet blocks from
the RGB, depth and fusion branches based on the processing
of attention complementary module. For polarization based
segmentation, Kalra et al. [50] use a three-branch encoder.
The feature maps after each CNN block from each branch
are incorporated by an attention module, and then the output
maps in different scales are also fed into a fusion branch
based on Mask-RCNN for segmentation and classification.
Like [49], EAFNet [51] also use three parallel encoders for
RGB, polarization and fusion features, respectively. For RGB-
event images, ISSAFE [52] use two branches for each module
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in the encoders, while the generated fused feature maps at
different scales are fed into one fusion branch as decoder
part. In a word, the current multimodal semantic segmentation
methods usually use two or more branches in the encoder
part, and the feature maps from encoder are incorporated and
fed into one fusion branch as decoder for upsampling and
segmentation.

C. FIR Based Road Detection and Semantic Segmentation

Due to very few benchmark datasets, there are very limited
number of works to conduct FIR based road detection or
semantic segmentation. Yoon ef al. propose an online scene-
adaptive framework based on FIR image sequences [53]. They
suppose that there exists texture consistency for road region
in the FIR images, and use a region-growing method to
propagate the label to all possible pixels. Next, a coarse-to-
fine algorithm propagates the detected region into consecutive
frames. However, the consistency of texture and intensity
may be affected by road material, shadows, water puddles
and lane markings. This makes their results less than those
from F-CNN.

The two works most related to ours are MFNet [54]
and RTFNet [55], both of which conduct RGB-FIR based
semantic segmentation. Based on the lightweight SegNet [56],
the MFNet [54] adopts an encoder-decoder structure, which
concatenates the feature maps from RGB and FIR branches
into a single fusion branch. This work also provides an RGB-
FIR dataset, however their labeling does not include the
road region. Similarly, RTFNet [55] also uses an encoder-
decoder structure, in which the two ResNet-based branches
in the encoder are merged into the same fusion branch in
the decoder. Nevertheless, the fusion operations are conducted
after downsampling blocks in the encoder by adding the FIR
feature maps to the RGB feature maps.

The aforementioned fusion networks incorporate feature
maps from different sensors into one fusion branch as decoder
for segmentation, while removing the output branches for the
respective sensors. This makes the fusion branch neglect some
unique useful information extracted only from a single sensor
during training. Thus, the fusion network would provide worse
prediction results on some validation images than the single
sensor based method. Different from these two RGB-FIR
approaches and above semantic segmentation methods, our
ECM and HCM models recover the individual branches after
fusion operation, which are used to imitate the distribution of
fusion results during training and improve the segmentation
accuracy of the fusion branch.

III. IMAGE ACQUISITION

In this section, we first introduce our RGB-FIR hybrid
image device briefly. For more details, it is suggested to refer
to our previous work [2]. Our hybrid imaging device consists
of a visible-light camera and a thermal one, illustrated in
Figure 2. We also exploit a beam splitter to keep the two
optical-axes coaxial and make the optical centers approxi-
mately meet at the same point. Thereafter, there is a pixel-
wise correspondence between RGB and FIR images, which is
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(a) Adjuster platform: @ beam splitter, @ FIR camera, ® RGB camera,
@ frame, ® adjuster, ® camera base, @ support, ® fastener, @ optical
table

(b) RGB-FIR hybrid camera: @ beam splitter, @ FIR camera, ® RGB
camera, @ frame, ® camera base, ® universal joint, @ support, ® fastener

Fig. 2. Adjuster platform for hybrid camera and RGB-FIR hybrid camera.

subject to a homography transformation based on the stereo
calibration, achieving the pixel-wise alignment of RGB and
FIR frames.

Even though a homography matrix can provide very accu-
rate correspondence in theory, one problem still remains for
image acquisition, i.e. the type of shutter adopted for exposure.
In practice, a large amount of RGB cameras are based on the
global shutter, which captures the whole image at the same
time. Whereas, most of the existing FIR cameras are based on
the rolling shutter, in which the top of the image is obtained
earlier than the bottom. It means that, if the RGB and FIR
cameras start the exposure at the same time, the bottom part
of RGB image cannot perfectly overlay the bottom part of FIR
image, especially when either the hybrid camera or objects are
moving in the scene. This can arouse the “ghost” phenomenon,
just like a ghost haunting near a person.

Because we do not know the exact exposure details on how
the rolling shutter works in a consumer-grade FIR camera
(like the one we used), it is almost impossible for us to fully
eliminate the ghost phenomena. Instead, we expect to attenuate
the ghost phenomena in the road region as much as possible.
For this purpose, we postpone triggering the RGB camera until
the FIR camera captures the road region in the bottom. This
can significantly alleviate the ghost phenomena on the road
region.

Figure 3(a) gives an example of the MFNet dataset [54],
which is captured by an RGB-FIR camera, InfReC R500,
which does not adopt a coaxial style and synchronization in
image capturing. For a distant static object (e.g. buildings in
the image), since its distance to the RGB-FIR camera is much
larger than the baseline between RGB and FIR cameras, the
disparities between corresponding pixels are close to zero.
Nevertheless, there exists large misalignment when an object
is close to the moving camera, just as the car in the left and
the billboard in the right.
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(c) An example from our RGB-FIR road detection dataset.

Fig. 3. The example images from the current three RGB-FIR datasets. Left:
RGB images, Middle: FIR images, Right: blending images in which the red
channel corresponds to the grayscale of RGB image and the green channel is
the FIR image.

Figure 3(b) is selected from the KAIST pedestrian
dataset [3], whose cameras are aligned in a coaxial way
although the ghost phenomena are not carefully taken care
of. By virtue of the specific pose of their RGB and FIR
cameras, the ghost phenomena in the left part of images are
worse than those in the right part. Thus, the ghost phenomena
obviously appear at the pedestrians in the left boundary, and
those in the FIR image cannot match the ones in the RGB
image. This also makes the dataset not so suitable for road
detection.

Figure 3(c) shows an example acquired by our hybrid
camera with the strategy of ghost phenomenon attenuation.
The image was taken when the vehicle was turning quickly
at a T-junction. Although the ghost phenomena appear on the
traffic lights in the top of the image, thanks to the trigger delay
of the RGB camera, the road markers in the RGB image still
well match those in the FIR image. This indicates that our
strategy could effectively attenuate ghost phenomena in road
region.

IV. THE PROPOSED NETWORK

Based on our RGB-FIR hybrid camera, we can capture
pixel-wisely aligned RGB and thermal images simultaneously.
Intuitively, the information from RGB and FIR images supple-
ments each other. RGB images provide richer color and clearer
texture information in good illumination conditions, while
FIR images contain more information in adverse illumination
conditions. Based on the lightweight F-CNN ERFNet [57],
the middle-fusion based model, our ECM and HCM models
are proposed to gradually promote the fusion of features and
achieve better performance.
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A. The Basic Model and Middle Fusion

The ERFNet [57] is a lightweight architecture and provides
accurate semantic segmentation results in real time, which is
suitable for autonomous driving. The architecture is shown in
Figure 4. For illustrative purposes, each stage is assigned to an
index. The whole network consists of three parts: downsam-
pling block, non-bottleneck-1D block and upsampling block.
Among these blocks, the non-bottleneck-1D block is the key
module of ERFNet. Unlike the general residual module, each
3 x 3 convolution kernel is replaced with two 1D kernels: one
is 3 x 1, and the other is 1 x 3. To obtain more contexts,
the latter pair of 1D kernels are changed to the dilated ones.
The name ‘“non-bottleneck” means that all the convolutions
do not change the number of feature channels. At last, all
these blocks are stacked sequentially to construct an encoder-
decoder structure, which generates the segmentation results of
the same size as the input images.

Though RGB or FIR images could be processed by the
ERFNet individually, fusing RGB and FIR features may intu-
itively provide complementary information for road detection
with different illumination conditions. Here, we just choose
the middle fusion (MF) as the concatenation based fusion
model, where the fusion operation is conducted after the
S12 stage of the ERFNet model (i.e. the middle of the basic
model). To maintain the symmetry of each branch, and to
keep the same number of parameters in different branches, the
single-channel FIR image is converted to a 3-channel image.
The details of the fusion model are displayed in Figure 5.
To keep the same dimensions of input feature maps as those
of output, and to preserve the structure of ERFNet and the
quantity of parameters, the fusion block first concatenates
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the feature maps together, doubling the number of feature
maps. Then a Network-in-Network (NiN) is introduced after
the concatenation to reduce the number of feature maps to
the original input, followed by the batch normalization (BN)
and the ReLLU activation. Besides, for ease of illustration, the
stages of S23 and S24 in the ERFNet are treated as the output
block (Figure 5(b)).

Let regard a combination of 3 x 1 and 1 x 3 convolution as
a “complete” 3 x 3 convolution. Actually, the original image
is subject to at least 18 layers of complete 3 x 3 convo-
lution before the fusion block, which exceeds those in the
VGG19 network [58]. Thus, we could argue that the generated
feature maps after the S12 stage involve semantic meaning.
Meanwhile, as the middle-level features, they still retain some
fine details for semantic segmentation. In addition, for the
middle fusion, the fused feature maps are still subject to about
16 layers of complete 3 x 3 convolution, which is able to
mix the RGB and FIR feature fully. Referring to the RGB-
FIR based pedestrian detection approaches [4], [5], [59], their
experimental results also demonstrate that the middle-level
fusion can improve detection performance. Consequently,
we just choose the middle-fusion based ERFNet model as the
concatenation based fusion model.

B. The Extended Cross Model

In general, the target of semantic segmentation network is
to minimize the cross-entropy loss function, which measures
the probability differences between the estimated results and
the ground-truth. The cross-entropy loss is written as

c
1
Lseg(y, P) = THXW Zzy(x,i) -log Prxiy, (D)
X i=1

where y(x,i) is the ground-truth label for the i-th class at the
pixel x, and P(x ;) is the estimated probability for the i-th class
at the pixel x. C is the number of class. H and W correspond
to the height and width of the output image, respectively. For
road detection, the ground-truth consists of two classes: road
region and background, thus C = 2. Nevertheless, due to the
preserved unique information in the individual branch, this loss
function does not consider the difference and complementarity
between the RGB and FIR branches. As a result, The degree
of fusion is not sufficient.

In [13], Jaritz et al. propose a new architecture to perform
cross-model learning and domain adaptation for 3D semantic
segmentation. Different from the other fusion networks using
diverse types of fusion layers, they just use two detached
branches. Besides, the output feature maps after 2D-3D projec-
tion in each branch are sent to two distinct heads, an original
output head and a mimic one. Each head includes a linear
layer with a ReLU followed by a softmax function, which
generates respective probabilities. For these two probabilities,
one represents the distribution of segmentation results from
the current branch, while the other is utilized to imitate the
distribution from the other branch. Then an auxiliary loss is
defined as the KL divergence to regularize the relationship
between the original probability distribution from the current
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branch and the mimic one from the other branch as follows,

Lym(P, Q) = Dk (P|IQ)
' c

Pexi)
2_7.2 2 P -log =20 2
HxW 6018 5 ¥

X j=1 (x,7)

where P(x ;) is the output probability from the current branch,
and Q,; is the mimic probability from the other branch.
Moreover, they also give a fusion version, in which the two
original heads for each branch are replaced by two layers. The
first layer concatenates the projected feature maps from two
branches and the second one is a linear layer receiving the
feature maps as input with a ReLU followed by a softmax
function. Meanwhile, the mimic heads in each branch are still
reserved, and the Py ;) in (2) is replaced with the output of
fusion head.

The cross-model based fusion not only obtains the shared
information between two branches (i.e. fusion head), but
also preserves the private information for each branch (i.e.
mimic heads), thus achieving superior performance for 3D
semantic segmentation. However, two drawbacks still exist
and restrict the model’s application. First, in 3D semantic
segmentation models, the fusion usually operates at the late
stage after 2D-3D projection (i.e. late fusion), where the
feature maps from each branch have already contained much
discrimination information. But for image based segmentation
method, fusion usually operates at an earlier stage, such
as the middle fusion, where the feature maps from each
branch have less discrimination information than those from
late fusion. It is unclear whether the mimic head provides
sufficient discrimination information. In addition, because of
the existence of downsampling and upsampling operations, the
output size of feature maps changes at different stages in the
image-based semantic segmentation model. It is inappropriate
to use a simple mimic head (i.e. a linear layer with ReLU
followed by softmax) to preserve private information.

To solve these problems, we propose a new architecture to
extend the original cross model to the image-based seman-
tic segmentation, called the extended cross model (ECM).
Figure 6 illustrates its structure. It depends on the middle-
fusion model. The size of feature map input into the fusion
block is only 1/8 of the original image size. To guarantee
that the output size of the mimic branch is equal to that of
the fusion branch and to maintain the consistency across the
fusion branch and two mimic ones, both two mimic branches
and the fusion branch utilize the same structure. For the layers
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Fig. 7. The hierarchical cross model for middle fusion
(ERFNet+MF+HCM).

from S17 to $23, feature maps are gradually enlarged to the
original size of the input image, while the feature maps from
the later stages gradually gain more discrimination capability
in theory. This enables the mimic branch to well imitate the
probability distribution of the fusion branch, and achieves bet-
ter performance for the fusion network after training. Hence,
the loss function of extended cross model is formulated as

Lecy(P, QRGB)  o(FIR))
= DKL(PHQ(RGB’) + Dgr(P|| QTR

Pix, i) Pix, i)
T THxW ZZP(X i (log ®ep 18 —Fimy )
X =l Q(x,i) Q(x,i)

3)

where Py ;) is the output probability of the fusion branch

for the i-th class. The Q(RGB) is the mimic probability of

(x,0)
the RGB mimic branch for the i-th class. The Q(FIR) is the

mimic probability of the FIR mimic branch for the i-th class.
Then the whole loss function of our ECM is

Lseg(y, P)+ A¢ - Lecm(P, Q(RGB)’ Q(FIR))

C
5 [y(x,,-) log Pics,
X =1
(x,1)

P j. )]
(FIR) )|
Qix.iy

“)

Lossgpcy =

CHxW

P .
+le - P iy - (log (;x(’;l)B) + log
Qs

where A, is the hyperparameter weight of Lgcyy.

C. The Hierarchical Cross Model

During the encoding process, the upsampled feature maps
often lack detail information because it can be discarded
by the downsampling operations in the encoder part. Conse-
quently, an auxiliary loss is usually added to the stage where
upsampling occurs, which constitutes a hierarchical loss (HL)
function to ensure the recovery of details. That means we
will obtain several segmentation results at diverse resolutions
in the fusion branch. Similarly, the extended cross model in
Figure 6 could be also transformed to a hierarchical version.
Both the fusion and mimic branches have several upsampling
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operations, and to reserve the details from the mimic branches,
each mimic branch also constitutes its own hierarchical loss.
This model is called the ‘“hierarchical cross model” (HCM),
shown in Figure 7. Here all the mimic branches own a
series of auxiliary outputs with different scales to imitate the
probability distribution from the fusion branch at different
stages, Thus, the whole loss function of our HCM is

L

Lossgcm = Z {Lseg(y(l)a P(l))
=1

+ Ze Lecu (P, QRGED, o(FIRD)}

L

1 C
- _Zl 1 [Ha) x WO 'Zzl [yé,?,)
= X =

() (1)
P .
@ X,i) (x i)
the Py '(IOg QRGED) + log QTR 1))}]’

(x,1) (x,i)
Q)

where L is the number of hierarchies for upsampling. The
H® and WO are the height and width of the output image at
the [-th upsampling block, respectively. The y((l) denotes the
ground-truth label for the i-th class at the pixel x on the /-th
output hierarchy. The P(( ) ;) fepresents the output probability of
the fusion branch for the i-th class on the /-th output hierarchy.
The Q(R(;B ‘D is the mimic probability of the RGB mimic
branch for the i-th class on the /-th output hierarchy, while
sz IIR D is the mimic probability of the FIR mimic branch

for the i-th class on the /-th output hierarchy. Specifically,
we set L = 3 in our ERFNet based HCM model.

O]
log P i)

V. EXPERIMENTS ON OUR RGB-FIR ROAD DATASET
A. RGB-FIR Road Dataset

Based on the built RGB-FIR camera, we have acquired 500k
pixel-aligned RGB-FIR image pairs at the rate of 29.97Hz (the
fixed frequency of FIR camera). These images are captured in
Nanjing, China, and include two major categories of scenes,
urban and suburban/village regions. To evaluate our models,
we select 2036 image pairs as the RGB-FIR road detection
dataset, and manually annotate ground-truth. In this dataset,
1035 image pairs are captured in the daytime including morn-
ing, afternoon and dusk, while the other 1001 image pairs are
captured at night. Some examples are shown in Figure 1.

When annotating the images, we divide them into three
parts, the images captured in good illumination conditions, the
ones with partially blurred regions (e.g., shadows) and the
ones captured in adverse illumination conditions. Because
the RGB images contain much more texture information and
details than the FIR images, for the first parts of images,
we directly annotate the road region on the RGB images.
Since our hybrid camera could provide pixel-wisely aligned
RGB-FIR images, these annotations are also the ground-truth
of the corresponding FIR images. Next, we just project the
labeled road regions onto the FIR images, and analyze how
the road regions and the road boundaries are presented in the
FIR images. With this prior knowledge, we then label the
remaining two parts. For the images with partially blurred
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TABLE I
THREE SPLITS FOR THE RGB-FIR ROAD DETECTION DATASET

Split \ Training  Validation  Testing
Day 588 223 224
Night 597 199 205

regions, we first annotate on the RGB images with image
adjustment operations (for example, brightness control and
sharpening) to determine the road region as much as possible.
Then we fine-tune the road boundaries in the FIR images.
For the images captured in adverse illumination conditions,
we first annotate on the FIR images since the FIR images
could show the whole road region. Because there are also FIR
images with low contrast, the image adjustment operations on
FIR images are also needed. After labeling on the FIR image,
we project the road region onto the corresponding RGB image
and fine-tune the boundary, especially near the vehicles, sticks
and guard barriers. To obtain more details, the RGB images
are also needed to conduct image adjustment. Based on the
aforementioned strategies, we could guarantee the consistency
of ground-truth between RGB and FIR images.

For evaluation purposes, 1185 image pairs are regarded
as the training set, and 422 image pairs are divided into
the validation set, and the rest 429 image pairs belong to
the testing set. More details about the dataset are provided
in Table I. The resolution of both RGB and FIR images is
640 x 480.

B. Experimental Settings

During the training process, all our designed networks for
evaluation are conducted based on the same operations and
settings as follows. First, these networks are implemented
in the PyTorch framework and the whole experiments are
conducted on a server with a single GPU of NVIDIA GeForce
RTX 2080 Ti. Second, both the encoder and decoder are
trained from scratch simultaneously. During training, the batch
size is set to 4 and the number of epochs is 300. The
Adam [60] optimization method is adopted during training
with f1 = 0.9 and f> = 0.999. The learning rate decreases
depending on the poly learning policy [61] as

ni = no(l — ’N)“, 6)

where i is the number of current epoch, and N is the total
number of epochs and set to 300. The initial learning rate 79 =
0.0005 and o = 0.9. To avoid overfitting, /2 regularization is
also applied and the weight decay parameter is set to 0.0001.
As the regularization hyper-parameter in the loss functions (4)
and (5), 4. is set to 0.1. Besides, for the KL divergence in
the loss function, we detach the output of fusion branch from
the mimic branches. For data augmentation, we just utilize
horizontal flipping and random translation with the horizontal
and vertical offset no more than 2 pixels, as the same settings
in ERFNet [57].

To evaluate the performance of the segmentation results,
four measurement metrics are provided [62], [63], i.e. pre-
cision (PRE), recall (REC), F-score and intersection over
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union (IoU). The formulas of these four metrics are listed
as following:

TP
PRE = —— )
TP+ FP
TP
REC = ——— 8)
TP+ FN
2% PRE * REC
F —score = ————— )
PRE + REC
TP

IoU = (10)

TP+ FP+FN
where TP means true positive, FP representing false positive
and FN denoting false negative. Thus, the weights with largest
IoU score on the validation set are chosen for evaluation on
the testing data.

C. Experimental Results

We evaluate the fusion methods, i.e. the middle-fusion
based ERFNet model (ERFNet+MF), the ERFNet+MF
model with extended cross model (ERFNet+MF+ECM),
and the ERFNet+MF model with hierarchical cross model
(ERFNet+MF+HCM). We compare these methods with two
base methods. The first base method only uses RGB image
as the input of the original ERFNet [57], and is denoted
by the “ERFNet+RGB”. The second base method uses
3-channel FIR image as the input of the ERFNet, denoted
the “ERFNet+FIR”, where each channel of the FIR image
is the same. We also compare with an ERFNet-like method
with a 4-channel input composed of a 3-channel RGB and an
1-channel FIR image, called the “ERFNet-like+4-channel”.
Moreover, our methods are compared with two SOTA RGB-
FIR fusion methods MFNet [54] and RTFNet50 [55], one
typical image-based road detection method KittiSeg [27], one
SOTA RGB-normal fusion based road detection method SNE-
RoadSeg-50 [42], and a recent efficient RGB-D semantic
segmentation method RFNet [48]. Specially, the 3-channel
normal vector map in the SNE-RoadSeg-50 model is replaced
by the 3-channel FIR image.

Table II(a) shows the overall performance on the whole
testing set. Our middle-fusion based ERFNet model and its
extensions with the ECM and HCM all obtain better evaluation
results than the two base methods. This indicates that the
fusion of RGB and FIR images could enhance network perfor-
mance. The IoU value of the ERFNet+MEF is 96.88%, while
those from the ERFNet+MF+ECM and ERFNet+MF+HCM
increase by 0.25% and 0.37%, respectively. This proves
that our ECM and HCM models are effective. Besides, the
ERFNet+MF+ECM and ERFNet+MF+HCM also achieve
better performance compared with the MFNet and RTFNet50,
also demonstrating the superiority of our models. The
4-channel input method ERFNet-like+4-channel obtains the
IoU value of 96.43%, less than the middle-fusion model. This
indicates that the method with a direct 4-channel input can
not adequately utilize complementary information between
RGB and FIR images. Compared with the VGG-16 based
KittiSeg, the ERFNet with a deeper structure could achieve
better performance, no matter what the input is. Whereas, the
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TABLE II

EVALUATION ON THE TESTING SET OF THE RGB-FIR ROAD
DETECTION DATASET FOR DIFFERENT METHODS

(a) All Data

Method | PRE REC F-score ToU

ERFNet+RGB [57] 96.35%  97.30%  96.82%  93.84%
ERFNet+FIR [57] 97.06%  98.21%  97.63%  95.37%
MFNet [54] 97.68%  98.06%  97.87%  95.83%
RTFNet50 [55] 98.39%  98.14%  98.26%  96.58%
KittiSeg+RGB [27] 95.56%  96.75%  96.15%  92.59%
KittiSeg+FIR [27] 96.04%  98.26%  97.14%  94.43%
SNE-RoadSeg-50 [42] 97.15%  97.54%  97.35%  94.83%
ERFNet-like+4-channel | 98.04%  98.33%  98.18%  96.43%
RFNet [48] 97.97% 98.53% 98.25% 96.56%
ERFNet+MF 97.88%  98.96%  98.42%  96.88%
ERFNet+MF+ECM 98.19%  98.90%  98.54%  97.13%
ERFNet+MF+HCM 98.28%  98.93%  98.61%  97.25%

(b) Daytime Subset

Method PRE REC F-score ToU

ERFNet+RGB [57] 97.67%  98.17%  97.92%  95.92%
ERFNet+FIR [57] 96.34%  97.07%  96.70%  93.62%
MFNet [54] 97.34%  9741%  97.38%  94.89%
RTFNet50 [55] 98.38%  97.14%  97.76%  95.61%
KittiSeg+RGB [27] 97.44%  97.87%  97.65%  95.41%
KittiSeg+FIR [27] 94.45% 97.29% 95.85% 92.03%
SNE-RoadSeg-50 [42] 96.51%  96.38%  96.44%  93.13%
ERFNet-like+4-channel | 97.97%  97.55%  97.76%  95.62%
RFNet [48] 9791%  97.81% 97.86%  95.81%
ERFNet+MF 97.78%  98.52%  98.15%  96.37%
ERFNet+MF+ECM 98.22%  98.51%  98.36%  96.78%
ERFNet+MF+HCM 98.53% 98.47%  98.50%  97.04%

(c) Nighttime Subset

Method PRE REC F-score ToU

ERFNet+RGB [57] 95.10%  96.48%  95.79%  91.91%
ERFNet+FIR [57] 97.74%  99.30%  98.51%  97.07%
MFNet [54] 98.00%  98.68%  98.34%  96.73%
RTFNet50 [55] 98.39%  99.09%  98.74%  97.51%
KittiSeg+RGB [27] 93.80%  95.68%  94.73%  89.99%
KittiSeg+FIR [27] 97.58%  99.18%  98.37%  96.80%
SNE-RoadSeg-50 [42] 97.76%  98.65%  98.20%  96.47%
ERFNet-like+4-channel | 98.10%  99.08%  98.59%  97.22%
RFNet [48] 98.02%  99.22%  98.62%  97.27%
ERFNet+MF 97.97%  99.38%  98.67%  97.38%
ERFNet+MF+ECM 98.16% 99.28%  98.72%  97.47 %
ERFNet+MF+HCM 98.05% 99.38%  98.71%  97.46%

SNE-RoadSeg-50 does not obtain a desirable result. We guess
this is because the processing and fusion strategy for normal
vector is not suitable for FIR images. The F-measure and
IoU scores of RFNet is much larger than ERFNet-RGB
and ERFNet-FIR, which validates the effectiveness of RGB
and FIR fusion. However, its performance is still weaker
than our ERFNet-based fusion model. One reason is that
its backbone is shallower, which is hard to extract more
semantic information for the RFNet. Another reason is its
simple upsampling block. Its upsampling block only consists
of an interpolation operation and a convolution layer with pre-
operations of batch normalization and ReLU activation. This
might not be enough to recover the details of the upsampled
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result, even with the help of skip connections from the encoder.
In addition, all the metrics of the ERFNet+FIR are larger
than those of the ERFNet+RGB. Since FIR images are less
illumination-dependent than RGB images during night, these
results directly reflect the decreasing segmentation capability
for RGB-image based method at nighttime.

Table II(b) and (c) report the performance on the day-
time and nighttime subset in the testing set, respectively.
First, compared with the two base methods, the values of
F-score and IoU of the ERFNet+MF, ERFNet+MF+ECM
and ERFNet+MF+HCM are larger on both the daytime and
nighttime data. This proves the effectiveness of our models in
fusing RGB and FIR information. Second, all the metrics of
the ERFNet+RGB on the daytime data are much better than
those of the ERFNet+FIR. It indicates that abundant color and
texture information is crucially important for road detection.
In contrast, the ERFNet+FIR achieves preferable performance
on the nighttime data. This implies that the relatively simple
textures from FIR images could still offer valuable seman-
tic information for road region. Although dark environment
makes the RGB camera capture insufficient discrimination
information, the ERFNet+RGB method still acquires the IoU
of 91.91% and the F-score of 95.79%, even on the nighttime
data. This shows that the captured RGB images still contain
useful features of the road region, which are perceivable to
the algorithm although invisible to human vision. Third, all
these RGB-FIR fusion methods acquire higher scores of IoU
and F-score on the nighttime data than those on the daytime
data. This can be explainable in two perspectives. (1) The
traffic condition in the daytime is relatively complex. Traffic
jams are easy to occur during the day, while the road has less
traffic at night. (2) The illumination condition in the daytime
is also more complex than that at night. For example, sunlight
can cast dappled shadows on road in both RGB and FIR
images during daytime, while car light or street lamp cannot
in FIR images. In addition, the ERFNet+MF-+HCM obtains a
slightly lower IoU score than the ERFNet+MF+ECM on the
nighttime subset. This is because the trained model with the
best IoU score on the whole validation set is chosen as the
model to be tested. Thus, even though the HCM model obtains
higher F-measure and IoU scores on the whole testing set, it is
possible that some metrics of the HCM model is slightly lower
than those of the ECM model on a subset of testing images.

Figure 8 shows the qualitative results of all the compared
methods in Table II. Compared with the ERFNet+RGB
and ERFNet+FIR, the ERFNet+MF can utilize the infor-
mation from both RGB and FIR images to overcome the
effect from variant illumination environment, whilst the
ERFNet+MF+ECM and ERFNet+MF+HCM could further
achieve superior performance. For example, in Figure 8,
although the plaques, water or shadows on the road in the
Ist, 2nd, 7th and 8th row affect the road imaging in both the
RGB and FIR images, which would disturb the single-sensor
based method, the fusion based methods still provide good
segmentation results. In the 3rd, 4th, 9th, 10th and 11th row,
the vehicles stopping for a while may make their underneath
road region a little warmer, and the corresponding regions
in FIR images are brighter. This may reduce the accuracy
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Fig. 8. Qualitative comparisons on RGB-FIR road dataset.

\ \

of the single-FIR based method. However, our ECM and boundaries around the vehicles. In the 12th and 13th row, the
HCM models still recognize these regions and predict desired lights from cars are reflected off the ground and the generated
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light spots affect the RGB images. Nevertheless, the FIR and
fusion-based methods could work well in this condition. For
these fuzzy and dark RGB images in the 5th, 6th, 13th, 14th,
15th and 16th row, the ECM and HCM models also predict
the road regions with fine boundaries.

The fusion branch could not only learn fused features
but also more unique information from the mimic branches.
According to (4) and (5), it still needs to keep a trade-off
among the fusion, RGB and FIR branches during training.
When RGB and FIR image provide contrary information,
the fusion branch may be influenced and predict a wrong
segmentation result. Figure 9 shows some typical negative
results. In the Ist row, the soil on the right bottom is wrongly
recognized as a road region by the FIR-based method. Thus,
all the fusion methods including RTFNet50 also misclassify
this region. In the 5th row, the grassland on the right bottom
is wrongly recognized as a road region by the RGB-based
method, whilst all the fusion methods also provide wrong
predictions. In the 7th row, the left bottom region is wrongly
classified as a road region by the FIR-based method, and
this region is not recognized correctly more or less by these
fusion methods. In the 8th row, it is hard to draw a distinction
between the wall and road region in the FIR image, which
makes the FIR-based methods obtain poor results. Moreover,
when RGB and FIR images provide misleading information
at the same time, the fusion branch is hard to correct it. The
shadow near the barrier in the 3rd row makes all the methods
treat the shadow region as a non-road region. On the contrary,
the sidewalk and step under the gallery in the 4th row are
regarded as a road region by all these methods. Besides, the
small and hazy objects in both RGB and FIR images may be
neglected, e.g., the traffic cone on the right of the image in the
2nd row, and the small road region between two pedestrians
in the middle of the image in the 6th row.

D. Execution Profile

We also compare the frame rate, the number of para-
meters and FLOPs for our models and two RGB-FIR
based methods in Table III. All these methods are mea-
sured with a GPU of NVIDIA GeForce RTX 2080 Ti. Our
ERFNet+MF+ECM and ERFNet+MF+HCM models have
5.139 million and 5.144 million parameters, respectively.
Nevertheless, the mimic branches and the auxiliary outputs for
hierarchical loss are not applicable during the testing process.
By simplifying these parts, the number of parameters is
reduced to the one of the ERFNet-+MF, while the frame rate is
also close to that of the ERFNet+MF. Compared with the very
lightweight network MFNet, our methods achieve superior
performance. Compared with the RTFNet50, our proposed
methods are faster, while having fewer parameters and less
computation.

E. Ablation Studies

1) Components in HCM Model: As the HCM consists
of several components, to evaluate their effectiveness, sev-
eral methods with different components are compared
with the ERFNet+MF+HCM (Figure 7). These methods
include the middle-fusion based ERFNet (ERFNet+MF,
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TABLE III
COMPARISONS ON FRAME RATE, PARAMETERS AND FLOPS

Method Frame rate Parameters FLOPs
(fps) (million) (billion)
ERFNet [57] 63.36 2.063 17.271
MFNet [54] 95.90 0.734 7.764
RTFNet50 [55] 36.08 185.233 244.165
ERFNet+MF 41.68 3.180 26.337
ERFNet+MF+ECM 26.41 5.139 43.065
ERFNet+MF+ECM
(w/o mimic branches 40.84 3.180 26.337
& auxiliary outputs)
ERFNet+MF+HCM 25.68 5.144 43.243
ERFNet+MF+HCM
(w/o mimic branches 40.97 3.180 26.337
& auxiliary outputs)
TABLE IV
COMPARISONS ON FUSION BRANCHES
Method | PRE REC F-score ToU
ERFNet+MF 97.88%  98.96%  98.42%  96.88%
ERFNet+MF+HL 98.35%  98.62%  98.48%  97.01%
ERFNet+MF+ECM 98.19%  98.90%  98.54%  97.13%
ERFNet+MF+ECM+HL | 98.22%  98.94%  98.58%  97.19%
ERFNet+MF+HCM 98.28%  98.93%  98.61%  97.25%
TABLE V
COMPARISONS ON MIMIC BRANCHES
Method | PRE REC F-score ToU
ERFNet+MF 97.88%  98.96%  98.42%  96.88%
ERFNet+MF+ECM(8x) | 98.13%  98.74%  98.43%  96.92%
ERFNet+MF+ECM 98.19% 9890% 98.54% 97.13%

Figure 5(c)), the ERFNet+MF with a hierarchical loss on
the fusion branch (ERFNet+MF+HL, Figure 10(a)), the
ERFNet+MF based ECM (ERFNet+MF+ECM, Figure 6)
and the ERFNet+MF+ECM with a hierarchical loss on
the fusion branch (ERFNet+MF+ECM+HL, Figure 10(b)).
Table IV depicts the evaluation results. As can be seen, com-
pared with the basic ERFNet+MF model, adding these com-
ponents promotes the network performance gradually. With the
addition of a hierarchical loss on the fusion branch, the IoU of
the ERFNet+MF+HL increases by 0.13%. Similarly, the IoU
of the ERFNet+MF+ECM-+HL is also 0.06% larger than that
of the ERFNet+MF+ECM. At last, the ERFNet+MF+HCM
achieves a 0.37% larger IoU value than the basic model.

2) Mimic Branch: Considering the complexity of decoder,
the structure of mimic branch also impacts the detection
results. Here we also compare the ERFNet+MF+ECM with
its variant, the ERFNet+MF+ECM(8x). Its architecture is
shown in Figure 11, where three 2x upsampling blocks
and several non-bottleneck blocks followed by the softmax
function in the mimic branches are simplified to a simple
8x upsampling block followed by the softmax function. The
block “Output (8x)” in Figure 11 means that the original 2x
upsampling block in the output block (Figure 5(b)) is directly
replaced by an analogous 8x upsampling block. The results
are notified in Table V. The simple 8x mimic branch still
preserves the effectiveness, but its IoU value is less than
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Fig. 9. Some negative results.
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Fig. 10.  Models with different fusion branches:
(b) ERFNet+MF+ECM+HL.

(a) ERFNet-+MF+HL,
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Fig. 11. The ERFNet+MF+ECM(8x) model.
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This is because a direct 8x upsampling will lose more detail
information when the feature maps with the size of 1/8 is
enlarged to the original size.

3) Hyper-Parameter A.: Another factor to influence the
training effect is the hyper-parameter A., which regular-
izes the original segmentation result and the effective-
ness of mimic branch. Table VI displays the evaluation
results for the ERFNet+MF+HCM when A. is set to 0.01,
0.1 and 1.0, respectively. Obviously, when A, = 0.1, the

Fig. 12. Concatenation-based fusion models: (a) Early-fusion based ERFNet
(ERFNet+EF), (b) Late-fusion based ERFNet (ERFNet+LF), (c) Result-
fusion based ERFNet (ERFNet+RF).

ERFNet+MF+HCM gets the best IoU of 97.25% and F-score
of 98.61%.

4) Concatenation Stage: In this work, the middle-fusion
based ERFNet is chosen to construct its ECM and HCM.
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Fig. 13. The extended cross models with different concatenation stages: (a)
(ERFNet+LF+ECM), (c) Result-fusion based ECM (ERFNet+RF+ECM).
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Fig. 14. The hierarchical cross model for early fusion (ERFNet+EF+HCM).

TABLE VI
COMPARISONS ON HYPER-PARAMETER A, FOR ERFNET+MF+HCM

A | PRE REC F-score IoU
0.01 98.28 % 98.81% 98.55% 97.14%
0.1 98.28% 98.93% 98.61%  97.25%
1.0 98.25% 98.87% 98.56% 97.16%

Actually, the concatenation stage is also an important factor to
affect the fusion result. Consequently, we just build different
kinds of fusion models at different concatenation stages.
Figure 12 provides three kinds of methods, i.e., the early fusion
(ERFNet+EF), late fusion (ERFNet+LF) and result fusion
(ERFNet+RF). Table VII presents their performance. We can
find that all the metrics of fusion methods are larger than
those of the ERFNet+RGB and ERFNet+FIR. This proves the
effectiveness of RGB-FIR fusion. Furthermore, among these
four fusion methods, the ERFNet+MF obtains the largest loU
of 96.88% and the best F-score of 98.42%. It implies that
compared with the other three fusion stages, the middle fusion
will fuse the RGB and FIR information more thoroughly.
We also compare the effectiveness of the ECM mod-
els corresponding to these three kinds of fusion methods,
which is shown in Figure 13, i.e. the ERFNet+EF+ECM,
ERFNet+LF+ECM and ERFNet+RF+ECM. Specially, the
structure of the ERFNet+RF+ECM is somewhat similar to
the original cross model for 3D segmentation in [13], while
the structure of the ERFNet+LF+ECM is a bit like the fusion
version in [13]. The evaluation results are also reported in
Table VII. All these ECM-based approaches obtain better
values of IoU and F-score than those without the ECM,
which demonstrates the effectiveness of ECM. In addition, the
ERFNet+MF+ECM outperforms the other three ECM-based

Early-fusion based ECM (ERFNet+EF+ECM), (b) Late-fusion based ECM

TABLE VII
COMPARISONS ON CONCATENATION STAGES

Method | PRE REC F-score ToU

ERFNet+RGB 96.35% 97.30% 96.82% 93.84%
ERFNet+FIR 97.06% 98.21% 97.63% 95.37%
ERFNet+EF 97.46% 98.80% 98.13% 96.32%
ERFNet+MF 97.88%  98.96 % 98.42% 96.88%
ERFNet+LF 97.92% 98.59% 98.25% 96.56%
ERFNet+RF 97.25% 98.64% 97.94% 95.96%
ERFNet+EF+ECM 98.08% 98.31% 98.19% 96.45%
ERFNet+MF+ECM 98.19% 98.90% 98.54% 97.13%
ERFNet+LF+ECM 98.10% 98.66% 98.38% 96.81%
ERFNet+RF+ECM 97.60% 98.61% 98.10% 96.28%
ERFNet+EF+HCM 97.95% 98.73% 98.34% 96.74%
ERFNet+MF+HCM | 98.28% 98.93% 98.61% 97.25%

methods on the IoU with 97.13%, which is obviously higher
than those of early fusion (96.45%), late fusion (96.81%) and
result fusion (96.28%). It implies that the middle fusion is also
able to achieve superior results for the ECM-based model.

In view of the architecture of the hierarchical Iloss,
the middle-fusion based HCM, ERFNet+MF+HCM, only
compares with the early-fusion one, ERFNet+EF+HCM,
illustrated in Figure 14. As presented in Table VII, the
ERFNet+EF+HCM is also better than the ERFNet+EF+
ECM, which validates its effectiveness. Moreover, like the
comparisons on concatenation-based models and their corre-
sponding ECM models, the middle-fusion based method still
acquires a higher evaluation result with the IoU of 97.25%,
which is much larger than that of the early-fusion based
method with the IoU of 96.74%.

F. Choice of Base Model

In this work, the ERFNet is chosen as the base model. There
are three reasons. First, as listed in Table III, the ERFNet
has fewer parameters of 2.063 million, and the FLOPs of
ERFNet are also low, just 17.271 billion. Even after adding
the HCM model, the FLOPs are only 43.243 billion, much
less than the FLOPs of RTFNet50. This makes the network
easier to train in a fast speed, especially when GPU resources
are limited. Second, the run-time frame rate of ERFNet is very
high. The original ERFNet runs in about 63 frames per second
in our experimental environment. Without the mimic branches
and auxiliary outputs, the trained ERFNet-+MF+HCM model
could also run in about 41 frames per second. This satisfies
the realtime requirement for autonomous driving. Third, with
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TABLE VIII TABLE IX

EVALUATION ON ECM AND HCM MODELS OF PSPNET50 EVALUATION ON ECM AND HCM MODELS OF SWIFTNETRN-18
Method ‘ PRE REC F-score ToU Method \ PRE REC F-score ToU
PSPNet50+RGB 96.85% 96.37% 96.61% 93.43% SwiftNetRN-18+RGB 97.20%  95.82% 96.51%  93.25%
PSPNet50+FIR 98.05% 97.15% 97.60% 95.31% SwiftNetRN-18+FIR 96.98%  97.65%  9731%  94.77%
PSPNet50+Fusion 98.77% 97.98%  9837%  96.80% SwiftNetRN-18+Fusion 98.52%  97.96%  98.24%  96.54%
PSPNet50+Fusion+ECM 98.86 % 98.03% 98.44% 96.93% SwiftNetRN-18+Fusion+ECM 98.44% 98.21% 98.33% 96.71%
PSPNSI50+FUSiOI’1+HCM 9883% 98.10% 98.46% 96.98% SwiftNetRN-18+Fusion+tHCM 98.48% 98.22% 98.35% 96.75%

fewer parameters and FLOPs, the ERFNet still achieves rela-
tively good performance.

In fact, besides the ERFNet, our ECM and HCM models
are also suitable for other networks. Here we show the results
when the PSPNet50 [64] and SwiftNetRN-18 [65] are regarded
as the base model, respectively.

The PSPNet50 [64] is based on the backbone
ResNet50 [58]. Then a pyramid pooling module (PPM)
is utilized after the conv5_x block to obtain sub-region
representations at different scales, followed by upsampling
and concatenation to generate feature maps with both global
and local context information. At last these feature maps are
processed by a convolution layer to predict the segmentation
results. To construct the fusion network “PSPNet50+Fusion”,
we add the fusion block after the conv3_x block in
the ResNet50. Furthermore, based on the fusion model
“PSPNet50-+Fusion”, the output branches for RGB and FIR
feature maps after fusion block are also preserved, which con-
stitutes the extended cross model “PSPNet50+Fusion+ECM”.
Additionally, the auxiliary loss after the conv4_x block in the
ResNet50 is reserved for the auxiliary loss in the hierarchical
cross model “PSPNet50+4Fusion+HCM”.

The quantitative evaluation results for PSPNet50 on the
whole testing set are shown in Table VIII. Like the results
from the ERFNet, the PSPNet50+RGB still obtains higher
scores, which indicates that the PSPNet50 could also process
RGB images in the nighttime. The F-measure and IoU
scores of the PSPNet50+4-Fusion are better than those of the
PSPNet50+RGB and PSPNet50+FIR, which illustrates that
the fusion of RGB and FIR can also improve the performance
of the PSPNet50. Moreover, our PSPNet50+4Fusion+HCM
and PSPNet50+Fusion+ECM models achieve the best and the
second-best performance, respectively. This demonstrates the
superiority of our ECM and HCM models.

The SwiftNetRN-18 [65] is based on the backbone
ResNet18 [58]. It follows an encoder-decoder structure, where
the generated low-resolution feature maps from the backbone
encoder are upsampled to the original scale progressively.
Besides, the skip connections connect between the encoder
and decoder parts to provide more details for semantic seg-
mentation. To construct the fusion network “SwiftNetRN-
18+Fusion”, we add the fusion block after the spatial pyramid
pooling (SPP) module with the backbone ResNet18, while the
skip connections in the original SwiftNetRN-18 model are
all retained and connect to the corresponding layers in the
fusion branch. Next, based on the fusion model “SwiftNetRN-
18+Fusion”, the output branches for RGB and FIR feature
maps after fusion block are also preserved, building the

extended cross model “SwiftNetRN-18-+Fusion +ECM”. Here
the skip connections from the encoder of RGB and FIR
branch also connect to their corresponding layers in their
respective decoder. At last, to construct the hierarchical cross
model “SwiftNetRN-18+Fusion+HCM?”, the auxiliary losses
are added after each upsampling block in the decoder.

The quantitative evaluation results for the SwiftNetRN-18
on the whole testing subset are listed in Table IX.
Similarly, the fusion-based models, the SwiftNetRN-
18-+Fusion, SwiftNetRN-18-+Fusion+ECM and SwiftNetRN-
18+Fusion+HCM, all obtain better F-measure and IoU
scores on the whole testing subset, which indicates that
fusion of RGB and FIR is able to improve the performance
of the SwiftNetRN-18. In addition, the HCM and ECM based
models, SwiftNetRN-18+Fusion+HCM and SwiftNetRN-
18+Fusion+ECM still achieve the best and the second-best
performance, respectively. This also demonstrates the
superiority of our ECM and HCM models once again.

VI. CONCLUSION

In this paper, we first construct an RGB-FIR dataset by a
hybrid camera for road detection, where the RGB and FIR
images are aligned pixel-wisely, and the ghost phenomenon
caused by thermal camera rolling-shutter effect is attenuated.
In view of the concatenation-based ERFNet model, we design
an extended cross model, which restores the removed layers
of RGB and FIR branches after the fusion block to imitate
the probability distributions of the fusion outputs by using
KL-divergence. Moreover, the hierarchical loss structure is
introduced to build a hierarchical cross model for better
performance. The experiments on our RGB-FIR road dataset
demonstrate the superiority and effectiveness of our proposed
middle-fusion based extended cross model and hierarchical
cross model.
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