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Rheumatoid arthritis (RA) is an intricate autoimmune disease involved in numerous factors. Aberrant immune 

responses at joint sites are considered primary in the pathogenesis of RA. The complex interactions may occur 

between distinct immune cells, aiming at amplifying and accelerating inflammatory responses in inflamed joints. 

At present, gut-joint axis hypothesis holds the idea that RA originates in the gut as a result of coactions between 

the intestinal immune cells and dysbiotic microbiota. Dysbiosis causes intestinal inflammation and alterations in 

intestinal permeability, which provides a pathological basis for the transfer of activated intestinal immune cells 

and their products to the joints through systemic circulation or other ways. Some therapeutic options widely 

utilized for the treatment of RA are associated with gut-joint axis, suggesting modulation of gut-joint axis may be 

a promising strategy in preventing and treating RA. Flavonoids are a type of polyphenol widely existed in herbs 

and foods showing anti-RA potentials. However, the mechanisms by which flavonoids mitigate RA have not been 

well organized. In this review, we outline and discuss current understanding of the underlying mechanisms of 

anti-RA flavonoids through immunoregulation, gut-joint axis, and inflammatory responses, providing a reference 

for developing novel strategies for the treatment and prevention of RA. 

1

 

o  

a  

i  

a  

e  

[  

a  

c  

a  

(  

m  

p  

s  

c  

i  

f  

t  

p

 

n  

t  

h  

R  

t  

s  

p  

t  

f  

t  

g  

c  

d  

a  

e  

r

h

R

A

2

(

. Introduction 

Rheumatoid arthritis (RA) refers to a chronic autoimmune disorder

f unknown etiology. The capital features of RA are persistent synovitis

ccompanied by extra-articular organ involvement and autoantibodies

ncluding rheumatoid factor (RF) and anti-citrullinated peptide protein

ntibodies (ACPAs) production. Genetic background and environmental

xposure are the risk factors that contribute to the development of RA

1] . Epidemiological data have shown that RA affects 0.5-1.0% of adults,

nd women and elderly people are susceptible to the disorder [2] . Clini-

ally, the primary therapeutic agents of RA, including disease-modifying

nti-rheumatic drugs (DMARDs), non-steroidal anti-inflammatory drugs

NSAIDs), and glucocorticoid, mitigate synovitis and systemic inflam-

ation and relieve the pain of RA patients. However, these drugs can’t

roduce adequate effects on the improvement of the disorder and their

erious side effects including hepatorenal toxicity also restrict their clini-

al application [3] . Lately, biological agents are able to apply as arthritis

s out-of-control or toxic effects arise with DMARDs. Owing to nasty in-

ections and high costs, their use remains limited [3] . Fundamentally,
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he application of anti-RA drugs is restricted as a consequence of the

athogenesis of RA that is not well understood. 

Perturbations in immune homeostasis in joints is considered domi-

ate in RA. It has been well reported that a variety of immune cells con-

ribute significantly to maintaining the immune function homeostasis of

ost and to the pathogenesis of RA [4] . In individuals with established

A, substantial data have reported that infiltration and aberrant activa-

ion/inhibition of immune cells, such as T cells, B cells, and macrophage

, are abundant in synovial tissues, which contributes to initiating and

erpetuating joints inflammatory milieu [5] . The complex interplays

hat may occur among different immune cells, intending to expand and

acilitate the inflammatory response involving joints [6] . At present, ex-

raordinary progress has been made in the development of drugs tar-

eting immune cells. Data came from experimental arthritis models and

linical diagnosis in individuals with RA prove that these target-specific

rugs can significantly reduce pro-inflammatory cytokines, RF, ACPAs,

nd C-reactive protein in peripheral blood and synovial fluid [7,8] . Nev-

rtheless, the relevance between their pharmacological effects and the

educed biomarkers of RA warrants further investigation. 

The gut is generally considered to be the largest immune organ of the

ost owing to the maximum innate and adaptive immune cells inhab-
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tation [9] . The intestinal microbiota that resides within the host gut

ucous membranes comprises over 100 trillion bacteria. Compelling

vidence supports that the normal gut microbe is essential for maintain-

ng enteral and parenteral immune responses [10–12] . However, dys-

iosis occurs frequently as gut microbiota is susceptible to environmen-

al and host-related factors, thereby resulting in gut inflammation and

eakiness [13] , triggering bacteria penetration into the extra-intestine.

ubsequently, with dysfunctional microbiota stimulation, the intestine-

erived immune cells are activated and secrete pro-inflammatory cy-

okines, which can alter local and follow-up systemic immune responses,

ventually boosting the pathogenesis of RA [14] . Mounting data con-

ucted in different mouse models of RA and individuals with RA prove

hat the intestinal dysbiosis, together with intestinal inflammation and

eakiness can potentially bring about arthritis [15–20] . The gut-joint

xis hypothesis which holds the idea that RA begins in the intestine has

ecently been put forward [21] . Data reinforcing the hypothesis are that

 number of intestinal innate and adaptative immune cells are amplified

nd activated in synovium and systemic circulation of RA patients [22] .

owever, few therapeutic methods have focused on gut-joint axis so far.

Flavonoids refer to a series of compounds formed by the intercon-

ection of two phenyl rings with phenolic hydroxyl groups through the

entral three carbon atoms [23] . They can mainly be classified into

avone, flavonol, flavonone, flavanonol, anthocyanidin, and chalcone

24] ( Fig. 1 ). Flavonoids with wide distribution and relatively low toxi-

ity can be consumed safely in diet and show potent anti-inflammatory

nd anti-oxidant effects. Moreover, the activity of flavonoids antioxi-

ants is in strong correlation with their chemical structures [ 25 , 26 ].

lavonoids intervention with low cost is widely used in clinical treat-

ent of various diseases, such as neurodegenerative diseases, can-

ers, and eye diseases [27–30] . Emerging evidence has revealed that

avonoids elicit the anti-RA potentials. Flavonoids improve symptoms

f RA via multiple targets involved in immunoregulation, modulation

f gut-joint axis, and inhibition of inflammatory responses. 

In this review, we seek to outline the current understanding of the

nderlying mechanisms of anti-RA flavonoids via immune responses and

ut-joint axis, providing a reference for developing novel strategies for

reating and preventing RA. The literatures selected is based on a search

f Pubmed between 2011 and 2021 and all doses of flavonoids presented

n literatures are in accordance with the range given in the consensus

ocument [31] . 

. The roles of flavonoids in immune responses 

It is well known that the main symptoms of RA are chronic inflamma-

ion in the joints, which leads to joint destruction [32] . Defining critical

ellular subtypes and their activation/inhibition states in the inflamed

oints is a key step in searching therapeutic targets for RA [4] . T cells,

 cells, and macrophages have been established relevance to RA patho-

enesis and are found in abundance in inflamed synovial membranes

f RA patients [33–36] ( Fig. 2 ). The mechanisms of flavonoids target-

ng these immune cells to ease the symptoms of RA are summarized in

able 1 . 

.1. The roles of flavonoids in T lymphocytes 

CD4 + helper T (Th) cells engages in the development of RA and

ainly differentiate into three subtypes with distinct immunological

unction. Th1 cells, originated from naïve Th cells that are mainly driven

nd induced by interleukin (IL)-12 produces interferon (IFN)- 𝛾 and tu-

or necrosis factor (TNF)- 𝛼 [37] and plays an important role of pro-

nflammatory. IL-4 produced by basophils, eosinophils, and mature Th2

ells is the primary signal for Th2 cells lineage differentiation. Th2 cells

roduce anti-inflammatory cytokines like IL-4, IL-5, IL-10, and IL-13

38] . These cytokines can induce proliferation of Th2 cells while sup-

ressing that of Th2 cells as we as maintaining the balance of Th1/Th2.

ifferentiation of Th17 cells is promoted by IL-6, IL-23, and IL-1 𝛽. Th17
2 
ells are mainly secreting IL-17, which contributes to cartilage and bone

estruction [39] . Regulator T (Treg) cells also contribute importantly

o adaptive immune responses. Induced Treg cells are the result of pe-

ipheral T cell activation in the presence of transforming growth factor

TGF)- 𝛽 costimulation and lack of pro-inflammatory cytokines [ 33 , 40 ].

GF- 𝛽 and IL-10 produced by Treg cells have potent anti-inflammatory

ffects through blocking of T cells division and differentiation into Th17

41] . In RA patients, the drifts of Th1/Th2 and Th17/Treg are widely

xisted [ 42 , 43 ]. Re-maintaining the homostasis of them is the crucial

dea to develop anti-RA drugs. 

Flavonoids derived from herbs and foods can effectively improve RA

y modulating T cells in collagen-induced arthritis (CIA) and adjuvant-

nduced arthritis (AIA) experimental models. Acacetin is a natural

avonoid extracted from Saussurea involucrate (Kar. et Kir.) Sch. -Bip

nd can significantly repress the incidence of CIA and preventing the

athological alteration by expanding Treg cells and narrowing Th1 and

h17 cells in spleen and inguinal lymph nodes [44] . Cinnamtannin D1,

 flavonoid derived from the food spice Cinnamomum tamala , elicits po-

ent anti-RA property by regulating Th17/Treg balance in mice with

IA [45] . Quercetin, a flavonoid widely existed in fruits and vegeta-

les, shows robust anti-arthritic effect in pre-clinical and clinical studies

ith unknow underlying mechanisms. Yang et al. report that quercetin

an substantially yield an obvious mitigation of arthritic manifestations

y decreasing the percentage of Th17 cells and increasing that of Treg

ells [46] . Naringin, a well-known flavanone glycoside found in citrus

ruits, can dramatically regulate Th1/Th2 balance to improve autoim-

une arthritis in AIA mice [47] . Taken together, flavonoids can effec-

ively ameliorate the symptoms of RA by regulating the homostasis of T

ells. 

.2. The roles of flavonoids in B lymphocytes 

The production of RF and ACPAs is one of the characteristics of RA,

nd can even occur earlier than clinical symptoms. Stimulated by anti-

en in synovial tissues, B lymphocytes proliferate and differentiate into

 large number of plasma cells, which can synthesize and secrete anti-

odies as well as pro-inflammatory mediators and circulate in the pe-

ipheral blood [ 48 , 49 ]. Recently, B cells depletion therapy in RA has led

o some surprises, however, the potential side effects can’t be neglected

50–52] . 

Epigallocatechin gallate, a bioactive flavonoid in green tea, can effec-

ively inhibit the migration of B cells to extravascular space, including

oints and may be a promising drug for RA treatment [53] . Epigallo-

atechin-3-gallate is also a bioactive flavonoid derived from green tea

nd have a therapeutic effect in CIA rats by depleting B cells [54] . In

rief, using flavonoids intervention targeting B cells is an effective ap-

roach to ameliorate the symptoms of RA. 

.3. The roles of flavonoids in macrophages 

Macrophages that are differentiated from peripheral blood mono-

ytes get involved in the initiation and perpetuation of inflammation,

dhesion and migration of leukocyte, and degradation of matrix. It has

een revealed that the inflamed synovial membrane and the cartilage-

annus junction are populated by macrophages [36] , suggesting these

ells may intimately associated with the pathogenetic cascade of RA.

nterestingly, Macrophages are highly plastic and can switch from one

henotype to another. Stimulated by lipopolysaccharide (LPS) or IFN- 𝛾,

acrophages can differentiate into M1 subtypes, which can produce re-

ctive oxygen species (ROS), nitric oxide (NO), and a large number of

ro-inflammatory cytokines, showing pro-inflammatory effects and sub-

equently causing articular cartilage injury. In the presence of IL-4 or

L-13 stimulation, macrophages can differentiate into M2 subtypes. M2

ecrete anti-inflammatory cytokines and promote synovial tissues repair

 36 , 55 ]. Although treatment of RA with anti-macrophage approaches is
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Fig. 1. The structures of flavonoids and their representative compounds. 
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heoretically therapeutic, regulation of macrophages polarization seems

o be more promising for the treatment of RA. 

Flavonoids also possess anti-RA potentials by regulating

acrophages polarization. Hesperidin, a natural flavonoid widely

resented in citrus fruits, can significantly relieve the symptoms of

A by inhibiting the polarization of macrophages to M1 [56] . Simi-

arly, malvidin-3-O- 𝛽 glucoside derived from fruits can also ease RA

ymptoms by inhibiting the polarization of macrophages to M1 [57] .

ilibinin, a natural polyphenolic flavonoid extracted from the herb Sily-

um marianum , can induce the macrophages M2 polarization to mitigate

he symptoms of RA [58] . Thus, flavonoids can effectively ameliorate

he symptoms of RA by modulating macrophages polarization. 

. The roles of flavonoids in gut-joint axis 

The gut-joint axis consists of two consecutive steps. First, the occur-

ence of dysbiosis accompanied by intestinal inflammation and barrier

ysfunction provides the opportunity for the interactions between in-

estinal immune cells and dysbiotic microbiota. Second, the activated
3 
ntestinal immune cells with the abilities of pro-inflammatory cytokines

roduction enter the joints through systemic circulation or other ways,

hus leading to the pathogenesis of RA ( Fig. 3 ). Therefore, there are two

herapeutic targets for RA through gut-joint axis: (1) improve intestinal

ysbiosis; (2) inhibit intestinal immune cells proliferation or trafficking.

.1. The roles of flavonoids in intestinal dysbiosis 

Intestinal dysbiosis is an aberrant microbial ecological state char-

cterized by pathobionts bloom, commensals reduction, and diversity

oss. Enteric inflammation, diet, and xenobiotics are the main factors

hat contributes to dysbiosis [65] . Substantial data have demonstrated

hat dysbiosis occurs in different experimental mouse models of RA and

ndividuals with RA. For example, Rogier et al. have demonstrated that

ut microbiota undergoes significant changes in the preclinical phase of

IA, as characterized by reduced abundance of Bacteroidetes and raised

hat of Firmicutes [66] . Some cohort studies have also proved that great

lterations in the intestinal microbial community are presented in in-

ividuals with new-onset and established RA [67–70] . Data from fecal
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Fig. 2. The interactions among immune cells in inflamed joints. T cells, B cells, and macrophages contribute essentially to rheumatoid arthritis (RA). T cells 

differentiate into several subtypes that produce different cytokines, primarily including Th 1, Th2, Th17 and Treg cells. B cells with pro-inflammatory cytokines 

secretion and autoantibodies production can activate Th1 and macrophages. Macrophages encompass two subtypes, M1 and M2, and can activate Th17 cells. 

Table 1 

The roles of flavonoids in T cells, B cells, and macrophages. 

Flavonoid name Experimental models Biological findings Reference 

Acacetin Male DBA/1J mice with CIA Treg cells ↑ , Th17 cells ↓, Th1 cells ↓, regulate Th17/Treg [44] 

Cinnamtannin D1 Male DBA/1J mice with CIA; Naïve CD4 cells with TGF- 𝛽, IL-6, 

anti-IL-2/4, anti-IFN- 𝛾 stimulation or TGF- 𝛽, IL-2, anti-IL-4, 

anti-IFN- 𝛾 stimulation 

Treg cells ↑ , Th17 cells ↓, regulate Th17/Treg; Treg cells 

differentiation ↑ , Th17 cells differentiation ↓

[45] 

Quercetin Peripheral blood mononuclear cells with CD3, anti-CD28, 

IL-23, IL-6, IL-1 𝛽, anti-IL-4, anti-IFN- 𝛾 stimulation; Female 

Wista rats with CIA 

Th17 cells differentiation ↓; Treg cells ↑ , Th17 cells ↓, regulate 

Th17/Treg 

[ 46 , 59 ] 

Epigallocatechin-3-gallate Male DBA/1J mice with CIA; IFN- 𝛾 KO mice with CIA; Male SD 

rats with AIA 

Treg cells ↑ , Th17 cells ↓, regulate Th17/Treg; B cells ↓ [ 53 , 60 ] 

Icariin Male C57BL/6 mice with CIA Th17 cells ↓ [61] 

Anthocyanin Male DBA/1J mice with CIA; Human CD4 + T cells with 

anti-CD3, anti-CD28, anti-IFN-c, anti-IL-4, IL-1 𝛽, IL-6 

stimulation 

Th17 cells ↓, Th17 cells differentiation ↓ [62] 

Silibinin Female Wista rats with CIA; Naïve CD4 + CD62L + T cells with 

anti-CD3, anti-CD28, TGF- 𝛽, IL-6, anti-IFN- 𝛾, anti-IL-4 

stimulation; RAW264.7 cells with LPS, IFN- 𝛾, or IL-4 

stimulation 

Th17 cells ↓, Th17 cells differentiation ↓; Macrophage M2 

polarization ↑ 

[58] 

Oroxylin Male DBA/1 mice with CIA Treg cells ↑ , Th17 cells ↓, regulate Th17/Treg radio [63] 

Naringenin Male DBA/1J mice with CIA Th1 cells ↓, Th17 cells ↓ [64] 

Naringin Female Balb/c mice with AIA Th1 cells ↑ , Treg cells ↑ , Th2 cells ↓ [47] 

Kurarinone Male DBA/1 mice with CIA Th1 cells ↓, Th17 cells ↓ [64] 

Hesperidin RAW264.7 cells with LPS stimulation Macrophage M1 polarization ↓ [56] 

Malvidin-3-O- 𝛽 glucoside RAW264.7 cells with LPS stimulation Macrophage M1 polarization ↓ [57] 

CIA, collagen-induced arthritis; AIA, adjuvant-induced arthritis 
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ransplantation and antibiotics treatment experiments in mice prove the

otential cause relationship between gut microbiota and RA. Maeda et

l. have shown that colonization of SKG mice with faecal microbiota

rom patients with RA shows an elevated susceptibility to arthritis [71] .

ubair et al. have reported that depleting the microbiota of the mice with

 cocktail of antibiotics before the induction of CIA leads to a significant

eduction in the severity of disorder [72] . 

In light of the gut-joint axis, intestinal inflammation and gut bar-

ier dysfunction are also major contributors in the development of RA.

he occurrence of dysbiosis can trigger and perpetuate the aberrant

ctivation and expansion of intestinal innate immune cells, therefore

eading to intestinal inflammation [73] . The link between dysbiosis
4 
nd gut barrier is well conducted. The presence of normal gut micro-

iota can induce the differentiation of ROR 𝛾t + NKp46 + natural killer-

ike cells with IL-22 production, which can promote gut integrity and

nhibit bacterial infiltration [74] . However, perturbations in gut mi-

robiota disturb the process, causing the gut barrier dysfunction [75] .

oreover, elevated serum zonulin concentrations is associated with in-

estinal dysbiosis [76] . Zonulin, a biomarker of gut permeability, can

nitiate proteinase-activated receptor 2 (PAR2)-dependent transactiva-

ion of epidermal growth factor receptor (EGFR), therefore causing tight

unction disassembly [77] . Although no direct evidence shows the cor-

elations among intestinal inflammation, gut barrier and RA, a cohort

tudy have reported a considerable association between RA and inflam-
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Fig. 3. The pathogenesis of rheumatoid arthritis (RA) through gut-joint axis. Intestinal dysbiosis accompanied with intestinal inflammation and gut barrier dysfunc- 

tion leads to the interactions between intestinal immune cells and aberrant microbes. Subsequently, the activated intestinal immune cells such as group 3 innate 

lymphoid (ILC3) cells, mucosa-associated invariant T (MAIT) cells, and T follicular helper (Tfh) cells traffic to the joints via systemic circulation, therefore promoting 

the pathogenesis of RA. 
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atory bowel disease (IBD) [78] . IBD is also an autoimmune disease

ith similar pathogenic mechanisms of RA and characterized by chronic

ntestinal inflammation and gut leakiness, suggesting that intestinal in-

ammation and gut barrier dysfunction have a potential contributor to

he development RA. Taken together, improving intestinal dysbiosis is

 possible therapeutic method to improve the development of RA. 

At present, Aa et al. reported that Kaempferol, a natural flavonol

ound in many edible herbs, elicit anti-arthritis activities by re-balancing

ysbiosis in CIA mice [79] . Due to similar pathogenic mechanisms be-

ween RA and IBD, some studies have revealed that some flavonoids

an effectively alleviate the symptoms of IBD, which can provide some

ints for RA therapies using flavonoids intervention. Ren et al. have re-

orted that acacetin can significantly improve the clinical symptoms of

extran sulfate sodium (DSS)-induced colitis in mice by modulating gut

icrobiota and inhibiting intestinal inflammation [80] . Zhu et al. have

evealed that baicalin, a flavonoid extracted from the root of herb Ast-

gali Radix , can protect the rats against trinitrobenzene sulphonic acid

TNBS)-induced colitis by regulating gut microbiota, especially increas-

ng the Butyricimonas abundance [81] . Phloretin, a flavonoid found in

ears of fruits, shows anti-IBD effects by remodeling gut microbiota,

specially enriching Lactobacillus [82] . Pinocembrin, a plant-derived

avonoid with anti-inflammation effects, can improve the severity of

SS-induced colitis in mice by regulating gut microbiota and repair-

ng gut barrier [83] . Taken together, data presented above suggest that

avonoids may be a type of promising drugs for RA treatment, which

arrants further development [84] . 

.2. The roles of flavonoids in intestinal immune cells proliferation and 

rafficking 

Intestinal immune cells mainly include Group 3 innate lymphoid

ILC3) cells, mucosa-associated invariant T (MAIT) cells and intestinal
5 
 follicular helper (Tfh) cells. ILC3 cells are primarily situated at ep-

thelial barrier surfaces and involved in response to the extra-intestinal

athogens and in maintaining intestinal homeostasis. With commensal

icrobes and their products (such as free fatty acid receptor 2 ago-

ism) stimulation, ILC3 cells are activated and expanded in the intes-

ine and produce pro-inflammatory mediators including IL-17 and IL-

2 [ 85 , 86 ]. In a CIA mouse model, ILC3 cells are significantly ampli-

ed in flamed joints [87] . In individuals with early RA, the number of

LC3 cells are significantly elevated in inguinal lymph node biopsy [88] .

AIT cells, mainly situated at mucosal and epithelial barrier, are innate-

ike T cells that bridge gut microbiota and intestinal immune responses

89] . They are activated by certain bacteria and subsequently produce

ro-inflammation mediators. Blunted MAIT cells frequency in systemic

irculation and elevated of that in inflamed tissues are common features

n various autoimmune diseases [89] . In the context of RA, MAIT cells

re abundant in the synovial fluid and high levels of pro-inflammation

ediators can promote the migration of MAIT cells from blood to the

oints [90] . Tfh cells are a subset of activated CD4 + T cells which can

ssist the formation and maintenance of germinal centers (GC). Tfh pro-

ote B lymphocytes differentiation and autoantibodies production by

ecreting IL-21 [91] . The migration of Tfh cells from the intestine to the

oints has been well conducted [92] . A cohort study has demonstrated

hat a higher percentage of circulating Tfh cells and higher serum level

f IL-21 in RA patients [93] . At present, it is well understood that these

ells can enter the joints through systemic circulation. Nevertheless,

here may have other ways promote the communication between gut

nd joints, which needs further investigation. Taken together, inhibit-

ng the proliferation and migration of intestinal immune cells is also a

herapeutic way for the treatment of RA. 

Although no research targeting the intestinal immune cells to im-

rove RA using flavonoids intervention has been reported, some inves-

igators have demonstrated that flavonoids can have a therapeutic role
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Fig. 4. Therapeutic signaling pathways of flavonoids 
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n some autoimmune diseases through intestinal immune cells, which is

lso beneficial for the anti-RA flavonoid drugs development. Yang et al.

ave revealed that baicalin attenuates lupus autoimmunity by inhibit-

ng Tfh cells differentiation and pro-inflammation cytokines production

94] . 

. The roles of flavonoids in inflammatory mediators 

Inflammatory mediators including histamine, cytokines,

hemokines, integrins, and proteases that are generated by im-

une cells secretion and genetic expression are responsible for bone

rosion and inflammation at synovial sites and for the progress of

A. Nowadays, balancing and resolving inflammation are regarded

s promising strategies for RA. Flavonoids are well-known for their

obust anti-inflammatory effects and overwhelming evidence shows

hat flavonoids lighten the symptoms of RA through inhibiting local

nd systemic inflammation responses. Consumption of cinnamtannin

1 can significantly increase TGF- 𝛽 and IL-10 levels while decrease

hose of IL-6, IL-17 and IL-1 𝛽 in serum of CIA mice [45] . Hesperidin

reatment can effectively suppress the expression of matrix metal-

oproteinases (MMP) in LPS-induced FLS cells [54] . Malvidin-3-O- 𝛽

lucoside treatment can substantially inhibit the secretion of IL-1,

L-6, and NO in LPS-induced macrophages [57] . Icariin addition can

ramatically inhibit the expression of 𝛽3 integrin and MMP9 in bone

arrow-derived macrophage cells [61] . Administration of oroxylin A

an memorably decrease the serum levels of IL-1 𝛽, IL-6, IL-17, and

NF- 𝛼 [63] . Kurarinone can also markedly decrease the serum and

aw tissues levels of IFN- 𝛾, TNF- 𝛼, IL-6, and IL-17A. Taken together,

avonoids targeting inflammatory mediators can effectively improve

he development of RA. 

. Therapeutic signaling pathways of flavonoids 

The development of RA is an intricate process involving many sig-

aling pathways, primarily including PI3K/Akt, MAPK, NF- 𝜅B, STAT,

nd Nrf2 signaling pathways ( Fig. 4 ). 
6 
.1. The roles of flavonoids in PI3K/Akt signaling pathway 

Synovial hyperplasia and inflammation are considered to be the

athological features of RA. In the context of RA, fibroblast-like syn-

vial (FLS) cells can secrete a plenty of inflammatory cytokines and

ontinuously stimulate FLS cells, resulting in uncontrolled proliferation.

I3K/Akt signaling pathway is deemed to be a bridge between prolif-

ration and apoptosis of FLS cells. In RA-FLS cells, PI3K and Akt are

ighly expressed, and have an effect on the excessive migration of FLS

ells. Moreover, lots of inflammatory cytokines such as IL-17 and IL-

1 can promote the inflammatory proliferation of FLS cells by induc-

ng and triggering PI3K [95] . Previous studies have demonstrated that

Y294002, an inhibitor of PI3K, can dramatically improve synovial hy-

erplasia and inflammation in mice with CIA and AIA [56] , suggesting

argeting PI3K/Akt signaling pathway is an effective mean to inhibit

he progress of RA. Nowadays, increasing literatures have reported that

avonoids can significantly improve the development of RA in exper-

mental mouse models through PI3K/Akt signaling pathway. Qi et al.

ave reported that hesperidin can significantly inhibit the expression

f PI3K and p-Akt in M1 macrophages and FLS cells. Moreover, upon

Y294002 intervention, the anti-arthritis effects of hesperidin are damp-

ned in AIA mice [56] . Liu et al. have revealed that epigallo-catechin-

-gallate can suppress the expression of p-Akt in B cells of CIA rats,

herefore repressing the development of RA [54] . 

.2. The roles of flavonoids in MAPK signaling pathway 

MAPK signaling pathway including extracellular signal-related ki-

ase (ERK-1/2), p38 (p38 𝛼/ 𝛽/ 𝛾/ 𝛿), c-Jun N-terminal kinase (JNK-

/2/3), and ERK5 that regulates a series of cytokines, chemokines, and

nzymes. MAPK signaling pathway is hyperactive in synovial tissues and

eads to persistent inflammation and abnormal hyperplasia [ 96 , 97 ]. The

elective inhibitors targeting MAPK signaling pathway have been pro-

osed to be an effective approach for the treatment of RA [98] . Similarly,

he MAPK signaling pathway is inhibited accompanied with reduced

ymptoms of RA upon flavonoids treatment. Sun et al. have demon-

trated that the flavonoids, extracted from the herb Flemingia philippinen-
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is , can improve the symptoms of RA by inhibiting the expression of p-

RK1, p-p38, and p-JNK in paw tissues of CIA mice [99] . Zhai et al. have

eported that liquiritin, a flavonoid extracted from the herb Glycyrrhiza

ralensis , can significantly inhibit the IL-1 𝛽-induced RA-FLS prolifera-

ion by down-regulating p-p38, and p-JNK [100] . 

.3. The roles of flavonoids in NF- 𝜅B and STAT signaling pathways 

NF- 𝜅B and STAT also contribute significantly to RA. When NF- 𝜅B

nd STAT are activated, they then shift to the nucleus and gets involved

n the regulation of inflammatory response, cell proliferation and apop-

osis [ 101 , 102 ]. NF- 𝜅B and STAT are profoundly and sustainably acti-

ated in CIA and AIA mice, which are improved by flavonoids. Bai et

l. have reported that baicalin can alleviate CIA in rats and repress RA-

LS proliferation by down-regulating nuclear p65 expression [103] . Bao

t al. have reported that Genkwanin, a flavonoid isolated from the herb

aphne genkwa , exerts anti-RA effects by down-regulating the expression

f p-STAT3 and p-NF- 𝜅B in paw tissues of AIA mice [101] . 

.4. The roles of flavonoids in NRF2 signaling pathways 

Oxidative stress is involved in the pathogenesis and pathological pro-

ess of RA. Upon activating Nrf2 signaling pathway, various antioxidant

nzymes (such as heme oxygenase-1, HO-1) are released to regulate the

xidative stress state of RA [104] . It has been well conducted that Nrf2-

eficiency increases susceptibility to RA [105] and the mice with Nrf2-

nockout background shows higher levels of pro-inflammatory media-

ors than their wild-type littermates [106] . The Nrf2 signaling pathway

s activated accompanied with reduced symptoms of RA upon flavonoids

reatment. Karatas et al. have reported that epigallocatechin 3-gallate

ad anti-arthritic effects by up-regulating the expression of Nrf2 and

O1 in joint tissues of CIA rats [107] . Su et al. have reported that

alycosin, a flavonoid isolated from the herb Astragali Radix , can sup-

ress the expression of pro-inflammatory mediators in RA-FLS by up-

egulating the expression of Nrf2 and HO1 [108] . 

. Concluding remarks 

Nowadays, gut microbiota has been a hot target in a variety of dis-

ases. Alterations in the composition of gut microbiota have been ob-

erved in mice with CIA and individuals with established RA [21] , sug-

esting gut microbiota may also get involved in the occurrence and pro-

ression of RA. With the advent of metagenome sequencing and the de-

elopment of germ-free and humanized mouse models, the association

etween gut microbiota and RA has been well understood. In light of

hese existing data, the concepts of gut-joint axis are described, replen-

shing the pathogenesis of RA. 

The main drawback of flavonoids is that they take effect slowly and

eed to be taken for a long time, which is also related to their poor

bsorption. Most of flavonoids are taken orally and can encounter com-

ensal bacteria in the small and large intestine. These microbes collec-

ively encode 150-fold-more genes than human genome [109] , show-

ng a rich enzyme repository with drug-metabolizing potentials. In fact,

here are quite a number of flavonoids metabolized by gut microbiota,

nd the metabolites possess better absorption and more active pharma-

ological activities than their parent drugs. Take scutellarin, a flavonoid

ith high effectiveness in clinic, for example. The oral bioavailability of

cutellarin, is exceptionally low. In healthy volunteers and rats, the oral

ioavailability of scutellarin was found to be merely 2.2% and 0.67%

espectively [110] . The physiological effects of scutellarin are in no-

able contrast to its poor bioavailability. Although scutellarin seems to

e absorbed in the form of scutellarein, no aglycone but isoscutellarin

s detected in the portal vein plasma and the plasma concentrations

f isoscutellarin exceed that of scutellarin by about 30-fold. Further-

ore, gut microbiota also gets involved in the process of isoscutellarin
7 
ransformation and isoscutellarin shows more excellent pharmacologi-

al effects than scutellarin [110] . Taken together, focus on flavonoids

ut microbiota-derived metabolites seems to be a promising method to

earch for novel drugs. 

Although using flavonoids as a therapeutic intervention against RA

s at a very initial stage and still needs a lot of pre-clinical and clinical

ata, researches are shedding light on flavonoids in potential clinical

reatment and prevention of RA. Further studies are required specifi-

ally to define the exact step of gut-joint axis (especially the intestinal

ucosal-derived immune cells trafficking step) during the pathogenesis

f RA and to develop flavonoids for RA treatment with the focus on the

nterplays with flavonoids and gut microbiota. 
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