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The effects of oxytocin (OT) on the social brain can be tracked upon assessing the neural activity in resting and task states, and
developing a system-level framework for characterizing the state-based functional relationships of its distinct effect. Here, we
contribute to this framework by examining how OT modulates social brain network correlations during resting and task states,
using fMRI. First, we investigated network activation, followed by an analysis of the relationships between networks and individual
differences. Subsequently, we evaluated the functional connectivity in both states. Finally, the relationship between networks across
states was represented by the predictive power of networks in the resting state for task-evoked activities. The differences in the
predicted accuracy between the subjects displayed individual variations in this relationship. Our results showed that the activity of
the dorsal default mode network in the resting state had the largest predictive power for task-evoked activation of the precuneus
network (PN) only in the OT group. The results also demonstrated that OT reduced the individual variation in PN in the prediction
process. These findings suggest a distributed but modulatory effect of OT on the association between resting and task-dependent

brain networks.
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Introduction

Oxytocin (OT) has been commonly used to modulate
human social behavior and neural activity of the social
brain in both resting and task states (Hurlemann et al.
2010; Scheele et al. 2013; Brodmann et al. 2017; Horta et
al. 2019; Wu, Liu, et al. 2020; Xin et al. 2021). The social
brain comprises a set of regions, including the medial
prefrontal cortex (MPFC), anterior cingulate cortex (ACC),
temporal-parietal junction (TPJ), inferior frontal gyrus,
and anterior insula (Frith 2007; Adolphs 2009; Barrett
and Satpute 2013; Stanley and Adolphs 2013). Some task-
dependent studies have revealed how OT impacts some
of these brain regions. For example, the stress-induced
response of the ACC is reduced by OT (Maier et al. 2019).
Compared with the placebo (PL) group, the activation of
the MPFC and ACC was also inhibited when patients with
generalized social anxiety disorder saw an emotional
face in the OT group (Freitas-Ferrari et al. 2010). About
the resting state, several studies have found that OT
changes the activation of networks consisting of regions
that belong to the social brain (Jiang et al. 2021; Zheng
et al. 2021, 2022). Zheng et al. reported that OT leads
to lower synchronization in the default mode network
(DMN), which includes the posterior cingulate cortex
(PCC), precuneus, MPFC, and TPJ (Zheng et al. 2021, 2022).
Another study found that the effective flow from the

midline default network (including the PCC and pre-
cuneus) to the salience network (including the ACC and
insula) was increased by OT (Jiang et al. 2021). Although
some studies have focused on brain regions, the regions
affected by OT belong to the DMN or the salience net-
work. Thus, these findings in the resting and task states
suggest an effect of OT on these two networks.

Brain networks that support social functions may be
comprised of individual differences related to distinct
personality traits probed by scales, especially in different
states (DeYoung 2010; DeYoung et al. 2010; Meyer et
al. 2013; Laumann et al. 2015; Markett et al. 2018).
For example, in the resting state, individual functional
networks may deviate from the group map and indicate
variability across subjects (Laumann et al. 2015; Kong
et al. 2019). Compared with the resting state, external
stimuli in a task state modulate the connectivity of
these brain networks (Cole et al. 2021). In recent years,
researchers have gradually realized that the patterns
of brain activity exhibited by individuals at rest could
be a critical scaffold for people to perform behaviorally
relevant tasks (Reineberg et al. 2015; Tavor et al. 2016;
Shine et al. 2019; Pezzulo et al. 2021; Pang et al. 2022).
As the general functional connectivity accounting for
the resting-state and task-based fMRI drives reliable
and heritable individual differences in functional brain
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networks (Elliott et al. 2019), exploring individual differ-
ences with a combination of brain networks across states
and how those differences are affected, are emerging
areas in neuroscience.

To the best of our knowledge, most previous studies
have investigated the effects of OT on the resting- or task-
state brain network separately at the group level. How-
ever, the question regarding the mechanism by which OT
affects the scaffold effect of the spontaneous activity of
the networks during the resting state remains unknown.
A previous study has indicated that resting-state fMRI
(rsfMRI) predicts individual differences in brain activ-
ity during task performance (Tavor et al. 2016). Sub-
sequent studies have confirmed this prediction from
rsfMRI to task-state fMRI (Mennes et al. 2010; Bzdok
et al. 2016; Cole et al. 2016; Tavor et al. 2016). How-
ever, a previous study also suggested that brain network
organization during a task is distinct from that in the
resting state (Cole et al. 2014). Given individual varia-
tions in resting-state networks (RSNs), their influence
on the brain network in subsequent tasks may be state-
dependent. Although many studies have suggested that
OT affects human social behavior and brain activity (De
Dreu et al. 2010; Bartz et al. 2011; Hecht et al. 2017; Zhu
et al. 2019), the lack of cross-state brain network inves-
tigation makes it impossible to reveal the mechanism of
OT’s modulation effect of OT on the link between task-
free and task-dependent brain networks.

However, recent studies have highlighted the subdivi-
sions of classical brain networks. For instance, DMN have
been divided into two sub-networks: the ventral default
mode network (VDMN) and dorsal default mode net-
work (DDMN; Damoiseaux et al. 2008; Andrews-Hanna
et al. 2010; Shirer et al. 2012). The VDMN is associated
with memory-based reconstruction, whereas the DDMN
is related to introspection on mental states and the
evaluation of emotional valence (Chen et al. 2017; Lee
et al. 2021). Additionally, the precuneus network (PN),
including the precuneus, middle cingulate cortex, pos-
terior inferior parietal lobule, and dorsal angular gyri,
has been argued to be independent of the well-known
DMN (Gilmore et al. 2015; Deng et al. 2019). Although
the impact of OT on the DMN and the brain regions
of the DMN has been discussed in many studies (Jiang
et al. 2021; Zheng et al. 2021, 2022), the specific modu-
latory effects of OT on connectivity among social sub-
networks are largely unknown.

To investigate this, we tested the modulatory effects
of OT on blood-oxygen-level-dependent (BOLD) signals
during the resting state and during a task. Given that
the impact of OT on the DMN has been confirmed in the
resting and task states and that the DMN is associated
with self-related cues (as described above), we wished
that the task included the perception of self-related cues.
The face is an important social and emotional cue, and
many studies have reported OT’s impact on the behav-
ioral and neural activity when humans see faces (Scheele
et al. 2013; Lopatina et al. 2018). Therefore, we designed

a face perception task for the task state. During this
period, we required participants to recognize whether a
series of facial images were like themselves. Independent
component analysis (ICA) was used to extract features
in both states at the network level (Calhoun et al. 2008;
Bzdok et al. 2016). After the networks were identified in
both groups during task-dependent and resting states, we
compared the correlations between the networks across
the states. This allowed us to probe a critical question
regarding the effect of OT on resting-task brain net-
work correspondence. With the main aim of addressing
whether OT could affect the relationship between net-
works in the resting and task states, we provide three
subhypotheses in this work: (i) OT can decrease network
connectivity in both states; (i) OT can influence rest-
ing-task brain network correspondence, particularly for
brain regions related to social brain networks; and (iii)
OT may make human behavior patterns more consis-
tent by reducing self-other differences in resting-task
correspondence.

Materials and method
Participants

Fifty-nine right-handed male participants (age range
20.9+2.32 years) were recruited via an online recruiting
system. All the participants had 13-18 years of education.
Participants completed the screening form, and those
who confirmed that they had no significant medical
or psychiatric illness were not using any medication,
and were not drinking and/or smoking daily were
included in the study. Smoking or drinking (except water)
was prohibited for 2 h prior to the experiment. The
participants provided written informed consent before
each experiment and received a full debriefing on the
completion of the experiment. The study was approved
by the local ethics committee of the Beijing Normal
University.

Resting and task data sets

We used the resting and task state datasets collected
from the same participants who were students at the uni-
versities of Beijing and who had been undergoing OT (OT
group, including 30 participants) or PL (PL group, includ-
ing 29 participants) manipulation. A single dose of 24 IU
of oxytocin or placebo was administered intranasally.
More details regarding drug administration have been
described in one of our published studies (Wu, Feng, et al.
2020; Wang et al. 2022). The participants then underwent
a resting-state scan (300 s) before the task-state scan
(240 s).

For the resting dataset, we used fMRI data similar
to the resting-state data that have been published for
RSN studies only (Wu, Liu, et al. 2020; Zheng et al. 2021,
2022). For the task dataset, we used the task fMRI data
that were used for task fMRI analyses only (Wang et al.
2022), which provided the task descriptions. Specifically,
we used a face perception task with morphed self and
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other faces (Wang et al. 2022). As the drug manipulation
before scanning was a between-subjects design, and we
collected the neural activation of each subject in both
resting and task states, we had four states of fMRI dataset
(OT-rest, OT-task, PL-rest, and PL-task).

Four types of face stimuli were generated: child self
(morphing the participant’s face with one of two 1.5-
year-old children’s faces with a neutral expression), child
other (morphing the child’s face with one of two 23-
year-old male faces), adult self, and adult other. Each
participant completed two runs. Each run included 3
adult and 3 child blocks in a randomized sequence. Ten
trials were performed for each block. The participants
were asked to recognize whether the generated faces
were similar to their own (Fig. 1A).

Materials

All participants had taken their frontal-face images with
neutral expression 3 days before the scanning day. The
morphed faces of the 4 experimental conditions were
created based on these images and one of the two adult
faces with a neutral expression (a 23-year-old male face)
or one of the two 1.5-year-old child faces. We used Adobe
Photoshop CS to standardize the photograph to black
and white and excluded all features except the inte-
rior characteristics of the face. Then, we created stimuli
with 50/50 morph of the two selected faces using the
Abrosoft Fanta Morph (www.fantamorph.com) software
(Platek and Kemp, 2009; Platek et al. 2004, 2005, 2009;
Wu et al. 2013). Thirty calibration locations were used
to transform the morphed face into a standard face
space, and all the output morphed faces were resized to
300 x 300 dpi. All pictures were presented on a 17-inch
Dell monitor with a screen resolution of 1024 x 768 pixels
and 60-Hz refresh frequency. The visual angle of the face
images was 4.3 x4.6" and the mean luminance of the
stimulus was 166 cd/m?.

MRI data acquisition

All images were acquired using a 3 T Siemens Tim Trio
scanner with a 12-channel head coil. Functional images
employed a gradient-echo echo-planarimaging sequence
with following MRI scanner parameters: (40 ms TE, 2 s TR,
90° flip, 210-mm FOV, 3.5 mm*3.5 mm*4.2 mm voxel size,
128*128 matrix, 25 contiguous 5-mm slices parallel to the
hippocampus and interleaved). We also acquired from all
participants whole-brain T;-weighted anatomical refer-
ence images (2.15 ms TE, 1.9 s TR, 9° flip, 256-mm FOV,
176 sagittal slices, 1-mm slice thickness, perpendicular
to the anterior—posterior commissure line).

fMRI data preprocessing

fMRI data preprocessing was performed using Statistical
Parametric Mapping software (SPM12; Wellcome Trust
Centre for Neuroimaging, London, UK). The functional
image time series were preprocessed to compensate for
slice-dependent time shifts, motion-corrected, and lin-
early detrended, then co-registered to the anatomical
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image, spatially normalized to the Montreal Neurologi-
cal Institute space, and spatially smoothed by convolu-
tion with an isotropic Gaussian kernel (FWHM =6 mm).
fMRI data were band-pass filtered with a cutoff of 0.01-
0.1 Hz. The white matter signal, cerebrospinal fluid sig-
nal, and global signal, as well as the 6-dimensional head
motion realignment parameters, the realignment param-
eters squared, their derivatives, and the squared of the
derivatives were regressed.

Feature extraction

ICA was conducted using the Group ICA fMRI Tool-
box (GIFT) to extract the brain activation features
(Rachakonda et al. 2007). For rsfMRI data, in the first step,
GIFT estimated the number of independent components
(ICs) to be extracted from the preprocessed rsfMRI
data. Second, we calculated the correlation coefficients
between the ICs and RSN templates (Reineberg et al.
2015). These templates included 14 brain networks
(Supplementary Fig. S4): the basal ganglia network
(BGN), visuospatial network, right executive control
network (RECN), VDMN, DDMN, sensorimotor network
(SN), anterior salience network (ASN), auditory network
(AN), higher visual network (HVN), left executive control
network (LECN), language network (LN), PN, posterior
salience network (PSN), and primary visual network
(PVN; Shirer et al. 2012). Each IC was compared with
all brain network templates and labeled based on the
most similar network defined in the template. Finally,
30 ICs with correlation coefficients greater than 0.1 were
separately retained as predictors for both groups (Fig. 1B)
(Reineberg et al. 2015).

For the task-state fMRI data, we estimated and
analyzed the data using the method described in the
previous paragraph. Next, to confirm that the activation
of ICs was aroused by our task, we compared the time
course of ICs and task GLM activation maps. Specifically,
the correlation analysis was performed between the
time courses of these ICs with the modeled time course
(the beta maps) for all groups in the task of the 1st
level SPM.mat. The selected regressors were “self-
child*bf(1),” “other-child*bf(1),” “self-adult*bf(1),” and
“other-adult*bf(1)” time courses (Rachakonda et al. 2007).
ICs that were most closely related to task activation
(correlation coefficient > 0.7) were chosen as features.
Finally, 4 ICs were chosen as features for both the PL and
OT groups (Fig. 1B). We labeled them using a template.

Predictive model

To predict task-state fMRI by rsfMRI, following the
group ICA described above, we used dual regression to
reconstruct the subject-specific spatial z-score maps and
subject-specific time course of each IC during both states
(Beckmann et al. 2009). Specifically, subject-specific time
series were generated by regressing the group-averaged
set of spatial maps on the subject’s 4D spatiotemporal
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Fig. 1. Diagrams representing our methods. A) Task procedure. Materials in the child block were morphed using a stranger child’s face with the
participant’s (Self) face or another 23-year-old male’s (Other) face. Materials in the adult block were morphed using a stranger adult’s face and the
participant’s (Self) face or 23-year-old male’s (Other) face. B) Feature extraction. We selected 30 features from the resting-state data and four features
from the task state data from both groups. The correlation matrix was calculated for both states. C) Construction of the prediction models. In the training
model step, we predicted features in task state by features in resting state and constructed a generalized linear model for each subject in this process.
The outcomes were beta coefficients of each regressor (resting-state features). The beta values of features belonging to one network were averaged to
be the network’s predictive power. D) The prediction model testing. We calculated the fitness between predicted task activation and the actual task
activation for testing models. The first method (self-model) to gain the prediction maps used one subject’s features (ICs extracted from rsfMRI data)
and his own model. For this procedure, all participants shared one prediction map. The second method (other-model) used one subject’s features (ICs
extracted from rsfMRI data) and the model of others to generate a prediction map for each participant.

Method 1 (self-model) Method 2
(other-model)
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dataset. Then, the subject-specific components (whole-
brain images) were obtained by regressing those subject-
specific time series into the same 4D dataset.

For each subject, all ICs extracted from the rsfMRI were
applied to predict each IC in the task-state fMRI data.
Therefore, we constructed 4 multiple linear regression
models for each subject; each model included 30 regres-
sion coefficients (Tavor et al. 2016). The coefficients of ICs
belonging to the same network template were averaged
to intuitively observe the predictive power of each RSN
(Fig. 1C). We then used a one-sample t-test to assess
whether RSNs activation could significantly predict task-
state brain network activation.

We also examined the predictive effect of individual
differences in psychometric scale scores on the activa-
tion of RSNs. Previous studies have indicated that the
effect of OT on brain activity is modulated by emotional
states and individual variability (Alcorn III et al. 2015;
Hecht et al. 2017; Xin et al. 2020). Thus, we measured
whether OT could affect the associations between brain
network activation and subjective emotional states as
well as personality traits. Emotional states were mea-
sured using the Positive and Negative Affect Schedule
(PANAS; Thompson 2007), and the Big Five scale (Bozione-
los 2004) was used to detect participants’ personality
traits. Regression analysis was performed using general-
ized estimated equations to predict the number of ICs
in the specific networks associated with social brain
networks, including the BGN, RECN, VDMN, DDMN, SN,
ASN, LECN, and PN. The predictors in the generalized
estimated equations were the PANAS and Big Five scores
measured after OT and PL manipulation (Gaviria et al.
2021).

Functional connectivity analysis

We also analyzed the relationship between networks in
both resting and task states. The ICs sharing the same
label were averaged at the voxel level to indicate brain
network activation. We then calculated the Pearson coef-
ficient matrices of all the networks for both groups in the
2 states. Because the 2 groups of extracted ICs differed in
the task state, an independent t-test was only performed
to probe the influence of OT on the network correla-
tion at rest. P-values were adjusted using Benjamini and
Hochberg's false discovery rate correction for multiple
comparisons (Gaviria et al. 2021).

Model test

The coefficient of determination was regarded as an indi-
cator for estimating the predictive power of our models
and was compared with that of the null model (all regres-
sors were equal to 1). We then performed a one-sample
t-test for the indicators of each model and assessed their
performance (Chatterjee and Hadi 1986).

One way to assess the model performance was to
obtain the prediction accuracy by comparing the actual
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task maps with the prediction activation maps. Predic-
tion activation maps can be derived using these 2 meth-
ods. The first method combined the rsfMRI data of sub-
ject X with his own model (Self-model) and compared
this prediction map with the subjects’ actual task maps
(Tavor et al. 2016). The second method combined the
rsfMRI data of subject X with the model of subject Y
(Other-model) to obtain a prediction map for subject Y. In
other words, each subject had a specific prediction map
using this method. The correlation coefficients between
the prediction maps and actual task-state activity maps
were considered as the predicted accuracies (Fig. 1D).
Each subject’s RSNs activation was used to predict task-
related brain activation in all subjects. A Pearson’s cor-
relation matrix was obtained for each IC (Fig. 1D). The
diagonal elements indicate self-predicted accuracy (X’s
resting brain activation predicts X’s task brain activa-
tion), and the extra-diagonal elements indicate other-
predicted accuracy (X's resting brain activation predicts
Y’s task brain activation). Thus, the difference between
the 2 accuracies represents the individual variance (self-
other difference). The percentage of the self-other differ-
ence relative to the average of other-predicted accuracy
could indicate the relative size of the difference (Tavor
et al. 2016). We then compared the percentage of self-
other differences between the PL and OT groups using
an independent sample t-test.

Results
Behavioral results

We tested 2 indices that indicated the subjects’ behav-
ioral performance: (i) the accuracy of recognizing
whether a morphed face was similar to the subject
himself and (ii) the reaction time for subjects to make
judgments. We calculated the 2 indices for subjects
in 4 conditions (OT-child, OT-adult, PL-child, and PL-
adult) separately. Two indices for each subject were
separately put into a 2-way mixed analysis of variance
using treatment groups (OT vs. PL) as between-subject
factors and facial conditions (self vs. other, and child vs.
adult face) as within-subject factors.

For accuracy, there was only a significant main effect
of facial conditions (F (1, 57)=54.6716, P <0.001, nf, =
0.4949), but no significant effect was observed on treat-
ment (OT and PL groups) and interaction (P> 0.05). For
RTs, we did not find any significant effects of the treat-
ment. These results indicated that OT did not influence
behavioral performance in the face perception task. Fur-
ther details are provided in one of our published studies
(Wang et al. 2022).

The effect of OT on the resting brain networks is
modulated by individual differences

We first examined the effects of OT on brain network
activity at rest. Networks correlated with the emotional
or social brain (ASN, BGN, DDMN, LECN, RECN, SN, PN,
and VDMN) were selected for the following analysis. To
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Fig. 2. PANAS and Big-Five scores’ associations with brain networks across the two groups. Beta values of generalized estimated equations-based
associations between the occurrence of the ICs of interested network and scale scores, including affective scores (positive [PA] and negative [NA])

and personality scores. *P < 0.05, **P < 0.01.

test whether the emotional and personal traits were cor-
related with brain activity, we measured the scale scores
after drug administration. A significant effect of OT on
the presentation of emotion and personality in brain
networks may indicate that the subjective affective rat-
ing scores (measured by PANAS) and personality scores
(measured by Big-Five) could predict the occurrence of
brain networks. The results showed that approximately
all emotional scores were associated with bilateral exec-
utive control network activity, but only the extraversion
scores on the personality scale could predict BGN and
LECN activity in the OT group. However, for the PL group,
personality scores had significant predictive effects on
multiple brain networks, while emotional scores were
almost completely unrelated to the activity of brain net-
works (Fig. 2).

Network correlation in resting and task state
Next, we explored the influence of OT on the relationship
between the brain networks by calculating the func-
tional connection matrix in the 2 states, respectively. The
results showed that OT affected not only the connection
strength but also the direction of correlation between
brain networks in the resting state (see Supplementary
Fig. S1 and Table 1). To better visualize the effects of OT,
we compared the matrix of the OT group with that of the
PL group (Fig. 3A and Table 1).

For the task-state dataset, the ICs correlated with the
task were labeled as PN, SN, ASN, and VDMN in the OT
group, and those for the other group were labeled as PN,
SN, DDMN, and VDMN. The results showed a difference
in the activity of DDMN between the groups, but on
difference for VDMN. This finding was consistent with
the resting-state results, which further indicated that

Table 1. RSNs correlation coefficients.

oT PL t-score Prpr
PN-DDMN -0.12 0.02 —5.08 0.000
HVN-ASN 0.08 -0.12 5.29 0.000
PSN-SN —0.05 0.19 -7.16 0.000
PSN-BGN —0.15 0.10 —7.00 0.000
PSN-LECN -0.14 0.04 —4.55 0.000
LN-LECN -0.27 —0.06 —5.05 0.000
LN-VDMN —0.06 0.09 -5.03 0.000
HVN-RECN 0.01 0.19 —4.92 0.000
PSN-PN 0.09 -0.09 5.17 0.000
DDMN-BGN -0.19 —0.09 —-3.36 0.002
LN-BGN -0.12 0.01 —3.58 0.002
VDMN-VN 0.01 —0.07 3.22 0.002
PSN-LN 0.11 0.00 3.25 0.002
PN-HVN —0.09 -0.23 3.19 0.002
HVN-BGN -0.01 -0.12 3.16 0.003
RECN-VN —0.08 0.02 —2.98 0.004

Note: Means, and two-tailed t-test (direction: OT - PL) results of the compar-
isons on functional connectivity in the resting state.

the VDMN and DDMN may be affected differently by
OT. Furthermore, we explored task-state brain network
correspondence. The results indicated that the correla-
tion between PN and ASN was opposite to that between
PN and the DDMN (Fig. 3B). This is distinct from the
pattern observed during the resting state. In this state,
the correlation between PN and ASN was the same as
the correlation between PN and DDMN in both groups
(Supplementary Fig. S1).

Associations between resting-state and
task-state networks

Figure 4 shows the contribution of resting ICs to recover-
ing the activation of task ICs. All brain networks in the
task state, except for PN in the OT group, could be best
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predicted themselves in the resting state. In the PL group,
the strongest predictor of PN in the state. However, under
the influence of OT, the predictive power of the DDMN
was larger than that of the PN itself (betappmn =0.56,
betapy =0.26, t (118)=3.00, P=0.003, box plots in Fig. 4).
This finding suggested that OT might strengthen the
scaffolding effect of DDMNs on PN. Generally, there was
less correlation between the RSNs and the task-state
network in the OT group.

We used the ICs from the rsfMRI data to forecast the
4 task-state ICs and obtained 4 prediction maps from
each participant after model construction. We measured
the recovery performance by comparing the predicted
maps with actual maps. The actual and predicted maps
of the main regions of each IC showed a significant rate
of overlap (Fig. 4). Our approach was also able to detect
intersubject variability in both groups. The model cor-
rectly recovered activation in areas that had no expres-
sion, on average (Fig.5). As a result, we investigated
individual variations in network interactions across rest-
ing and task states. The subsection, “Model performance
and intersubject variation” provides more detail about
the predictive accuracy and individual variation.

Model performance and the intersubject
variation

Two indices were used to test the model: the first was
the coefficient of determination R?, which represents
how many variations could be explained by the models.
Although the networks for prediction (resting-state ICs)
and the modeling process were the same, we found that
the variation in different task ICs explained by resting
ICs varied greatly. Interestingly, the models performed
best when interpreting DDMN (R? =0.39) but worst when
interpreting ASN (R?=0.23). In addition, no significant

Table 2. Coefficients of determination.

Mean R square std

PL DDMN 0.39 0.09
PL PN 0.31 0.10
PL VDMN 0.32 0.08
PL SN 0.24 0.10
OT ASN 0.23 0.07
OT PN 0.33 0.10
OT VDMN 0.33 0.07
OT SN 0.23 0.07

Note: Means and standard deviations results of the coefficients of determi-
nation.

differences in the interpretability of the same brain net-
work were found between groups (Supplementary Fig. S2,
Table 2).

Anotherindex is prediction accuracy (see “Model test”).
We examined whether the two methods (see the Model
Test) yielded different results. In most situations, the self-
model method performed better than the other model
methods, except for the VDMN in the PL group and ASNin
the OT group (Fig. 6A, Supplementary Table S1). Addition-
ally, only PN showed significantly higher accuracy in the
OT group than in the PL group for both methods (Fig. 6A,
SM: t (58)=2.79, P=0.007; OM: t (58)=2.96, P=0.004).

Additionally, compared with the PL group, there was
a smaller difference in the accuracy between predicting
the own-task and other-task activation maps in the OT
group. Both methods showed that only PN displayed a
significantly higher accuracy in predicting others’ task
maps in the OT group than in the PL group (Table 3,
Fig. 6A). The difference in the accuracy of PN in the OT
group was lower than that in the PL group when per-
forming the other models (t (58) =—2.55,P=0.014, Fig. 6B).
Meanwhile, the SN and VDMN also showed this trend,
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Table 3. Predictive accuracy of others.

oT PL t-value P
PN (Self-model) 0.37 0.40 -2.79 0.007
PN (Other-model) 0.32 0.36 —2.96 0.04
VDMN (Self-model) 0.34 0.34 -0.83 0.408
VDMN (Other-model) 0.32 0.33 —-0.28 0.783
SN (Self-model) 0.22 0.22 0.21 0.700
SN (Other-model) 0.22 0.21 0.42 0.834

Note: Means, and two-tailed t-test (direction: OT - PL) results of the compar-
isons on predictive accuracy.

although the difference was not significant. These results
suggest that OT may reduce interindividual differences
in PN. To further confirm this finding, we extracted ICs
from the data of all subjects (including the OT and PL
groups) and repeated the analysis that produced the
results shown in Fig. 6, and we obtained the same results
as Fig. 6 (Supplementary Fig. S3). However, this effect was
not observed when self-modeling was used.

Discussion

To the best of our knowledge, although the effect of OT
on neural activity in both resting and task states has

been well discussed, this work is the first to investi-
gate how OT affects brain network activation and the
relationships of these networks across resting and task
states. In addition to confirming the effect of OT on brain
networks during both resting state and face perception
tasks, we further assessed its impact on the scaffolding
mechanism of RSNs for task-evoked network activation.
Our study provided four promising preliminary results.
First, compared with the PL group, there was decreased
functional connectivity among the networks in the OT
group. Second, in the OT group, the resting-state activity
of the DDMN showed the largest predictive power for
the task-evoked brain activity of the PN, but not for the
PL group. Finally, OT reduced self-other differences in
PN when predicting task activation. Overall, our findings
provide new evidence for dynamic and interactive mod-
ulation of brain-wide networks by OT.

DDMN has the highest predictive power for
task-evoked activity of PN for the OT group
Studies have shown a close relationship between PN and
DMN, but with mixed results regarding whether PN is a
part of the DMN (Fransson and Marrelec 2008; Utevsky
et al. 2014). Indeed, some studies have shown that the
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precuneus is the functional core of the DMN (Gilmore
et al. 2015; Deng et al. 2019). However, recent studies do
not support this idea and indicate that the PN is distinct
from the DMN (Gilmore et al. 2015). A meta-analysis of
task-based fMRI and resting-state functional connectiv-
ity studies identified the PN (also called “parietal mem-
ory network”) as broadly involved in the formation of
memory and personal experience of novelty (Gilmore
et al. 2015). Another fMRI study demonstrated the dis-
tinct functional roles of the PN and DMN in processing
context-rich information (Deng et al. 2019). Our findings
may add another piece of evidence on the overlap or
interaction between PN and DMN.

In our results, we found that PN was negatively corre-
lated with DDMN and VDMN during the task, regardless
of whether it was affected by OT. The functional connec-
tivity between the PN and DDMN at rest was reversed in
the OT group compared with that in the PL group (Fig. 3A,
Supplementary Fig. S1). Additionally, DDMN at rest had a
stronger predictive power for PN in the task state than
resting PN itself in the OT group, but no significant pre-
dictive power was observed in the PL group (Fig. 4). This
was the only case in which the network’s performance
at rest was not the best predictor of its activation during
the task. Altogether, these results suggest that dynamic
network changes depend on drug administration; for
example, OT changes the way in which the DDMN works
in the task. In the PL group, the DDMN played a direct
role in the task. In the OT group, the DDMN partici-
pated in the task by modulating the activation of the PN,
rather than acting directly. Additionally, combining our
current work with previous studies (Wu, Feng, et al. 2020;

Wang et al. 2022), which showed that OT influenced neu-
ral activation in both states, we consider both changes in
resting and task states lead to a change in the correlation
between the resting-state and task-related networks.

OT reduced individual difference in PN prediction

Our study provides two results regarding the impact of
OT on individual variations in PN activation in both the
resting and task states. First, OT may reduce the pre-
dictability of PN activation when using the Big-Five scale
scores to predict the activity of PN (Fig. 2). The second is
reflected in the process of using rsfMRI data to predict
network expression in a task state. The result indicates
that the self-other difference (i.e. the distinction between
using subject X's resting-state data to predict X’s task
data and to predict subject Y’'s task data) of PN was
significantly decreased by OT (Fig. 6B). These findings
are likely opposite to previous studies, which suggest that
the impact of OT on individuals displays vast individual
variability (Kumsta and Heinrichs 2013; Alcorn III et al.
2015; Koch et al. 2016; Hecht et al. 2017). For instance,
some studies have reported that brain activation was
significantly correlated with personal characteristics in
the OT group, while the correlation was not significant
in the PL group (Alcorn III et al. 2015; Koch et al. 2016;
Hechtetal. 2017). We propose that the reduced individual
variation makes the correlations between personal
characteristics and brain activity easier to observe.
Notably, our resting/task-state prediction of the 2 groups
focused more on task-brain prediction than on individual
differences per se. This may provide new insights for
understanding the mechanism by which OT affects
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human brain activity during tasks, depending on brain
activity during the resting state.

In the OT group, we found a smaller self-other dif-
ference when predicting the task network activation,
which was only significant for PN. This may be due to
the specific role of PN in our self-other face perception
task. Cavanna and Trimble (2006) described a series of
studies in which the precuneus was activated more for

self-relevant than self-irrelevant personal traits (Kircher
et al. 2000; Kjaer et al. 2002; Lou et al. 2004; Cavanna and
Trimble 2006), and more for a first-person than a third-
person perspective (Vogeley et al. 2001; Vogeley and Fink
2003; Den Ouden et al. 2005). Therefore, when subjects
recognize whether a face stimulus is similar to the face
of the subjects themselves, OT may have the greatest
impact on the most important brain network, PN. Thus,



this provides further evidence that task-evoked and con-
nectivity data are essential for studying the resting—task
predictable networks.

Limitation and future direction

The present study provides the first evidence that OT
modulates the resting-task brain network in a self-other
face perception task. It remains unknown whether our
results can be generalized to other social tasks. In addi-
tion, the reason for different networks displaying distinct
predictability in our study remains unknown. Addition-
ally, the sample size and the fact that our sample con-
sisted of only men may also limit the generalizability
of our results. For example, we cannot investigate all
profiles of OT effects on behavioral and brain networks
that can be predicted by resting state, with one represen-
tative task. Perhaps, different types of tasks (e.g. social
and cognitive tasks) may result in specific OT effects on
resting-task brain prediction. Future studies are required
to test the correlations between resting and task-related
brain networks after OT administration in multiple-task
settings.

Another topic worth exploring is the consistency
between people’s subjective perceptions and their brain
activity in different states. Accumulating evidence
suggests that OT increases prosocial behavior (Bartz et al.
2011; Carter 2014; De Dreu and Kret 2016), and our
findings indicate that individual differences in networks
decrease in the OT group. Previous studies on brain-
heart interactions have reported that information flows
more from the heart to the brain during a relaxed
state, such as sleep (Min and Wang 2017), but more
information flows from the brain to the heart as the
consciousness arousal level increases (Abukonna et al.
2013). Other studies have shown higher brain activation
synchronism when people better understand others
(Simony et al. 2016; Zadbood et al. 2017). The brain
activity patterns of friends are more similar to those of
strangers (Parkinson et al. 2018; Hyon et al. 2020). Since
all these findings demonstrated individual insights into
their neural system, does this consistency generalize
to the prediction process? For example, whether the
accuracies of individuals in the resting state in predicting
their performance in a task are consistent with the
predictability of their task brain activity using their
rsfMRI or not. Which brain regions or networks display
more consistency with subjective human perceptions?
What factors could affect this consistency? We believe
that our study may inspire future research regarding
factors such as cue presentation sequence, mood, and
social information, contributing to the enhancement of
resting-task network prediction.

Conclusion

In this study, we collected fMRI data at rest and task
states in both OT and PL groups to examine how OT
impacts (i) the co-activation of brain networks in 2 states,
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(ii) the predictive power of RSNs for task-evoked network
activity, and (iil) the individual variation reflected in the
predictive process. As a result, we found that the DDMN
was decreased by OT in the resting state; OT changed the
greatest predictor for the task-evoked activation of the
PN from PN to DDMN (in the resting state); OT reduced
the individual variation of PN, specifically, the differ-
ence in accuracy between predicting subjects’ own and
others’ PN task activation. We believe that these findings
together reflect OT’s distinct influence on diverse brain
networks across different states and their relationships.
The current study elucidated the mechanism by which
OT affects the scaffolding mechanism of networks in the
resting state during task activation.
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