The 1st Jiangsu-Hong Kong-Macau Conference on Biomass Energy and Materials

Biodiesel Production from Food Waste: Biodiesel production simultaneously with wastewater treatment from mixture of food waste and domestic wastewater using oleaginous yeast

Naiwen Chen, Xiaoyuan Guo, *Hojae Shim*Department of Civil and Environmental Engineering
Faculty of Science and Technology

Introduction

1st Generation Edible Biomass Sugar Bean Sugar Cane Wheat Corn

2nd Generation Wood Straw Grass Waste

3rd Generation Non-Edible Biomass Oleaginous Microorganisms Microalgae

Yeast Fungi Bacteria

- ·less impact on land use
- ·higher growth rate
- · higher productivity
- · higher lipid content

Introduction

Food wastes

One of promising substrates for biodiesel production.

Rich in organic carbon and nitrogen sources, inorganic mineral salts, and phosphorus and nitrogen.

- a. low-cost and no-value resource
- b. non-competitive with edible food stuffs
- c. huge production (~1.3 billion tons/year) (Gustavsson et al., 2011)

Food waste anaerobic digestion effluent to biodiesel

Food waste anaerobic digestion effluent to biodiesel

Affecting Factors

Low lipid accumulation maybe due to high nitrogen (ammonia nitrogen) content from protein digestion of food waste.

 High VFAs concentrations can inhibit lipid accumulation.

Proper VFAs and ammonia-nitrogen concentrations important

Food waste hydrolysate to biodiesel

Hydrolysis or saccharification is another process to pre-treat food waste to low-molecular-weight organics for utilization by oleaginous microorganisms.

Starch→Reducing Sugar Organic nitrogen and ammonia→free amino nitrogen (FAN) etc.

Chemical

e.g., mixing with 1.5-2% sulphuric acid at ~120°C for 30-60 min

Biological

e.g. Commercial glucoamylase & protease or fungal enzyme

Food Waste in Macau SAR

 <u>Daily food waste generation</u> 250.8 tons (DSPA, 2016). This value even higher now

800 g (wet wt) per capita

• In 2020, food waste recycled 414.0 tons (DSEC, 2020).

Food Waste
Recycling Facilities

- Most food waste incinerated.
- High burden for local incineration system.

Food Waste Digestion Effluent

- Using high concentration of soil microbes
- Rapid food waste digestion
- Produce high COD effluent
 - Directly discharged to sewer and mixed with domestic wastewater (sewage)

рН	4.27		
COD (mg/L)	TN (mg/L)	TP (mg/L)	NH3-N (mg/L)
12,410±185	180±14	231±10	17.33±0.58
Acetic Acid (mg/L)	Propionic Acid (mg/L)	Butyric Acid (mg/L)	Valeric Acid (mg/L)
639±73	176±18	116±10	77±4

MDT-400 Daesung E&B Co. Ltd.

Aim of This Study

- Energy recovery (biodiesel production) from high strength wastewater (food wastewater)
- Wastewater treatment of food and domestic wastewater mixture
- Determining optimal mixing strategy
- Biolipid production under non-sterile condition using batch culture
- Trial for large scale energy recovery simulataneously with wastewater treatment in future, after further process optimization

Wastewater **Treatment** Methodology рΗ COD TN TP Mixing with Taipa NH₃-N **Food Waste** Domestic Cultivation Aerobic Wastewater (TDW) Sampling Lipid Initial 2x10⁷ cells/mL **Digestion** FADE:TDW 30°C, 200 rpm, 5 days Every 24 h **Production Effluent** 1:1 Non-Sterile **Dry Biomass** 2:1 (FADE) 3:1 Heat Acid Extraction **Biolipid** Biodiesel **Seed Culture Production Biolipid** YPD, 30°C, 200 rpm, 48 h Transmethylation

FAMEs (Biodiesel)

Results-Biomass and lipid production

No obvious increase in biomass and lipid production after day 1. Lipid content decreased during almost whole culture period especially at 3:1 and 1:1 mix ratios.

- -Unknown inhibitory compounds in FADE (3:1 mix ratio)
- -Limiting carbon source (1:1 mix ratio)

Results-Mixed wastewater treatment

No significant differences in wastewater treatment efficiencies at different mix ratios. N.B. Ammonia nitrogen accumulation at 1:1 mix ratio.

Results-Optimal mix ratio

For better overall lipid production simultaneously with wastewater treatment efficiency, yeast strain should be harvested on day 2. On day 2:

- Both biomass and biolipid productivity optimal at 2:1 mix ratio.
- COD and TP removal decreased with FADE content increased.

Results-LCFAs presence

LCFAs predicted to be one of inhibitory compounds

- Both palmitic acid and stearic acid
 - Low concentrations
 - Only small amounts consumed

Conclusions

- Food waste treatment system effluent should be mixed with domestic wastewater at 2:1 ratio, to more efficiently achieve both lipid accumulation (biodiesel production) and wastewater treatment.
- Yeast strain should be harvested on day 2, before lipid production would decrease because of insufficient carbon source for growth.
- Palmitic and stearic acids (LCFAs) present and hard to be removed.

Further Studies

- More research to identify inhibitory compounds (ammonia N, LCFAs) and relative mechanisms.
- Strategies to remove or mitigate inhibition as well as to enhance lipid production and wastewater treatment.
- Supplementing microelements (Na, Mg, Cu, Zn/Fe, Co, Ni) for enhanced performance.

 Performance comparison between UASB reactor (biogas production by microbial consortium) and airlift reactor (biodiesel production by oleaginous microbes) for food waste (mixture of food/domestic wastewater), including resource recovery (N, P via struvite/vivianite)

Biodiesel Production from Distillery Wastewater

- -2017. Cost reduction for the lipid production from **distillery** and domestic mixed wastewater by *Rhodosporidium toruloides* via the reutilization of spent seed culture medium. *Energy*. 136:135-141.
- -2016. Evaluation of specific lipid production and nutrients removal from wastewater by *Rhodosporidium toruloides* and biodiesel production from wet biomass via microwave irradiation. *Energy*. 108:185-194.
- -2015. Economic cost analysis for biodiesel production from food industry wastewater by oleaginous yeast via direct transesterification. *Renewable Energy and Power Quality Journal*. 13:1-6.
- -2014. Optimization of Initial Cell Density and Usage Efficiency of Seed Culture Medium During Lipid Production from **Distillery Wastewater** by *Rhodosporidium toruloides*. *Renewable Energy and Power Quality Journal*. 1(12):130-134.
- -2014. Lipid production by a mixed culture of oleaginous yeast and microalga from **distillery** and domestic mixed wastewater. *Bioresource Technology*. 173:132-139.
- -2013. Enhancement of Lipid Productivity of *Rhodosporidium toruloides* in **Distillery Wastewater** by Increasing Cell Density. *Bioresource Technology*. 146:301-309.

Biogas Production from Food Waste

- -2021. Stimulatory Effect of Magnesium Supplement on Anaerobic Co-digestion of **Food Waste** and Domestic Wastewater. *Journal of Water Process Engineering*. 40. 101773.
- -2019. Improved anaerobic co-digestion of **food waste** and domestic wastewater by copper supplementation microbial community identification and effluent quality analysis. *Science of the Total Environment*. 670:337-344.
- -2018. Effect of zinc supplementation on biogas production and short/long chain fatty acids accumulation during anaerobic co-digestion of **food waste** and domestic wastewater. *Waste and Biomass Valorization*. 10:3885-3895.
- -2018. Co-digestion of **food waste** and domestic wastewater copper supplementation to enhance biogas production. *Energy Procedia*. 153:237-241.
- -2018. Anaerobic co-digestion of **food waste** and domestic wastewater Effect of intermittent feeding on short and long chain fatty acids accumulation. *Renewable Energy*. 124:129-135.

Ackowledgements

- Science and Technology Development Fund of Macao (FDCT) (FDCT0034/2021/AFJ)
- University of Macau Multi-Year Research Grant (MYRG) (MYRG2018-00108-FST)

