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A B S T R A C T   

Life is filled with uncertainty that imposes challenges for goal-directed effort. For example, whether effort reaps 
reward impacts the effort process. Real-life activities involve a long-term input of effort, implying that our effort 
process should be stably and consistently managed. The present study investigated how efficacy modulates the 
effort process from the perspective of overall performance and effort stability. Using a mini-block Stroop task and 
electroencephalography, we manipulated performance-reward contingency to pinpoint behavioral and neural 
features at each time stage (preparation, execution, and feedback-processing). Our findings revealed an efficacy- 
modulated effort process from three aspects. First, high efficacy induced a more prepared state before target 
presentation, which was identified by two neural indicators: contingent negative variation (CNV) and β oscil
lation (13–20 Hz). Then, drift rate and decision boundary reflected how people executed the task under different 
efficacy levels. Moreover, CNV and β oscillation affected sustained effort by modulating the drift rate, indicating 
preparatory state changed the execution to influence sustained effort. Finally, feedback-P3b captured shifts in the 
sustained effort after receiving different feedback. Taken together, these findings showed that efficacy modulates 
effort at each time course. Informative signals about efficacy and feedback are beneficial to trigger high-quality 
preparation and execution and drive effort adjustment.   

1. Introduction 

Goal-directed behavior reflects humans’ internal models of under
standing the world (Gweon, 2021; Liu et al., 2017). A ubiquitous model 
is that effort eventually pays off, shaping most people’s code of conduct. 
Effort reflects the magnitude and intensity of participation in pursuing 
goals (Inzlicht et al., 2018). The value of effort guides effort-based de
cisions (Contreras-Huerta et al., 2020) and modulates the effort process. 
People face the challenge of evaluating the worthiness of effort and 
adjusting effort because there are multiple stochastic disturbances be
tween the effort process and outcome. The worthiness of effort, related 
to a concept termed efficacy, is vital for control resource allocation 
(Shenhav et al., 2013, 2017). People can learn efficacy from past ex
periences under uncertainty and adapt control allocation (Grahek et al., 
2021). Moreover, our behavior can be modulated by external cues that 
reveal efficacy. It has been found that people allocate more effort to 
obtain high-quality performance if their effort is effective. In contrast, 
low efficacy circumstances render certain behavior futile. The low 
motivational context induces lower accuracy and slower reaction time 

(Frömer et al., 2021a,b). In general, people are capable of making ad
justments in the ever-changing environment (Behrens et al., 2007; 
Browning et al., 2015; Gagne et al., 2020; Na et al., 2021). 

To reveal the motivated effort process in a multidimensional way, 
researchers take advantage of more nuanced analysis than simple 
outcome-based evaluation (e.g., reaction time and accuracy). One way 
to improve our understanding of the efficacy-modulated effort process is 
to study neural implementation using electroencephalography (EEG). 
Decomposing the effort into multiple processes sheds light on how 
people exert effort. Each process has a representative index regarding 
the effect of efficacy. First, during the incentive processing stage, effi
cacy cues elicit neural activities which are related to behavioral per
formance. Specifically, cue-P3b is associated with incentive processing 
after cue presentation for 300–500 ms (Wei et al., 2021; Zhang et al., 
2017; Zheng et al., 2017). A recent study suggested that cue-P3b pro
cesses reward and efficacy information and predicts task performance, 
such as accuracy and reaction time (Frömer et al., 2021a,b). 

After the cue processing, preparatory state and executive strategy are 
important to enhance performance. Contingent negative variation 
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(CNV) is a slow wave with a negative peak timed after cue onset and 
before target presentation (Leuthold et al., 2004; Walter et al., 1964). It 
is an index of proactive control that displays the maintenance of context 
or goal-relevant information (Braver, 2012). It represents motor initia
tion for highly motivated behavior (Novak and Foti, 2015). Recently, 
Grahek et al. (2021) suggested that CNV entirely demonstrates control 
adjustments. They excluded an alternative explanation for CNV that it is 
an incentive-processing signal. When effort yielded reward ineffectively, 
the value of the control was reduced, which was reflected in a smaller 
CNV amplitude and correlated to poor behavioral performance. 
Furthermore, another typical neural signature of motion preparation is 
the pre-motor oscillatory activity in the β-band (13–30 Hz) (Lasaponara 
et al., 2020; Tzagarakis et al., 2015). It is suppressed during the prep
aration and the initiation of motor responses (movement-related 
β-desynchronization, MRBD). Compared to the time-locked event-re
lated potentials (ERPs), the oscillatory signals that are not synced across 
trials utilize more information in the EEG (Morales and Bowers, 2022). 
However, it is unclear whether the MRBD is modulated by efficacy and 
whether its function is similar to that of CNV. 

Reward-induced increases in motivation promote cue maintenance 
and cognitive stability. Performance incentives have been found to 
impact not only how well people perform on a specific trial, but also how 
consistently they perform across trials (Fröber and Dreisbach, 2014; 
Hefer and Dreisbach, 2017, 2020; Notebaert and Braem, 2015). Sus
tained effort is essential in many domains, such as academic success, 
personal safety, and social communication (Esterman et al., 2013; For
tenbaugh et al., 2018). It is unclear whether there are neural signals that 
can predict stable performance across trials. This study investigated this 
question using a modified Stroop task. In our task, an efficacy cue was 
followed by a mini-block Stroop that allowed for self-paced responses, 
and the cue was only presented once before the first target in each 
mini-block. We aimed to examine whether CNV and β oscillation reflect 
the cue maintenance in consecutive trials in a mini-block. 

Moreover, θ-band (4–8 Hz) activity represents the need for control, 
providing insights into how people perform the task when task infor
mation varies (Cavanagh and Frank, 2014; Wang et al., 2014). In 
addition to the neural implementation, sequential-sampling models, like 
the drift diffusion model (DDM), are well-established cognitive models 
that provide a mathematical description of people’s execution strategy 
(Ratcliff and McKoon, 2008). The model translates accuracy, reaction 
time, and response time distribution to cognitive processing. For 
example, threshold adjustments are associated with the suppression of 
motor-related activity (Danielmeier et al., 2011). Incentive-related 
control adjustments can be explained by the selective attention to 
target stimuli and are reflected in drift rate (Manohar et al., 2015). 

Preparation and feedback processing phases are critical for demon
strating human cognitive abilities (Pornpattananangkul and Nusslock, 
2015; Wei et al., 2020; Zheng et al., 2017). In previous research, 
efficacy-based effort in the preparation stage has been examined. 
Notably, useful feedback, such as error feedback, serves as an indicator 
to facilitate adjustments of control intensity (Ritz et al., 2022). However, 
feedback in real-life might not completely represent what is right or 
wrong. Long-term performance evaluation is also important, requiring 
consistency and stability in the effort. How feedback under different 
efficacy is processed, and how it influences future adjustments of effort 
have been less discussed. One neural signal of feedback processing may 
shed light on the question (Schiffer et al., 2017). Feedback-P3b (fb-P3b) 
is a parietally distributed positive peak at 300–600 ms. A previous study 
suggested that fb-P3b is a subcomponent of P3 (Squires et al., 1975). P3 
has been found to be sensitive to reward magnitude (Yeung and Sanfey, 
2004). fb-P3b may capture top-down processing of unfavorable out
comes. In particular, P3b amplitude increased as the probability of the 
event decreased (Donchin, 1981). Recently, it has been found to be 
associated with the trial-by-trial behavioral shift (Frömer et al., 2021a,b; 
Ullsperger et al., 2014). Thus, we hypothesized that fb-P3b could 
function as a signal of reward-processing and predict behavioral change. 

In this study, we explored the underlying neural mechanism of 
efficacy-modulated effort and the stability of effort. We focused on the 
temporal stages such as preparation, execution, and feedback- 
processing, exploring a nuanced description of the efficacy-modulated 
effort process. Specifically, we postulated four hypotheses: (1) high ef
ficacy leads to better overall performance, and more stable effort; (2) 
efficacy cues modulate the incentive-processing, execution, and 
feedback-processing stages, respectively; (3) the interplay of time stages 
ultimately promotes high-quality performance; and (4) people can 
adjust their effort process based on efficacy and reward feedback. 

2. Methods 

2.1. Participants 

We recruited 36 participants (20 female; agemean = 21.5 years, agesd 
= 2.08 years). The sample size was based on the previous studies 
(Frömer et al., 2021a,b). All participants were right-handed, without 
color blindness, and had normal or corrected vision. Two participants 
were excluded because of data corruption and loss. All the procedures 
involved were in accordance with the Declaration of Helsinki and were 
approved by the Institutional Review Board of the Institute of Psychol
ogy, Chinese Academy of Sciences. 

2.2. Paradigm 

Participants performed a self-paced Stroop task within a random 
duration (6–10 s). The number of trials was based on participants’ actual 
performance. They were informed about how reward feedback depen
ded on their performance (high efficacy cue, 100% performance-reward 
contingency; low efficacy cue, non-contingent). In high efficacy rounds, 
reward feedback was determined entirely by participants’ performance. 
In low efficacy rounds, rewards were randomly distributed. With a 
yoked design, the number of rewards was balanced between the two 
efficacy conditions (Supplementary Fig.1). Specifically, rewards in low 
efficacy rounds were determined by sampling from a rolling window 
(size = 10) of the reward rate in high efficacy rounds. The reward 
standard was individually calibrated based on each participant’s per
formance in the training session. During the training session, partici
pants were instructed to respond as quickly as possible while 
maintaining accuracy. We calculated the mean response time and ac
curacy over 80 practice trials for each participant. In the formal exper
iment, we defined “good performance” as reaction time equal to or 
below the training mean reaction time and accuracy equal to or better 
than training accuracy. Under high efficacy, a good performance pro
duced a high reward (¥10), while a low reward (¥0.1) indicated a failure 
to meet the pre-determined standard (Fig. 1). In a randomly selected 
40% of all the rounds, participants received three survey questions after 
reward feedback to assess their self-awareness of effort and attention. 
These were “How much effort did you put in for this round?”, “Please 
assess how nervous you were in this round”, and “Please rate your 
attention level in this round”, with a response range from 1 to 10 for 
each. 

2.3. Behavioral analysis 

To investigate the effect of efficacy (low vs. high) on overall per
formance, we used the paired sample t-test for accuracy, correct 
response time (CorrRT), and correct response per second (CorrPerSec) in 
each condition. CorrPerSec is a behavioral indicator of how much effort 
was made in the task (Leng et al., 2021), revealing whether performance 
enhancement is a trade-off between speed and accuracy. We further 
excluded the effect of potential confounding variables (e.g., task diffi
culty, gender, and age) using a linear mixed model (LMM) at the round- 
level and trial-level, respectively. 
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CorrPerSec=
(Number of Correct Responses )round

durationround 

We used the variation time course (VTC) proposed by Esterman et al. 
(2013) to explore how efficacy affects the sustained effort, measured 
through variations in reaction time. VTC was calculated as the deviation 
of response times from the average block response time and normalized 
to the block’s standard deviation. Higher VTC values indicate more 
erratic behavior, while lower VTC values indicate more stable and 
focused behavior. We examined the effect of efficacy on effort stability 
using ANOVA and LMM. 

VTC =
RTtrial − RTblock

sdblock 

To see how efficacy and feedback contribute to behavioral adjust
ment regarding overall effort, we used the change in CorrPerSec 
(CorrPerSec change = CorrPerSec(t+1)- CorrPerSec(t)). The interaction of 
efficacy (low vs. high) and reward feedback (low vs. high) on overall 
effort adjustment was examined using LMM. We similarly examined 
how efficacy and reward feedback affect changes in sustained effort 
(VTC change = VTC(t+1)- VTC(t)) using LMM. 

2.4. EEG data recording and analysis 

2.4.1. EEG data recording 
The EEG data were collected using a standard 10–20 system EEG cap 

with a 64-channel recording system (Brain Products, GmbH, Gilching, 
Germany; passband, 0.01–100 Hz; sampling rate, 500 Hz). The FCz 
channel was chosen as an online reference, and a vertical electroocu
logram was recorded using an electrode placed below the right eye. All 
channel impedances were kept below 5 kΩ during the experiment. In 
preprocessing, the EEG data were re-referenced to the average signal of 
TP9 and TP10 offline. FCz was recovered for further analysis, and 
continuous data were high-pass filtered at 0.1 Hz. 

Preprocessed EEG data were segmented in different epochs relative 
to the onset of these pre-determined markers: efficacy cue (− 1000 

ms–1500 ms), target (− 500 to 300 ms), response (− 200 to 800 ms), and 
feedback (− 200 to 800 ms). All epochs were baseline-corrected using 
the mean amplitude before event onset (efficacy cue, − 300 to 0 ms; 
target, − 500 to − 300 ms; response, − 400 to 0 ms; feedback, − 200 to 0 
ms). Based on the literature, we focused on several EEG components in 
specific time windows: the cue-CNV (− 500 ms pre-task, averaged across 
Fz, FCz, and Cz), cue-P3b (250–550 ms, averaged across Pz, P1, and P2), 
target-CNV (− 300 ms pre-target for each trial in a mini-block, averaged 
across Fz, FCz, and Cz), and fb-P3b (400–550 ms, averaged across Pz, P1, 
and P2). EEG data preprocessing was performed using the EEGLAB 
functions in custom MATLAB scripts. Further quantitative analyses were 
conducted in R using paired t-tests and LMMs. 

2.4.2. Time-frequency analysis 
In addition to the above phase-locked brain responses, a time- 

frequency analysis was performed to explore the non-phase-locked 
brain responses elicited by efficacy cues. Time-frequency analysis was 
performed using custom scripts based on FieldTrip (Oostenveld et al., 
2011). Time-frequency distributions (TFDs) of single-trial EEG signals 
were estimated using a MTMCONVOL (multi-taper-method convolu
tion). The wavelet was constructed by time-point-wise multiplication of 
the (real) cosine and (imaginary) sine component at each frequency with 
a specified tapering function. MTMCONVOL performs time-frequency 
analysis on any time series trial data using a fixed 0.5 s Hanning 
taper. The time window of interest extends from − 0.5 s to 0.5 s relative 
to the onset of the potency stimulus in steps of 0.01 s (10 ms). Frequency 
points ranged from 2 to 30 Hz in steps of 1 Hz. The spectrograms were 
baseline-corrected (reference interval: − 0.5 s to − 0.3 s relative to 
stimulus onset) at each frequency using the subtraction approach (Hu 
and Zhang, 2019). According to previous studies, fluctuations of pro
active control and the need for control could be encoded by theta (θ, 4–8 
Hz) and beta (β, 13–20 Hz) oscillations, i.e., event-related synchroni
zation (ERS) of the θ band and the MRBD. We corrected for multiple 
comparisons using the false discovery rate and identified time-frequency 
windows that differed significantly between the two efficacy levels. 

Fig. 1. Task procedure. For each trial, four Chinese characters (“红, 黄, 蓝, and 绿”) were randomly presented in the center of the screen. Characters were displayed 
in one of four colors with equal probability. Participants were instructed to respond according to a color-key mapping [red (↑), yellow (↓), green (←), blue (→)]. 
Participants first completed a training session (80 trials) and repeated the session until their accuracy was above 90%. No accuracy feedback was provided in the 
formal experiment. The formal experiment had 6 blocks, each consisting of 10 or 12 rounds. Each round had an efficacy cue prior to a mini-block, with the two 
efficacy conditions randomly distributed with equal probability. Participants then completed a self-paced Stroop task with a random duration of 6–10 s. Before the 
reward feedback presentation, a blank screen was displayed for 1–1.5 s. The reward feedback was based on efficacy conditions and actual performance (¥10 or 
¥0.10). Participants were allowed a self-paced rest at the end of each block. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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Further statistics of θ-ERS and MRBD (low efficacy vs. high efficacy) 
were assessed in R using paired t-tests. time stage using Bayesian 
multilevel mediation analysis ( Vuorre and Bolger, 2018). We were 
interested in how different time stages interacted to produce good per
formance consistently. 

2.4.3. Drift diffusion model (DDM) 
We employed a DDM to reveal the cognitive mechanisms during task 

execution. This analysis was conducted in R using the hBayesDM 
package (Ahn et al., 2017). Behavioral data of the participants were 
fitted for each condition separately. 

3. Results 

3.1. High efficacy enhanced overall performance and sustained effort 

According to participants’ self-report, their effort was significantly 
greater in the high compared to low efficacy rounds (low: 6.69 ± 1.43, 
high: 7.26 ± 1.39; t(33) = − 4.65, p < .01). Using a nonparametric 
approach, we examined participants’ self-report about how they felt 
about their effort investment in each condition (Galvin et al., 2003). 
However, they showed no metacognitive sensitivity, so they did not 
realize the difference in their effort in the high and low efficacy rounds 

(Supplementary Fig. 2a and Supplementary Fig. 3). Therefore, detailed 
behavioral indexes, fine-grained neural signatures, and underlying 
cognitive strategies are important to provide thorough information. 

For an evaluation of the overall effort, participants responded more 
accurately (accuracylow: 0.96 ± 0.02, accuracyhigh: 0.97 ± 0.03; t(33) =

− 2.49, p < .05; Fig. 2a), and faster in high compared to low efficacy 
rounds (CorrRTlow: 0.68 ± 0.13, CorrRThigh: 0.62 ± 0.10; t(33) = 6.39, p 
< .001; Fig. 2b). The results replicated previous findings that individual 
performance was enhanced when a high efficacy cue is explicitly pre
sented. The significant enhancement of performance was not a trade-off 
between speed and accuracy, as evidenced by CorrPerSec. CorrPerSec 
was higher for high (1.52 ± 0.2) compared to low (1.38 ± 0.21) efficacy 
rounds (t(33) = − 6.81, p < .001; Fig. 2c and d, Supplementary Fig. 1). To 
eliminate confounding variables, we controlled for task difficulty 
(congruence of word and color) and demographic information by the 
LMM. The round-level LMM showed a significant effect of efficacy on 
correct response per second (b = 0.15, CI = [0.01, 0.29], p < .05; Sup
plementary Table 1). We also constructed a trial-level LMM and found a 
similar effect of efficacy on performance enhancement (b = 0.01, CI =
[0, 0.01], p < .001; Supplementary Table 2). 

VTC is an indicator of behavioral stability proposed by Esterman 
et al. (2013). It was used here to examine the effect of efficacy on sus
tained effort. Lower VTC represents a more stable effort. We found that 

Fig. 2. Efficacy modulates behavioral performance. a, b, c) Mean value of correct response time (CorrRT), accuracy, and the correct response per second (Corr
PerSec) under two efficacy conditions; d) the average behavioral fluctuation (mean CorrPerSec for all the participants) for the two efficacy levels across the whole 
experiment; e) the VTC calculated regarding response accuracy and efficacy levels; f, g) drift rate and decision boundary for the two efficacy levels. ***p < .01, **p <
.01, *p < .05, and ns represents p > .05. 
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performance was more unstable in low efficacy rounds, compared to 
high efficacy rounds. Thus, participants were more focused when effort 
was effective (F(1,32) = 6.73, p <.05). There was no interaction between 
response accuracy and efficacy (F(1,32) = 0.98, p =.33). However, 
making correct responses in high efficacy rounds (0.30 ± 0.04) was 
more stable than that in low efficacy rounds (0.34 ± 0.07) (t(32) = 4.45, 
p < .001). There were no significant differences in VTC depending on 
response accuracy (F(1,32) = 0.17, p = .68) (Fig. 2e). In the following 
analysis, we only considered the VTC of correct responses. 

We analyzed DDM parameters and found that drift rate in the high 
efficacy condition (3.03 ± 0.53) was significantly larger than that in the 
low efficacy condition (2.72 ± 0.60) (t(33) = 3.89, p < .001; Fig. 2f). 
Meanwhile, decision boundary was significantly smaller in the high ef
ficacy condition (1.80 ± 0.19) than in the low efficacy condition (2.25 
± 0.44) (t(33) = − 2.43, p < .05; Fig. 2g). The adjustments of drift rate and 
decision boundary were in line with experimental instruction as fast 
responses and high accuracy guaranteed high reward. 

3.2. Efficacy modulated cue-processing and execution 

As expected, high efficacy cues generated higher cue-P3b (6.98 ±
0.8 μV) than low efficacy cues (5.48 ± 0.6 μV) (t(33) = − 2.05, p < .05; 
LMM: b = 1.5, CI = [0.07, 2.93], p < .05; Fig. 3a; Supplementary 
Table 3). Interestingly, we found a marginally positive relationship 

between drift rate and cue-P3b, particularly in the high efficacy rounds 
(r = 0.33, p = .05; Supplementary Fig. 4), showing that cue-induced 
attentional orientation was associated with the speed of evidence 
accumulation. 

Next, our paradigm enabled us to explore the effect of cue mainte
nance by separating CNV into two types: cue-CNV (immediately 
following cue onset, − 500 ms pre-task) and target-CNV (prior to the 
onset of the Stroop target, − 300 ms pre-target). cue-CNV was not 
significantly different between efficacy conditions (low: 2.17 ± 0.09 μV, 
high: 2.9 ± 0.07 μV; t(33) = − 0.84, p = .42; LMM: b = 0.76, CI = [− 1.01, 
2.53], p = .40; Supplementary Fig. 5; Supplementary Table 5). In 
contrast, target-CNV was significantly larger in high than low efficacy 
condition (low: − 0.42 ± 0.29 μV, high: 1.46 ± 0.29 μV; t(33) = 7.00, p <
.001; LMM: b = − 1.04, CI = [− 1.34, − 0.75], p < .001; Fig. 3b; Sup
plementary Table 4). Therefore, the CNV, before every target onset 
(target-CNV), reflected motor preparation and it was consistently 
influenced by efficacy cues. 

The β-band oscillation (− 260 to 70 ms relative to target onset, 13–20 
Hz) is another critical indicator representing a preparatory state before 
target onset. High efficacy condition generated significantly larger 
power (− 0.35 ± 0.09 dB) than low efficacy condition (− 0.13 ± 0.08 dB) 
(t(33) = 2.95, p < .001; Fig. 3c, d, 3f), indicating a motor preparation 
similar to that of the target-CNV. As expected, θ-band (4–8 Hz) oscilla
tion (210–500 ms relative to target onset) for the high efficacy condition 

Fig. 3. Neural activities modulated by efficacy. a) Averaged cue-P3b (250–500 ms) choosing Pz, P1, and P2; b) averaged fronto-central target-CNV (− 300 ms pre- 
target) choosing Cz, FCz, and Fz; c) averaged time-frequency results choosing peak channels of the topography (Cz, FCz, Fz, FC3, C3, C1, CP3, CP5) (The black dot 
line represents baseline, and the solid line represents target onset); d, f) the difference in two efficacy condition regarding motor-related beta desynchronization 
(MRBD) (− 260 ms–70 ms relative to target onset, 13–20 Hz); e, g) the difference in two efficacy condition regarding θ-band ERS (210–500 ms relative to target onset, 
4–8 Hz) (Supplementary Fig. 6a and 6b). ***p < .01,**p < .01, *p < .05, and ns represents p > .05. 
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(1.55 ± 0.19 dB) was larger than that for the low efficacy condition 
(1.22 ± 0.19 dB). The result indicated that more control was demanded 
and larger control resources were allocated in high than low efficacy 
condition (t(33) = − 4.12, p < .001; Fig. 3c, e, 3g). 

3.3. The effect of preparation on sustained effort: the mediation role of 
drift rate 

As a further link between the underlying cognitive process and 
behavioral performance, we found that drift rate was negatively corre
lated with VTC (high: r = − 0.61, p < .001; low: r = − 0.66, p < .001; 
Fig. 4a). Moreover, the decision boundary was positively correlated with 
VTC (high: r = 0.41, p < .01; low: r = 0.58, p < .001; Fig. 4b). Thus, we 
proposed that the quality of the preparation stage should influence the 
quality of the execution and ultimately be related to behavioral per
formance. We found that target-CNV, an index describing the prepara
tory stage, modulated sustained effort (Fig. 4c) (mediated effect = 0.39, 
CI90 = [0.10, 0.77]; proportion mediated effect = 0.86, CI90 = [0.37, 
1.45]). The mediation significantly reduced the direct effect (c = 0.46, 
CI90 = [0.15, 0.87]; c’ = 0.08, CI90 = [− 0.13, 0.27]). Similarly, β-band 
oscillation (13–20 Hz) also contributed to adjusting drift rate for 
improved effort stability (Fig. 4d) (mediated effect = 0.31, CI90 = [0.07, 
0.62]); proportion mediated effect = 0.77, CI90 = [0.24, 1.51]), and the 
mediation also significantly reduced the direct effect (c = 0.41, CI90 =

[0.12, 0.72]; c’ = 0.10, CI90 = [− 0.12, 0.34]). Our results confirmed the 
hypothesis that the effort stability is predicted by preparation state and 
evidence accumulation during execution. 

3.4. Behavioral adjustments of sustained effort based on feedback and 
efficacy 

Reward feedback indicated whether participants meet the standard 
in high efficacy condition. This feedback can be used to trigger adjust
ments in the future, particularly in high efficacy rounds. To investigate 
this hypothetical behavioral adjustment, we analyzed the influence of 
previous reward feedback on the participant’s current behavior change 
(round(t+1) – round(t)) for the two efficacy conditions. We found an 
interaction between feedback and efficacy for the change in the Corr
PerSec (b = 0.14, CI = [0.1, 0.18], p < .001; Supplementary Table 6) as 
well as for the change in VTC (b = − 0.05, CI = [− 0.07, − 0.03], p < .001; 

Fig. 5c). Low reward feedback in previous high efficacy rounds induced 
larger changes in overall effort (CorrPerSec) and effort stability (VTC). 
This relationship was not found in low efficacy rounds. 

How neural activation reflects adjustments after feedback is received 
remains unknown. We predicted that fb-P3b would be sensitive to such 
behavioral changes. We found that fb-P3b amplitude was significantly 
higher (F(1,33) = 8.72, p <.05; Fig. 5b) when processing low reward 
(13.89 ± 1.19 μV) compared to high reward (11.74 ± 0.93 μV). More
over, the standardized fb-P3b interacted with reward feedback and 
partially predicted the VTC change (ΔVTC; b = − 0.34, CI = [− 0.67, 
− 0.01], p < .05; Fig. 5d, Supplementary Table 7). When the reward 
feedback in the previous round was ¥10, the VTC in the next round 
increased, indicating more erratic behavior (ΔVTC>0; Fig. 5d orange 
dots). Conversely, when the reward feedback in the previous round was 
¥0.1, the VTC in the next round decreased, indicating more stable 
behavior (ΔVTC˂ 0; Fig. 5d green dots). 

Moreover, the absolute value of VTC adjustments (|ΔVTC|) 
decreased with increasing fb-P3b. However, this decrease was observed 
in the reversed direction, indicating the fb-P3b captured VTC change 
modulated by reward feedback (Fig. 5d). Specifically, when receiving 
¥10 in the previous round, the positive value of ΔVTC became smaller 
with larger fb-P3b. In contrast, when receiving ¥0.1 in the previous 
round, the negative value of ΔVTC became smaller with larger fb-P3b. 

4. Discussion 

This study showed the neural mechanisms of efficacy-modulated 
effort and the ability to modify effort to achieve goals stably. Our re
sults were aligned with previous studies, that CNV is a neural feature of 
motion preparation linked to improved performance in high compared 
to low efficacy condition. Also, β oscillation, a marker of motor prepa
ration, was more suppressed in cases of high efficacy. Moreover, the two 
EEG signatures of proactive control contributed to sustained effort 
through the mediation of drift rate. In conclusion, our findings provided 
a temporal analysis to understand the influence of efficacy on effort, 
illuminating how humans adjust effort over time when knowing effort 
yields rewards effectively. 

Generally, participants put in more effort, and their behavior was 
more stable when efficacy was higher. Informative cues about efficacy 
can bolster competence and perceived autonomy (Houlfort et al., 2002). 

Fig. 4. Sustained effort modulated by drift rate and neural activities. a) Correlation between drift rate and VTC; b) Correlation between decision boundary and VTC; 
c, d) The mediation effect of drift rate on how the preparation state reflected by the CNV and the MRBD influenced sustained effort. 
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However, our results did not show participants’ metacognitive sensi
tivity to understand their effort investment under different efficacy 
levels. Through neural signals and cognitive model parameters, we 
provided a nuanced description of the efficacy-motivated effort process. 
First, the cue-P3b signal indicated the processing of efficacy cues, and it 
was larger for high efficacy cues. We also analyzed the cognitive pro
cesses underlying behavior patterns using DDM. The drift rate was 
higher in high than low efficacy condition, indicating participants were 
more unfocused in uncontrollable situations. Furthermore, decision 
boundary was higher in low efficacy rounds. From the perspective of 
parameter estimation, drift rate and decision threshold are not inde
pendent in calculation and data description. Thus, there is a trade-off in 
the value of decision boundary and drift rate. Overall, the strategies are 
combined to generate good performance (Dutilh et al., 2012; Fischer 
et al., 2018; Ullsperger et al., 2014). 

In the preparatory phases before target presentation, efficacy cues 
also influenced proactivity represented by two critical indexes: CNV and 
β-band oscillation. CNV is suggested to be a marker of motor readiness, 
modulating and optimizing perceptual cognitive and motor processes 
(Botvinick and Braver, 2015; Notebaert and Braem, 2015). Specifically, 
early CNV is assumed to be an indicator of cortical arousal during 
orientation and attentional processes, whereas late CNV is hypothesized 
to reflect anticipation and response preparation (Wagner-Altendorf 
et al., 2020). Recent work indicated that CNV is more complex than 
previously recognized. For example, CNV has been found to manifest a 
value-guided control allocation (Duma et al., 2020; Frömer et al., 2021a, 
b). This study confirmed that CNV represented the proactive control that 
was induced consistently by cue before target, which was larger in high 
efficacy condition. In addition, β-oscillation (MRBD) prior to target 
onset, was more suppressed in the high efficacy condition, representing 

a similar effect of efficacy on motor preparation as CNV. 
This work established an essential mechanism of how people adjust 

sustained effort. We postulated that task preparation is associated with 
execution and predicts performance. Consistent with this proposal, our 
mediation analysis showed that the preparatory state predicted sus
tained effort. The state of preparation was identified with two EEG 
signatures, as both target-CNV and MRBD were neural features for 
predicting stable effort. Moreover, the drift rate mediated this predictive 
effect. Thus, the goal-directed effort process is modulated by adjusting 
the preparation state and executive strategies for better performance. 

People depend on feedback to make changes (Diehl and Sterman, 
1995). Our data showed that the interplay between efficacy and feed
back affected future adjustments. Low reward feedback prompted sig
nificant adjustments in the high efficacy condition. In this study, the 
fb-P3b was sensitive to feedback processing, especially for low re
wards. Also, fb-P3b predicted changes in effort stability after reward 
feedback was received, and this predictive effect was modulated by 
different reward feedback. This idea is also in line with recent findings 
that fb-P3b indicates the main effect of feedback on behavioral adjust
ment (Ullsperger et al., 2014). 

To summarize, this study provided a detailed description of the 
efficacy-modulated effort process. The efficacy of effort impacts indi
vidual proactivity, and feedback is an effective signal for future ad
justments. Our findings lay the groundwork for understanding effort 
based on temporal processes, rather than solely on behavioral perfor
mance. Efficacy information and performance feedback are useful to 
motivate high-quality preparedness and promote sustained effort. 
Whether people flexibly adjust their effort process in a social environ
ment remains unknown. In broader social environments, how does non- 
social and social efficacy modulate the perception of effort worthiness 

Fig. 5. Behavioral adjustments based on feedback and efficacy. a) Hypothetical VTC change: ΔVTC = VTC(t+1)- VTC(t). The grey boxes showed examples of VTC 
variation across trials in one mini-block; b) the fb-P3b amplitudes of the two efficacy conditions; c) the interaction of efficacy and feedback on ΔVTC; d) the 
interaction effect of standardized fb-P3b and feedback in predicting standardized ΔVTC. 
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and influence effort-making processes? Future research can investigate 
this question by measuring perceived efficacy and manipulating efficacy 
in a social context. 
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