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PREFACE 

Xuhua Sun, University of Macau (Macao SAR of China) 

With a long history of mathematics theory and practice, the Chinese community 
has a unique appeal to mathematics educators at the primary education level. 
Ancient Chinese peoples invented computation tools (the Chinese Suanpan, 
considered the fifth most important invention in Chinese history, came into 
widespread use around 1,000 years ago during the Song Dynasty, and was added 
to UNESCO’s list of intangible heritage in 2013). Computation procedures 
associated with the counting rod tool in SunZi Suanjing (孫子算經) A.D. 5 
century (Lam and Ang, 2004), are still used in current textbooks and classrooms. 
In recent years, the outstanding performance of Chinese students in Shanghai in 
the OECD PISA mathematics assessment, and Macau SAR’s rise from 15th 
position in 2009 to 6th position in 2013, have attracted much interest from 
educators around the world. 

Macau is unique in its role in Chinese mathematics education. For example, the 
first Macau`s Jesuits Matteo Ricci translated Euclid`s Elements with Guangqi 
Xu and the first  arithmetic book  on European pen calculation, not bead 
calculation before, Tong Wen SuanZhi, with Zhihao Li, changed Chinese 
mathematics education and gave Chinese people their first access to real images 
of western mathematics.  We believe that this heritage of mixed traditions under 
the influence of the Confucian educational heritage can provide a resource for 
new thinking in global mathematics education development. 

With a fascinating history of 400 years of cultural exchanges between the East 
and the West, Macau is also unique in its cultures and society. It boasts many 
cultural treasures of all types, including picturesque dwellings in traditional 
styles, ancient temples built during the Ming and Qing dynasties, buildings with 
Southern European architectural features, baroque style churches and impressive 
contemporary structures. In July 2005, the historic district collectively known as 
the “Historic Centre of Macau” was inscribed on the UNESCO World Heritage 
List. Today Macau is a Special Administrative Region (SAR) of the People's 
Republic of China, benefiting from the "one country, two systems" policy. 
Macau SAR is growing in the number and diversity of its attractions. The 
greatest of these continues to be Macau's unique society, with communities from 
the East and the West complementing each other. It offers a perfect environment 
for an international conference. 

 We are especially interested in the “Dialogue among Civilizations” relating to 
whole number arithmetic as a foundational component in mathematics education 
around the world. It is our great pleasure to have mathematics educators from all 
over the world come and enjoy Macau, and to make the ICMI STUDY 23 a rich 
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and professionally rewarding conference for all. The conference attendees will 
have the opportunity to experience the unique characteristics of Chinese 
mathematics education practice, which is closely connected to the Eastern 
traditions of didactics of mathematics that has seen important recent 
developments relating to whole number. We are excited to host ICMI STUDY 
23, and we warmly welcome all of you to come to Macau for ICMI STUDY 23, 
and much more! 

References 
Lam, L.Y., & Ang, T.S. (2004). Fleeting footsteps: Tracing the conception of arithmetic and 

algebra in ancient China. Singapore: World Scientific. 
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THE ICMI STUDY 23 
PRIMARY MATHEMATICS STUDY ON WHOLE NUMBERS  

Maria G. Bartolini Bussi (1) and Xuhua Sun (2) 

(1) University of Modena and Reggio Emilia (Italy),  
(2) University of Macau (China) 

Introduction 

This volume contains the proceedings of the twenty-third study led by the 
International Commission on Mathematical Instruction (ICMI). The study 
addresses, for the first time, mathematics teaching and learning in primary 
school (and pre-school as well) for all, taking into account international 
perspectives including socio-cultural diversity and institutional constraints. 
Whole number is the core content area, which is regarded as foundational for 
later mathematics learning; its teaching and learning are thus very important due 
to larger impact for later mathematics knowing.  

The study was lauched by ICMI at the end of 2012, with the appointment of two 
co-chairs (Maria G. (Mariolina) Bartolini Bussi and Xuhua Sun) and of the 
International Program Committee (IPC), which on behalf of ICMI is responsible 
for conducting the Study: Berinderjeet Kaur, Hamsa Venkat, Jarmila Novotna, 
Joanne Mulligan, Lieven Verschaffel, Maitree Inprasitha, Sybilla Beckmann, 
Sarah González; Abraham Arcavi (ICMI Secretary General), Ferdinando 
Arzarello (ICMI President),  Roger E. Howe (ICMI liason). 

During 2013 an intense mail exchange was realised within the IPC, in order to 
share the rationale, the goals and the steps of the forthcoming ICMI Study. 

The process 

The IPC meeting in Berlin (January 2014) 

In January 2014 (19-24) the IPC meeting took place in Berlin, at the IMU 
Secretariat, which generously supported the costs. The IPC members were 
welcomed by Prof. Dr. Jurgen Sprekels, director of the Weierstrass Institute for 
Applied Analysis and Stochastic (WIAS, Berlin), and by the ICMI President 
Prof Ferdinando Arzarello, who participated in the whole meeting. The meeting 
aimed at: 

a Sharing the ICMI study guidelines. 
b Producing the Discussion Document, in which a number of key issues 

and sub-themes related to the theme of the Study were identified and 
described in a preliminary manner.    

c Defining, in a preliminary manner, the criteria for identifying 
participants for the international conference, constituting a working 
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forum that would investigate the theme of the study. Particular emphasis 
was given to bringing together both experts in the field and newcomers 
with promising work in progress, as well as to gathering representatives 
with a variety of backgrounds from different regions, traditions and 
cultures.  

d Defining the way of disseminating the discussion document in order to 
reach, in the most effective way, the communities of the expected 
participants in different regions and cultures. 

e Defining the dates, the venue and the structure of the study Conference, 
that mirrored the key issues of the study, to appoint the chairs of the 
parallel sessions and to select a limited number of keynote speakers to be 
invited. 

The meeting in Berlin took place in a productive and collaborative climate: a 
draft version of the Discussion Document was agreed and the Conference dates 
and venue were chosen (June 3 – 7, 2015 at the University of Macau – China). 
Five themes (each corresponding to a Working Group in the Conference) were 
identified and assigned to pairs of members of the IPC 

1 The why and what of whole number arithmetic (Xuhua Sun, Sybilla 
Beckmann) 

2 Whole number thinking, learning, and development (Joanne Mulligan, 
Lieven Verschaffel) 

3 Aspects that affect whole number learning (Maria G. Bartolini Bussi, 
Maitree Inprasitha) 

4 How to teach and assess whole number arithmetic (Berinderjeet Kaur, 
Jarmila Novotná) 

5 Whole numbers and connections with other parts of mathematics (Sarah 
González, Hamsa Venkat). 

Three plenary speakers were invited:  
Liping Ma: The theoretical core of whole number arithmetic 
Brian Butterworth: Low numeracy: from brain to education 
Hyman Bass: Quantities, numbers, number names, and the real number line 

Three plenary panels were identified:  
Traditions in whole number arithmetic (chaired by Ferdinando Arzarello); 
Special needs in research and instruction in whole number arithmetic (chaired 

by Lieven Verschaffel); 
Whole numbers arithmetic and teacher education (chaired by Jarmila Novotná). 
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The Discussion Document 

The text of the Discussion Document was finalised in the following weeks and 
disseminated on April 1st 2014 on the ICMI website 1 , on the Conference 
website2 by means of the ICMI news3, through announcements in the most 
popular international mailing lists and through abridged versions published in 
some international journals (e. g. Educational Studies in Mathematics, the 
Newsletter of the European Mathematical Society, International Journal of 
STEM Education). 

In the Discussion Document a special emphasis was given to the importance of 
cultural diversity and to the effects of this diversity on the early introduction of 
whole numbers. In order to foster the understanding of the different contexts 
where authors had developed their studies, each applicant for the Conference 
was required to include background information about this context.  

The call for papers 

A conference management system was created by the University of Macau4. The 
initial deadline for submission was extended in order to solicit papers from 
authors coming from as many contexts as possible. 

The Conference 

Invited participants 

The review and selection processes took place in December 2014 - January 
2015. At the end 67 papers were accepted (in many cases with additional 
supported revisions) and distributed over the five themes. The results were 
communicated to the submitting authors by the end of February 2015, in line 
with the announced deadlines. For each accepted paper, a maximum of two 
(co)authors were invited to participate in the Study Conference. The resulting 
participation is summarised in Tab. 1. 

It is not surprising that Asia (and especially the China area) is well represented, 
because of the proximity of the venue. The other regions are unequally 
represented. Actually, in spite of the efforts of the IPC, the equity issue in the 
participation in this ICMI study is far from being reached, although the themes 

                                           

 

 
1 http://www.mathunion.org/icmi/conferences/icmi-studies/introduction/ 
2 http://www.umac.mo/fed/ICMI23/ 
3 http://www.mathunion.org/mailman/listinfo/icmi-news  
4 https://cmt.research.microsoft.com/ICMI2015/Default.aspx 
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had the potential to involve mathematics educators from non-affluent countries 
and policy makers. Several obstacles may be identified: 

ineffective dissemination: international mailing lists and journals continue to 
reach a limited portion of the mathematics education community across the 
world; 

language issues: the choice of English as the study language, although 
unescapable, might have inhibited some authors to apply; 

costs: airfares are not strictly related to distances from countries, and we had 
several comments about prohibitive costs of flights, with these costs affecting 
less well-represented parts of the globe disproportionately. 

Regions Papers  
Europe 28  
Asia 17 
North America 10 
Australia and New Zealand 6 
Africa 4 
Central and South America 2 
Total  67  

Tab. 1: Data  

Observers 

Thanks to generous support from the University of Macau, for the first time,  
this ICMI study was able to invite observers from non-affluent countries. The 
choice was to privilege CANP (Capacity & Networking Project, The 
Mathematical Sciences and Education in the Developing World) that is the 
major development focus of the international bodies of mathematicians and 
mathematics educators5.  

                                           

 

 
5 http://www.mathunion.org/icmi/activities/outreach-to-developing-countries/canp-project/ 
One representative for each of the following project was invited with a generous financial 
support: 
CANP1, Edi Math (Mali, 2011, with participants from across Sub-Saharan Africa); 
CANP2, Central America and the Caribbean (Costa Rica, 2012, with participants  from Latin 
America and the Caribbean); 
CANP3, South East Asia (Cambodia, 2013, with participants from ASEAN); 
CANP4, East Africa (Tanzania, 2014, with participants from Tanzania, Kenya, Uganda and 
Rwanda); 
CANP5, Andrean Region (Peru, to be held in 2016, with participants from Peru, Ecuador, 
Paraguay, Bolivia and Amazonian Brazil). 
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Some policy makers were also invited to join the Conference. 

The future steps 

The ICMI Study Conference will serve as the basis for the production of the 
Study Volume. The character of the volume is rather unique to ICMI studies and 
is different from proceedings, edited books and handbooks. The ICMI Study 
Volume appears as a book in the New ICMI Studies Series (NISS) whose 
general editors are the President and the Secretary-General of ICMI. The volume 
should include the texts of plenary speeches, chapters describing the outcomes 
from the panels and chapters collectively and consensually produced by each of 
the groups (under the guidance of their co-leaders, who are members of the IPC) 
integrating the outcomes from the parallel workshops of the ICMI Study 
Conference. Although the volume exploits the contributions appearing in the 
proceedings, the collective production will be started during the Conference, 
drawing on the discussions and cooperative works of participants. It is planned 
to present the volume on the occasion of ICME13 in Hamburg (2016)6. 

The volume of proceedings 

The proceedings are ready, carefully edited by Xuhua Sun, Jarmila Novotna, and 
Berinderjeet Kaur. The participants are warmly encouraged to exploit the 
presentation of plenary events and to read in advance at least the parts related to 
their theme, as a significant part of the working group time will be devoted to 
discussions between participants, in order to foster the collective production of 
the volume. 

The distribution of papers in different themes (and, accordingly, of authors in 
different working groups) was not easy at all. At first, we tried to meet the 
authors‘ first or second choice, but later, in many cases, we had to cluster the 
papers in different ways, following the Chinese approach of “grasping ways 
beyond categories” and “categorise in order to unite categories”. 

Concluding remarks 

As participants in other ICMI studies, we believe that this study has some 
peculiar features that we wish to emphasise: 

- the preparation of a context form, to be filled by each participant, to give the 
background information of the study and/or its theoretical statements, 

                                                                                                                                    

 

 
 
6 http://icme13.org  
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- the invitation to submit video-clips with papers, to exploit the effectiveness 
of visual data in the age of  web communication, 

- the participation of IPC members as authors and not only as organisers and 
co-leaders of working groups, 

- the scientific support offered to authors in the revision of their papers, 
- the economic support offered to authors from the University of Macau, 
- the supported participation of CANP observers, 
- the involvement of both the IMU President (Prof. Shigefumi Mori) and the 

ICMI President (Prof. Ferdinando Arzarello) in the preparation of the 
Conference. 

This collective international effort will lead us in a few weeks to the Macau 
Conference, as a product of the fruitful cooperation between mathematicians and 
mathematics educators, when, for the first time in the history of ICMI, the issue 
of whole numbers arithmetic in primary school is to be addressed. 

Reggio Emilia – Macau, March 31 2015 



ICMI Study 23                                                                                           Bartolini. Introduction to plenary speeches 

9 
 

THE ICMI STUDY 23 PLENARY SPEAKERS 

Maria G. (Mariolina) Bartolini Bussi  

University of Modena and Reggio Emilia, Italy  

Since the meeting of the International Program Committee in Berlin (January 
2014) the issue of plenary speakers was addressed. As in the case of panels, the 
IPC agreed on themes to be addressed: 

the epistemological issue: as ICMI is a commission of the International 
Mathematical Union, mathematics must be in the foreground; 

the neurocognitive issue: as studies on the development of “number sense” are 
carried out by neuroscientists, it is timely to develop a serious interdisciplinary 
work between neuroscientists and mathematics educators; 

the cultural issue: because of the importance of the cultural contexts, a 
thoughtful discussion on different traditions in the teaching and learning of 
whole number arithmetic is needed. 

This decision carried in a natural way the IPC to choose some outstanding 
researchers which might have represented the above perspectives. 

Hyman Bass. His mathematical research covers broad areas of algebra with 
connections to geometry, topology, and number theory. He is a member of the 
National Academy of Sciences and the American Academy of Arts and 
Sciences. He was president of the American Mathematical Society and of the 
International Commission on Mathematical Instruction (ICMI).  

Brian Butterworth. He is Emeritus Professor of Cognitive Neuropsychology at 
in the Institute of Cognitive Neuroscience at University College London. He is 
collaborating with colleagues around the world on the neuropsychology and the 
genetics of mathematical abilities, with a multicultural perspective. A long-term 
project is to persuade educators and governments to recognize dyscalculia as a 
serious handicap that needs specialized help. 

Ma Liping. She was senior scholar at the Carnegie Foundation for 
Advancement of Teaching. Her book (Knowing and teaching elementary 
mathematics) is quoted on all sides of discussions about how to teach 
mathematics in elementary schools in the United States. She has a Ph.D. from 
Stanford University and earned a masters degree in education from East China 
Normal University. She is currently working independently. 
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QUANTITIES, NUMBERS, NUMBER NAMES,  
AND THE REAL NUMBER LINE 

Hyman Bass1, University of Michigan, USA 

Abstract 

This paper describes an approach to developing concepts of number using general 
notions of quantity and their measurement.  This approach, most prominently 
articulated by Davydov and his colleagues, offers some affordances that are discussed. 
Some arguments favouring this approach are offered. First is a way of providing 
coherent connections in the development of whole numbers and fractions.  Second is 
that it makes the geometric number line continuum present from the start of the school 
curriculum as a useful mathematical object and concept into which real numbers can 
be eventually explicitly developed.  Third, in the Davydov approach, are some 
opportunities for some early algebraic thinking. I also present an instructional context 
and approach for the development of place value as a numeration system modelled on 
the invention of a place value system of number representation. 

Key words:  measure, number, place value, quantity, real number line 

... we assumed that the students’ creation of a detailed and thorough conception 
of a real number, underlying which is the concept of quantity, is the purpose of 
this entire subject, from grade 1 to 10 . . . the teacher, relying on the knowledge 
previously acquired by the children, introduces number as a . . .  representation 
of a general relationship of quantities, where one of the quantities is taken as a 
measure and is computing the other.                                    Vasily Davydov, 1990 

Two conceptions of quantity: Counting and measure  

Number and operations have two aspects:  conceptual (what numbers are) and 
nominal (how we name and denote numbers).  Conceptually, numbers arise 
from a sense of quantity of some experiential species of objects – count (of a set 
or collection); distance; area; volume; time; rate; etc.  And in fact before 
children enter school, they have already acquired a sense of quantity, of rough 
comparison of size, as well as of counting.  Number is not intrinsically attached 
to a quantity; rather it arises from measuring one quantity by another, taken to 
be the “unit:” How “much” (or many) of the unit is needed to constitute the 
given quantity?  This is the measurement framework in which fractions are often 
introduced, via part-whole relations, the whole playing the role of the unit, 
which is a choice to be made, and has to be specified.  The discrete (counting) 
context in which whole numbers are often developed is distinguished by the use 
of the single-object set as the unit, so that the very concept of the unit, and its 

                                           

 

 
1 I am greatly indebted to Deborah Ball for critical feedback and for helpful framing of the 
ideas and perspectives presented here, not all of which we share. 
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possible variability, is not necessarily subject to conscious consideration.  This 
choice is so natural, and often taken for granted, that the concept of a chosen 
unit of measurement need not enter explicit discussion.  If number is first 
developed exclusively in this discrete context, then fractions, introduced later, 
might appear to be, conceptually, a new and more complex species of number 
quite separate from whole numbers. This might make it difficult to see how the 
two kinds of numbers eventually coherently inhabit the same real number line.  
Indeed, this integration entails seeing the placement of whole numbers on the 
number line from the point of view (not of discrete counting, but) of continuous 
linear measure.   

This distinction is further reinforced by the fact that fractions have their own 
notational representation, distinct from base-10 place value of whole numbers.  
The operations on numbers likewise have conceptual models, but notational 
representations of number are needed in order to construct computational 
algorithms.  A numerical computation, of say a sum of two numbers, is not 
about understanding what the sum means.  Instead, given two numbers A and B 
in notation system S, a calculation is a construction of a representation of A + B 
in same notation system S.  That is why “2 + 11,” though a logically correct 
answer to, “What is 5 + 8?” is not the correct answer, 13, to: “Calculate 5 + 8.”  
Important as the notation is, its emphasis without links to the conceptual 
foundations can make it seem that quantities are the same as their number 
names, which could be misleading.    

Two possible pathways exist for the development of whole numbers: 

Counting:  

 Using the discrete context of finite sets, introduce whole numbers as 
cardinals, and addition as the cardinal of a disjoint union, and the experience 
of enumerating and comparing sets. (This relies on a discrete model of 
quantity.) 

Measure:  

 Using the general context of quantity of various species of experiential 
objects, and addition as disjoint union or concatenation.  This allows 
discussion of comparison of quantities (which one is more), and, implicitly 
that the larger quantity equals the smaller plus some other quantity.  This can 
be done before any numerical values have been attached to the quantities, 
with the relations expressed symbolically. 

 Then number is introduced by choice of a unit, and the number attached to a 
quantity is how much of the unit is needed to constitute the given quantity.  
Whole numbers then are represented in the form of quantities that are 
measured exactly by a set of copies of the unit. 

The measure pathway was articulated in detail by Davydov (1975).  My first 
purpose here is to discuss the measure pathway, and cite some possible virtues 
that merit our attention.  In particular, I will note that it makes available from the 
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beginning the continuous number line as a coherent geometric environment in 
which all numbers of school mathematics eventually reside.   

My second purpose is to discuss our base-10 place value notation for whole 
numbers (and finite decimals) and their operations, emphasising its 
extraordinary power and its impact on the progress of mathematics and science.  
I will also describe a particular instructional model2 for the development of 
place value.  This model can be seen to provide an activity context for not only 
conceptual understanding of place value, but also one that models the 
intellectual need (Harel, 2007) to invent some version of positional number 
notation. 

Implications for the development of the real number line:   

Two narratives 

I propose here some affordances of developing number in the measure context.  
Most importantly, this approach offers a productive context for developing the 
real number line across the grades.  Relying exclusively on the discrete model of 
counting leads to what I will call the “construction narrative” of the number line, 
in which the new kinds of numbers, their notations, and their operations, are 
added incrementally without sufficient interconnection.  In this narrative whole 
numbers, and their verbal names and symbolic base-10 representations, 
predominate.  New kinds of numbers are added – fractions, negative numbers, a 
few irrational numbers, and eventually infinite decimals.  This process of 
bringing in these new types of number can lead to “immigration stress,” and 
difficulties of assimilation of the new numbers into one coherent context.  In 
particular, the real number line as a coherent connected number universe with 
uniformly smooth arithmetic operations is not as explicit as it could be.  

In the “measure narrative” the number line, at least as a geometric continuum, is 
featured as the environment of linear measurement. A premise of this trajectory 
is that the mathematical resources that children bring include not only discrete 
counting, but also a sense of measurement of continuous quantity.  A possible 
metaphor for geometric number line is an (indefinitely long) string, flexible but 
inelastic. Then linear quantities would be “measured” by a segment of string. 
This would permit comparison of size even before such measures acquire 
numerical names.  An example of an activity drawing on this metaphor is to 
engage students in considering how far two toy cars travel from a starting point 
by examining where each car stops along a strip of tape on the floor. In order to 
compare measures of two things that are remote, one adopts a standard unit of 

                                           

 

 
2 This is based on work by Deborah Ball with teacher candidates, representing work done 
with primary grade children. 
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measure, against which both quantities can be compared.  And then whole 
number quantities appear as iterated composites of that unit.   

To situate numbers on the number line, the “oriented unit” is specified by the 
choice of an ordered pair of points, called 0 and 1, the unit of linear measure 
then being the segment, [0, 1], between them.  The direction from 0 to 1 then 
also specifies a positive orientation to the number line (which has an intrinsic 
linear order defined by the fact that, given any three points, one lies in the 
interval between the other two), whereupon the whole numbers (and eventually 
all real numbers) can be located on the number line by juxtaposing replicas of 
[0, 1] in the positive direction. 

Of course the counting approach to whole numbers can be interpreted in 
measure terms, since cardinal is one particular context of measurement.  
However, counting is only one such (discontinuous) context, and the unit (a set 
with one object) must be made explicit to extend to the general concept of unit.  
Other units in the discrete context are made visible when one later encounters 
(skip) counting in groups.  More general continuous measurement environments 
for whole numbers are robustly represented with materials such as Cuisenaire 
rods. Eventually, whole numbers (as cardinals) are so well conceptually 
assimilated that they seem to become (abstract) entities in their own right. 

Fractions are often developed from a measure perspective, with fractions, from 
the start, being conceived as part-whole relationships, and applied to a wide 
variety of species of quantities:  round food; lengths of ribbon; containers of 
sugar, or of milk; sets of objects; periods of time; etc.  In contrast with whole 
numbers, it is less common to name a fraction without adding the word “of.”  
Moreover, we do not hesitate to compare the size of whole numbers, while, with 
fractions, we are more prone to first ask, “fractions of what?” – attending to 
specification of the unit (or whole).   

Operations and the real number line 

Addition and subtraction appear to be conceptually similar in both the counting 
and measure regimes, addition corresponding to combination (composition, and 
decomposition of quantities) and subtraction to taking away or comparison.  

Multiplication is more subtle, and more complex. One model is repeated 
addition of some fixed quantity, as if applying the counting regime to fixed size 
groups of unit quantities.  One difficulty with this model is that it obscures the 
commutativity of multiplication.  This is sometimes repaired by use of 
rectangular arrays, eventually evolving into area models.  The difficulty of the 
area model, from a measure perspective, is that numbers and their products then 
have different units of measure (for example, length and area) so that it is 
problematic to assign meaning to an expression like a•b+c.  One resolution of 
this is to use a continuous version of repeated addition, which is scaling 
(magnification and shrinking). This has the advantage of maintaining the species 
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of quantities involved.  These are complex conceptual issues, which I do not 
pursue here. 

Suffice it to say here that, from the point of view of quantity (measurement), we 
can combine (simplify) additive expressions only when they are quantities of the 
same species (we do not add apples and oranges, unless combined into some 
larger category, like “fruit”), expressed with a common unit, and then the sum or 
difference is a quantity expressed with that same unit. When dealing with 
fractions, a quantity like 3/5 is understood to be three one-fifths, where the latter 
corresponds to a rescaling of the unit.  In adding fractions, finding a “common 
denominator” is then a process of measuring two quantities with a common unit 
in order to make simplification of the sum possible. Similarly, in multi-digit 
addition, the alignment of the base-10 representations of the summands assures 
that the addition in each column is adding digits with the same base-10 units 
attached. 

On the other hand, for multiplication and division, the units of measurement are 
not restricted, but simply parallel the operation, leading to compound units, like:  
kilometres/hour; foot•pounds; pounds per square inch; class•hours. 

Once numbers are named and denoted (in base-10, or with fraction notation), 
then we develop algorithms for the operations in that notational system.  The 
power of the base-10 system is that addition, subtraction, and multiplication can 
be performed on any pair of whole numbers knowing only how to perform 
single-digit operations (“basic facts”), plus how to keep track of positional 
notation. This puts extraordinary computational power instructionally within 
reach of young children, a major historical development. 

Once fractions and integers have been developed, one has the rational numbers, 
which are densely distributed on the number line: between any two points there 
is a rational number.  The example of irrational numbers, like 2, shows that 
many points remained to be named.  Informal arguments of approximation can 
indicate how all points can eventually be specified by possibly infinite decimal 
representations.  Moreover, informal assurance can be given that the operations 
extend by continuity to all real numbers, preserving the basic rules of arithmetic.  
This synthesis of the real number line sets the stage for higher mathematics, for 
example calculus. 

The Davydov Curriculum 

Davydov, a Vygotzkian psychologist and educator, and his colleagues in the 
Soviet Union developed, in the 1960s and 1970s, a curriculum based on the 
measure approach  (1990). 

In order to develop the concept of number, the Davydov curriculum delayed the 
introduction of number in school instruction until late in the first grade.  Early 
lessons concentrate on “pre-numerical” material: properties of objects such as 
colour, shape, and size, and then quantities such as length, volume, area, mass, 



ICMI Study 23                                                                                           Bass, Quantities, Numbers. . . Number Line 

15 
 

and amount of discrete objects (i.e. collections of things, but without yet using 
number to enumerate “how many”).  

According to Davydov, the fundamental problem solved by the invention of 
number is the task of taking a given quantity (length, volume, mass, area, 
amount of discrete objects) and reproducing it at a different time or place.  
Moxhay (2008) describes the following activity that illustrates this: 

On one table, is a strip of paper tape. The task is to go to another table (in a 
different room) and cut off, from the supply of paper tape, a piece that is exactly 
the same length as the original one. But one is not allowed to carry the original 
paper strip over to the other table. In Davydov’s experiments, children 
sometimes just walked over to the second table and cut off a piece of paper of a 
random size, hoping that it would be the same length as the original one. In such 
cases, conditions of the task seemed to the children to make a correct solution 
impossible (except by luck).  

Davydov and his colleagues explained that a solution might involve taking a 
third object, such as a string, and cutting it to be just precisely the length of the 
paper strip, and then carrying this intermediary object (the string) to the other 
table, where it can be used to lay off a new paper strip of the required length. In 
this case, the intermediary is equal in length to the object to be reproduced.  The 
curricular approach showed children how to take a given third object, say a 
piece of wood, and, if it is longer than the paper strip, mark it to show the length 
of the paper strip.  This solution was equivalent to the first one, with the children 
performing just a different set of operations. But if the only available 
intermediary object was smaller than the paper strip – for example, a wooden 
block, this was the an interesting case, for then the children could learn that they 
could use the block as a unit – as an intermediary than could be placed 
repeatedly (each time marking the paper with a pencil), and then counting up 
how many times the unit has been laid down. The unit could then be carried to 
the other table (together with the number) where it would be laid down on the 
paper tape the number of times that is necessary to reproduce, by cutting, a 
paper strip of the required length. Note that, only with this last method – 
selection of a unit and counting how many of it are needed – that number names 
make an appearance.   

Although this is a particular task, solved by a particular discovery on the part of 
the children, it is said to lead “genetically” to the solution of all analogous tasks. 
If the children, working as a collective, grasp the meaning of the construction 
they have made, then they should (again, collectively, at least at first) be able to 
attack all analogous problems. Davydov argues that children thus recreate, in 
brief, the invention of number as a human tool that enables any quantity to be 
reproduced at a different place or time.  It is worth noting that this task would 
lose its force in the discrete context of counting, in which the portability of 
measure is much simpler to achieve, but therefore also invisible and tacit. 
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Beyond the visibly algebraic form of these equations and relations, introduced 
quite early, there are further noteworthy features, having to do with the very 
nature of the “=” sign.  When equations are introduced numerically, the first 
exercises often have the format, 8 + 4  =  _, with the result that students gain the 
habit of reading “=” as “calculate what is on the left, and put the answer on the 
right.”  Thus, they will validate the equation  8 + 4  =  12,  but question 12  =  8 
+ 4.  Moreover, they may fill the blank in 8 + 4  =  _ + 7 with 12.  I expect that 
these confusions would be mitigated with the balancing of quantities approach 
of the Davydov curriculum. Of course other curricula have ways of 
accomplishing this as well. 

Place Value 

The greatest calamity in the history of science was the failure of Archimedes to 
invent positional notation.                                                    - Carl Friedrich Gauss 

Davydov emphasised the notion of quantity as being primary, the concept of 
number being later derived as a measure of one quantity by another (the unit).  
There then arises the task of providing names and notations for numbers.  
Although the notion of quantity is in some sense cognitively primordial, the 
naming of numbers, in contrast, is a cultural construct, and it has been 
accomplished historically in many different ways (see for example ICMI Study 
13, (Leung, Graf and Lopez-Real, 2006)).  But the naming of numbers is much 
more than a cultural convention.  It is itself a piece of conceptual technology 
with huge bearing on the progress of science. Our current Hindu-Arabic system 
of (base-10) place value notation, now universally used in science, was 
solidified relatively late in history.  It puts within reach of even young children a 
quantitative power not reached even by the mathematical genius of ancient 
Greece.  (See the above quote from Gauss.) 

Howe (2011) offers a critique of elementary curriculum in the U.S., “Place value 
...  is treated as a vocabulary issue: ones place, tens place, hundreds place. It is 
described procedurally rather than conceptually.”  How can one produce in 
young children, and their teachers, a robust conceptual understanding of place 
value?  I describe here a method developed by Deborah Ball, one that is now an 
integral part of the teacher education program at my university. Teacher 
candidates experience this sequence for several purposes, among them to 
appreciate the structure and meaning of a numeration system, in this case, the 
base-ten system. This approach fits here since its design echoes the instructional 
approach of Davydov, Brousseau, and others, who like to introduce a concept 
using a mathematical problem context whose solution necessitates discovery of 
that concept.   

In this case, the problem is to collectively count a large collection.  The size of 
the count is sufficient to require some structural organisation for record keeping, 
and to make this common across counters so as to be able to coherently combine 
the different records.  It is this need that precipitates the idea of grouping, which 
leads to a hierarchal structure akin to place value. 
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The setting here is a methods class for some 25 elementary teacher interns.  (The 
activity is a compressed approximation of what would be done with primary 
grade children over much longer period of time.)  About half of the interns sit in 
a circle on the floor with the teacher, the others observing and taking notes.  On 
the floor, the teacher pours out a container of over 2,000 sticks.  She first invites 
the interns to guess/estimate how many sticks there are.  After a wide range of 
guesses, she asks, “How could we find out?” and suggests that they count them. 
So the counting begins, each intern gathering individual sticks from the pile, and 
lining them up. However, their individual collections quickly become so 
numerous that they feel a need to somehow consolidate.  After some discussion 
the idea of grouping the sticks emerges. Note that this arises, not as a 
mathematical suggestion, but as a practical necessity, given the large size of the 
counting task. And with rubber bands that are available, they begin to form what 
they call “bundles” of sticks. But then the question arises, “How many sticks 
should be in a bundle?” Several choices are considered (e.g., 2, 5, 10, 25, 60).  
The small values are judged not to achieve enough efficiency to be worthwhile, 
and the larger to be possibly unwieldy.  It is nonetheless clear that this is a 
choice to be made; it is not mathematically forced.  (This opens the space to 
later contemplate place value in bases other than 10.)  More importantly, this 
choice should be the same for each person. Otherwise there would be no 
coherent way to count the amalgamated collections at the end. The teacher 
eventually proposes making bundles of ten sticks each. 

Then the counting continues, and the interns make a bundle as soon as ten loose 
sticks are available to do so. At any given moment, an intern’s collection has the 
form of a certain number of bundles, together with at most 9 loose sticks.  
However, the big pile is so numerous that the interns confront the same problem 
again, this time with their bundles instead of individual sticks. A discussion 
similar to the earlier one then ensues about grouping the bundles, to form 
“bundles of bundles,” or “super-bundles,” as they came to be called.  Again the 
question arose:  “How many bundles should there be in a super-bundle?”  It was 
noted that this choice could, in principle, be independent of the first.  But it was 
decided that there would be some mathematical merit in again choosing ten for 
the number of bundles in a super-bundle. And these could again be bound 
together with rubber bands. At this point, each intern’s collection consists of a 
modest number of super-bundles, at most 9 bundles, and at most 9 loose sticks. 

Finally, when the big pile was exhausted, the collections of the different interns 
were brought together. Then the many loose sticks were bundled until at most 9 
loose sticks remained. In turn then, the bundles were super-bundled until at most 
9 bundles remained.  Finally, there being over twenty super-bundles, it was 
decided to make two “mega-bundles,” each composed of ten super-bundles. In 
the end then, the original pile had been organized into 2 mega-bundles, 4 super-
bundles, 7 bundles, and 6 loose sticks. Thus, the cardinal of this huge collection 
of could be specified by a list of just four small numbers, (2, 4, 7, 6), specifying 
the numbers of mega-bundles, super-bundles, bundles, and loose sticks, 
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LOW NUMERACY: FROM BRAIN TO EDUCATION 

Brian Butterworth, UCL, United Kingdom 

Abstract 

It is widely agreed that humans inherit a numerical competence, though the exact 
nature of this competence is disputed. I argue that it is the inherited competence with 
whole numbers (the ‘number module’) that is foundational for arithmetical 
development. This is clear from a longitudinal study of learners from kindergarten to 
Year 5. Recent research has identified a brain network that underlies our capacity for 
numbers and arithmetic, with whole number processing a core region of this network. 
A twin study shows a strong heritable component in whole number competence, its 
link to arithmetical development and to the brain region. These findings have 
implications for improving numeracy skills especially among low-attaining learners.   

Key words: dyscalculia, innate capacities, intervention design, numerosity processing, 
parietal lobes 

Introduction  

Leopold Kronecker is quoted famously as making the ontological claim that 
“God made the integers, all else is the work of man.’ This is not a testable 
hypothesis. Kronecker may or may not have been a believer in the supernatural 
when he made this statement. He was born a Jew but converted to Christianity a 
year before his death. He apparently believed that only integers and objects 
constructed from them actually existed. This included rational numbers but 
excluded the reals, π, transcendental numbers more generally, and infinities, all 
of which may be mathematically useful, but didn’t really exist.  

If God did make the integers, how did we come to know them? This is a 
problem that has exercised the best philosophical minds since the time of Plato. 
However, if we take his apothegm more metaphorically, he may be arguing that 
our knowledge of maths depends on our knowledge of integers. That is, we re-
cast his ontological claim as an epistemological one. We can go further, and re-
cast God as evolution. That is to say, is there an evolutionary basis for our 
knowledge of integers? Here we need to step back from the term ‘integer’, 
which includes negative numbers, and restrict ourselves to positive whole 
numbers, the so-called ‘natural numbers’.  

It is now widely acknowledged that the typical human brain is endowed by 
evolution with a mechanism for representing and discriminating numbers. It is 
important to be clear right at the outset, that when I talk about numbers I do not 
mean just our familiar symbols – counting words and ‘Arabic’ numerals, I 
include any representation of the number of items in a collection, more formally 
the cardinality of the set, including unnamed mental representations. Evidence 
comes from a variety of sources.  

Human infants notice changes in the number of objects they can see, when other 
dimensions of the objects are controlled. In the first study of this kind, infants of 
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five to six months noticed when a successive displays of two dots was followed 
by a display of three dots, and when successive displays of three dots was 
followed by a display of two dots. However, they did not notice a change from 
four to six dots or from six to four dots (Starkey and Cooper, 1980). With larger 
numbers of dots, infants need a ratio of 2:1 to notice a change in the number of 
dots (Xu and Spelke, 2000). Recently studies have shown that infants notice the 
matches between the number of sounds and the number of objects on the screen 
(Izard et al., 2009; Jordan and Brannon, 2006), suggesting that the infant’s 
mental representation of number is relatively abstract – that is, independent of 
modality of presentation.  

There is also evidence for individual differences in various measures of this 
ability, at least in older children (Geary et al., 2009; Piazza et al., 2010; Reeve et 
al., 2012). Twin studies suggest that differences appear to be at least partly 
genetic (Geary et al., 2009; Piazza et al., 2010; Reeve et al., 2012). The genetic 
factor is reinforced by the finding that certain kinds of genetic anomaly, such as 
Turner’s Syndrome, affects numerical abilities, including very basic abilities 
such as selecting the larger of two numbers or giving the number of dots in an 
array, even when general cognitive ability is normal or even superior (Bruandet 
al., 2004; Butterworth et al., 1999; Temple and Marriott, 1998).  

Another line of evidence comes from the studies of other species. Many of those 
in which numerical abilities have been tested, show performance comparable 
with or significantly better than human infants. Chimpanzees are able to match 
the correct digit to a random display of dots up to at least ten (Matsuzawa, 1985; 
Tomonaga and Matsuzawa, 2002). Monkeys are able to select the larger 
numerosity of two displays even when the elements in the display are novel. 
Moreover, they show a very similar ‘distance effect’ to humans – that is, the 
more different the numbers, the more likely they are to select the larger correctly 
(Brannon and Terrace, 1998). Birds have been known to be good at number 
tasks for 80 years or more. Numerical abilities have been demonstrated in 
elephants, cats, rats, salamanders and even fish (Agrillo et al., 2012).  

Neuropsychological studies of patients with brain damage reveal a complex 
network in the brain that supports arithmetical processes. Damage to the frontal 
lobes affects the ability to solve novel problems, while damage to the parietal 
lobe, usually the left parietal lobes, affects the ability to do routine tasks or to 
recall previously learned facts (Cipolotti and van Harskamp, 2001) and 
(Butterworth, 1999, Chapter 4) for reviews. Neuroimaging shows that the 
parietal lobes are activated by very simple tasks, such as selecting the larger of 
two numbers or the display with more dots (Dehaene et al., 2003; Pinel et al., 
2001). In fact, small regions in the left and right parietal lobes (the intraparietal 
sulci) are specific for processing the numerosity of displays (Castelli, Glaser and 
Butterworth, 2006). These regions are part of a brain network involving both the 
parietal and frontal lobes that are activated almost every time we carry out a 
numerical calculation, routine or novel (Andres et al., 2011) . These findings 
link numerosity processing and arithmetical calculation in the brain. See 
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(Butterworth and Walsh, 2011) for a review of the neural basis of mathematics. I 
will return to the question of whether individual differences in brain structure 
and functioning can be linked to individual differences in arithmetical 
competence.  

Various environmental factors can all be associated with lower mathematics 
attainment, including socioeconomic status and minority ethnic status, as well as 
gender, which should perhaps be considered a social rather than genetic factor in 
this context (Royer and Walles, 2007).  Although it is difficult to assess the role 
of poor or inappropriate teaching, the fact that the introduction of detailed new 
national primary school strategy for numeracy in the UK had only a minor and 
possibly nonsignificant effect on numeracy for the group studied is indicative 
(Gross, Hudson and Price, 2009). It should also be noted that there are wide 
individual differences on even very simple tasks that depend relatively little on 
the quality of educational experience, such as comparison of the magnitude of 
two single-digit numbers or enumerating a small array of objects (Reigosa-
Crespo et al., 2012; Wilson and Dehaene, 2007). 

Taken together, the evidence presented here suggests that factors specific to the 
domain of numbers and arithmetic make a major independent contribution to 
low arithmetic attainment. This is supported by findings from studies that have 
found low attainment in learners matched for IQ and Working Memory. In a 
longitudinal study by Geary and colleagues, tests on understanding the 
numerosity of sets and on estimating the position of a number on a number line 
were two important predictors of low achievement in mathematics, affecting 
some 50% of the sample, and of mathematics learning disability, affecting 
approximately 7% of the sample (Geary et al., 2009). In a sample of 1500 pairs 
of monozygotic and 1375 pairs of dizygotic 7-year-old twins, Kovas and 
colleagues found that approximately 30% of the genetic variance was specific to 
mathematics (Kovas et al., 2007). In another genetic study, this time of first-
degree relatives of dyslexic probands, it was found that numerical abilities 
constituted a separate factor (Schulte-Körne et al., 2007). In fact, recent reviews 
have proposed that developmental dyscalculia follows from a core deficit in this 
domain-specific capacity (Butterworth, 2005; Rubinsten and Henik, 2009; 
Wilson and Dehaene, 2007). 

One obvious question arises: how do our numerical innate capacities relate to 
the learner’s ability to acquire arithmetic?  

Innate capacities  

Now it will come as no surprise to teachers of the first three years of school, that 
children’s numerical competence begins with whole numbers. However, recent 
research on the innate mechanisms available to humans and many other species 
propose two foundational ‘core systems’ that do not involve whole numbers. 
Deficiencies in these core systems it has been argued could contribute to low 
numeracy.  
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1. A mechanism for keeping track of the objects of attention. This is sometimes 
referred to as the ‘object tracking system’ and has limit of three or four objects. 
It is thought to underlie the phenomenon of ‘subitizing’ – making an accurate 
estimate of one to four objects without serial enumeration (Feigenson, Dehaene 
and Spelke, 2004).  It is proposed that the objects to be enumerated are held in 
working memory and that constitutes a representation with ‘numerical content’ 
(Carey, 2009; Le Corre and Carey, 2007).  

2. A mechanism for the analogue representation of the approximate number objects 
in a display. This is referred to as the ‘analogue number system’ (ANS). The 
internal representations of different numerical magnitudes can be thought of as 
Gaussian distributions of activation on a ‘mental number line’. It is typically 
tested by tasks involving clouds of dots (or other objects) typically too numerous 
to enumerate exactly in the time available. One common task is to compare two 
clouds of dots. (Addition and subtraction tasks for which the solution is 
compared with a third cloud of dots are also used). Individual differences are 
described in terms of a psychometric function, such as the Weber fraction, the 
smallest proportional difference between two clouds that can be reliably 
distinguished by the individual (Feigenson et al., 2004).  

There has been considerable interest, indeed excitement, in many studies that 
show the performance on tasks designed to measure competence in the 
approximate number system correlates significantly with arithmetical 
performance in both children and adults (Barth et al., 2006; Gilmore, McCarthy 
and Spelke, 2010; Halberda et al., 2012; Halberda, Mazzocco and Feigenson, 
2008). But as we all know, correlation is not cause, and no plausible mechanism 
for the relationship has been proposed and accepted.  

Now there are various problems with both core systems from the point of view 
of learning arithmetic. In the case of 1., there is an upper limit of 4. Now one 
key property of the number system is that a valid operation on its elements 
always yields another element in the same system. If one such operation is 
addition, and if 3 is an element, then 3 + 3 should yield an element in the 
system, but it cannot, since the limit is 4. To get round this, it has been proposed 
that noticing the number of object being tracked can be linked to the number 
words a child hears, and that they will be able to generalise – ‘bootstrap’ – from 
these experiences to numbers above the limit (Carey, 2009; Le Corre and Carey, 
2007). The problem is that the object-tracking system is designed to keep track 
of particular objects with as much detail as is required by the task, not abstract 
away from them (Bays and Husain, 2008). 

The problem with 2 is that it deals only in approximate quantities, whereas 
ordinary school arithmetic deals with exact quantities, and the transition from 
approximations to exact whole number arithmetic is still mysterious. These 
problems are well-known.  

While we do not doubt that these systems exist in the brain of human infants and 
other species, we have argued that a quite different core system underlies the 
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development of arithmetic. We and others have proposed a mechanism that can 
represent the ‘numerosity’ of a collection of objects; that is, the number of 
objects exactly, not approximately, up to a limit imposed by the developing 
brain. In a pioneering exploration, Gelman and Gallistel called these 
representations ‘numerons’, and argued that learning to count is a process of 
learning how to map number words consistently onto numerons (Gelman and 
Gallistel, 1978). I have argued, following Gelman and Gallistel, that humans 
inherit a ‘number module’ to deal with sets and their numerosity and that some 
developmental weaknesses in arithmetical development can be traced to 
deficiencies in the module (Butterworth, 1999, 2005). 

We have shown that a neural network computer simulation of the number 
module using what we have called a ‘numerosity code’ accurately models the 
‘size effect’ in addition. This where accuracy and speed are a function of the 
addends – that is, the larger the addends, or their sum, the longer it takes to 
retrieve or calculate the answer (Butterworth et al., 2001; Zorzi, Stoianov and 
Umilta, 2005).  

In the next section, I describe briefly some studies we have carried out that 
stress the importance of whole number competence in the subsequent 
development of arithmetic, using a very simple test: how quickly and accurately 
can the child enumerate a display of dots and say the answer.  

Longitudinal study of arithmetical development from Kindergarten to 
Grade 5 

This is a study carried out in Melbourne, Australia, led by Robert Reeve and his 
lab. The sample comprised one hundred fifty-nine 5.5- to 6.5-year olds (95 
boys). The children attended one of seven independent schools in middle-class 
suburbs of a large Australian city and, at the beginning of the study, were 
halfway through their first year of formal schooling. The children were 
interviewed individually on seven occasions over a 6-year period as part of a 
larger study. On each occasion they completed a series of tests, including those 
reported here. The mean ages for the test times were (a) 6 years (5.5 – 6.5 years) 
Kindergarten; (b) 7 years (6.5 – 7.5 years); (c) 8.5 years (8 – 9 years); 
(d) 9 years (8.5 – 9.5 years); (e) 9.5 years (9 – 10 years); (f) 10 years (9.5 – 10.5 
years) and (g) 11 years (10.5 – 11.5 years). For full details, see (Reeve et al., 
2012). Here I will focus on two aspects of the study: competence in numerosity 
processing as measured by the speed and accuracy of dot enumeration and age 
appropriate arithmetic accuracy.  

Using cluster analysis, dot enumeration competence revealed three clusters at 
each age, which we labelled Fast (31% of the children), Medium (50%) and 
Slow (19%). These were relatively stable on re-testing over the period of the 
study. That is, although children in each cluster improved with age, each tended 
to stay in the same cluster.  
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It turns out that the cluster established in Kindergarten predicts age-appropriate 
arithmetic up to the age of 11 at least. I give below the results for three-digit 
calculations at ages 10-11 years. 

Tab. 1: Three-digit Subtraction, Three-digit Multiplication and Three-digit Division 
accuracy at age 10-11 years 

Our recent analyses show that from Kindergarten to Year 2, the clusters are the 
main predictors of the strategies use in single–digit addition, with Fast clusters 
more likely to recall answers from memory and use decomposition for sums 
over 10 in Kindergarten, whereas the Slow cluster children are only recalling the 
answers and decomposing in Year 2, and then less than 30% of the time.  

The neural and genetic basis of low numeracy  

This is a study of 104 monozygotic twins and 56 same-sex dizygotic twins aged 
8 to 14 years. (Zygosity was assessed using molecular genetic methods). For 
more further details, see (Ranpura et al., 2013; Ranpura et al., submitted)). All 
the twins in the study had brain scans and carried out a battery of 40 cognitive 
and numerical tests. Using factor analysis, we extracted four factors, with 
Numerical Processing accounting for 24% of the variance, and had the highest 
loading. It comprised three timed arithmetic scores (addition, subtraction, 
multiplication), together with dot enumeration speed and the standardised 
WOND-Numerical Operations (Wechsler, 1996) score. Thus a second factor 
(19%o of the variance) included measures of general intelligence and working 
memory; a third factor (12%) included processing speed and performance IQ; 
while the fourth factor (9%), included tests of motor praxis and finger gnosis. 
Thus, the factor analysis reveals that that core number skills and arithmetic 
correlate well with each other, and segregate from general cognitive and 
performance measures. 

We replicated other research  in finding a difference in grey matter in the brains 
of children with low numeracy or dyscalculia in the brain Region of Interest for 
numerosity processing (Isaacs et al., 2001). See Fig. 1. 

We were also able to establish the heritability of both competence and grey 
matter density by comparing MZ with DZ twins: if the concordance between 
pairs of MZ twins is significantly higher than between pairs of DZ twins this 
indicates a genetic factor. 

 Dot Enumeration Cluster established in Kindergarten 
 Slow Medium Fast 

 M SD M SD M SD 
Subtraction 46.67 7.38 81.25 2.90 90.65 2.58 
Multiplication 60.56 6.53 85.10 2.15 87.07 3.57 
Division 41.67 7.02 75.62 2.88 84.86 2.97 
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3. The link between dot enumeration and both arithmetical competence and the 
Region of Interest are both heritable. Using a different way of analysing the 
heritability data, called ‘cross-twin, cross-trait correlation’, we found that the 
correlation of dot enumeration with timed addition was substantially heritable, 
with over 50% of that correlation attributable to genetic factors (h2h2rG = 0.54, 
rho = 0.76, p < 0.05). Moreover, the links between the Region of Interest and 
dot enumeration, as well as arithmetical competence, were also heritable.  

Implications for mathematics education  

The starting point for intervention should be a recognition that some children 
begin with a disadvantage, and that their disadvantage lies in their capacity to 
deal with sets and their numerosities. This of course is the basis of arithmetic 
both from a logical and a developmental point of view. As we show here, low 
numeracy has heritable component, which confirms recent genetic studies as 
noted above (e.g. Kovas et al, 2007).  

We can use dot enumeration in diagnostic assessments. Because these 
numerosity-based assessments depend much less on educational experience than 
tests of arithmetic, they minimise noise from instructional and motivational 
factors, not to mention family and environmental stressors that can also lead to 
low math attainment scores. Getting the correct assessment is fundamental to 
selecting the appropriate intervention.  

Early attempts to develop new instructional interventions were based on 
neuroscience findings and the best practices of skilled teachers (e.g. 
(Butterworth and Yeo, 2004; Griffin, Case and Siegler, 1994)). An important 
limitation of these interventions is that they required detailed instructional 
schemes and one-to-one teaching. It is difficult to implement these interventions 
in the typical math classroom, which has a whole-class age-related curriculum 
that makes little allowance for atypically developing children who require more 
attention and practice. In theory, remediation requires an approach personalised 
to individual learners. In practice, it is difficult to afford such instruction for 
even a small proportion of pupils in publicly funded education. In the UK, it has 
been estimated that effective intervention for 5 to 7 year olds in the lowest 10th 
percentile, using one-to-one teaching would cost about £2600 per learner. 

The result is that many learners are still struggling with basic arithmetic in 
secondary school (Shalev, Manor, & Gross-Tsur, 2005). And yet effective early 
remediation is critical for reducing the later impact on poor numeracy skills. 
Although very expensive, it promises to repay 12 to 19 times the investment 
(Gross et al., 2009). 

As I have argued elsewhere, one approach to the problem of delivering 
personalised instruction to individual learners is to make use of technology. 
Personalised adaptive learning technology solutions emulate the guidance of the 
special educational needs teacher, focusing on manipulation of numerosities 
(Butterworth & Yeo, 2004; Räsänen et al., 2009; Wilson et al., 2006). These 
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case of an error, learner’s dots are counted onto a line above it and the correct 
number of dots on the line below it, exploiting principles 2 and 3.  There is an 
opportunity to construct the correct answer by increasing or decreasing the 
number the learner chose (1). Everything on the screen is relevant (4), and game 
is adaptive, becoming more difficult depending on the accuracy and speed of the 
responses (5). The only reward is getting the right answer (6). There is 
preliminary data on the effectiveness of these games (Butterworth and 
Laurillard, 2010). 

Even if a learner has an inherited deficiency in the number module that is 
reflected in brain structure and functioning, this does not mean a life sentence of 
low numeracy. It may be that the right interventions over sufficient time can 
strengthen the number competence to a typical level, and indeed modify brain to 
a more typical structure as has been shown in the case of phonological training 
for dyslexic learners (Eden et al., 2004). This will require a longitudinal study 
that has not yet been carried out.   

Conclusions 

I have argued here that the genetic research is supported by neurobehavioural 
research identifying the representation of numerosities – the number of objects 
in a set - as a foundational capacity in the development of arithmetic. Where this 
capacity is weak, education should seek to strengthen this capacity using sets of 
real objects or virtual objects and linking the sets to the spoken and written 
numbers until the learner can use the numbers fluently and confidently. This will 
provide a sound basis for developing arithmetic.  
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THE THEORETICAL CORE OF WHOLE NUMBER ARITHMETIC 

Liping Ma, Independent Scholar, China 

 
Abstract 

There are at least two different perspectives on whole number arithmetic in primary 
school. In the US, the tendency is to consider it as only learning to compute the four 
basic operations with whole numbers. In China, however, whole number arithmetic 
involves much more than simply learning to carry out the computational algorithms. 
For example, it is expected that students explore the quantitative relationships among 
the four operations, and represent these (sometimes quite sophisticated) relationships 
with (sometimes quite complicated) numerical equations.  

In the author’s opinion, this exploration of quantitative relationships is made possible 
by the theoretical core that underlies school arithmetic. In this article, the author will 
present the central pieces of this theoretical core.  

Key words: basic quantitative relationships, four operations, school arithmetic, whole 
number 

Introduction 

There are at least two different perspectives on whole number arithmetic in 
primary school. In the US, the tendency is to consider it as only learning to 
compute the four basic operations with whole numbers. In China, however, 
whole number arithmetic involves much more than simply learning to carry out 
the computational algorithms. For example, it is expected that students explore 
the quantitative relationships among the four operations, and represent these 
(sometimes quite sophisticated) relationships with (sometimes quite 
complicated) numerical equations. 

In my article “A Critique of the Structure of U.S. Elementary School 
Mathematics” in 2013, I pointed out that there is a theory of school mathematics 
that underlies school arithmetic in China and a few other countries. Although 
this theory underlies school arithmetic in China, it began to occur in school 
arithmetic as mass education spread across Europe and the United States around 
the middle of the nineteenth century. By the beginning of the twentieth century, 
the theory was almost complete. It gave intellectual power to its predecessor, 
commercial arithmetic, and turned it into an academic subject.  

A complete account of the theory of school arithmetic requires a longer article, 
or even a monograph. In this short article, I present the central pieces of this 
theory: the definition of one self-evident concept, unit, and two basic 
quantitative relationships derived from the definition of unit. The theory built 
around these central pieces explains all the computational algorithms in 
arithmetic. Moreover, it can foster primary students’ ability to deal with quite 
sophisticated quantitative relationships.  
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The central pieces of the theory of school arithmetic 

Euclid’s Elements is known as an exemplar of a logic system. The mathematical 
scholars who initiated the theory of school arithmetic made a strong attempt to 
emulate the rigor of Euclid’s approach. The central pieces presented in this 
article are the initial definitions of this system.  

The one self-evident concept 

Like the Elements of Euclid, the theory of school arithmetic starts with several 
general definitions which form the foundation for the remaining content in the 
system. Two of these definitions are those from which the two basic quantitative 
relationships are directly derived.  

Definition of Unit 

One, or a single thing, is called a unit or unit one.  

A group of things, if considered as a single thing or one, is also called a unit, a 
unit one, or a one.  

 
Fig. 1: The definition of unit 

(Discussion: “Unit,” indeed, is a self-evident concept for us. The definition of 
“unit” has three levels of abstraction: one thing; one; and a group of things 
considered as a single thing or one. These three levels of abstraction are the 
cornerstones from which the two basic quantitative relationships are derived.)  

Definition of Number 

A number is a unit (one) or a collection of units (ones). 

(Discussion: The term “number” has several definitions as students progress 
through school. The definition of number above derived from the definition of 
unit is consistent with the “natural numbers” (the positive integers) that are part 
of young children’s everyday experiences.3)  
                                           

 

 
3 How many aspects of the number zero should be taught in elementary school is an issue 
which needs further discussion. Consider Alfred North Whitehead’s remark: “The point about 
zero is that we do not need to use it in the operations of daily life. No one goes out to buy 
zero fish. It is in a way the most civilised of all the cardinals, and its use is only forced on us 
by the needs of cultivated modes of thought” (1948,  p. 43). 

Unit one 

A group of things, if considered as a single thing or one, is also called a unit or unit one. 
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One of the two basic quantitative relationships: the sum of two numbers 

Based on the above two definitions, the two basic quantitative relationships in 
school arithmetic are defined. The first one is “the sum of two numbers.” Then 
the operations of addition and subtraction are defined in terms of this 
quantitative relationship. 

Definition of the sum of two numbers 

The sum of two numbers is a third number which contains as many units as the 
other two numbers taken together. 

 

Fig. 2: The sum of two numbers 

(Discussion: The definition of the sum of two numbers is derived from the 
definition of “unit” and that of “number.” It, nevertheless, is only related to the 
first sentence in the definition of “unit: “One, or a single thing, is called a unit or 
unit one.”) 

Definition of Addition 

The operation of finding the sum of two numbers is called addition. 

Definition of Addend 

The two numbers summed are called addends. 

Definition of Subtraction 

If a sum and one addend are known, the operation of finding the unknown 
addend is called subtraction.  

Definition of Difference  

The result of the operation of subtraction is called the difference. 

(Discussion: The quantitative relationship formed by three numbers has the 
following feature: If two of the three numbers is known, the third is determined. 
Because of this, it is possible to define addition and subtraction in terms of this 
quantitative relationship.) 

 

 

First number Second number 

Sum (Third number)

The sum of two numbers is a third number which contains as many 
units as the other two numbers taken together. 



 
ICMI 23                                                                                         Ma, Theoretical Core of Whole Number Arithmetic 
 

37 
 

The other basic quantitative relationship: the product of two numbers 

The other basic quantitative relationship in school arithmetic is “the product of 
two numbers.” The operations of multiplication and division are defined from 
this second quantitative relationship in school arithmetic: 

 Definition of the product of two numbers 

The product of two numbers is a third number which contains as many 
units as one number being taken as many times as the units in the other. 

 

Fig. 3: The product of two numbers 

(Discussion: The definition of the product of two numbers is also derived from 
the definitions of “unit” and of “number.” However, the second sentence in the 
definition of unit, “A group of things, if considered as a single thing or one, is 
also called a unit, a unit one, or a one,” plays a critical role. The third level of 
abstraction in the definition of “unit” is reached now.) 

Definition of Multiplication 

The operation of finding the product of two numbers is called multiplication. 

Definition of Multiplicand 

Multiplicand is the number to be taken. 

Definition of Multiplier 

Multiplier is how many times the multiplicand is taken. 

Definition of Division 

If a product and one of the multiplicand or multiplier are known, the operation 
of finding the unknown multiplier or, respectively, multiplicand is called 
division. 

 

The product of two numbers is a third number which contains 
as many units as one number being taken as many times as the 
units in the other. 

Second number (3) 
(The number of its units decides how many of the other 

number being taken) 

Product (Third number)

First number (4) as the number being taken 
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Definition of Quotient 

The result of the operation of division is called the quotient. 

(Discussion: Like the relationship “sum of two numbers,” the relationship 
“product of two numbers” has the following feature: if two of the three numbers 
is known, the third is determined. Therefore, it is possible to define the 
operations of multiplication and division in terms of the quantitative relationship 
“the product of two numbers.”)  

Quantitative relationships in school arithmetic: from basic to sophisticated 

When students, learning whole number arithmetic, tend to consider 3 + 2 as a 
sum, 5 – 2 as a difference, 3 × 4 as a product and 15 ÷ 5 as a quotient, they have 
attained the ability to analyse quantitative relationships, not only simple ones, 
but also relatively sophisticated ones. For example, (2 + 3) + (6 – 5), the sum of 
a sum and a difference, or, (20 – 2) × (3 + 1), the product of a difference and a 
sum. This ability, obviously, will prepare them well for moving on to higher-
level subjects such as algebra.  

Conclusion 

There seems to be a gap between the experience of the four operations that 
young students have in everyday life and the definitions of these operations in 
terms of the two basic quantitative relationships. However, the gap can be filled 
by curriculum and instruction that are designed to lead students from concrete 
experience to abstract thinking. This is a journey during which young students’ 
ability to think abstractly is carefully fostered. It has been realised in the practice 
of elementary mathematics in some countries, such as China.  
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THEME 1: THE WHY AND WHAT OF WHOLE NUMBER ARITHMETIC 

Xuhua Sun(1), Sybilla Beckmann(2) 

(1) University of Macau, China, (2) University of Georgia, USA 

Introduction  

Mathematics learning and teaching are deeply embedded in history, language, 
and culture (Barton, 2008). Different languages have different grammar and 
emphasise different aspects of number, which may or may not support a deep 
understanding of number concepts, such as ideas about base ten, place value, 
and operations. On the one hand, a purpose of education is to support the 
continuity of the structures and functions that are special to a culture (Leung, 
Graf and Lopez-Real, 2006). On the other hand, Whole Number Arithmetic 
(WNA) is a core part of mathematics that all modern cultures require all 
students to learn in school. A critical question then is, how does a cultural 
system reflect on its own history, language, and culture, identify disadvantages 
and advantages of its system, and overcome its disadvantages? What lessons do 
we learn from these reflections and from interventions that are designed to 
overcome the disadvantages? These questions are the motivation for Theme 1. 

All the fourteen papers accepted for Theme 1 include aspects of how different 
communities, either historical or contemporary, have conceived of or 
represented numbers or arithmetic. The papers explore several overlapping 
aspects of the why and what of WNA: the historic background of WNA, the 
language foundations of WNA, foundational ideas that underlie WNA, and 
different expected learning and teaching goals of WNA. By examining variation 
in WNA across history and language, and across different communities, 
Working Group 1 can discuss implications of the different views on the why and 
what of WNA for instruction and for teacher education.   

Historic background of WNA: numeration systems and operations 

Historically, different cultures have conceived of WNA in different ways, using 
different symbols, tools, and ideas for representing and calculating with whole 
numbers. Several authors explore aspects of the history of WNA.  

González and Caraballo present excerpts of the use of the Incas’ Yupana to do 
mathematical operations and argue the need of indicate examples of projects 
applying ethnomathematical approaches that link between traditional artefacts 
and methods and more formal artefacts and methods to teach the children of 
these cultures today. 

Siu reviews how counting rods and the abacus were gradually replaced with 
written calculation in China by Tongwen Suanzhi (同文算指). The emphasis 
Tongwen Suanzhi placed on the learning and teaching of arithmetic exerted 
influence on the subsequent writing of textbooks in China.  Instead of teaching 



ICMI Study 23                                                                                             Sun & Beckmann, Introduction to Theme 1 

40 
 

algorithms with the aid of mnemonic poems, the underlying reasoning was 
brought into calculation as the learning foundation. 

Sun discusses how the early Chinese invented the most advanced number name 
and the most advanced calculation tools (counting rod and Suanpan or Chinese 
abacus), in which place value is the most overarching principle as the spirit of 
WNA based on the Chinese linguistic habit. Traces of this influence can be 
found in contemporary core curriculum practices. 

Zou summarises findings from historical investigations into arithmetic in ancient 
China, including how number units were derived and named and how numbers 
were represented with rod or bead calculation tools and with symbols. 

Language foundation of WNA: regularity, grammar, and cultural identity  

Different cultures have different number names. Some number names do not 
apply the decimal (base ten) principle of the numeration system (e.g., between 
10 and 20). Several papers examine issues surrounding the grammar and 
regularity of number names across cultures or time and how spoken names relate 
to written representations of numbers. 

Azrou reports on the historical and linguistic background of the most 
widespread languages spoken in Algeria and summarizes some of the issues 
with spoken and written arithmetic. The findings are an initial step towards 
developing an intervention in teacher education that will be designed to enhance 
students’ awareness of differences in representing numbers in different 
languages and promote students’ cultural identities. 

Chambris studies changes related to place value that were introduced by the new 
math in France and the impact on WNA teaching, from curricular design to 
teaching practices, and students’ learning. The names of the units used in 
numeration are a key tool to describe and understand changes in teaching and 
learning. 

Houdement and Tempier report on two experiments to strengthen the decimal 
(base ten) principle of numeration, giving a key role to the use of numeration 
units (ones, tens, hundreds …) in France. 

Foundational ideas underlying WNA 

How students can develop fundamental ideas about WNA and what teachers 
need to know to nurture those ideas are active areas of inquiry. Several papers 
examine what the foundational ideas of WNA are and how children and teachers 
might represent and work with those ideas.  

Changsri explored first grade students’ ideas of addition in two Thai schools in 
the context of Lesson Study and an Open Approach and found that the students 
used a variety of representations to express addition ideas. 

Dorier gives a short overview of the main stages of the development of numbers 
in the history of humanity and shows how Brousseau’s theory, in accordance 
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with the historical context, can be used to develop the key stages of a teaching 
sequence on the concept of numbers. 

Ejersbo and Misfeldt describes a research project addressing the specific 
irregularities of the Danish number names by introducing a regular set of 
number names in primary school in Denmark.  

Sayers and Andrews summarise an eight-dimensional framework, which they 
call foundational number sense that characterises necessary learning experiences 
for young children. They demonstrate how to use the framework by analysing 
learning opportunities in first grade across five European contexts. 

Thanheiser takes the perspective of variation theory and uses historical number 
systems as a tool in teacher education, finding that prospective teachers develop 
a more sophisticated conception of the base 10 place value system by 
examining, comparing, and contrasting different aspects of historical systems. 

Different expected learning and teaching goals for WNA  

Just as there are differences historically in ideas about WNA, so too there are 
differences in contemporary goals for teaching and learning WNA. Several 
authors address issues concerning the perspectives of different communities. 

Cooper discusses how the different perspectives of a university mathematician 
and a group of elementary school teachers interacted productively, leading to 
new insights on division with remainder, not just on the part of the elementary 
school teachers, but also on the part of the mathematician. 

Howe discusses how thinking in terms of “base ten pieces” could support well-
known properties of the decimal system for development of the attitude of 
“learning arithmetic with understanding” as a key goal within mathematics 
learning. 

McGarvey and McFeetors identified mutual concerns that the Canadian public 
has about the goals of mathematics learning and the supports required for 
students to reach those goals, including teacher expertise and clear teaching 
resources.  

Questions for Discussion in the Working Group 

In addition to the background discussion and questions posed in the Discussion 
Document, the papers for Theme 1 may lead to discussions on the following 
questions: 

(1)  How are number concepts represented across language, curriculum, 
and culture? 

(2)  How is the place value concept represented across curriculum and 
culture? 

(3)  How are number properties (e.g., associativity and community) 
represented across curriculum and culture? 
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(4)  How are addition/ subtraction concepts represented across curriculum 
and culture? When should counting be replaced by mental calculation? 
And how? 

(5)  How are multiplication/ division concepts represented across 
curriculum and culture? 

(6)  How are applications of WNA (word problems) organised across 
curriculum and culture? 

(7)  What are characteristics of productive ways to leverage historical 
perspectives in the teaching and learning of WNA today? 

(8)  How well do teachers currently understand the base 10 place value 
system? How do we improve their knowledge of it? 

(9)  How well do teachers currently understand other foundational ideas 
about number (in addition to the base 10 place value system) that 
children must learn in order to make sense of WNA? How do we 
improve teachers’ knowledge of it? 

(10)  What goals underlie the teaching and learning of WNA? What enables 
different communities to work together productively to prepare future 
and current teachers for teaching WNA? 

(11)  How do we interact productively with a variety of stakeholders (e.g., 
parents, administrators) when it comes to implementing findings from 
research about instruction and teacher development in WNA? 
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SPOKEN AND WRITTEN NUMBERS  
IN A POST-COLONIAL COUNTRY: THE CASE OF ALGERIA 

Nadia Azrou, University Yahia Farès, Médéa 

Abstract 

The aim of this paper is to present some initial steps of a long-term study aimed at 
intervening in teacher education in a situation of encounter of different cultural 
influences in a post – colonial country: Algeria. Some preliminary analyses will be 
reported on how natural numbers are orally represented (spoken numbers) in different 
ways according to different languages. The long term perspective is to take profit from 
the existing differences to develop competencies concerning written numbers, and at 
the same time to enhance students' awareness about the roots of those differences, thus 
contributing to promote their cultural identities.  

Key words: cultural identity, natural language, post-colonial country, spoken 
arithmetic, written arithmetic 

Introduction: Preliminary steps of the research project and their framing 

In Algeria, like in other post-colonial countries, the influence of colonial culture 
still spreads through cultural institutions and shapes many aspects of the 
dominant culture, in spite of a declared will of autonomy. Moreover, within the 
local culture, there are power relationships between different ethnic groups, 
which frequently result in cultural dominance of one group over the others. The 
educational challenge consists in transforming elements of extraneousness or 
‘subalternity’ of some students to the dominant culture(s), into tools to promote 
both the development of basic competencies, and personal and group cultural 
identity for all students. Such purpose requires a preliminary and a careful 
analysis of the situation, informed by an appropriate theoretical framing.  

Being interested in the development of basic mathematical competencies, in 
particular numerical competencies, I consider, first, the differences between the 
oral representations of natural numbers in different languages in Algeria and 
their relationships with writing of numbers according to the decimal- position 
system. Indeed those differences may intervene in the relationships between 
street mathematics and school mathematics (cf. Nunes, Schliemann and 
Carraher, 1993), particularly in the case of those students issued by families less 
impregnated by the dominant culture. Street mathematics is mainly oral and, at 
the very beginning of schooling, school mathematics is presented orally by the 
teacher, in most cases according to the school official language only. We may 
see here an example of how cultural dominance works through language 
dominance (cf. Valdés, 1999) and may result not only in potential learning 
difficulties concerning the subject matter (mathematics) for some students (see 
Miura and Okamoto, 2003, p. 230), but also in their extraneousness and 
‘subalternity’ (cf. Gorgorio and Planas, 2001). But language, in our case 
mathematical language (i.e. natural language in the mathematical register: see 
Boero, Douek and Ferrari, 2008) is also the place where many cultural 
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differences not only surface, but also may be identified and discussed by 
students with the help of teachers. Thus, acknowledging cultural differences 
concerning the language of mathematics may contribute to initiate classroom 
discourses regarding cultural identity and mutual understanding on parity 
dignity level (see Nieto, 1999; Gorgorio and Planas, 2001). On the other side, 
linguistic aspects of basic mathematical notions are relevant for their mastery in 
the teaching and learning of mathematics (like in the case of the relationships 
between written and oral arithmetic: see Miura and Okamoto, 2003); and 
linguistic differences may contribute, if conveniently exploited by the teacher, to 
put into evidence some deep aspects concerning basic notions (in particular, in 
our case, the structure of the decimal – position system of writing of numbers: 
see Miura et al., 1994). Thus, the aim of developing fundamental mathematical 
competencies may be integrated with the aim of promoting cultural identity 
(intended as conscious take in charge of personal or group past in the 
perspective of the future in a given cultural context – see (Weinrich, 2003); see 
also (Holliday, 2010), for the complexity of the problem of identity in a country 
like Algeria). 

I have intentionally used the English word “may” both to put into evidence what 
frequently happens in post-colonial countries, and what might happen if the 
potential inherent in cultural differences (in our case, we deal with differences 
between spoken numbers in different languages in Algeria) would be exploited 
by the teachers. The project, whose first steps are presented here, aims at 
providing teachers with knowledge and awareness about the subject and the 
historical origins and evolution of differences, and also about how to deal with 
those differences in the classroom. In this paper I will try to briefly report some 
preliminary work done by me, concerning: 

- Some elements of the performed analysis of the differences (rooted in the 
evolution of the cultural and political situation of my country) concerning 
the relationships between spoken numbers and written numbers in the main 
languages spoken in Algeria in different social and institutional contexts;  

 

- Some present difficulties originating in those differences in school;  
 

- Some elements for an intervention study, in which the performed analysis 
should be used in teacher preparation to enable them to plan and manage 
teaching experiments aimed at promoting basic numeric competencies and 
an approach to the development of students' cultural identity with reference 
to this specific area. In the future, further analyses concerning the first two 
points will be performed, based on collection of oral data and interviews 
with teachers in different regions of Algeria. 

Historical overview 

In spite of being considered as an Arabic country and one of the Maghreb 
countries (with Tunisia and Morocco) by the political world map, Algeria is a 
multicultural country. It hosted many civilisations that made its cultural 
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richness. Over years, the history has been shaped there by forces whose roots 
were in Africa, the Mediterranean region (including the South of Europe), and 
the Orient. Algeria lived a long period, from 1830 to 1962, under the French 
colonization. Before that, it was under the Othman occupation from 1515 to 
1830. Othman arrived to North Africa to help fighting the Spanish who occupied 
some cost areas (now Oran, Bejaia and Algiers) till 1555. Many years earlier, 
around 665, the Arabs came from the East to spread the Islamic religion and 
power in North Africa, which was populated by Berber people. Arabs stayed 
there ever since.  

Linguistic situation 

Algerian population communicate in different languages, according to different 
regions, ethnic groups, institutions and circumstances. The most spread 
languages are: Classical Arabic, Dialect, Berber language and French (first 
foreign language). Classical Arabic is shared by the Arabic countries; the 
Algerian Dialect, different from the one spoken in other Arabic countries, 
sounds more similar to the Dialects used in both Tunisia and Morocco.  

Classical Arabic 

Classical Arabic, the official language, is not the usually spoken language by the 
Algerian population. It is used only in written and spoken official discourse in 
media (newspapers, TV news), in books, in information written on all purchased 
packaging products (food packets, medicines, information on how to use any 
product…), to write road signs, stores signs, and all written announcements that 
might appear in the streets. Classical Arabic is the language of the Arabic 
literature and the language of the Koran (religious Islamic book) as well. This 
language has an alphabet of 28 letters; it’s written, unlike Latin languages, from 
right to left. Classical Arabic was not taught during the colonisation period in 
schools, it was taught in mosques or in small religious schools (zawia). During 
that period, most of the population was illiterate; the few pupils who could go to 
school learned all courses in French. We have still some old people with high 
degrees not able to write and read Arabic. After the independence, for almost ten 
years the teaching in schools continued to be in French; however classical 
Arabic was introduced in school as a whole course and as the only one taught in 
Arabic. This situation lasted till the beginning of the seventies. Then the 
teaching in schools for all courses shifted to Arabic. At the university, all human 
sciences are taught in Arabic, while the other sciences (medicine, exact sciences, 
computer sciences, etc.) are taught in French. People do not master well Arabic 
even if they have been in school for a long time; it is considered like a foreign 
language because it is spoken nowhere outside schools, but people understand it 
and can read it. Most children discover this language for the first time when they 
go to school, differently from many western countries where children learn at 
school the same language they speak at home. 
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Berber language 

Berber language (called also Tamazight language) is the language of Berber 
people who lived in North Africa (including Morocco, Tunisia, one part of 
Egypt, the grand desert, Mauritania) before the Arabs' arrival.  After the Arabs’ 
invasion (665), it has always been spoken by different groups composing Berber 
population (Kabyle, Chawi, Chenoui, Mzab, Touareg…) since that time so far. 
Nowadays, in some areas that couldn’t be reached by Arabs during the invasion, 
like in Kabyle area populated only by Kabyle people, it is spoken everywhere. 
In other areas, where people usually communicate in Dialect, it is spoken only at 
home. The conflict due to not considering Berber language as a national 
language by the Algerian government became apparent after the independence, 
especially during the seventies. The conflict resulted, in particular, in the "bag 
strike" undertaken by all schools and universities in Kabyle areas: they stopped 
teaching during one complete year (1994/1995). After that, the government 
decided to acknowledge Berber language as a national language in Algeria but 
not as an official one. Now, it is taught in many schools (in parallel with Arabic) 
and universities, and even many books are edited in Berber language. Its writing 
system (from left to write), whose origin may be traced back to the third century 
B.C., has been conserved by the Touareg (people of the desert): it is called 
Tifinagh, it has 32 letters including vowels.  

Dialect  

The Dialect is the common language; it is the most used spoken language in 
daily life in Algeria; it’s a mixture of classical Arabic, French and other 
languages (Spanish, Turkish, Italian…). The Dialect is continuously developing 
by using new words and dropping some others over years. The use of imported 
expressions and words has no clear and defined rules; it’s common to find a 
misuse of some words and/or a strange change of a pronunciation. Nowadays, 
we can see an increasing use of French words in the Dialect, which are 
pronounced in an Arabic way, whereas the number of individuals mastering 
French language has strongly decreased over the last ten years. The Dialect is 
slightly different in the different areas of Algeria (difference of pronunciation, 
accent and some different words and expressions). In the school, the teaching is 
done in classical Arabic for all levels, but the Dialect is more and more 
dominant as an oral language even in the classroom at all levels. Over the last 
years, this spoken language is getting more and more space even as a written 
language (written with Arabic or French letters), pushing back the classical 
Arabic. Some newspapers use it; all TV shows and radio programmes are made 
in this language except the news; more and more advertisements are made in 
Dialect; thus, this language is becoming the principal and almost official 
language in Algeria.  

French language 

French is the first foreign language, it is taught starting from grade 3 to grade 
12. Some disciplines, like exact and technology sciences, are taught at the 
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universities in French, with French books. After the independence, many 
institutions that already used French, like administration and hospitals, 
continued to use it. During the seventies, the government undertook an 
‘arabisation’ action to use Arabic language instead of French in all institutions. 
Some institutions changed their language (e.g. schools), but some other resisted: 
most administration, banks and hospitals are still working in French, particularly 
as their written language. In other words, French is a parallel language with 
classical Arabic; this contributes to the influence of French in the Dialect, 
especially through administration documents. There are a radio channel, a TV 
channel and many newspapers in French. Many inscriptions are written both in 
Arabic and French (e.g. on medicines, panels on roads, streets advertisements, 
and even purchased imported products). People generally understand French but 
do not speak it very well (exception in Algiers and in Kabyle areas). The 
mastery of French has decreased even among people with high degrees 
graduating in disciplines that have been taught in French at the university. 

Spoken and written arithmetic in Algeria, and related students’ difficulties 

Around ten years ago, there was a big change in teaching mathematics: formulas 
and symbols are now written from left to right with Latin alphabet, while 
comments and names are maintained in classical Arabic (from right to left); in 
the past, mathematics was completely written from right to left (in Arabic). This 
reform was undertaken to make the transition to university mathematics (taught 
in French) less difficult. This situation may result in a mess and some difficulties 
for students. For instance, teachers usually complain about a recurrent difficulty 
with children when they deal with operations with negative numbers: 6-1 is 5, 
but it is -5 if it is read from right to left. Other difficulties are worthwhile careful 
investigation. Here, I will summarise the origins of some of those difficulties 
according to the differences between the different languages, as concerns the 
relationships between spoken and written numbers. 

- In Arabic: right to left writing of numbers, with a complete correspondence 
with oral. Numbers (from 11 to 99) are pronounced like they are written from 
right to left starting by the units and then the tens. But after 99, with hundreds 
and thousands and more, the system becomes mixed, for instance 234 is 
pronounced two hundred four and thirty. 

In Berber: left to right writing of numbers, with a contradiction with oral that is 
similar to Arabic.  

In French (written-oral): left to right writing of numbers, with a contradiction 
with the oral for 11 to 16, where we begin by the units and then the tens; and 
with the "by twenty" oral traces between 60 and 99 (80 is spoken as 4 twenties, 
90 is spoken 4 twenties and ten). 

In Dialect (oral): the same with Arabic. 

- Names of numbers are used in classical Arabic, which are the same as in the 
Dialect (with a slight change of pronunciation). In Berber language, some digits 
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(from 0 to 9) are different but the other numbers are the same as in Arabic (with 
a slight change of pronunciation). The French names for numbers are also 
frequently used in the spoken language. 

In French and in Italian, the numbers 11, 12 … 16 are named like in the Arabic 
system (starting from the units), while for the numbers from 17 on the tens are 
spoken before the units - which is not the case in Arabic. This might create a 
problem for children when they learn French (starting at grade 3), similar to the 
problem met by Italian children when they have to write "tredici" (which sounds 
like "three-tens") and "diciotto" (which sounds like "ten-eights"). 

- Names of the arithmetic objects "number" and "digit" are clearly different in 
both classical Arabic, where we have two words, in French where there are three 
words (chiffre*, nombre and numéro), but in the Dialect there is just one word 
for both number and digit, which is the French word (numéro) pronounced in an 
Arabic way ("numro"). Same situation is in Berber language. More precisely: 

- In classical Arabic, ‘Adad’ means number and ‘Rakm’ means digit, but also a 
set of digits used to distinguish a person or an object, an address, etc. 

- In French, ‘nombre’ means number, ‘chiffre’ means digit and ‘numéro’ means 
a set of digits used to distinguish a car number, card number, address…;  

- In the Dialect, there is just one word for all; it is the French word ‘numéro’.  
- In Tamazight, it is the same situation as with the Dialect. 

This might create a problem in mathematics and influence students who might 
not make a difference between number and digit, even though they learn meta-
distinction between them in classical Arabic. But as the Dialect is the spoken 
language, students do not practice this difference outside schools. They might 
still use one word (number or digit) for both terms with classical Arabic and still 
make confusions with the three French ones.  

Difficulties as educational resources 

Usually teachers see the above linguistic phenomena at the origin of big 
difficulties in the early teaching of arithmetic, and they are right. In the early 
stages of arithmetic learning, contradictory rules for saying and writing numbers 
may represent an obstacle and originate disaffection towards mathematics. In the 
case of Algeria the situation becomes more complex, due to the interference of 
different criteria of organisation of spoken numbers according to the different 
languages (particularly in the relationship between French on one side, and 
Arabic, or Tamazight, and Dialect on the other). In the case of Algeria only 
parents who manage, not only Dialect, but rather well French and Arabic, may 
help their children to clarify the differences. But, those difficulties may result in 
important occasions of students' reflection on basic arithmetic notions: by 
comparing the French wording of numbers between 11 and 16 with the Arabic 
or Tamazight (or Dialect), students may better realise the anomalous behavior of 
the French spoken language. By analysing the structure of French spoken 
numbers between 70 and 100, they may engage in stimulating exercises of 
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conversion. By comparing the transformation of the naming of the word 
"numéro" from French to dialect, and the fact that the Arabic concentrates in one 
word the French "chiffre" and "numéro". Students (but in this case even 
teachers!) may reflect on the very meaning of three different notions, so relevant 
in the mastery of natural numbers: digit (the basic signs, like the alphabet of the 
written arithmetic); ordered sets of digits (as "words" of that written language); 
and numbers (concepts - like the meaning of words). By considering traditional 
units of measurement they may reflect on the meaning of related fractions. The 
learning potential on the mathematical side has a counterpart on the more 
general educational side: students may realise, under the guide of the teacher, 
how the French system of spoken numbers reflects some cultural influences 
coming from other cultures, or ancient traditions (the traces of numeration by 
twenty). Students may come in touch with easy to understand examples of how 
mathematics is not a given, out-of-history construction, but an evolving body of 
knowledge, a "culture" in the anthropological sense. More importantly, every 
student (independently from her social and cultural origin) may come in touch 
with important phenomena: the contamination between different cultures; the 
effects of political domination on culture; but also the survival of dominated 
cultures, when people resist. These discourses may contribute to a first approach 
to the development of personal and group identity, given that identity depends 
on the conscious take in change of the cultural self in a given cultural context. 

Educational implications for teachers and students: an outline 

Teacher education and development of primary school teachers in Algeria is 
poor. Due to the increasing demand for teachers, most in-service teachers are not 
well prepared; a few of them could profit from a period of one to two years in 
some centers for teacher education, but not at the university. In-service training 
takes place for some schools few times in a semester, while for other schools it 
does not exist. The opportunities mentioned before need a suitable teachers' 
preparation: on the content to be taught (with clear ideas on the technical aspect 
and differences, and on their historical origins and evolution); on how to use 
these differences to enhance mastery of the numerical system instead of 
generating confusions; and on the cultural and educational aspects (concerning 
the values inherent in acknowledging diversity and contaminations, in the 
perspective of a plurality of individual and group identities in a multicultural 
society). Literature provides us with useful tools that should guide teacher 
preparation and at least partly be shared by teachers themselves to inform their 
educational intervention. As an example, the work done by Carraher, Nunes and 
Schliemann on the relationships between street mathematics and school 
mathematics offers ideas and tools about what to look at, when children from 
different cultural environments are exposed to the unique culture of the school. 
The perspective of expansive learning delineated by Engestrom and Sannino and 
some educational developments derived from it (e. g. Tomaz, 2013) highlight 
the mediating role of the teacher, who should provide students with suitable 
knowledge to enrich their cultural horizons. In our case, knowledge should 
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derive from the structured comparison, rooted in the history and in the present 
social reality, of different wordings of numbers and (later) of meta-knowledge of 
numbers (digits, numbers, etc.) accessible in the cultural environment. 
Knowledge should contribute to the mastery of the decimal – position system 
and contribute to the cultural identity of students (see also Adler, 1997). The 
project, whose first steps are presented in this paper, should result in some pilot 
activities of teacher preparation informed by the above considerations with 
classroom experiments inspired by them. 

Notes 

* The word ‘chiffre’ that is digit in French is originated from the Arabic name of zero 
‘siffre’. 
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MATHEMATICAL FOUNDATIONS FOR PLACE VALUE THROUGHOUT 
ONE CENTURY OF TEACHING IN FRANCE 

Chambris Christine, LDAR, Université de Cergy-Pontoise, France 

Abstract 

This paper aims to evidence the existence and the impact of mathematical foundations 
on WNA teaching, from curricula design to teaching practices, and students’ learning. 
An assumption is that, as its name indicates it, the new math is a key period to identify 
changes in mathematical foundations of WNA teaching. This period is replaced in a 
longer one. The paper studies the changes related to place value in France: a deeply 
impacted subject with the introduction of numeration bases other than ten in 1970, and 
their removal in the 1980s. What the author named numeration’s units -that is: ones, 
tens, hundreds, thousands…- appears as a key tool to describe and understand changes 
in the teaching and learning. 

Key words: didactic transposition, France, mathematical foundation, new math 
reform, numeration’s unit, place value 

Introduction 

This paper aims to evidence the existence and the impact of mathematical 
foundation (MF) – as understood by the current community of mathematicians – on 
WNA teaching, from curricula design, to teaching practices, and students’ learning. 

The new math reform is an international phenomenon which took place in the 
cold war context (ICMI, 2008; Kilpatrick, 2012). It impacted on the math 
teaching from the primary school to the university in the 1960s and the early 
1970s in several countries; but it has had effects a long time after its end. One of 
its major concerns was the teaching of some “new” math. This enables to make 
the assumption that this period may be a key one to identify possible changes in 
MF. Another concern was to take into account some psychological features 
related to the learning or to the child development. The famous psychologists 
Piaget and Bruner contributed at least indirectly but significantly to the 
implementation of this reform. Two famous subjects were introduced in WNA: 
set theory, a trace of contemporary math, and the numeration bases other than 
ten (hereafter called bases) –in order children to understand base ten principles-, 
a trace of psychology (Kilpatrick, 2012; Bruner, 1966). 

Much has been written about MF concerning fractions, taking into account the 
new math reform period (Steiner, 1969; in Germany: Griesel, 2007; in France: 
Chambris, 2008), but few about that of decimal numeration. The aim of this 
paper is to study such MF, surrounding the new math. The case of France will 
be studied: bases were introduced in 1970 and removed in the 1980s. A main 
goal of this study is to identify the effects, and even the potential long-term 
effects, on the teaching of possible changes in the MF. This leads to study MF: 
before, during, and after the new math. Several types of data from different 
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periods are collected: national syllabi, resources for teacher education, 
textbooks. For the present period, this set is completed with data from 
classrooms: students’ written test, results from others’ research works related to 
teaching practices and students’ learning. 

Materials and Methods 
How to study the existence and the impact of the MF for decimal numeration on 
the teaching and learning in France surrounding the new math? 
Previous works 
Several doctoral dissertations (Harlé, Bronner, Neyret) about numbers’ or 
arithmetic’s teaching in the French system highlighted three main periods with 
two transitional ones before and after the new math: the stable classical period 
1870-1950, the new math highly turbulent period 1970-1980, and the 
continuously evolving contemporary period 1995-2010. So, this study explores 
the long period: 1900-2014. Treaties by Bezout, then Reynaud (1821) appear as 
reference books for teacher education, and for textbooks, at the beginning of 20th 
century. The textbooks’ series “math et calcul” was a bestseller in the 1980s. 
Theoretical frame 
The Theory of Didactic Transposition (TDT) (Chevallard, 1985) (Fig. 1) 
considers school mathematics as a reconstruction by the educational institutions 
from the mathematical knowledge produced by academic scholars. The TDT has 
been often used for secondary school, more rarely for primary school where 
scholarly knowledge as a reference is not always taken for granted. 
Scholarly knowledge 
Institutions producing 

and using the knowledge 

Knowledge to be taught
Educational system, 

“noosphere” 

Taught knowledge 
Classroom 

Learned, available 
knowledge 

Community of study 

Fig. 1: The process of didactic transposition (Bosch and Gascon, 2006) 

The Anthropological Theory of Didactics (ATD) (ibid.) extends the TDT. It 
postulates that practicing math, as any human practice, can be described with the 
model of praxeology. It is constituted by four pieces: a type of tasks -a set of 
similar problems-, a technique -a “way of doing” for all the tasks of the type-, a 
technology justifies the technique, and a theory legitimates the technology. 
The numeration’s units 
The author (2008) named the units used in numeration: numeration’s units, NU. 
That is: the words ones, tens, hundreds -O, T, H in the text-, and so on for base 
ten. It happens that students consider NUs as places (Fuson, 1990; Ma, 1999). 
A few French cultural and institutional features 
Unlike most East-Asian languages many European languages have strong 
irregularities in the numbers’ names for whole numbers (Fuson, 1990). In 
English, numbers’ names are those of the units, not in French. (Tab. 1) This 
implies that, in France, the names of the 2nd, 3rd, and 4th decimal NUs for whole 
numbers are not used in the everyday life language. 
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French number’s name French NU English name for both 
un (une) unité one 
dix dizaine ten 
cent centaine hundred 
mille millier thousand 

Tab. 1: Numbers’ names and NUs in French and in English 
In France, there is a national elementary compulsory syllabus, but no national 
textbook, and no accreditation of textbooks. The syllabi changed in 1882, 1923, 
1945, 1970, 1977-1980, 1985, 1995, 2002, and 2008. Instructions -more or less 
long texts describing how to teach a subject- have supported some of them. 
Data: how to select curricular texts? What to look at in there? 
In the French syllabus, roughly, students learn numbers up to one hundred in the 
1st grade, to one thousand in the 2nd grade, to ten thousand or one million -
depending on the ongoing curriculum- in the 3rd grade. Bigger whole numbers 
are learned in 4th and 5th grades. The selected data are: the five first grades of the 
national syllabus and instructions -if any-, and 2nd-and-3rd-grade-textbooks. 
Period 2nd grade 3rd grade Mixed (2nd-3rd-gr.) Teacher’s guide 
1900-1970 7 7 6 1 
1970-1980 3 3  6 
1980-2010  14  12 

Tab. 2: Number and type of selected books for the research 
A big amount of textbooks exists in France. How to select the most used ones, 
and the most influential ones in the curriculum’s evolution? Ones with several 
editions and innovative ones are selected. During the new math, many textbooks 
were published; “math et calcul” is one of the few with further editions. (Tab. 2) 
Treaties by Bezout and Reynaud, 2nd-and-3rd-grade-teachers’ guides by ERMEL 
from two bestseller-series (old in 1978, new in 1995) are added. ERMEL is the 
elementary math research team of the national institute of pedagogy. Once a 
book is selected, what to look at in there? With the ATD, for each period, it is 
necessary to identify the ongoing praxeologies in order to describe the teaching. 
The tables of contents of textbooks, and the syllabus are useful to identify the 
global development of the subject, a part of its logical organization. Instructions 
and numeration’s pages of textbooks give more details. The sentences related to 
the knowledge to be known are often technologies or parts of the theory. 
Exercise with model answer is a strong indicator of the knowledge to be taught: 
such an exercise is often emblematic of a type of task, and the answer shows the 
technique which is expected. The answer sometimes includes technological 
features. The set of exercises is useful to identify the types of tasks which exist 
in an institution at a given moment. 
Data: students’ knowledge 
In early 2012, all 215 students from nine 3rd-to-5th-grade-classes answered 9 
exercises in individual written way. Questions were given one after the other. 
Time was supposed to be enough to answer quietly. 
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Results 
The scholarly knowledge before the reform – the classical theory 
During the long period 1900-1970 with hazy changes in some books from 1950, 
a mathematical numeration’s theory -here: the classical theory- was displayed in 
the treaties and adapted in close terms in textbooks. Its basics are the following. 
Algorithm to build numbers: 1) The first ten numbers are built one after another, 
starting with the unit one, and then adding one to the previous number, forming 
numbers one, two, etc. 2) The set of ten ones forms a new order of units: the ten. 
3) The tens are numbered like the ones were numbered before; from one ten to 
ten tens: one ten, two tens… 4) Then the first nine numbers are added to the nine 
first tens: one ten, one ten and one one, one ten and two ones… two tens, two 
tens and one one, and so on, forming the ninety-nine first numbers. 5) The set of 
ten tens forms a new order of units: the hundred. 6) The hundreds are numbered 
like the tens, and the ones were; from one hundred to ten hundreds: one hundred, 
two hundreds… 7) Then the first ninety-nine numbers are added to the nine first 
hundreds forming the nine-hundreds-ninety-nine first numbers… 
Rules for numbers’ names: Meanwhile the building of numbers, numbers’ 
names are presented like a literal translation. Rules are stated with exceptions to 
them. Though it is paradoxical, but in order to lighten this text, exceptions are 
taken from the English language. After the 3rd step, the correspondence between 
tens names (ten, twenty…) and the amount of tens (one ten, two tens…) is 
stated. Then, after the 4th step, the rule to form the numbers’ names between two 
tens is stated. “Say the tens then the ones”: as three tens is thirty and four ones is 
four, then three tens and four ones is thirty-four. Then a list of exceptions is 
given: for instance the usual number’s name of ten-one is eleven. 
Positional notation: After building the numbers, the positional notation is stated. 
To write numbers without writing the units names, it is sufficient to juxtapose 
the amount of units of each order, the ones on the right side, then each place 
represents a unit which is ten times bigger as the nearest on its right. Places 
which are not represented are marked with the sign 0. 
Conversely to the 1st and 3rd paragraph, the 2nd one -rules for numbers’ names- is 
useless with regular numbers’ names. Due to a cultural difference, this may play 
a major role in differences in the MF throughout the world. 
Changes in the scholarly knowledge: what and when? 
During the new math, many things occur due to the bases. Depending on the 
resource, more or less changes exist in the MF which is used. 1) The classical 
theory may be adapted for bases: as there is no ten, no hundred in bases, units’ 
names become “unit of the first order”, “unit of the second order”, and so on. 
NUs reappear shortly while studying base ten. 2) Generally base-ten-units’ 
names are present in relation with numbers’ names, with the classical 
correspondence. 3) The polynomial decomposition of a whole number n in a 
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practices, and student’s knowledge. It sounds contradictory with a deep 
understanding of place value (Ma, 1999). 

How is place value taught with the polynomial decomposition? What do 
students know about place value? It is useful to have an overview of what 
happened from the reform before to study these questions. 
The appearance and the role of “powers-of-ten written in figures” or: How to 
teach place value at early grades with the polynomial decomposition? 

Two very different texts of the same period evoke nearly the same consequences 
of the bases in classrooms on students’ knowledge. Perret (1985) studies place 
value within the reform in Switzerland. ERMEL (1978) will be a major source 
of the French counter-reformed curriculum. Both write basically that students 
interpret the positional notation as a procedure: grouping, ungrouping. They 
struggle as soon as they have no manipulatives left, ERMEL adds. 

A brief analysis of reform’s praxeologies shows that the old numeration’s tasks: 
that is conversions and decompositions –both using the symbolic register of the 
NU- are no longer taught. It may be due to the lack of most of the units’ names 
with bases other than ten. Whatever, they disappeared as the “bases” appeared. 

A major preoccupation of the counter-reformers was to reinsert a work within a 
symbolic register, so-called the “writings”. A huge process of transposition of 
the academic theory happened; it had been largely achieved or relayed by 
(ERMEL, 1978); and no change is visible in MF after the counter-reform. In the 
part devoted to numeration, there is no NU in (ERMEL, 1978), except once in 
order to evoke rapidly the numbers’ name. The process is the following: ∑ݎܽ 
becomes 	∑ 10ݎ , then a x 1000 + b x 100 + c x 10 + d or a000 + b00 + c0 + d. 
An interpretation is the following: as powers of ten’s positional notation requires 
0 and 1 as multiplicative coefficients which is a predictable difficulty for early 
graders, a solution seems to be that 10, 100… are given. 

Around 1980, “writings”’ tasks appear. Among the various “writings”, the 
“powers-of-ten written in figures” (PTWF, named by the author) -1; 10; 100; 
1000…- played an increasing role. Within a few years, it looks like the old tasks 
in NUs would have been translated in PTWF, and replaced by those translations. 
For instance, “Write in figures: 2 H 4 T 5 O” became: “Compute 
2 x 100 + 4 x 10 + 5” or “Compute 200 + 40 + 5”. “Convert 4 hundreds in tens” 
could have reappeared this way: “Fulfil 4 x 100 = … x 10”. It didn’t reappear. 

A major question is: how to get the positional notation with the transposition of 
the academic theory, especially when a number is given with PTWF? In the 
academic theory, the juxtaposition of the polynomial coefficients leads to it. 
From 2x100+4x10+5x1 -a multiplicative decomposition in PTWF- to get 245 -
positional notation-, instead of the rule “juxtapose 2, 4, 5” in the academic 
theory, the present implicit rule seems to use positional rules: 1) To multiply by 
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Thanheiser (2009) highlights two correct conceptions with US students: 1) with 
NU, 2) with “writings”. Are there links with the local MF?  
How is it abroad? It would be an interesting challenge to identify what part, if 
any, of the French situation can be transferred in other countries whether they 
were implied or not in the reform. Is the classical theory taught somewhere? 
Is it important that teachers know about such phenomena? What would be useful 
for effective teaching? An interesting feature is to know that teaching subjects 
are culturally influenced (ICMI 2000). Tempier (2013) aims to reinsert NUs. 
Teachers change several things in their teaching but they were not able to teach 
NUs as units. Might it have to do with their own MF, if any? It may be useful 
that teacher educators know that several math theories may influence teachers’ 
practices -even their own practices as teacher or educator-. As MFs influence 
even the tasks to be taught, knowing these phenomena seems to be important for 
curricular developers. 
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FIRST GRADE STUDENTS’ MATHEMATICAL IDEAS OF ADDITION 
IN THE CONTEXT OF LESSON STUDY AND OPEN APPROACH 

Narumon Changsri, Faculty of Education, Khon Kaen University, Thailand 

Abstract 

The purpose of this study was to explore the first grade students’ mathematical ideas 
of addition. Target group was 22 first grade students from two schools in 2013 
academic year. These two schools have participated in teacher professional 
development program base on Lesson Study and Open Approach since 2007 and 2009. 
The processes of this study were: 1. Collaboratively design lesson plan focusing on 
open-ended problem situations and students’ ideas 2. Collaborative, classroom 
observations focus on four steps of Open Approach and students’ ideas 3. 
Collaborative, reflection on teaching practice focus on students’ ideas during the 
lesson. Data were collected by using 3 lesson plans in the unit of addition, collecting 
students’ written work and video recording during the lessons. 

The results found that students’ mathematical ideas have been expressed in a variety of 
representations such as ‘together’ in the form of a block diagram, increasing by 
counting one by one on a picture, number sentence, place value and base ten by using 
a bar chart, composition and decomposition by using a line diagram. 

Key words: addition, lesson study, mathematical ideas, open approach 

Introduction 

Young children have quite different conceptions of addition, subtraction, 
multiplication and division than adults do. Their conceptions make a great deal 
of sense and they provide a basis for learning basic mathematical concepts and 
skills with understanding (Carpenter et al., 1999). As children begin to learn 
mathematics in elementary school, much of their number activity is designed to 
help them become proficient with single-digit arithmetic, namely mastery of the 
sums and products of single-digit numbers and their companion differences and 
quotients (Verschaffel, Greer and De Corte, 2007). In the earliest grades, 
children learn to write and manipulate numerals and operation signs (Goldin, 
1998). Fuson (1992) claimed that the focus of learning to add and subtract 
should change from one of children rapidly producing accurate solutions to 
pages of stereotypical numeral problems to one of children discussing in the 
classroom alternative solution procedures for a variety of addition and 
subtraction situations. There are models for children’s informal knowledge of 
counting principles and informal counting strategies and their development into 
more formal and abstract arithmetic notions and procedures (Beckmann, 2014). 

A particular mathematical idea can often be represented in various forms 
(Hiebert and Carpenter, 1992). The way in which mathematical ideas are 
represented is fundamental to how people can understand and use these ideas 
(NCTM, 2000). Because mathematical thinking can be observed mostly in the 
process of students’ problem solving and dialogues among students, the entire 
process of lesson study is expected to improve mathematical thinking 
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COMBINING MATHEMATICAL AND EDUCATIONAL 
PERSPECTIVES IN PROFESSIONAL DEVELOPMENT 

Jason Cooper, Weizmann Institute of Science, Rehovot, Israel 

Abstract 

University mathematicians and elementary school teachers have their own particular 
perspectives on whole number arithmetic. The study reported herein investigates how 
these different perspectives may interact productively in a professional development 
scenario, observed by a mathematics-education researcher, to achieve new insights. A 
discursive analysis of a professional development lesson on Division with Remainder, 
taught by a university mathematician, shows how the differences between the parties' 
perspectives led to the growth of new insights on the topic, its role in the curriculum, 
and its teaching. This meeting of communities is offered as a model for achieving rich 
expertise - an emergent discourse that is more than the sum of its parts. 

Key words: commognition, division with remainder, elementary school teachers, 
mathematicians, professional development. 

Introduction 

Felix Klein, as quoted in the History of ICMI website (ICMI, 2008), believed 
that "the whole sector of Mathematics teaching, from its very beginnings at 
elementary school right through to the most advanced level research, should be 
organised as an organic whole". From this perspective it is natural to assume 
that university mathematicians should have an important role in the professional 
development of elementary school teachers; however, mathematicians have little 
or no experience teaching whole number arithmetic (WNA) to young children. 
Furthermore, the discourse of university mathematics and its teaching may be 
quite different from its elementary-school counterpart. ICMI study 23 suggests 
"taking a mathematical perspective (as practiced by the current community of 
mathematicians) combined with an educational perspective [to uncover] core 
mathematical ideas in developing pathways to WNA". The overarching goal of 
this paper is to suggest an interpretation for this keyword: combined.  

I adopt a Commognitive approach (Sfard, 2008), viewing fields of human 
knowledge as well defined modes of communication typical of particular 
communities. More specifically, I draw on the framework of Mathematical 
Discourse for Teaching – MDT (Cooper, 2014) – in choosing the discourse of 
mathematics-for-teaching as the discursive unit of analysis. A combined 
discourse can be expected to develop where members of two communities meet 
and interact. In this paper I describe such a meeting – a professional 
development (PD) course for in-service elementary school teachers, the 
initiative of a mathematics professor, which he taught together with a group of 
mathematics Ph.D. students. The aim of this paper is twofold: to describe the 
process in which a combined MDT developed and the product of this process:  
the nature of this combined MDT as it pertains to a particular mathematical 
topic – Division with Remainder (DWR). This topic has a university parallel in 
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Ring theory in the form of Euclidean Domains, however its role in the school 
curriculum is transient – a way of performing division in grade 4 which will 
become redundant once students are familiar with the field of Rational numbers. 
Furthermore, school problems usually focus on the quotient of DWR, whereas in 
University Algebra the remainders are much more interesting, comprising the 
elements of a finite cyclic Ring. In view of differences such as these in the two 
communities' perspectives, my research questions are: 

 How can the meeting of a mathematician and in-service elementary 
school teachers in PD foster the mutual growth of MDT related to WNA? 

 What insights regarding Division with Remainder, its teaching, and its 
role beyond the scope of WNA emerged in this meeting? 

This paper is part of a larger project which examines 10 mathematician-
instructors teaching 6 groups of elementary school teachers (grades 1-6) in ten 3-
hour sessions, covering a variety of mathematical topics. Various aspects of this 
PD have been reported (Cooper and Arcavi, 2013; Cooper and Touitou, 2013; 
Pinto and Cooper, Submitted 2013; Cooper, 2014; Cooper, Submitted 2014). The 
current paper, which builds on methodologies and results established in previous 
publications, adds a new perspective; in addition to the lesson transcript on 
DWR, data includes written material (listed below), providing detailed – 
sometimes explicit – information regarding the nature of the parties' MDT. 

Materials and methods 

The data for my analysis includes the transcript of a 2-hour lesson on DWR. 
Fifteen grade 3-6 teachers participated. The instructor was the initiator of the PD 
program, who wrote a book for teachers on the mathematics of elementary 
school. The data includes a final draft of his chapter on DWR, which the 
teachers read prior to the lesson. Data also includes 10 written teacher-responses 
to this chapter, submitted as an assignment for the course.  

The goal of my analysis is to characterise MDTs as they pertain to DWR. The 
instructor's MDT is revealed in the book chapter. The teachers' MDT is revealed 
in their written responses. Learning, conceived as shifts in discourse, begins as 
teachers respond to the mathematician's text. The meeting of the parties in the 
subsequent lesson further reveals the affordances of this interaction of 
discourses in the emergence of an enriched MDT.  

The framework of MDT organises data analysis in a matrix along three 
dimensions: 1. There are two communities of discourse – university 
mathematicians and primary school teacher; 2. MDT consists of six sub-
discourses, inherited from MKT's types of knowledge for teaching. In this paper 
I distinguish only between two broad sub-discourses: Subject Matter Content 
Discourse – SMCD – pertaining to mathematical content, and Pedagogical 
Content Discourse – PCD – pertaining to issues of students and teaching 
interacting with content; 3. Commognitive methodology focuses on four 
interrelated features of discourse: keywords and their usage, visual mediators, 
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narratives and the rules by which they are endorsed, and routines of 
mathematics and teaching. In my analysis I locate elements of teacher and 
instructor communication within the 16 cells of this matrix, as a step towards 
characterising the parties' discourses and the role of DWR therein. For example, 
the remainder notation 25 ∶ 	3 ൌ 8	ሺ1ሻ is a visual mediator in teachers' SMCD. 

Results 

Results are arranged around themes regarding DWR that emerged in the 
analysis. For each theme I describe pertaining aspects of university MDT and 
teachers' MDT, and the process by which an enriched MDT emerged.  

Tables 1 and 2 show an outline of the book chapter and of the lesson. 

1. Remainder notation 

The instructor was struck by an inadequacy of the standard remainder notation. 
This is described briefly in the book chapter as a violation of the equals-symbol 
as an equivalence relationship, namely: If 25: 3 ൌ 8ሺ1ሻ and 41: 5 ൌ 8ሺ1ሻ, then 
by transitivity we deduce 25: 3 ൌ 41: 5, which he considers complete nonsense. 
His proposed solution is to change the remainder notation as follows: 

Standard notation in Israel:  25 ∶ 3 ൌ 8 ሺ1ሻ Proposed notation: 25 ∶ 3 ൌ 8	ሺ1 ∶ 3ሻ 

The new notation is read eight with remainder 1 which needs to be divided by 3. 
In the PD discussion the instructor emphasized that (1 : 3) is a whole-number 
remainder, not a fraction. The new notation no longer implies 25 ∶ 3 ൌ 41 ∶ 5, 
since 8ሺ1 ∶ 3ሻ ് 8ሺ1 ∶ 5ሻ. The discussion of this notation in the PD raised some 
interesting issues. Some teachers, unfamiliar with the definition of equivalence 
(a relationship that is reflexive, symmetric, and transitive), felt that it entails a 
strong "sameness": "it's like 2 times 6 equals 12 and 3 times 4 equals 12, but 
there's really no equivalence, they're not the same". Of course equivalence does 

Page Topic 

1-2 What is remainder? 

3 Range of remainders 

4 
Inverse multiplication 
problems 

5-6 
Remainder in word 
problems 

7 Calculating DWR 

8-14 Remainder arithmetic 

15  Problems 

Tab. 1: Overview of book chapter 

What's going on Duration

Introduction, rationale  25 min. 

The nature of 3 remainder 2 13 min. 

Word problems  4 min. 

Long division algorithm 
and DWR 

3 min. 

Is 0 a remainder? 2 min. 

Problems and exercises 16 min. 

Remainder arithmetic 31 min. 

Signs of divisibility 19 min. 

Tab. 2: Overview of the enacted lesson 
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not require this sense of sameness, but interestingly, the new notation actually 
sets up an isomorphism between DWR problems and results. If the result is 
8(1 : 3), we can reconstruct the problem as 25 : 3, and not for example 50 : 6, 
which would yield 8(2 : 6). Note that in this notation we should write 
remainders that are zero, for example 24 : 3 = 8(0 : 3).  

I now return to the instructor's claim that 25 ∶ 3 ൌ 41 ∶ 5 is complete nonsense. 
He remarked in the lesson: "What kind of creature is three remainder two? 
...Arithmetic expressions have numeric value... the equals symbol tells us that 
the value of this is the same as the value of that... Is this [8(1)] a numeric 
expression like I'm accustomed to?" He was expecting a negative answer, which 
would further challenge the use of equality, however a teacher responded 
unexpectedly: "If we agree that [the term in brackets] is the remainder, then yes, 
of course [it's a numeric expression]". For this teacher, each of the two division 
expressions is evaluated as the numeric object 8(1). And indeed there is nothing 
intrinsically wrong with this equality as an equivalence relationship - the 
equivalence class of all DWR problems whose result is the numeric object 8(1). 
This point was raised by another teacher who warranted her claim in the context 
of a problem of fair sharing of apples: "But before [the remainder] is divided, 
it's the same apple that's left over. As far as the [fruit] store is concerned it's the 
same [remainder]". The instructor, by his own testimony, missed this 
mathematical point. Hence, the equality is complete nonsense not because it is 
not a valid equivalence, but rather because it is the wrong equivalence, since it is 

not consistent with fractions, where 
ଶହ

ଷ
ൌ

ସଵ

ହ
 is indeed wrong. The instructor's 

oversight indicates that for him DWR is not a goal of its own, but rather a 
transitional phase on the way to rational numbers. 

The teachers' written reactions to the new notation were generally positive. Five 
considered it preferable, three had pedagogical reservations drawn from their 
PCD (e.g. children will prefer the shorter notation), and four saw pedagogical 
affordances, some quite ingenious, as reported in the following sections.  

2. Division with remainder as a precursor to fractions 

Division as the inverse of multiplication requires fractions, yet there are reasons 
to teach it before fractions are introduced: Children face division problems (e.g. 
fair sharing) before they learn fractions, and such problems call for an arithmetic 
operation; from an algebraic perspective, division as multiplication with 
unknown (?	ൈ 3 ൌ 18) is introduced together with multiplication. Although the 
motivation for the new remainder notation was mathematical (respecting 
equality as equivalence), the instructor appreciated its pedagogical merit, 
offering a smooth transition from WNA to fractions conceived as the result of 
division. He elaborated on this in the PD meeting, referring to a fair share 
problem represented by 17 ∶ 5: "everyone received 3, and there are two more 
that need to be divided into 5… I write it in the language of whole numbers… 
Everything is ripe [for fractions]… what's written is in fact 3 and two fifths".  
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begins with "4 into 7 is 1". The remainder (3) is found by subtracting:  
7 െ 1 ൈ 4 ൌ 3, equivalent to the multiplication notation: 1 ൈ 4  3 ൌ 7. 

5. The affordances of DWR for challenging advanced students 

The instructor stated his opinion regarding advanced students - they should be 
challenged, not accelerated. Systematic emerged as a keyword in his MDT. 
When posing the following "routine" problem (using standard DWR notation): 
17 ∶?ൌ 	3ሺ2ሻ the instructor asked "what is the systematic way to solve?" He got 
the answer he was fishing for: ሺ17 െ 2ሻ:	3. Later he elaborated: "up until now it 
was pretty obvious that the problems you solved did not have additional 
solutions... because there was always a systematic way to find it". The next two 
problems were different. First the dividend and the remainder were unknown -  
? : 3 ൌ 	7	ሺ? ሻ This problem has multiple solutions, but once the remainder is 
chosen (e.g. 1), the dividend can be found systematically, e.g. 7 ൈ 	3  1 ൌ 22. 
The next problem: 35 ∶?ൌ 3ሺ? ሻ  was considered challenging. A systematic 
solution, inspired by the commutative rule, is to switch the quotient and the 
divisor. From 35: 3 ൌ 11ሺ2ሻ  we deduce the solution 35 ∶  ൌ 3ሺሻ  . There 
are, however, additional solutions, since the larger divisor (11) permits a larger 
range of remainders, e.g. 35 ∶  ൌ 3ሺሻ . Thus, the challenge lies in 
overcoming the incompleteness of the systematic solution to the problem.  

6. DWR and word problems 

Throughout the lesson, DWR was considered in two contexts – the operation 
grounded in division problems (e.g. fair sharing) and the abstract arithmetic 
operation. The instructor saw word problems as the major motivation for DWR 
in elementary school, to which he dedicated much of his chapter and much of 
the lesson. A move that the teachers particularly liked (based on written 
responses) was three different word problems that make use of the same 
dividend and divisor; in one the answer to the problem is the quotient, in another 
it is the quotient's successor, in another it is the remainder, and in yet another the 
only plausible answer is a fraction (i.e. it is not appropriate for DWR). 
Comments, grounded in PCD, included: they emphasise understanding, often 
neglected in text books; such a question appeared on the standard state test. 

7. A focus on remainders – Remainder arithmetic 

The instructor dedicated half the chapter and a full 50 minutes of the lesson to 
remainder arithmetic (i.e. addition, subtraction and multiplication in the Cyclic 
Ring of remainders modulo some divisor), a topic beyond even the high school 
curriculum. He offered two reasons, both related to understanding mathematics: 
1. In order to properly understand the special case of parity (odd + odd = even, 
etc.) it should be generalised, and this is done through remainder arithmetic;  
2. The elementary school curriculum includes signs of divisibility (e.g. sum of 
digits for divisibility by 9); understanding why "it works" relies on remainder 
arithmetic, and as he said: "my feeling is that it's generally not advisable to 
teach something without explaining it".  
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Three teachers found the chapter on remainder arithmetic difficult to understand 
on their own; two other teachers considered it unsuitable for the general class, 
though possibly suitable as enrichment for advanced students. However, during 
the PD lesson many teachers appeared to be highly engaged, participating in the 
instructor's mathematical routines in an exploratory manner. 

Discussion and conclusion 

A striking feature of the results discussed in the previous section is the depth and 
complexity of the discourse of "elementary" mathematics and its teaching. The 
instructor, drawing on his university discourse, gained a deep understanding of 
DWR, and connected it to other elementary topics, some of them beyond the 
realm of WNA, (e.g. fractions, LDA, signs of divisibility) in ways that the 
teachers found engaging. But this was only the beginning of the process. To 
describe how knowledge for teaching developed further, I adopted the 
Commognitive framework of MDT. In this framework, knowledge for teaching 
in the cognitive sense is evident in the parties' narratives (e.g. children don't 
understand remainder), visual mediators (e.g. remainder notation) and routines 
(e.g. LDA). The Commognitive framework extends this conception in drawing 
attention to the nature of the parties' warrants for endorsing or rejecting 
particular narratives, visual mediators or routines, grounding them in their 
communities' practices. Consider, for example, the new DWR notation: 

The instructor endorsed the new notation primarily for its mathematical 
consistency – a warrant from his SMCD – yet he was sensitive to pedagogical 
issues as well, such as the affordance of his proposed notation for teaching 
fractions. I speculate that this sensitivity was developed during three years of 
teaching elementary school teachers in PD. Teachers were respectful of the 
mathematical warrant, yet in considering whether or not to adopt the new 
notation, brought their PCD to bear. Some rejected it based on their discourse of 
students (difficult, cumbersome), others found pedagogical affordances (better 
understanding of remainder, overcoming difficulties related to decimal LDA). 
Years of teaching experience did not yield these insights spontaneously; rather it 
was the teachers' response to the instructor's mathematical ideas that instigated 
these new insights. In this sense many of the insights that emerged in the PD 
were a result of the meeting of two MDTs. This meeting began with the 
teachers' written responses, but developed further in PD discussions. In some 
cases the teachers' responses challenged the instructor's mathematics, e.g. the 
question of whether 25 ∶ 3 ൌ 41 ∶ 5 makes sense in the context of DWR. These 
mathematical challenges were not always appreciated by the instructor at the 
time. Thus the PD can be conceived as a meeting of three communities of 
discourse, where the third is the mathematics education researcher, who teased 
out insights that may have been missed by the interlocutors at the time. 

I have shown examples of four types of learning opportunities. The teachers 
extending their SMCD and the mathematician extending his PCD can be 
conceived as sharing knowledge across communities – a worthy endeavour in its 
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own right – however I have additionally shown opportunities for the teachers to 
gain new pedagogical insight and for the mathematician to learn new 
mathematics, where the parties extend aspects of their MDT in which they have 
already achieved expertise. This, I claim, is the main affordance of this meeting 
of communities. This is how I understand combined perspective. In this paper I 
have illustrated some examples of insights that emerged through this combined 
perspective. Many of them warrant deeper analysis, which will be undertaken in 
a separate publication. 

The instructor's decision to teach remainder arithmetic was grounded in his 
feeling that teaching mathematics entails explaining it (e.g. signs of divisibility). 
Furthermore, his conception of an adequate explanation was grounded in his 
university practice (e.g. odd + odd = even should be generalised). Can such 
"attitudes" to mathematics and its teaching be taught in PD? This question is 
beyond the scope of the current paper, where teachers' endorsement or rejection 
of narratives, visual mediators, and routines appear to be strongly grounded in 
pedagogical concerns. Yet far from being a limitation, these differences between 
the instructor's and the teachers' MDT are what drove the learning process.  
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KEY ISSUES FOR TEACHING NUMBERS WITHIN BROUSSEAU’S 
THEORY OF DIDACTICAL SITUATIONS 

Jean-Luc Dorier, Université de Genève, Switzerland  

Abstract 

In this paper we present the main key issues of Brousseau’s theory of didactical 
situations and its close interaction with the history of mathematics. We then give a 
short overview of the main stages of the development of numbers in the history of 
humanity. We then present the way Brousseau’s theory, in accordance with the 
historical context, develop the key stages of a teaching sequence of the concept of 
numbers for students from age 4 to 6. In the final stages we reflect on the value of this 
approach in terms of teachers’ training, including the historical aspect of numeration. 

Key words: cardinal, equipotent collections, fundamental situation, history of 
mathematics, quantity, theory of didactical situations 

Introduction 

This paper does not aim at introducing new material for the teaching of whole 
numbers, but to present the main lines of a specific approach dating from the 
80s, within the Theory of didactical situations in mathematics (Brousseau, 
1997). This approach is very popular within French speaking countries, where it 
is the basis for most curricula in primary school teachers’ training. Our aim here 
is to make this approach more known to an international audience and to show 
the key issues on which it lies in terms of the modelling of the teaching and 
learning of whole numbers. Moreover, we will reflect on the value of this 
approach in terms of teachers’ training and its articulation with the history of 
numeration from prehistory up to recent times. 

From early works (e.g. Piaget and Szeminska, 1941), the 70s psychologists 
made a lot to make us understand essential issues in children’s conception of 
numbers (e.g. Bideaud and Meljac, 1992; Fuson, 1988, Gelman and Gallistel, 
1978; or Kamii, 1982). Moreover, the question of designing a school curriculum 
for the learning of whole number has been, since the 70s, a new challenge in 
which mathematics education approach developed. In the French context, Guy 
Brousseau held a central position. His approach is unique in the sense that he 
developed a new theory based on several sources and in constant interaction 
with experimentation, in the context of the COREM, a school where teachers 
and researchers interacted on a daily basis (Brousseau, Brousseau and Warfield, 
2014, pp. 168-172). In psychology, experimental devices are built in order to 
reveal the state of knowledge of a subject. In mathematics education, the 
purpose is to build some experimental devices for teaching and to control the 
learning. In this sense, the main goal changes radically compared to psychology, 
since here the research analysis bears on the relation between the devices, the 
mathematics and students’ behaviour. In this sense, in the Theory of situations, 
the focus is on analysing the raison d’être of a notion creating conditions of uses 
of elements of knowledge (connaissances), which gives the meaning of the 
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notion a radical change compared to the aim of psychology (Brousseau 2012). In 
French, we have two terms for knowledge: connaissance refers to what students 
put into action or express, in a specific context, while savoir refers to a more 
general decontextualised form recognised by an institution (a theorem for 
instance). Without developing too much this essential difference, we will use the 
French words in italic to make the distinction (like Warfield in the previously 
quoted book).  

A mathematical situation is a set of specific conditions in which a determined set 
of mathematical connaissances (stated or belonging to the milieu) permit a 
subject to realise a declared project by the exercise of appropriate mathematical 
connaissances, known or original. … A-didactical situations occur in the 
classroom, and have the goal of reproducing the conditions of a real 
mathematical activity dealing with a determined concept: i.e., a mathematical 
situation. In the course of an a-didactical situation the students are supposed to 
produce a correct and adequate action or mathematical text without receiving any 
supplementary information or influence. With this definition in hand, a didactical 
situation can be defined as the actions taken by a teacher to set up and maintain 
an a-didactical situation designed to allow students to develop some goal 
concept(s). In particular, the teacher sets up the milieu, which includes the 
physical surroundings, the instructions, carefully chosen information, etc. 
(Brousseau, Brousseau and Warfield, 2014, p. 203) 

The search of meaning of the notion to be taught is therefore central. This 
epistemological quest is modelled through the essential concept of Fundamental 
situation: 

Each item of knowledge can be characterised by a (or some) adidactical 
situation(s) which preserve(s) meaning; we shall call this a fundamental situation. 
But the student cannot solve any adidactical situation immediately; the teacher 
contrives one, which the student can handle. These adidactical situations 
arranged with didactical purpose determine the knowledge taught at a given 
moment and the particular meaning that this knowledge is going to have because 
of the restrictions and deformations thus brought to the fundamental situation. 
(Brousseau, 1997, p. 30) 

Therefore, in order to organise a didactical sequence for teaching a new concept 
the researcher will search for uses that give the core meaning of a mathematical 
concept and then organise a scenario in order to organise the meeting of students 
with the different stages of uses of the connaissances. This is based on 4 
different types of situations: 

Within the category of didactical situation, there are three notable subcategories, 
chosen because they correspond to models of completed mathematics or because 
they have an important place in the genesis of a concept. Situations of action 
reveal and provoke the evolution of models of action without the student’s 
needing to formulate them. The student can, immediately or later, learn to 
identify them, to formulate them in situations of formulation (expression or 
communication) and to justify them in situations of proof (validation or 
argumentation.) There is a tight correspondence between (a) the composition and 
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organisation of the milieu (game, communication, debate), (b) the nature of the 
interactions of the subject with the milieu (action, formulation, proof), (c) the 
type of knowledge these relations call forth (implicit models of action, languages, 
mathematical savoirs.) A fourth type of situation is that of institutionalisation by 
which the teacher introduced or established known savoirs. (Brousseau, 
Brousseau and Warfield, 2014, p. 203) 

These key notions of Brousseau’s theory are now commonly introduced in 
teachers’ training courses and we will show how they can make more sense 
regarding the question of teaching numbers to students age 4-6. Moreover before 
doing so, we will rapidly sketch some key historical facts in the development of 
numeration in humanity. Indeed these are essential to reflect on the raison d’être 
of numbers, which is a central aspect of Brousseau’s approach. It is well known 
that there are at least three fundamental aspects of numbers: cardinal, ordinal 
and measure. Due to the word limit, we will only investigate here the cardinal 
aspect of numbers, and only a small part of it. This will be sufficient to illustrate 
to nature of Brousseau’s concept. For a broader presentation, the reader can refer 
to a very good recent publication (unfortunately only in French) by Margolinas 
and Wozniak (2013). All that we investigate here concern pupils of age 4-6.  

Key historical facts in the development of numeration in humanity 

Our goal here is not to give a full account of the vast history of the 
conceptualisation of number and the evolution of numerations in mankind. We 
will only refer to a few key elements, based on reference works (mostly, 
Cousquer, 1998; Crossley, 1994; Guittel, 1975 and Ifrah, 1985). Nevertheless, 
like it was discussed in the ICMI study 10 on the role of history in mathematics 
education, we are opposed to: “the naïve recapitulationism that was introduced 
at the end of the last century following Darwin's writings and the biological 
paradigmatic view of the evolution of species which assumes that the mental 
development of the individual (ontogenesis) recapitulates the development of 
mankind (phylogenesis).” (Radford et al., 2000, p. 144). Rather, for us “the 
historical analysis is a source of inspiration as well as a means of control. Yet, 
these activities must not be only a speech of the teacher, nor a reconstruction of 
the historical development, but they must reconstruct an epistemologically 
controlled genesis taking into account the specific constraints of the teaching 
context.” (Dorier, 2000, p. 107). Epistemological analysis is central in 
Brousseau’s approach, in order to bring out the characteristics of the 
fundamental situations, which will give the meaning of the mathematical 
concept. 

Regarding numbers, anthropology tells us that many primitive tribes did not 
develop the concept of numbers beyond duality, sometimes decoupled as two-
two (for four). Indeed, the number three seems more difficult to conceive. 
Therefore, the first step in conceptualisation is to evaluate and differentiate 
among several multitudes. In other words, the first difficulty in order to conceive 
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the quantity is to be able to individualise every object and not see the collection 
only as a whole. The duality “same/different” is essential in this process. 

The idea of number is at first attached to the necessity of counting. In the 
introduction of his famous work on the measure, The French mathematician 
Henri Lebesgue (1875–1941) gave a very nice overview of this process:  

On imagine volontiers, et les constatations faites chez certaines peuplades 
primitives semblent confirmer cette hypothèse, que … les hommes en sont 
arrivés, quand ils veulent comparer deux collections, à compter ; c’est-à-dire à 
comparer les deux collections à une même collection-type, la collection des mots 
d’une certaine phrase. Ces mots sont appelés des nombres. Pour compter ou 
dénombrer, on attache mentalement un objet différent de la collection envisagée 
à chacun des mots successifs de la phrase (ou suite) des nombres ; le dernier 
nombre prononcé est le nombre de la collection. 
Ce nombre est considéré comme le résultat de l’opération expérimentale de 
dénombrement parce qu’il en est le compte-rendu complet.1 (Lebesgue, 1931, 
introduction) 

At first, shepherds were concerned by about the loss of sheep when these came 
back to the pen. The two collections to be compared are the collection of sheep 
leaving the pen in the morning and the collection of sheep coming back in the 
evening. In this case, a very ancient solution was to build an intermediate 
collection with stones. The shepherd put a stone on a pile for each sheep going 
out and in the evening he only needed to take off one stone from the pile for 
each sheep getting back into the pen. Therefore he creates an idempotent 
collection through the fundamental action of building a one-to-one 
correspondence between the sheep and the stone and vice-versa. This is the first 
step of conceptualisation towards the concept of numbers in its cardinal aspect, 
the recognition of quantity as a property of collections. 

Several other artefacts, some dating back to Paleolithic times (15’000 years 
B.C.) like notches on a piece of wood, bones or reindeer antlers are the 
indicators of some certitude of a human activity related to building idempotent 
collections in order to memorise quantities. Unlike the pile of stones, this 
collection of notches was transportable and durable in time. 

                                           

 

 
1 One can readily imagine, and the findings in some primitive tribes seem to confirm this 
hypothesis, that… Men came, when they want to compare two collections, to count: that is to 
compare the two collections to a same collection-type, the collection of the words of a certain 
sentence. These words are called numbers. To count or enumerate, one mentally attaches a 
different object from the collection envisaged to each of the successive words in the sentence 
(or series) of numbers; the last number to be pronounced is the number of the collection. 

This number is considered to be the result of the experimental enumeration operation because 
it is its complete report. (our translation) 
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Around 3’500 B.C. Sumerians are known to have developed the idea that instead 
of using one object, a small cone of clay, for each sheep, it was easier to replace 
every ten cones by an other object, a small ball, then every 60 small cones again 
by an other object, a bigger cone, 600 small cones by a bigger cone with a round 
print, etc… This is the beginning of the idea of basis, in an additive structure. 
Indeed, each piece of clay has an invariant value and one has to add the values 
of each to get the total. These were used to keep a trace of the quantity of sheep 
during transhumance. Two identical collections were built and enclosed in a clay 
sphere with distinctive marks from both the owner of the sheep and the 
shepherd. In order to simplify this, Sumerians got the idea to represent this with 
marks on a clay tablet. This is the beginning of cuneiform writing. 

The way men were using words to give account of these activities is not easy to 
reconstitute so there are big lack of information, in order to understand the 
process that brought the idea of using a structure collection of words in a certain 
order to give account of the enumeration. 

As announced, due to the limitation of space, we will not pursue any further the 
history of numerations and come now to the way, in Brousseau’s theory, in 
which these first element of epistemology were used to build the first teaching 
sequences on number. 

Brousseau’s didactic engineering on numbers  

The first fundamental situation for numbers has to do with quantity (not yet 
cardinality). It can be expressed as “building an idempotent collection to a given 
collection”. Typically, one has to bring exactly as many2 (no more no less) 
glasses as there are plates on the table. 

Following Margolinas and Wozniak (2013) we will illustrate this with eggs and 
cups. So the fundamental situation will be “Bringing exactly as many eggs as 
cups”. The cups are on a table and many eggs are in a container, while the pupil 
has to put his eggs in a basket. The task can be validated by the pupil himself, by 
putting one egg per cup. He wins if there is one egg per cup and no egg is left in 
his basket. There is no need for a didactical intervention by the teacher, as it is 
said that there is a validation by the milieu, which is a necessary guarantee for 
an a-didactical situation.  

As such the task is still very open and several things need to be specified 
regarding the activity, they are choices that have to be made by a teacher in 
order to build a scenario for presenting the situation to his pupils. These choices 
(made against others) are modelled as choices of values for didactical variables. 

                                           

 

 
2 One can’t say the same number! With 4-6 years old kids the teacher will have to work on 
vocabulary to be sure that the task is understood. 
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Here for instance, the number of cups is a didactical variable. If there are only 
two to five or six cups, we know that pupils can use directly evaluate the 
quantity by subitizing and therefore easily succeed, on the other hand, if there 
are more than 10-12 cups, the task will be unnecessarily complicated for pupils 
of age 4-6. Therefore there are three significant sets of values for this didactical 
variable, namely 2, 6 6, 12 and 12, +, where each set corresponds to 
choices that favour or hinder some specific strategies. The consistent sets of 
values for a didactical variable are therefore those that change the hierarchy in 
the strategies in terms of accessibility, validity or difficulty… there are 
essentially two types of didactical variables, depending whether it bears on the 
mathematical activity (number of cups, of eggs in the container, distance 
between container and table with cups, etc.) or the scenario (work in small 
groups, present results on a poster, etc…). 

Each choice of a set of values for the variables corresponds to a different 
situation. A didactical engineering for the recognition of quantity as an essential 
feature of collection (a first step to the idea of cardinality) consists in organising 
a progression made of different variations of the same fundamental situation. 

The first step is crucial for the process of devolution. The connaissance has to 
be put into action only and recognised as a way to solve the problem. The 
container with the eggs is close to the table with cups (between 6 and 12). The 
task is to put in the basket as many eggs as cups. Some pupils will just roughly 
evaluate the quantity, if not just pick some eggs at random, and fail. They will 
realise this, when putting the eggs from the basket in the cups. An easy way to 
succeed is to take the eggs one by one out of the container and dispose them in 
front of the cups before putting them in the basket (the choice of values of the 
didactical variables does not block this strategy). This is typically a situation of 
action, not just because the pupil is active, but essentially because the 
connaissance that permits to solve the problem is directly put into action without 
a need of explicitation. Moreover, even as simple as this could seem, the fact 
that the number of eggs do not change when putting them in the basket after 
aligning them in front of the cups has been pointed by Piaget and Kamii as a 
difficulty in the well-known test of conservation. Even if, in the act, the 
connaissance here is a means of anticipation that only the final step (when one 
put the eggs in the cups) validates. 

A second stage in the progression will bring the necessity of formulation. This 
does not just mean that the pupils will formulate things. Pupils will formulate for 
instance their action when sharing what they have done in the first phase, but 
this is not a situation of formulation. On the contrary in a situation of 
formulation, pupils may not exactly formulate their connaissance in the sense 
that they may not express it verbally by oral or written means. What is at stake 
in a situation of formulation is the fact that the connaissance needs to be 
postponed either in space or in time and therefore needs to be transferred, hence 
“formulated”. Nevertheless the transfer can be to oneself (auto-communication) 
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or to somebody else (communication). The other person can be familiar or not 
and it can be a group or an individual. There might be some issue regarding 
rapidity, readability, etc… The choices of values for didactical variables consists 
in putting the container far from the cups, in a place where the pupil cannot see 
cups (otherwise he could still make the one-to-one correspondence in action). 
The eggs have to be brought back in one go. This is the easiest stage of 
formulation, in a situation of auto-communication. In order to succeed, not by 
chance, the pupil will have to build an intermediate idempotent collection. 
There, the teacher can choose to give, let take if ask or forbid, paper and pencil 
(one can make one mark per cup, like the notches on a piece of wood, bones or 
reindeer antlers), some tokens (that can be used like the shepherd used stones). 
Pupils can use their fingers, even if this might be more difficult, if there are 
more than 10 cups. In this phase of auto-communication, the pupil builds his 
connaissances on the validity of intermediate idempotent collection. A new 
stage would be to postpone the action in time: the pupil can see the cup one day, 
but will have to bring the egg the next day, when the cups will be hidden. This 
makes the construction of the code more difficult. Then comes the proper 
communication, when one pupil has to buy some eggs from a seller: the order 
can be made orally or in written form, with various constraints on the type of 
message or the rapidity, if some competition is added. The situations of proof 
concern phases where pupils in a collective task have to agree on way to succeed 
and situation of institutionalisation where the teacher will point out officially 
what has been learnt and refer it to a social practice that is recognise outside the 
class (decontextualisation). The next stage concerns the cardinal, recognised as 
the equivalence class of quantities regarding the relation of idempotence, but we 
do not have space to develop this aspect.  

All these phases are essential in the process of conceptualisation of the number, 
and it is important that pupils get some opportunity to give sense to essential 
ideas related to numbers before they acknowledge numbers and counting as the 
socially recognised consistent ways of solving the task.  

Conclusions 

In France and French speaking Switzerland, Brousseau’s theory of didactical 
situations is an essential part of primary school teachers’ training in didactique 
des mathématiques. It is particularly adapted to the teaching of whole numbers, 
where the key concepts of the theory can be illustrated in relation to the 
historical context of the conceptualisation of number and numeration. This gives 
some essential cultural background in mathematics for use by teachers, as well 
as useful tools for teaching, even if a lot more needs to be done. Moreover it 
illustrates some aspects of research in didactics of mathematics. 
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Abstract 

Different countries have different names for numbers. These names are often related in 
a regular way to the base-10 place value system used for writing numbers as digits. 
However, in several languages, this regularity breaks down (e.g., between 10 and 20), 
and there is limited knowledge of how the regularity or irregularity of number naming 
affects children’s formation of number concepts and arithmetic performance. We 
investigate this issue by reviewing relevant literature and undertaking a design 
research project addressing the specific irregularities of the Danish number names. In 
this project, a second, regular set of number names is introduced in primary school. 
The study’s findings suggest that the regularity of number names influences the 
development of number concepts and creates a positive impact on the understanding of 
the base-10 system. 

Key words: base-10 value system, grade K-2, new number names from 11-99 

Introduction 

“The Danish number names are very old and reflect a number concept that is 
primitive in relation to mathematical thinking,” (Gyldendal, 2009–2010, our 
translation) such as treoghalvfjerds, 73 (three and half-four), toogtredive, 32, 
(two and thirty), and seksten, 16 (sixteen). These old roots are unknown to most 
students; furthermore, the number names are abbreviated. As an example, 70 
(half-four) in Danish was once named half-four-times-twenty, but the times-
twenty has been lost in the counting numbers yet retained in the ordinal 
numbers. 

Frankly, Danish numbers seem rather peculiar with their mystical names; 
compared to other countries, this appears to be the case. Specifically, the 
irregularity involves the number names between 10 and 20, where 11 and 12 
have their own names, while 13 to 19 each ends with a ten. The two-digit 
numbers from 13 to 99 have an inversion property (the ones are said before the 
tens) and the tens have names inspired by a 20-base system. However, most 
European languages break away from a clear regularity with respect to the base-
10 place value system, especially with the numbers from 11 to 19. 
Understanding the effects of such irregularities on mathematics teaching 
remains an unresolved question. The present paper aims to contribute to the 
knowledge of this issue; it combines the literature on the subject with a 
description of a research project that is currently refining the hypothesis 
empirically.  
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Number names and arithmetic performance 

There are major differences in the kind of system a language uses to describe 
numbers. Most European countries have an irregular naming of the teens; both 
German and Dutch systems feature an inversion property of the numbers 
between 13 and 99, similar to the Danish one. These inversion effects had been 
studied by Moeller, Pixner, Zuber, Kaufman, and Nuerk (2011) for two-digit 
numbers, showing how inversion-related difficulties predict later arithmetic 
performance.  

Different studies (Miura and Okamoto, 1989; Miura et al., 1993; Miura et al., 
1999) compared Japanese, Chinese, Korean, and English-speaking American 
first graders’ (6–7 years old on average) cognitive representations and 
understanding of place value. The findings confirmed that the Asian-language 
speakers showed a preference for using base-10 representations to construct 
numbers, whereas English speakers favoured using a collection of units. Note 
that a significant difference between American and Asian number names 
appears between 11 and 19, exactly when the base-10 system starts to use two 
digits. In Miura and Okamoto’s (1989) study, children were asked to construct 
the numbers 11, 13, 28, 30, and 42 from sets of ten and unit wooden blocks. The 
results showed that 91% of the American first graders used unit blocks to 
represent the numbers on their first attempt. In contrast, about 80% of the Asian 
children used sets of ten blocks when representing the numbers on their initial 
attempt. These differences in cognitive representation were mainly ascribed to 
language (Miura et al., 1993). Nonetheless, the validity of this conclusion is 
challenged by many other cultural and educational differences between Asian 
and Western children. On the other hand, research has also been conducted 
among children who share similar cultures and belong to similar school systems 
but have different mother tongues. For example, Dowker, Bala, and Lloyd 
(2008) compared English and Welsh students, who have similar cultural 
conditions, although Welsh names for numbers are as regular as those of the 
Japanese. Dowker and colleagues (2008) found no statistically significant 
difference between the two groups’ overall arithmetic performance test but: 

Welsh-speaking children find it easier than English-speaking children to read 
and compare two-digit numbers, suggesting that they are better at using the 
principles of place value (p.531). 

This issue raises the question of why and how different languages influence 
number concepts and perhaps even the ability to learn simple arithmetic. 

Another research project concerning numbers and names similarly concluded 
that the names matter (Xenidou‐Dervou et al., 2014). They compared Dutch and 
English students in kindergarten and grade 1 in terms of the development of 
nonsymbolic and symbolic, approximate arithmetic. The Dutch system follows 
the same inversion as that of the Danish in two-digit number names. Some 
conclusions of the project are that Dutch-speaking kindergarteners have delayed 
developmental onset, lagging behind their English-speaking peers in symbolic 
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(but not in nonsymbolic) arithmetic, demonstrate a working memory (WM) 
overload, and are significantly worse in naming large numbers. 

Xenidou‐Dervou and colleagues (2014) interpreted their findings as a “first 
evidence for the effect of the inversion property on the onset of symbolic 
approximation”.  

Number concepts 

Learning to count and understand the base-10 system are cognitive challenges 
involving many small steps. We have chosen to focus on oral counting; the 
cardinal principle of combining a name with a cardinal value; and the 
combination of words for a number, its cardinal value, and the digit sign.  

Developing familiarity with the symbolic number system begins with oral 
counting. Although children start oral counting quite early, it is not clear if they 
understand what they are doing. Counting appears to be learned first as a 
linguistic routine through which the number names are perceived as ‘sign 
systems’ or cultural semiotic systems that enable the symbolic representation of 
knowledge (Goswami, 2008).  

At 3–5 years of age, children more or less understand the counting principles, at 
least until the number 10, even when they err in their counting (Siegler, 2003). 

Children typically learn the names of numbers as a long list of words and 
demonstrate knowledge of the stable order principle by almost always saying the 
number words in a constant order and emphasising the last number (Goswami, 
2008). The names are developed as sounds connected to the number of objects 
in the sets. 

The developmental shift to understanding the number name as a cardinal value 
requires a qualitative shift in children’s representation of numbers. The cardinal 
principle requires comprehension of the logic behind counting (Goswami, 2008) 
and the ability to judge the size of a set. It relies on a representation of 
quantitative information in which the coding of smaller quantities is different 
from that of larger quantities (Goswami, 2008). Children’s conceptual 
understanding of numeration depends on their ability to make a connection 
between a number name and its cardinal value, which they learn to do by 
grouping and quantifying sets of objects (Thomas, Mulligan and Goldin, 2002).  

Learning how to connect the number name, its cardinal value, and the digit sign 
is another challenge. As discussed, two different systems must be combined 
with different representations. Becoming an expert at combining these two 
systems means developing rapid access to an automatic use of written numbers 
and simultaneously being able to multitask to solve other problems in parallel. If 
the two systems are iconic and support each other, the child encounters less 
difficulty in learning this skill, as is the case for Japanese-speaking children. If 
the two systems are irregular and therefore conflict with each other, it is more 
problematic for the child to understand and remember the connection among the 
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name, the cardinal value, and the sign. Duval (2006) described this situation as a 
conversion between registers and observed that the congruent conversions seem 
the easiest for students, meaning that the representation in the starting register is 
transparent to the target register.  

Materials and Methods: Project intervention 

In order to address the question of the influence of number names on number 
concepts, we have initiated a design research project that works on improving 
the teaching of numbers in the Danish primary school. The project aims to 
improve students’ understanding of the base-10 system by using mathematical 
names for the numbers. For example, one-ten-one for 11 and five-ten-six for 56 
follow the words for the numbers in the same order as the written numbers. The 
project involves 10 classes and 9 teachers at a suburban, low-income area school 
in Copenhagen. The project combines the renaming of numbers with supporting 
the teachers in instructing the students in kindergarten and grade 1 accordingly. 
In each class there are between 15-30% migrating children, still all the children 
speak Danish and all the teaching is in Danish. The research is planned to last 
for three years; we currently have data from the first year. The data consists of 
students’ performance in classroom observations, a number understanding test, 
teachers’ portfolios, and notes from collaboration with teachers. 

Using a method inspired by design research (Cobb and Gravemeijer, 2008) we 
have formulated our hypotheses for empirical investigation. The hypotheses is 
grounded in the case that Danish children experience difficulties in 
understanding and learning Danish number names; consequently, they face 
challenges in working with numbers due to the complicated and irregular 
number names. The project builds on the following two hypotheses: 

1. The number names function as cognitive artefacts; hence, concordance 
between spoken and written language is sensible.  

2. Language constitutes concepts, which is why clear terminology seems 
effective in developing lucid concepts. 

These hypotheses/explanations are grounded in learning theories, semiotics, and 
cognitive science, as well as empirical comparisons of students’ skills in 
countries with different levels of transparency between written numerals and 
spoken number names. 

Our research aims to provide an understanding of the extent to which it is 
possible to influence students’ arithmetic skills, including strategies that offer 
the use of mathematical number words in teaching. The intervention consists of 
agreeing on and discussing the introduction of a second set of words for two-
digit numbers. We do not provide special teaching materials or change the 
textbooks that the teachers normally use. Rather, we support the teachers in how 
they can use their existing materials together with this project’s tools and aims. 
In a similar fashion, we have tried to build on the existing practices and 
organization in the school; hence, the preschool teachers have already developed 
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E: OK, six and four. 

I: And you are allowed to call the number just six tens and four. 

After this communication, the student easily found the number 64. 

This scene showed an example of communication between the interviewer and 
the students. It occurred at the beginning of the school year when the students 
were still at the initial phase of renaming the numbers with mathematical names. 

The case also illustrated how the focus on naming numbers interacted with the 
students’ conceptualisation of numbers. The conversation between the 
interviewer and the girl’s classmates helped her realize how to approach the task 
of finding the number 64. In this sense, the increased awareness of numbers and 
their names might provide an important explanation for the results we would 
obtain in this project.  

When they finished the pattern, the interviewer asked the students about what 
kind of patterns they could find within the large pattern. The session developed 
into a discussion about how the pattern could be seen in both vertical and 
horizontal directions. The interviewer asked whether the same number occupied 
two columns. Several students immediately answered that it was impossible and 
one continued that it was similar to the school, where you could not attend two 
different classes at the same time. The student furthermore pointed at each 
column as representing a class. This viewpoint is interesting from the 
perspective of learning, in which she could see class divisions in the numbers. 
The ways that the students are asked questions are crucial to how they develop 
mathematical thinking.  

Besides the observations, we also conducted a test in the middle of the school 
year. We made the students take the test twice, once with the mathematical 
numbers read aloud and the other with the traditional numbers read aloud. Half 
of the classes started with the mathematical numbers. We noted the effect of 
repeating the test and compared both results. 

Furthermore, we took the minutes of the meetings with the teachers and 
collected their written portfolios that described their collaboration and 
considerations in the project.  

From the observations, we recognised that especially in the kindergarten classes, 
the students gained confidence in learning the numbers between 10 and 20 and 
placing numbers on an empty number line. The grade 1 pupils demonstrated an 
improved understanding of the strategies for adding across tens and a generally 
better comprehension of the base-10 system. They also showed improvement in 
writing the correct number when it was spoken. 

Discussion and conclusion 

In this article, we have described the empirical experiences from the first of a 
three-year research project, which theoretically relies on our hypothesis that 
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Danish number names are very complicated; therefore, children encounter more 
difficulties in learning and working with Danish numbers.  

We have shown how the differences in naming numbers may give rise to 
linguistically determined differences in how children learn number concepts, as 
well as in the cognitive load of arithmetic processes. In the intervention, we 
have created an easier relationship between spoken and written numbers. To 
combine a set with spoken numbers is one process; to combine it again with 
written numbers is another step. In our project—in both the classroom 
observations and the test—we have already found out how the mathematical 
number names help the students recognise numbers and write them correctly in 
an easier way.  

Our observations of the students in grade 1 reveal that if the task is to say the 
name of a written number, 63 for example, children often repeat the rhyme ten, 
twenty, thirty, etc., and use their fingers. The children stop upon reaching the 
sixth finger and then they know the word. This case may be perceived as a type 
of interfering process; in cognitive terms, it means that two parallel processes 
are in conflict with each other. The semantic treatment demands too much 
attention; therefore, it is not possible to multitask and complete both processes at 
the same time (Baddeley, Eysenck and Anderson, 2009). This interfering effect 
means that Danish children take a much longer time to automate the learning 
process of combining spoken and written numbers. The logic in the base-10 
system disappears in the Danish language; thus, the combination of the names 
and the written digits has to be learned somehow by rote. 

The first year has produced both positive results and challenges. Working in 
school as the research field raises the issues of cooperating with the teachers, 
monitoring what happens in the classroom, and coping with all the unpredictable 
circumstances. Nevertheless, after the first year, we realise that our hypothesis 
seems to show results in an almost positive direction. Over the next two years, 
we expect to find some strength, especially in developing arithmetic strategies, 
which often emerge from an in-depth understanding and knowledge about facts. 
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NATIVE AMERICAN CULTURES TRADITION TO WHOLE NUMBER 
ARITHMETIC  

Sarah González, Juana Caraballo  

Pontificia Universidad Católica Madre y Maestra, Dominican Republic 

Abstract 

In Latin America there are more than 23,000,000 natives that even today speak their 
own language and many are marginalised because they do not speak the Spanish 
language.  They have their own conceptualisation of whole numbers.  Many studies 
have been conducted on the Mathematics of these cultures.  It is highly important for 
teachers to be able to understand their Mathematical approach of whole number 
arithmetic (WNA) to be able to teach these children.  In this paper, a summary of some 
of the WNA of Incas are presented, and how an Ethnomathematics approach, as the 
theoretical base to teach Mathematics in this context, is used in order to diminish the 
exclusion in the mathematics education of native children of these cultures. 

Key words: ethnomathematics, Inca’s mathematics, intercultural mathematics 
education, native American number system, Whole Number Arithmetic, Yupana  

Background 

The situation of the exclusion in the natives education in Latin American 
countries has been documented. Gaete and Jiménez indicated that “Indigenous 
schools have the same achievement problems than the other schools, but there 
are worsen by the absence of intercultural education”; they pointed out that 
“there is a linguistic gap that affect students education because their Spanish 
literacy is diminished”.  Also, they indicated “the low preparation of teachers to 
be able to understand and give response to their students from an intercultural 
perspective” (2011, p. 113). 

White (1988) claims that mathematical concepts have their origin in the cultures 
and traditional ways of thinking of human beings. From this anthropological 
perspective, the place where inventions and discoveries are created is related to 
the cultural zone in which people live.  Today, we continue to find mathematical 
concepts that were developed in primitive times, for example in the many 
different counting systems of ethnic groups in different locations. In native 
cultures, the Mathematical knowledge is transmitted from generation to 
generation in written, graphically or by oral tradition. 

In order to work towards greater equity and inclusion rather than exclusion of 
diversity, Healy and Powell (2013) discussed the new approach between 
characterising “disadvantage as an individual or social condition that somehow 
impedes mathematics learning, which has resulted in the further marginalisation 
of individuals whose physical, racial, ethnic, linguistic and social identities are 
different from normative identities constructed by dominant social groups.”  
They also pointed out that “recent studies have begun to avoid equating 
difference with deficiency and instead seek to understand mathematics learning 
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from the perspective of those whose identities contrast the construction of 
normal by dominant social groups”; they propose that “understanding” 
disadvantage can be discussed as understanding social processes that 
disadvantage individuals. And, “overcoming” disadvantage can be explored by 
analysing how learning scenarios and teaching practices can be more finely 
tuned to the needs of particular groups of learners, empowering them to 
demonstrate abilities beyond what is generally expected by dominant 
discourses.” (p. 69) 

With respect to teacher education in Mathematics education for equity, Healy 
and Powell (2013) indicated that “A consensus among mathematics education 
researchers concerned with preparing teachers to work with diversity and for 
equity is that any attempt to understand disadvantage brings into play questions 
of social justice.” (p. 90) 

“Gutstein (2006), proposes three essential knowledge bases for teaching 
mathematics for social justice and diversity: “classical mathematical knowledge, 
community knowledge, and critical knowledge”.  Similarly, in considering the 
question of what teachers need to know to support learners in bilingual and 
multilingual classrooms, Moschkovich and Nelson-Barber (2009) stressed the 
importance of addressing issues related to cultural content, social organisation 
and cognitive resources”. (cited by Healy and Powell (2013), p. 90) 

In the framework of the discourse of the relations between Mathematics and 
education, culture and politics emerged the concept of Ethnomathematics.  The 
term was coined by Ubiratan D’Ambrosio in 1985 (see D’Ambrosio, 1985). 

In the same vein, Villavicencio (2011) indicates that the research of Zalavsky, 
D’Ambrosio and Bishop have helped in the construction of a generalised 
conceptualisation of the capacity for Mathematical expression of a cultural 
group as part of its identity as their language capacity.  Villavicencio also points 
out that in order to make Mathematics Education with an intercultural focus 
operational, taking into account the research mentioned and her own experiences 
and reflections in the experimental Project of Bilingual Math Education in Puno, 
Perú, she assumed this concept of Ethnomathematics: The knowledge of an 
identifiable sociocultural group, that implies the processes of counting, 
measurement, locate, design, play and explain; these processes have been 
identified by Bishop as the six activities that gave place to the Mathematics 
development in the different cultures. 

Ethnomathematics approaches include four areas: in-context cognition, cultural 
knowledge, education and mathematical production. Bishop (2000) indicated 
that: Ethnomathematics refers both to the study of the relations between 
Mathematics and culture as to the concrete mathematical practices that are 
conducted in the communities where is located the school”. (p. 40). 

D’Ambrosio (2007) affirms that the ethnomathematics may promote a 
humanistic Mathematics that can be viewed as a discipline that preserve 
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Ethnomathematical approach to teach the children of these cultures today.  It is 
important to have instructional environments that encourage the participation 
and performance of multi-linguals through the use of their rich resources for 
mathematical sense making.  
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Abstract 

In French teaching practices there is currently a lack of consideration for the decimal 
(base ten) principle of numeration system for whole numbers. This is the reason why 
we implemented two experiments to strengthen this principle, giving a key role to the 
use of numeration units (ones, tens, hundreds …). The first one was led in the context 
of designing a resource for teachers in grade 3, the second one involved training 
teachers in grades 1 and 2. We analyze how students and teachers take into account 
numeration units and put them in relation with standard representations of numbers. 
Both exemplify the complexity of the teaching-learning process of numeration. 

Key words: Base-ten, numeration units, place value, teaching, whole numbers 

Introduction 

As many scholars (among them Bednarz and Janvier, 1988; Kamii and Joseph 
2004) we conceptualize the numeration as a network of skills about counting, 
grouping, representing the quantity in various ways and understanding the 
meaning of place-value. The place-value numeration system for whole numbers 
is based on two inseparable principles (Ross, 1989):  

- The position of each digit in a written number corresponds to a unit (for 
example hundreds stand in the third place): this is the “positional principle”;  
- Each unit is equal to ten units of the immediately lower order (for example 
one hundred = ten tens): this is the “decimal principle”.  

Understanding this numeration system (and its relationship with oral 
numeration) is part of the school curriculum in all countries. Detailing what such 
understanding means and organizing it at primary school levels is probably less 
uniform: for instance Ma (1999) stresses the different ways used by US and 
Chinese teachers respectively to quote the decimal principle about the 
subtraction algorithm; in France (grades 1 to 5) the current curriculum (2008) 
does not refer to place-value principles before grade 3, and with no further 
details (Houdement and Chambris, 2013). 

Supported with our study of the curriculum as well as some textbooks and some 
teachers’ practices, we hypothesize an illusion of transparency of base-ten 
number concepts in the current French teaching (Tempier 2013). Of course it 
deals with position and associated value of a digit in the written number and the 
terms ones, tens, hundreds … - what we name numeration units (NU) as 
Chambris (2008) - are visible, principally used as names of position of each digit 
(positional principle). An indication of this illusion of transparency is the low 
percentage of success of 104 French 3-graders (8-9 year-old) in tasks involving 
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relations between units (Tempier, 2013): “1 hundred = … tens” (48% success), 
“60 tens = … hundreds” (31% success) and “in 764 ones there are ... tens” (39% 
success). Yet, ones, tens, hundreds...  are organized as a system of units: there are 
units of all orders and two units are always in a 10n-to-1 ratio. The numeration 
units system is a named-values system (Fuson and Briars, 1990) which explains 
the positional base-ten system of whole numbers. This system has vector space 
properties (computation on numeration units) and allows different ways of 
writing: 5 ones 6 tens 3 hundreds or 2 hundreds 16 tens 5 units, with a number of 
units bigger than nine, which gives it great instrumental potential. 

We are convinced of the interest of finely connecting three representation systems 
of numbers (Van de Walle, 2010): the two standard ways, i.e. the written numbers 
(WN as 56) and the spoken numbers (SN as fifty-six), and a third one, the in-
numeration-units numbers (NUN) which are written as they are spoken. Teaching 
specifically and gradually the third system (NUN) in relation to the two others 
might facilitate understanding (1) of base-ten-place-value system (Tempier, 
2013), (2) of computation algorithms (Ma, 1999), (3) of the decimal form of 
rational numbers, especially of decimal fractions. (4) It would resonate with the 
teaching of measurement units: length units, mass units ... (Chambris, 2008). And 
(5) this system provides an alternative to saying a WN (72 : 7 tens, 2 ones) 
without using the SN system which often doesn’t reflect the way the numbers are 
written in Western languages (72 = soixante-douze in French, i.e. sixty-twelve). 
(6) It can also help to bridge WN and SN (65 = 6 tens 5 ones = sixty five). 

The questions addressed in this paper are: how do teachers incorporate 
experiments supported with this proposal into their practice? What can be 
perceived of the acceptances or resistances of students and teachers? 

Materials and methods 

Two experiments supported with problems made us progress on these points: the 
first one in the context of a PhD thesis (Tempier, 2013), studying the use of a 
resource by four teachers in a design-based research (with a methodology of 
didactical engineering for the development of a resource) at grade 3 (8-9 year-
old); the second one in a context of teacher education about six teachers of 
grades 1 and 2 (6-8 year-old) in the same school in a difficult area.  

In both experiments we choose to introduce numeration units early in the 
mathematical organization of the year, so that they are available for working on 
computational techniques. We rely on two types of problems: 

Type A. Write in WN a quantity from a collection of objects (or from a 
NUN): we call these problems “counting problems”;  
Type B. And the inverse problem that consists in producing a collection of 
objects (or a NUN) from a WN: we call these “ordering problems” (in 
reference to the ordering of a collection by a “shopkeeper”).    
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In grades 1 & 2 the collection of objects is still present (either initially given or 
to build), whereas in grade 3, the work consists mainly in translating NUN in 
WN and vice versa (collection possibly used for validation). The collection 
consists of wooden sticks, a groupable ten base model (Van de Walle, 2010): 
this manipulative provides access to a first meaning of the NU, possibilities for 
organizing a collection that fits the various ways of writing with numeration-
units. We use these possibilities of organization in the problems given to 
students. 

Experimentation 1 

Here are three problems of the resource proposed to the teachers: 

 Problem A1  Problem A2 Problem B3 
Type of 
problem 

Counting a 
collection totally 
organized (in 
groups of tens, 
hundreds...) 

Counting a collection 
partially organized 
(NUN→WN) resulting of 
the union of two collections. 

Ordering a collection 
(WN→NUN) taking into 
account constraints (e.g. 
"there are no more 
thousands of sticks")  

Mathema- 
tical issues 

Explaining the 
position principle 

Converting units into higher 
order units 

Converting units into lower 
order units 

Examples  The 3 thousands 
are written in the 
fourth position of 
WN: 3024. 

3 thousands 12 hundreds 
1 ten 5 ones = 4 thousands 
2 hundreds 1 ten 5 ones 
(because 10 h = 1 th) 

2615 = 2 thousands 
6 hundreds 1 ten 5 ones  
= 26 hundreds 1 ten 5 ones 
(because 1 th = 10 h). 

Tab. 1: Three problems of the resource 

We indicate thereafter the various uses of the numeration units in the 
implementations of the resource by the teachers. 

Experiment 2 

In experiment 2, the eleven teachers of the whole school reported difficulties in 
teaching and learning place-value system (for whole number in grade 1 and 2, 
for decimals in grades 3, 4 and 5 and for numbers beyond 1000) and the feeling 
of a lack of coherence in the practices. In the continuity of experiment 1, one of 
the authors developed a brief training in numeration units as an essential element 
for understanding written numbers and spoken numbers, supported by 
manipulative: wooden sticks but also students’ fingers. Teachers agreed with the 
idea of types of problems from grade 1 to grade 5, with a game on the variables 
(size of numbers, organizing collections and various writings used). We will 
only talk about grades 1 and 2 (5 teachers) which have been more thoroughly 
surveyed. 

Teachers implemented lessons where students were to produce a number of 
fingers or of a given collection of wooden sticks (less or more organized) in WN 
or NUN form (type A problem), or a collection of fingers or sticks 
corresponding to a WN or a NUN (type B problem). 
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Results 

Experiment 1 

In implementing Problem A1 (Tab. 1), all the teachers involved use the NU for 
highlighting the link between group and position in WN. The NU are mainly 
used to designate these positions; this is done in the "place value chart" with NU 
written on the top line. In implementing Problems A2 and B3 (Tab. 1), we could 
observe three types of resistances to an appropriate use of NU by teachers: 
avoidance of the use of units to describe the material groups, predominant 
reference to materials when conversions are involved and failure to use NU for 
writing conversions. 

The first resistance was observed in only one class, Mrs. A.’s. Despite the 
proposed resources, the teacher only used the expressions “boxes”, “bags”, etc. 
to speak of the groups. Yet, she always used the NU to describe the positions in 
WN. See below how she came back to the addition carrying in the A2 problem. 

Mrs. A: eight plus four, what is… what is happening 
here in the hundreds? 
A student: twelve 
Mrs. A: we find our twelve bags but what is happening ?  
A student: we carry 1 
Mrs. A finishes writing the algorithm of addition on the 
blackboard: 

Th H T O 
1    

  1 4 2 4 

+ 1  8 1 0 

3 2 3 4 

Mrs. A: well, that's why we carry 1, because we will keep only two bags for 
hundreds and here's ten that will make us a box of thousand more. [...] We now 
understand better the carrying: this is our small box of thousand more. 

In Mrs. A.’s class, the NU are only used to label the positions of WN but not for 
material groups, which prevents the students from making sense of NU as quantities. 

In the other classes, the NU are used to describe material groups, as proposed in the 
resource. However when there are more than ten units at an order, the teacher refers 
systematically to material groups (real or drawn). For example, in the 
implementation of Problem 2 (Mrs. B’s class), a student (Marc) is asked to draw 
the union of two collections on the blackboard (a box for thousand, a bag for 
hundred…). Faced with Marc’s difficulties with 12 bags, Mrs. B asks another 
student (Joris) to help him:  

Joris: in fact when you have twelve, you have more hundreds [...] If you got ten 
hundreds, what does it correspond to?  
Mrs. B: what can you do? If you got ten bags what can you do?  
Marc: ah yes a thousand.   The student draws a new box on the blackboard. 
Mrs. B: The ten [hundreds] you'll put them in a box. [...] When we have ten bags 
we can put them in a box. [...] So as soon as it exceeds ten we can put them in a 
thousand box. 
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While students use NU orally, the teacher reformulates by reducing to material 
issues (put ten bags in a box). This effective reference to the material is never 
questioned even if it becomes an obstacle. Mrs. C explains her confusion after a 
lesson during which students were asked to order 8004 sticks (problem B3) from 
a “shopkeeper” who didn’t get thousands. She feels helpless with the difficulties 
encountered by students because she has no alternative but to use materials: “ I 
had no way to help them because I have not eighty hundreds.” The use of 
materials seems the only recourse available for teachers to explain and justify 
transformations of different stick organisations. 
In the four classes is observed a third type of resistance, the failure to use the 
NU for writing conversions, even if NU are orally used. For example Mrs. C 
never writes a conversion (such as 12 hundreds = 1 thousand 2 hundreds), 
except basic conversions as 1 Th = 10 H, even if conversions are mentioned. At 
the blackboard Mrs. B reasons on the drawings of the groups without ever 
writing conversions. The previous excerpt shows it: she doesn’t transpose the 
idea suggested by Joris into writing: 12 hundreds = 1 thousand 2 hundreds. 
When another student explains what he did to find the total number of sticks 
(“seven hundred and three hundred it’s doing ten”), Mrs. B does not write the 
associated conversion (7H + 3H = 10H = 1Th) but continues to refer to materials 
(“I transformed my bags, I put it in a box because I have ten”). It prevents 
students from taking over the writing task of conversions between units and so 
from strengthening their constructive abstraction (Chandler and Kamii, 2009). 
Experiment 2      
Consider two examples of students’ and teacher’ relation to numeration units. 
In grade 2 (7-8 year-old), to count a collection (type A problem) the teacher gets 
her students to organizing collections in groups of ten and to using numeration-
units to name bundles of sticks (tens, hundreds) and the ten fingers of a child (a 
ten). The teachers ask for a response without specifying its form, then the 
students give a standard spoken number resulting of a relatively easy counting 
by tens and ones (ten, twenty, thirty, thirty one, thirty two). In Tab. 2, first line, 
the two students of the group first counted ten, twenty…, ninety, a hundred, two 
hundreds and after the teacher noticed their error they announced to their peers 
one hundred and ten. Then the WN is collectively deduced from SN by touching 
the number strip and simultaneously counting one by one on the number strip, 
starting from a known number name: 

 95 96 97 98 99 100 101 102   

Fig. 1:  An extract of the usual number strip 

When asked to count the tens (1, 2, 3 tens and 2 ones), it is more difficult, as 
was expected: students often waver for example between 110 tens and 11 tens 
on the second line. This is a sign of the difficulty of the twofold point of view on 
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able to conceive simultaneously a ten and 10 units− this example shows how 
young students can rigidify their vision of quantity depending on the material: it 
is difficult for them to see a fourth ten in 4 fingers here and 7 fingers there 
(Chandler and Kamii, 2009).      

Discussion and conclusion 
Both experiments highlight the complexity of the teaching-learning process of 
the numeration. Grade 3 students seem quite ready to use numeration-units to 
refer to the collections; it is the teacher who checks this use by bringing them 
back to a description language of the materials in boxes, bundles.... Their use of 
the numeration units remains mostly oral or if written associated to the place-
value chart. In this way they prevent students from conceptualising the relations 
between numeration units that are yet the goal of the session. To avoid the 
learning of two types of words, for materials and for numeration units (bundles 
and tens), we decided to introduce in grades 1-2 only the word ten (resp. 
hundred) to describe a bundle of ten (resp. of hundred). Teachers and a large 
part of students appropriate orally numeration units (tens, tens of fingers, tens of 
sticks) more easily than grade 3 students, and the same goes for the simple 
relations: 1 T=10 O, 1 H=10 T...  But grade-2 students cannot yet deduce the 
relation between NUN and WN, despite juxtaposing the two writings on the 
blackboard (Fig. 2). Although informed, the teachers are surprised that students 
cannot deduce NUN from WN or vice versa, while the relation seems evident to 
them. But for these young students the only link between the two representations 
(NUN and WN) is the material and the different ways to organize it. Grade-1 
students notice the presence of tens in a collection, first using the counting song 
ten-by-ten (ten, twenty, thirty: then 3 tens), then counting directly the tens. But 
they can also rigidify the representation of a number as full tens and isolated 
ones and no longer see 1 ten of fingers included in 7 and 4 fingers. This lack of 
cognitive flexibility is known by scholars (Chandler and Kamii, 2009), but is 
always difficult for teachers to understand.  

Globally the in-service teachers are not fitted to manage this complexity:   
- Due to a lack of institutional indicators: in French curriculum the decimal 
principle is only referred to as “grouping and exchanging tasks”“. The interest of 
numeration-units as a representation halfway between materials and WN 
remains hidden, the conversions seeming to be limited to manipulative. 
- Due to a strong belief in some manipulative containing and directly displaying 
mathematical structures. Reference to the material often becomes the favourite 
way for teachers to help students not to forget the quantity associated with each 
numeration unit.  
- Due to a lack of Mathematical Knowledge for Teaching (Ma, 1999; Ball et al., 
2008) about the WN sense (the role of numeration units) and the differences 
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between WN and SN (particularly the obstacle that SN can represent for the 
understanding of WN). 
This study might possibly indicate a need for further teacher education to enrich 
the teaching of WN, about the necessity (and the ways) of teaching various 
number representations (among them NUN) and their mutual links. We would 
be interested in knowing how other countries deal with this challenge. 
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THE MOST IMPORTANT THING FOR YOUR CHILD TO LEARN 
ABOUT ARITHMETIC 

Roger Howe, Yale University, USA 

Abstract 

The paper argues for a specific ingredient in “learning arithmetic with understanding”: 
thinking in terms of “base ten pieces”. In support of the argument, well-known 
properties of the decimal system are collected for review. 

Key words: base ten/decimal system, base ten pieces, estimation, order of magnitude 

Introduction 

Cultural variation is one of the most prominent features of modern global life: 
people do things differently in different places. Language is perhaps the most 
obvious example of this variability, but difference can be found in almost all 
spheres of activity.  However, there is a cultural artefact that transcends 
language and is almost universally used in the civilised world: the decimal 
system, or base ten place value system, based on the Hindu-Arabic derived 
symbols for the digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.  (The actual symbols for the 
digits are not quite as universal as the system itself, with variants being 
especially prevalent in Arabic countries and India!) Recent scholarship (Lam 
and Ang, 2004) suggests that the decimal system as we know it today is a 
written adaptation of the ancient Chinese system of calculation using counting 
rods. The translation of this system into written form required invention of the 
zero to maintain uniqueness of interpretation; this is seen as a watershed event in 
the development of mathematics.  

The decimal system is so widely used because it is wonderful. It is a tool of 
remarkable sophistication and efficiency. It provides a unique way to represent 
each whole number, no matter how large, in compact form. Moreover, it 
supports computation with efficient and learnable algorithms for the arithmetic 
operations. It also makes comparison and estimation easy. Thus, it supports all 
our efforts of quantitative reasoning. In schools throughout the world, learning 
whole number arithmetic means studying the decimal system. The goal of this 
paper is to help make this study more robust by offering a suggestion regarding 
an ingredient of “learning arithmetic with understanding”. To provide a rationale 
for the suggestion, basic and well-known features of the decimal system will be 
reviewed. 

Basics of the Decimal System 

How does the decimal system accomplish its marvels? The secret is in the 
structure behind how it represents numbers. First, each base ten number is 
implicitly a sum: 

352 = 300 + 50 + 2. 
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Each number is represented as a sum of very special numbers. There seems to be 
no standard short name for these numbers3. In this article, we will just call them 
the “base ten pieces" of the number, or just “pieces" for short. 

Furthermore, and critically, the base ten pieces have multiplicative structure. 
The first part of this structure is, the digit for each base ten piece records the 
number of copies of a base ten unit that is used to create that number. Thus, 

300 = 3 × 100,      50 = 5 × 10,      2 = 2 × 1. 

The numbers 1, 10 and 100 are the base ten units, and the digit multiplying each 
unit tells how many copies of that unit are used to compose the number. The 
symbol for the number, 352, indicates which unit is multiplied by which digit by 
the position of the digit. The rightmost digit, 2, tells the number of 1s needed; 
the next digit to the left, 5, tells the number of 10s needed, and the digit next to 
the left of that, the 3, tells how many 100s are needed. Thus, the size of the base 
ten unit corresponding to each digit is revealed by the position of the digit in the 
base ten representation. This of course is why the decimal system is called a 
positional, or place value system. 

To make this system work, it is essential to have a 0 -- a symbol representing 
nothing, so that if no copies of a particular base ten unit of a given size are 
needed to represent a given number, one can still write something in the 
corresponding place, which allows the digits representing larger base ten units to 
appear in the place corresponding to the correct unit. This principle is seen 
especially in the representation of the base ten pieces: 300 is made of 3 
hundreds, 0 tens and 0 ones, and similarly, 50 is made of 5 tens and 0 ones. It is 
the 0s in the tens and ones places that signal to us that the number means what it 
does. 

Knowing that each special number is a digit times a base ten unit does not 
exhaust the multiplicative structure of the special numbers. The base ten units 
themselves stand in a multiplicative relationship to each other. The unit “ten” 
consists of 10 ones. It is 10 × 1.  Likewise, the unit “hundred” consists of 10 
tens: it is 10 × 10. And the next base ten unit, “thousand”, consists of 10 
hundreds: it is 1,000 = 10 × 100. And so on, and so on, and so on. 

We can notice that the number of times we have multiplied by 10 to get a certain 
unit is the number of zeroes used in representing the unit. This is a happy side-
effect of using positional notation, and it suggests the even more compact 
representation of larger numbers, by simply recording the number of factors of 
10 that have gone into creating a given unit. Thus (not in elementary grades, but 
as part of the study of algebra), it is common to write 

                                           

 

 
3 To this author, this is a remarkable lacuna in the mathematics education literature. 
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10 = 101,   100 = 10 × 10 = 102,         1,000 = 10 × 100 = 10 × 10 × 10 = 103, 

and so forth. We will call the power of ten that designates a given base ten unit 
the order of magnitude of that unit, or sometimes just the magnitude. 

Thus, there is a huge amount of structure built into the conventions of the 
decimal system. First, each number is a sum of special numbers. Each special 
number is a digit times a base ten unit. Which base ten unit a digit is multiplying 
is shown by the location of the digit in the base ten expression. Moreover, the 
base ten units themselves embody a multiplicative principle, which is called 
forming powers of the base of the system, i.e., 10. 

Making all this structure explicit reveals five stages of place value: 

352     = 300                   +       50          +    2 

= 3 × 100             +      5 × 10     +    2 × 1  

= 3 ×  (10 × 10)   +      5 × 10     +    2 × 1  

= 3 × 102              +      5 × 101   +    2. 

The first stage is of course the standard form of writing numbers. The second is 
often mentioned in the early grades, under the name expanded form. It identifies 
and isolates the base ten pieces of the number. The next two stages make more 
explicit the multiplicative structure of the base 10 pieces. The third stage factors 
each piece into its digit times its base ten unit. The fourth stage exhibits the base 
ten units as products of several factors of 10, or as powers of 10. These might be 
called the second expanded form and the third expanded form. The fifth and 
final stage makes a connection with algebra: it reveals that base ten notation is a 
very compact way of representing numbers as “polynomials in 10". This point of 
view sheds light on the secret of the power of base ten representation: it is using 
all the structure of algebra – addition, multiplication, and exponentiation – 
simply to represent numbers. 

Arithmetic with Base Ten Numbers 

The structure of the base ten pieces and the base ten units has a remarkable 
consequence for computation:  

the sum or the product of an arbitrary pair of whole numbers can be found 
by combining calculations involving only two base ten pieces.  

Moreover, the calculations with the base ten pieces reduce to single digit 
calculations, combined with order of magnitude considerations. Space 
limitations do not allow a full description here. We will make a few basic 
observations, and refer to (Epp-Howe, 2008) for details. 

The basis for performing addition with base ten numbers is the fact that, since 
every base ten unit is the same multiple (i.e., 10) times the next smaller unit (and 
because of the Rules of Arithmetic) addition of single digit multiples of any base 
ten unit behaves in the same way as addition of single digit numbers themselves: 
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2 + 5 = 7,    and      20 + 50 = 70,   and       200 + 500 = 700. 

And this remains true when the single digit sum is more than 10: 

7 + 8 = 15,    7,000 + 8,000 = 15,000,   and   700,000 + 800,000 = 1,500,000. 

This parallel structure of addition at all orders of magnitude gives rise to a 
simple method for finding the sum of any two base ten numbers. The key steps: 

  i) Break each number into its base ten pieces. 
 ii) Add each pair of pieces of the same order of magnitude.  
iii) Recombine the sums into a base ten number. 

Here is an example (with no regrouping; for that, see (Epp-Howe, 2008)): 

352 + 416   =   300 + 50 + 2 + 400 + 10 + 6 

                                   =   300 + 400 + 50 + 10 + 2 + 6    =   700 + 60 + 8  =  768. 

The recombinations here may seem complicated, but that is only on paper. From 
a mental point of view, this is very close to the standard algorithm. In fact, the 
standard algorithm can (and should!) be seen simply as an efficient way to 
juxtapose the digits of the same-size base ten pieces of the addends for 
convenient (columnwise) addition: 

                 352  
                                                                +  416  

768 

Multiplication also can be handled in a similar spirit: multiplication of any two 
numbers can be accomplished by suitable combinations of multiplications of 
their base ten pieces, which amount to single-digit multiplications, combined 
with products of base ten units. Here the decimal system provides huge value. 
Multiplication was a task left to experts before the introduction of the decimal 
system, but afterward, anyone could do it. 

The overall process is governed by the principle of Each With Each (EWE) (see 
(Epp-Howe, 2008)): to multiply two sums, multiply each addend of one sum 
with each addend of the other, and sum all the products. For example: 

352 × 416  =    (300  +   50  +  2)    ×    (400  +  10  +  6) 

                  =    300 × 400     +     300 ×10     +     300 × 6  

                  +   50 × 400     +       50 ×10     +      50  × 6  

                  +     2 × 400     +        2 × 10     +        2  × 6  

                  = (3 × 4) × (100 × 100)  + (3 × 1) × (100 × 10)  +  (3 × 6) × (100 × 1)  

                  + (5 × 4) × (10 × 100)  +  (5 × 1) × (10 × 10)    +  (5 × 6) × (10 × 1)  

                  + (2 × 4) × (1 × 100)    +  (2 × 1) × (1 ×10)       +  (2 × 6) × (1 × 1)  

                 =        120,000               +          3,000                 +        1,800  

                 +          20,000               +             500                 +           300  

                 +               800               +               20                 +             12. 
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The product is found by adding all these 9 products of base ten pieces. The fine 
points of multiplication algorithms are devoted to organising the sums. 

Estimation and Approximation 

Comparison and estimation can likewise be handled in terms of base ten pieces. 
It is important to note that comparison and estimation involve considerations of 
size, which is a very different matter from the operations of arithmetic. Although 
computation usually gets more attention in the curriculum, size is the most 
important aspect of numbers for most applications. So the fact that the decimal 
system handles size comparisons as cleanly, if not more so, than the arithmetic 
operations, is very valuable. 

For this discussion, we need to extend the term “order of magnitude” from base 
ten units to all numbers. We say that the order of magnitude of a base ten piece 
is the same as the order of magnitude of the base ten unit of which it is a (single-
digit) multiple. And the order of magnitude of any whole number is the order of 
magnitude of its largest non-zero base ten piece. In other words, the order of 
magnitude is one less than the number of digits. 

The base ten units increase very rapidly in size as their order of magnitude 
increases: each unit is 10 times as large as the next smaller one!  It is hard to 
keep this in mind without some effort. Many people do not distinguish strongly 
between a million and a billion, and think of them both as “very large numbers”. 
Of course they are, but there is a huge difference: a million is puny compared to 
a billion. And these days, to understand the U.S. budget, you have to deal with 
trillions. It may be helpful to think in terms of time. A thousand seconds is 
enough time to have a cup of coffee or a short lunch. A million seconds ago is 
11 to 12 days -- the middle of last week. A billion seconds is over 30 years – a 
about half a lifetime. And a trillion seconds ago was the old Stone Age – the 
pyramids of Egypt were far, far in the future, and Neanderthal people were 
roaming Europe.  

Since a base ten unit is 10 times as large as the next smaller one, and since in a 
base ten number, only multiples up to 9 are allowed of any unit, a single base ten 
unit is larger than any base ten number of smaller magnitude. This means that, 
for any base ten number and any order of magnitude, if we just delete all the 
base ten pieces smaller than that magnitude, we will of course get a smaller 
number; but if we delete all those smaller pieces, and add just one base ten unit 
of the given magnitude, we will get a larger number. The first procedure is 
called rounding down, and the second procedure is rounding up. Here are some 
examples: 

350  <  352  <  360,   300   <    352   <   400. 

37,340,000   <   37,344,192  < 37,350,000 

It follows from this “sandwiching” type of relationship that there is a very 
simple criterion for comparing two base ten numbers. Given two of them, 



ICMI Study 23                                                                                           Theme 1, Howe, The Most Important Thing 

112 
 

compare the base ten pieces, starting from the largest order of magnitude. Find 
the largest order of magnitude for which their base ten pieces are different. Then 
the number with the larger piece of this order of magnitude is the larger number. 
Here again are some examples. 

416  > 400  > 352;     37,344,192  > 37,340,000  > 37,330,000  > 37,328,793. 

We can regard rounded versions of a base ten number as approximations to the 
number. There are many reasons for working with rounded numbers. First, they 
are simpler to deal with – to write, to remember, to calculate with – since they 

have fewer pieces. Second, since each base ten unit is only 
ଵ

ଵ
	as large as the next 

larger one, the smaller base ten pieces contribute a rapidly smaller and smaller 
share of the whole number. For example, if we take the number 37,344,192, and 
round it down to various places, we find that the rounded number captures large 
percentages of the whole number, and that these percentages rapidly approach 
100%. 

   30,000,000    >    80%           of        37,344,192, 

   37,000,000    >    99%           of        37,344,192, 

   37,300,000    >    99.8%        of        37,344,192,        and 

   37,340,000    >    99.98%      of        37,344,192. 

You do not need very many of the larger base ten pieces before you have all of 
the number you can make practical use of. In many situations, just the leading 
piece will be enough. In most situations, the two leading places will be enough. 
In almost all situations, the three largest places will be all you need. In fact, for 
many quantities that you may work with, if they are reported to more than 3 base 
ten pieces, you should be suspicious, because the smaller pieces may well not 
have any basis in reality. This applies especially to figures derived using 
statistical methods. Consider population. It may seem a simple thing to count, 
but when the counting is of people, who are dying and being born and moving 
around, it is not. The population of even a medium sized city probably changes 
daily, in ways that can be difficult to keep track of. So any statement of 
population of a city or a state that claims to know the exact number of people 
there is a lie. 

Thus, it is both happy for us that the decimal system provides accurate 
approximations with so little effort, and it is incumbent on us, in this data 
driven, quantitative world, to understand both the limitations of accuracy with 
which we can know numbers, and to be sensitive to the accuracy that base ten 
numbers provide. We should not use more digits than our knowledge supports. 
Reporting numbers to too many digits is one of the more pervasive forms of 
innumeracy.  
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The Moral 

What should the student of mathematics take away from this discussion? We 
have seen that the basic principle of base ten notation is to decompose any 
whole number into special numbers, its base ten pieces. We have also seen that 
this structure is highly compatible with computation, and with estimation and 
approximation. Moreover, an arbitrary number can be expressed with high 
relative accuracy using only a few of its largest base ten pieces. In particular, the 
overall size of a number is well captured by just its largest base ten piece. 
Moreover, for many measurements, expressing the results with more than 2 or 3 
pieces does not make sense.  

The moral of this story is: the most important thing a student of arithmetic can 
learn is to think in terms of the pieces. 

It is to be distinguished from thinking in terms of the digits. Indeed, it is possible 
to deal with arithmetic in terms of formal manipulations of the digits, and many 
students, including prospective teachers, end up doing this (Kamii, 1986, 
Thanheiser, 2009). However, the digits do not convey the size information that 
is an essential aspect of the pieces, neither the absolute size nor the relative size, 
and size is the main information we are seeking when we work with numbers. 
Understanding the base ten pieces as quantities of particular (and quite different) 
sizes, and working with those quantities in terms of their size, is key to 
understanding arithmetic. It would include routinely mentally breaking up 
numbers into their expanded form, understanding the nature of each piece, and 
doing estimation of sums and products using mental math with the two largest 
pieces. Also, by relating the units of various sizes to powers of 10, students 
should be much more ready to deal with decimal fractions and polynomial 
arithmetic.  

Unfortunately, space does not permit discussing teaching for this way of 
thinking. See (Howe, 2010) for some ideas for first grade. It would also include 
systematically discussing the 5 stages of place value at appropriate places 
throughout the elementary curriculum. The study (Yang and Cobb, 1995) is 
consistent with the claim that thinking in terms of the pieces promotes learning, 
and provides examples of real-world implementation. 

Your children should learn to think in terms of the pieces. 
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REFRAMING PERCEPTIONS OF ARITHMETIC LEARNING: 
A CANADIAN PERSPECTIVE 

Lynn M. McGarvey, P. Janelle McFeetors, University of Alberta, Canada 

Abstract 

Flexible computation approaches are emphasised in curriculum and teaching resources 
in Canada. Yet, these approaches are often unfamiliar to educational stakeholders, 
including parents and some teachers. The unfamiliarity potentially alienates and 
disempowers the very people needed to make change. While previous literature tended 
to dichotomise the arguments (e.g., procedural vs. conceptual; memorisation vs. 
understanding), we sought to reframe criticism into mutual concerns as a starting place 
for conversation. Through a phenomenographic analysis of online responses to 
newspaper articles reporting Canada’s faltering PISA scores, we identified two 
categories of mutual concerns: (1) Expected goals of mathematics learning, and 
(2) Essential supports for students to reach expected goals. 

Key words: Canadian Math Wars, computation, curriculum, public perception 

Introduction 

Our kids do not learn the basics anymore. I read through my sons [sic] grade 3 math 
lessons and was appalled at the method he uses for basic addition and subtraction 
methods. It took me some time to see where he was getting his answers. Although they 
were correct answers he could have saved time with the old methods. We are creating 
lazy minds with the methods that are taught today. (Gitersos Nazarali in Sands, 2014)  

What a bunch of garbage! They are not teaching our kids the basics. There is no 
memorisation of the times tables. Ask a kid what 6x8 is and it will take them five minutes 
to come with an answer which may or may not be correct. It is a constant frustration to 
see them decline in ability and understanding. (Bolduc Czyz in Sands, 2014) 

The two quotes above are responses to media coverage of a Canadian panel on 
the results of the 2012 Programme for International Student Assessment (PISA) 
(McGarvey, Reid, Savard and Wagner, 2014; OECD, 2013). Panel members 
independently emphasised that “Slipping math scores don’t equal a crisis” 
(Sands, 2014); yet, the two scathing comments above are representative of 
thousands of similar remarks posted in response to Canadian newspaper reports 
on the 2012 PISA. 

Current curricula in Canada emphasise the development of flexible and mental 
mathematics computation strategies through concrete materials, visual 
representations, and number sense knowledge. For example, rather than solving 
equations solely using standard algorithms, students learn and use compensation 
methods (e.g., 54 – 37 = 54 – 40 + 3) and properties of numbers and operations 
(e.g., 8 x 6 = 8 x 3 x 2) to compute. As illustrated in the initial quotes, the 
unfamiliarity with these alternative strategies potentially alienate and 
disempower the very stakeholders needed to ensure students are successful. Yet, 
there is limited research on parents’ perceptions of reform (e.g., Bartlo and 
Sitomer, 2008; Civil and Bernier, 2006; Remillard and Jackson, 2005), with no 
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research available in Canada. Understanding perceptions of curriculum is a 
necessary starting point to learn how best to communicate to the public, gain 
support, and re-engage parents in their children’s learning of mathematics. 

In order to gain insight into stakeholder perceptions, we used a 
phenomenographic approach to analyse public responses to newspaper coverage 
of Canadian results of PISA 2012. We asked: What are the public’s perceptions 
of curriculum change in mathematics? More specifically, what is the nature of 
their concerns? As reported elsewhere (McGarvey and McFeetors, accepted), 
the predominant issue raised was with regard to whole number computation 
skills. To offer a context for the present study we provide a brief background on 
the current state of mathematics education in Canada. 

State of Mathematics Education in Canada 

The “Canadian Math Wars” (see Chernoff, n.d.) have been in full force since the 
December 2013 release of the 2012 PISA results (Brochu et al., 2013). Canadian 
students ranked thirteenth in the world in mathematics, but media focused on 
Canada dropping out of the top ten (e.g., Alphonso, 2013). Although PISA is a 
problem-solving test for 15-year-olds, the public, including many parents, 
teachers, and mathematicians, targeted curriculum outcomes and pedagogical 
approaches related to whole number computation as the direct. Public outcry has 
been unprecedented. Petitions were launched in three provinces4 and thousands 
of people petitioned for a “back to the basics” approach to teaching (Houle, 
2013; Murray, 2013; Tran-Davies, 2013). One petition initiated by a concerned 
parent of a Grade 4 student claims that, 

the new strategy-based curriculum [leads to] weak understanding and poor grasp 
of basic mathematical concepts in addition/subtractions and 
multiplication/divisions, which in effect ill-equip our children to reconfigure 
equations in their own minds, problem-solve, and think critically… the system 
has clearly failed the first wave of children subjected to their grand experiment. 
(Tran-Davies, 2013) 

While the media and public referred to the current approach as “new math,” a 
curriculum emphasis on flexible and mental mathematics computation or 
“strategy-based” approach stems back to research in the 1930s. Brownell and 
Chazal (1935) describe how children frequently used “indirect” strategies for 
computation. That is, rather than memorizing that 3 + 4 = 7 children reported 
thinking of it as 3 + 3 + 1 = 7. This early research resulted in changes to 

                                           

 

 
4 In Canada, each of its 10 provinces and 3 territories has an Educational Ministry with 
independent responsibility for determining curricula in its respective province. Although 
decisions are made independently, there is significant overlap in content. At present, eight of 
the ten provinces and all three territories use the Western and Northern Canadian Protocol in 
Mathematics (Alberta Education, 2006) as the basis for its curriculum framework. 
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provincial curriculum documents, including the Alberta Programme of Studies 
for the Elementary School in the 1940s: 

Many of the chronic difficulties of arithmetic learning in elementary schools 
have their origins in early arithmetical experiences that tend to emphasise 
wholesale memorisation of abstract computations rather than meaningful 
understandings of the number system and of the fundamental processes. 
(Department of Education, 1947) 

Current research continues to demonstrate that number sense and mental 
mathematics strategies have significant advantages over traditional algorithmic 
approaches to computation in nearly every area including problem solving, 
mathematical modelling, disposition towards mathematics, and equity for 
potentially disadvantaged students (e.g., Baroody, 1999; Boaler, 2002; 
Erlwanger, 1973; Russell and Chernoff, 2013). Despite research on the teaching 
and learning of arithmetic, attempts to communicate the advantages to parents 
have largely failed. Unless public concerns are more clearly understood and 
addressed, curricular expectations are susceptible to political lobbying and 
public pressure, leaving children caught in the middle.  

Materials and Methods 

In this section we describe a phenomenographic approach used to explicate 
public perceptions of teaching whole number computation. Phenomenography 
“investigates the qualitatively different ways in which people experience or 
think about various phenomena” (Marton, 1986, p. 31; Marton and Booth, 
1997). Grounded in a nondualist ontology, phenomenography relies on 
participants’ expressions of and reflections on experience. “Selected quotes are 
grouped and regrouped according to perceived similarities and differences along 
varying criteria” to map variation in the ways people experience a phenomena 
(Akerlind, 2012, p. 118). Categories of description of collective experiences are 
generated and further substantiated through rich description of data excerpts. 

A premise of phenomenography is that there is a limited number of ways of 
experiencing a phenomenon. Therefore, in this study, the results of the approach 
provide a useful framework of public’s concerns around learning arithmetic. The 
framework can then be used to foster future conversations with parents while 
keeping their concerns in mind.  

Our data consists of online comments posted by readers to national newspaper 
articles in Canada from June 2013 to June 2014. The 62 articles published, with 
5062 reader comments, addressed issues related to mathematics education in 
schools, discovery methods of learning, curriculum change, provincial standards 
testing results, and/or the PISA results. A sample of 15 articles was selected that 
addressed Canadian parents’ perspectives on arithmetic learning. A total of 2442 
online reader comments comprised the data pool. 

Each post was treated as a unit of analysis and typically included one claim with 
a supporting example or reason as evidence for the perspective. Initially, we 
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sorted subsets of the data set independently by noting qualitatively different 
concerns expressed. We then compared our sorting processes, noted 
commonalities, and resolved differences in categories generated through 
illustrative responses. A second sorting process ensued to exhaust the range of 
different perspectives expressed by readers. In both phases of sorting, we used a 
constant comparative approach (Glaser and Strauss, 1967), moving among the 
reader comments and emerging categories fluidly. Through our joint 
comparative analysis, two categories of description, each with subcategories, 
were generated and are reported below (see Tab. 1). 

Results 

Our results describe what we see as mutual collective concerns with regard to 
teaching and learning mathematics. The two categories of description include 
expected goals and essential supports (see Table 1) point overwhelmingly to 
concerns regarding the teaching and learning of whole number computation in 
elementary schools. Below we briefly highlight results from within each of the 
two categories, followed by unresolved tensions.  

Categories of 
Description 

Subcategories: Reframing Criticism into Mutual Concerns 

Students need the 
opportunity to reach 
expected goals of 
mathematics 
learning. 

1. Need to master basic computational skills. 
2. Need to be able to problem solve. 
3. Need to be functionally numerate citizens. 
4. Need to understand mathematical principles. 
5. Need to develop discipline and intellectually through 

mathematics. 
Essential supports 
must be in place for 
students to reach 
goals of mathematics 
learning. 

6. Need teachers who can teach according to curriculum 
expectations. 

7. Need teaching resources that are clear to parents and 
teachers. 

8. Need to ensure success without substantial extracurricular 
support. 

 Tab. 1: Categories of description and mutual collective concerns 

Expected goals of mathematics learning 

The first category of description emphasised what the public perceived as the 
necessary and expected goals of mathematics learning. The following quotes5 
are representative of the comments relevant to this category of description.  

                                           

 

 
5 To reference the online responses using ‘in response to’ (i.r.t.) along with the newspaper 
article author and date of publication. Given that hundreds of responses were often provided 
in the articles, a reference may appear more than once, but reflects different responders. 
Online quotes are printed as is with no changes or corrections. Links to newspaper articles are 
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As a teacher in this province, I can state with experience that the biggest 
problems in education today [include:] We're not teaching the basics to mastery 
at the elementary level; as a result, kids can't apply knowledge or effectively 
engage in discovery or progressive learning because they have weak basic skills 
to start with. (i.r.t. Anderssen, 2014, Mar. 1) 

We were made to chant multiplication tables through most of grade 3. We were 
picked on and belittled in class if we could not instantly answered simple mental 
arithmetic questions. I hated it, but over 5 decades later I can do basic mental 
arithmetic quickly in my head. There is some room for creativity in math, but 
only after a rigorous foundation is established. (i.r.t. Alphonso, 2014, Mar. 25) 

I’m a computer scientist and I did not memorise the multiplication table as a kid. 
I think in this day and age it’s much more important to teach kids to look at how 
they can solve these problems rather than memorising the answer. Calculators are 
cheap, thinkers are not. (i.r.t. Kay, 2014, Mar. 25) 

My child (grade 4) had a multiplication math test a few weeks ago and each 
multiplication problem had to be solved using a different strategy. It was very 
cool to see him write out logical answers for each strategy. (i.r.t. Alphonso, 2014, 
Mar. 25) 

Within the category of expected learning goals we identified five subcategories 
of mutual concerns, including the need to master basic computational skills and 
problem solve being the most common concerns. For many readers, learning 
mathematics in elementary school is synonymous with whole number 
arithmetic. Readers insisted that computational efficiency is a foundation to 
other opportunities to learn in mathematics class. In fact, readers saw a 
deficiency of basic facts as closing the door to problem solving proficiency and 
advanced mathematics. Certainly, few would argue that both mastery of 
arithmetic and problem solving are important outcomes, but the process by 
which to achieve them and the order in which they should be achieved is often 
debated. The dichotomising of these skills has been a primary source of tension 
and yet, achieving both are seen as essential. 

Essential supports for learning mathematics 

In order to achieve the mutually agreed upon learning expectations stated above, 
our analysis revealed a second category of description referring to the essential 
supports needed to ensure student success with arithmetic. The following quotes 
again illustrate the concerns: 

Too many elementary school teachers not only don't understand math, they 
actually abhor it. Do teachers have to pass a math test to gain their credentials? 
Any teacher should be able to competently teach K to 8 mathematics. If not, then 

                                                                                                                                    

 

 
accessible alphabetically by author in the following dataset repository: 
https://sites.google.com/a/ualberta.ca/mathnewsrepository/  



ICMI Study 23                                                               Theme 1, McGarvey & McFeetors, Reframing Perceptions 

120 
 

they shouldn't be teachers. All teachers should have to have at least 5 yrs of 'real 
world' work experience. (No more go to school, go to university, go to teacher's 
college, and then go to work at a school.) (i.r.t. Tran-Davies, 2014, Jan. 1) 

I have 3 school aged children and the textbooks they bring home are badly 
written and the math baffling. “Nelson Math” and “Math Makes Sense” 
textbooks are useless. My husband and I have spend long hours pouring over 
convoluted world problems from these texts trying to figure them out and both of 
us are University grads. (i.r.t. Alphonso, 2013, Dec. 3b) 

I've heard from many parents who say they spend about a couple hours a night 
teaching their kids, and have had to give up other extracurriculars like sports or 
music. Other parents spend over $1000 a month on Kumon and special phonics 
tutors. This is not an option open to all. (i.r.t. Tran-Davies, 2014, Jan. 1) 

The three quotes provide the three common themes expressed by online 
responders. Readers were critical of elementary school teachers’ effectiveness to 
teach mathematics due to the likelihood that many of them had poor 
understanding, limited confidence, and minimal education to overcome these 
issues. The current strategy-based arithmetic approaches require even more of 
teachers than a rule-based approach. The perceived mismatch between teacher 
expertise and curriculum expectations is a concern acknowledged by educators 
and other stakeholders in education. 

Criticisms of the quality and clarity of teaching resources featured in many of 
the responses. Readers commented frequently on the need for a sequenced and 
structured approach not found in their children’s textbooks, but available in 
other programmes (e.g., JumpMath, Singapore Math, Kumon). Resources that 
teachers can implement systematically and parents can use to support their 
children’s learning at home would alleviate concerns. 

Given that these resources are not available or used in schools, readers 
expressed frustration with what they perceived of as unacceptable levels of 
support needed from parents and tutors to help their children attain essential 
computational skills. Parents complained that the current system puts more 
pressure on parents to do the job of teaching mathematics. More disconcerting 
was the potential for a two-tier system created by parents who paid for tutoring 
for their children.  

The perceptions regarding expectations for learning and the supports needed to 
ensure student success revealed that the public concerns were not in opposition 
to what we might want as mathematics educators. Emphasising the alignment in 
these areas offers the potential for communicating to parents in ways that 
acknowledge their concerns. Yet, we also identified perceptions that appear to 
diverge from these commonly shared goals.  

Unresolved differences 

While the vast majority of responses could be placed in one of the two 
categories of description identified above, we revealed several perceptions that 
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could not be resolved as mutually held concerns. The following quotes provide a 
few examples of these divergent perceptions.  

The thing is that not everyone is going to be engineers or scientists. Thus, not 
everyone needs to have the complex deep understand of the underlying nature of 
the equations used. This is why wrote learning works so well for the vast 
majority of people. In order to get by in society, a basic knowledge of wrote 
learned equations will suffice for most situations (eg. memorising times tables or 
learning long division). (i.r.t. Wente, 2014, Mar. 4) 

The number of mathematically challenged youth is staggering – incapable of 
anything beyond the most rudimentary arithmetic, if that! It is an absolute 
disaster, brought on by teaching for self-esteem, instead of teaching for results. 
(i.r.t. Hopper 2014, Feb. 28) 

Let's stop exposing our children to these unproven experiments in the classroom 
and get back in the business of teaching them math. (i.r.t. Wente, 2014, Mar. 4) 

Although the number of remarks that didn’t fit into one of the two categories 
was minimal, the three examples above and others make us pause. How is it 
possible to communicate the purpose of a strategies-based approach to 
computation when perceptions by some people are that there is no need to 
understand mathematics or that mathematics educators are not providing the 
evidence needed to demonstrate that the current approach is appropriate? 
Knowing that there are divergent approaches to teaching and learning whole 
number arithmetic, is it possible to offer sufficient evidence to these individuals? 

Discussion and conclusion  

Numerous national newspaper articles with many online reader comments 
indicate a Canadian public interested and invested in how children learn 
arithmetic in elementary school. We often, as mathematics educators, read 
comments by the public as explicit criticisms of our carefully constructed 
research and thoughtfully implemented changes in mathematics curricula. At the 
same time, we take seriously their concerns, and have found them to be 
informative as we consider how to better communicate meaningful approaches 
to teaching and learning arithmetic.  

Through our analysis, we were able to lay aside the rhetoric of oppositional 
stances in approaches to learning computation to identify and describe 
commonalities. Our findings highlight our shared goals for children’s 
mathematical learning and particular supports necessary. The public’s expressed 
perceptions provide a starting place for us, as mathematics educators, to begin 
engaging in purposeful conversation with the public, and parents in particular. 
Rather than beginning with the processes of learning computations, we can see 
how collectively identifying with parents what we expect for children’s learning 
is a more productive approach to eliciting support. 

We suggest that similar studies of the public’s perception of mathematics 
learning be taken up in other countries that participate in the PISA test in order 



ICMI Study 23                                                               Theme 1, McGarvey & McFeetors, Reframing Perceptions 

122 
 

to substantiate and broaden the categories of description presented in this paper. 
An international comparison has the possibility of demonstrating commonalities 
beyond countries’ borders. And while the public’s perception provides a 
backdrop, we recommend that parents’ perceptions of mathematics curriculum 
change and arithmetic learning be solicited in order to develop approaches to re-
engaging parents with their children’s mathematical learning in schools. 
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FOUNDATIONAL NUMBER SENSE: THE BASIS FOR WHOLE 
NUMBER ARITHMETIC COMPETENCE 

Judy Sayers, Paul Andrews, Stockholm University, Sweden 

Abstract 

Children begin school with different number-related competences, typically due to 
variation in geographical location and familial circumstances. This variation, which 
necessarily creates inequity of opportunity, prompts the question, what number-related 
experiences are necessary if the first year of school is to prepare children equally and 
adequately for their learning of the mathematics? To address this question we 
summarise recent work on the development of an eight dimensional framework, which 
we have called foundational number sense (FoNS) that characterises those necessary 
learning experiences. We then show how FoNS can be simply operationalised for 
analysing the learning opportunities offered grade one students in five European 
contexts. The results indicate that FoNS, as an analytical tool, is not only cross-
culturally sensitive but has the propensity to inform developments in curriculum, 
assessment and teacher education. 

Key words: England, foundational number sense, Hungary, Poland, Russia, Sweden 

Introduction 

The quality of a child's basic number understanding is known, internationally, to 
be a strong predictor of later arithmetical competence (Aubrey and Godfrey, 
2003; Aunola et al., 2004). For example, simple counting skills have been 
implicated in the arithmetical competence of students in Canada, England, 
Finland, Flanders, Taiwan and the USA respectively (LeFevre et al., 2006; 
Aubrey and Godfrey, 2003; Aunola et al., 2004; Desoete et al., 2009; Yang and 
Li, 2008; Jordan et al., 2007). Also, children who start school with a poorly 
developed understanding of number remain low achievers throughout school 
(Geary, 2013). In this paper, focusing on the first year of schooling and from an 
international perspective, we examine the competences research has shown will 
both avoid later difficulties and ensure later success. 

Underpinning much research in this area has been the concept of number sense, 
which has rarely been defined adequately (Griffin, 2004), due to psychologists 
and educators working with different conceptualisations (Berch, 2005). This 
problem has been exacerbated by psychologists, typically working in general 
cognition or learning disabilities, also employing different definitions. That said, 
our reading reveals three distinct but related perspectives on number sense, 
which here we label preverbal, applied and foundational. 

Preverbal number sense reflects those number insights that are innate to all 
humans and comprises an understanding of small quantities in ways that allow 
for comparison (Ivrendi, 2011; Lipton and Spelke, 2005). For example, young 
babies can discern 1:2 but not 2:3 ratios (Feigenson et al., 2004). This, 
numerical discrimination, which “becomes more precise during infancy” (Lipton 
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and Spelke, 2005, p.978), is independent of formal instruction and develops 
innately as a consequence of human, and other species’ evolution (Dehaene, 
2001; Feigenson et al., 2004). 

Applied number sense concerns those number-related competences that make 
mathematics sensible and prepare learners for an adult world (McIntosh et al., 
1992). It underpins many curricular specifications and much of the material 
written on number sense (See, for example, Anghileri, 2000). 

Foundational number sense (FoNS), the primary focus of this paper, comprises 
those understandings that require instruction during the first year of school 
(Ivrendi, 2011; Jordan and Levine, 2009). Unlike preverbal number sense, it is a 
“construct that children acquire or attain, rather than simply possess” (Robinson 
et al. 2002, p. 85). Unlike applied number sense, it does not seek to facilitate a 
world beyond school but underpins later arithmetical and mathematical 
competence. It has been argued that these basic number competences are to the 
development of mathematical competence what phonic awareness is to reading 
(Gersten and Chard, 1999). 

Materials and Methods 

In this paper we summarise the key components of FoNS. Our intention was not 
to construct an extensive list of characteristic learning outcomes, as found in 
Berch (2005) or Howell and Kemp (2006), but a concise conceptualisation that 
would support a range of activities, including developments in curriculum, 
teacher education or assessment, as well as cross-cultural classroom analyses. In 
so doing we aimed to see beyond how different curricular traditions frame such 
matters (Aunio and Räsänen, 2015). To achieve these objectives we exploited, in 
an atypical manner, the constant comparison analysis advocated by grounded 
theorists. Peer-reviewed research articles and book chapters typically addressing 
grade one students’ acquisition of number-related competence were identified. 
These were read and FoNS-related categories identified. With each new 
category, previous articles were re-examined for evidence of the new. This 
approach, placed, for example, rote counting to five and rote counting to ten, 
two narrow categories discussed by Howell and Kemp (2005), within the same 
broad category of systematic counting. Among the works examined in this 
process were Aubrey and Godfrey (2003), Aunola et al., (2004), Berch, (2005), 
Booth and Siegler (2006), Clarke and Shinn (2004), Dehaene (2001), Desoete et 
al. (2009), Gersten and Chard (1999), Gersten et al. (2005), Griffin (2004), 
Howell and Kemp (2005), Hunting (2003), Ivrendi (2011), Jordan et al. (2007), 
Jordan and Levine, (2009), Lipton and Spelke (2005), LeFevre et al. (2006), 
Lembke and Foegen (2009), Malofeeva et al. (2004), Noël (2005), Thomas et al. 
(2002), Van de Rijt et al. (1999), and Yang and Li (2008). In the following, to 
avoid repetition and save space, each component is summarised independently 
of the literature on which it is based. However, no single reference underpins all 
components. 
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Number recognition: Children recognise number symbols and know their 
vocabulary and meaning. They can identify a particular number symbol from a 
collection of number symbols and name a number when shown that symbol;  

Systematic counting: Children are able to count systematically and understand 
notions of ordinality and cardinality. They count to twenty and back, or count 
upwards and backwards from arbitrary starting points, knowing that each 
number occupies a fixed position in the sequence of all numbers. 

Awareness of the relationship between number and quantity: Children 
understand not only the one-to-one correspondence between a number’s name 
and the quantity it represents but also that the last number in a count represents 
the total number of objects. 

Quantity discrimination: Children understand magnitude and can compare 
different magnitudes. They use language like bigger than or smaller than. They 
know that eight represents a quantity that is bigger than six but smaller than ten. 

An understanding of different representations of number: Children understand 
that numbers can be represented differently, including the number line, different 
partitions, various manipulatives and fingers. 

Estimation: Children can estimate, whether it be the size of a set or an object. 
Estimation involves moving between representations of number; for example, 
placing a number on an empty number line. 

Simple arithmetic competence: Children perform simple arithmetical operations, 
which Jordan and Levine (2009) describe as the transformation of small sets 
through addition and subtraction. 

Awareness of number patterns: Children extend and are able to identify a 
missing number in a simple. 

In sum, our literature review identified eight distinct but not unrelated FoNS 
categories. The fact that they are not unrelated is important as number sense 
“relies on many links among mathematical relationships, mathematical 
principles..., and mathematical procedures” (Gersten et al. 2005, p. 297). In 
other words, without the encouragement of such links there remains the 
possibility that children may be able to count but not understand, for example, 
that four is bigger than two. 

Having derived an eight component FoNS-related entitlement for grade one 
students, it was important to examine whether the framework would identify 
FoNS-related opportunities in grade one classrooms in varying cultural contexts. 
Piloting in this way would allow for instrument refinement and an evaluation of 
its sensitivity to cultural nuances. In the following we summarise recent case 
studies, each undertaken in different European contexts and with different 
mathematical topics, in which we have evaluated the efficacy of the FoNS 
framework. The first examined the teaching of sequences in English and 
Hungarian lessons (Back et al., 2014), the second the development of students' 
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conceptual subitising in Hungary and Sweden (Sayers et al., 2014), while the 
third teachers' use of the number line in Poland and Russia (Andrews et al., 
2015). 

None of the examined lessons, which were typical of their teachers' practice, 
were captured with a FoNS-related analysis on mind, but all proved amenable to 
one. Each lesson, derived from previously collected and unrelated data sets, had 
been video-recorded for research or teacher education purposes, and all teacher 
utterances recorded. Each teacher, against local criteria, was construed as 
effective. All recordings were supplemented by transcripts of all the utterances 
made by teachers themselves and as much students talk as the recordings 
allowed. Each lesson was viewed repeatedly by two researchers, and, in the 
manner of the Mathematics Education Traditions of Europe (METE) project 
(Andrews, 2007), lesson episodes were scrutinised for evidence of FoNS 
components. This approach allows for episodes to be multiply-coded according 
to which components were observed. Thus, as found by the METE project team, 
uncomplicated analyses based on frequencies (Andrews, 2009) and complex 
analyses based on the interactions of codes in each episode (Andrews and 
Sayers, 2013) are made possible. 

As data derived from different projects in five different countries, ethical 
procedures and permissions were managed according to local norms. In all 
countries permission from school principals and participating teachers was 
obtained by means of letters confirming the right of teachers to withdraw 
without notice or reason and anonymity. With respect to the Hungarian, Polish 
and Russian students, all parents, at the point at which their children entered 
their school, had signed to agree their child’s participation in ethically conducted 
classroom based research. In England and Sweden, parental permission letters 
explained the projects and, alongside the promise of minimal classroom 
disruption, guaranteed the same protective principles as above. 

Results 

In the following we present the pilot case studies introduced above. Space 
prevents a detailed summary, not least because it would normally be necessary 
to offer images to show how classroom tasks played out. That said, we believe 
that sufficient can be gleaned to demonstrate the sensitivity of the FoNS 
framework to both cultural context and mathematical context. 

In the first study (Back et al., 2014), episodes focused on number sequences 
were analysed. In addition to examining the functionality of the FoNS 
framework an aim was to examine how teaching, focused explicitly on one 
FoNS component, would yield other components. The analyses, based on three 
episodes from each lesson sequence, indicated that Klara in Hungary addressed 
six of the eight FoNS components while Sarah in England addressed four. Both 
encouraged, throughout their respective excerpts, students’ recognition of 
number symbols, vocabulary and meaning. Both encouraged the awareness of 
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number patterns and the identification of missing numbers and both exploited 
simple arithmetical operations, typically to facilitate finding the next values in a 
sequence. In respect of differences Klara addressed three categories, the 
relationship between numbers and quantities, comparisons of magnitude and 
different representations of number that Sarah did not, while Sarah was seen to 
address systematic counting when Klara did not.  

However, while both teachers encouraged various FoNS components, Klara’s 
teaching was more didactically complex, with an average of four components 
per episode, than Sarah's, with an average of barely two. Moreover, Klara 
encouraged mathematical reasoning, while Sarah seemed to subordinate such 
reasoning to an examination of the coloured patterns on her interactive 
whiteboard. Leading us to conclude that if number sense develops gradually as a 
result of exploring and visualising numbers in different contexts (Sood and 
Jitendra, 2007) then Klara’s practice seemed more richly focused than Sarah’s. 

In the second study (Sayers et al., 2014), analyses focused on conceptual 
subitising in grade one lesson sequences taught by Klara, again, in Hungary, and 
Kerstin, in Sweden. Conceptual subitising, which relates to how an individual 
identifies “a whole quantity as the result of recognizing smaller quantities... that 
make up the whole” (Conderman et al., 2014, p.29), has been promoted as a key 
component of early number learning (Clements, 1999). It can be summarised as 
the systematic management of perceptually subitised numerosities to facilitate 
the management of larger numerosities. In both cases, an average of five FoNS 
components were identified in each of the teacher's three analysed episodes, 
indicating that claims for the efficacy of teaching focused on conceptual 
subitising (Clements, 1999; Conderman et al., 2014), are not without warrant. 

It was also interesting to note that in neither case was conceptual subitising an 
explicit intention, nor were teachers expecting to address FoNS categories of 
learning. It is also interesting to note that despite substantial differences in the 
management of their lessons - Klara spent all her lesson orchestrating whole 
class activity with only occasional expectations of students working 
individually, while Kerstin spent the great majority of her time managing and 
supporting students working in pairs - the FoNS components addressed in their 
respective excerpts were remarkably similar. 

Finally, the third pilot study (Andrews et al., 2015) examined episodes drawn 
from lesson sequences focused on the introduction and exploitation of the 
number line taught by Olga, in Russia, and Maria, in Poland. Here the analyses, 
as in the first case study, showed that such a didactical emphasis on one FoNS 
component does not necessarily restrict opportunities for other FoNS outcomes. 
For example, Olga's episodes addressed an average of almost five components, 
while Maria's almost four. Not surprisingly, bearing in mind the number line 
emphasis, all analysed episodes addressed number recognition and systematic 
counting, while all but one showed evidence of children being asked to work 
with a different representation of number. 
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With respect to differences, whenever Olga asked her students to represent a 
number on the number line, she insisted on their pointing simultaneously to zero 
with their left hand and the desired number with their right. In this manner her 
teaching focused on the relationship between number and quantity. By way of 
contrast, Maria presented simultaneously three distinct number lines, each 
showing zero to eight but with different sized intervals. In so doing she 
highlighted the arbitrary size of the interval alongside the need for a consistent 
interval size. Both teachers also used the number line to facilitate simple 
arithmetical operations, including tasks involving several operations 
simultaneously. Finally, Maria also used the number line in relation to number 
patterns, particularly even numbers and the identification of missing numbers. 

Discussion and conclusion 

Acknowledging that all classrooms are constructed by the cultures in which they 
are found, the FoNS framework has proved amenable to the identification of 
FoNS-related opportunities in typical grade one classrooms in five different 
European contexts. Thus, as in the METE project, a simple to operationalise, 
episode-focused coding scheme has the potential to yield a variety of analyses, 
particularly when undertaken comparatively. Indeed, our next step is to 
undertake a more extensive comparative study of the FoNS-related opportunities 
teachers offer their students. Finally, the framework's simple structure should 
facilitate initial teacher education interventions. For example, the eight 
components, each amenable to an in-depth examination, provides a manageable 
framework for university-based teaching and the assessment of students during 
their school placements. Similar arguments apply to curriculum development. 
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PEDAGOGICAL LESSONS FROM TONGWEN SUANZHI (同文算指) – 

TRANSMISSION OF BISUAN (筆算 WRITTEN CALCULATION) IN CHINA 

Man-Keung Siu, The University of Hong Kong 

Abstract 

In 1613 the official-scholar LI Zhi-zao (李之藻) of the Ming Dynasty, in collaboration 
with the Italian Jesuit Matteo RICCI (利瑪竇), compiled the treatise Tongwen Suanzhi 
(同文算指).  This is the first book which transmitted into China in a systematic and 
comprehensive way the art of written calculation that had been in common practice in 
Europe since the sixteenth century.  This paper tries to see what pedagogical lessons 
can be gleaned from the book, in particular on the basic operations in arithmetic and 
related applications in various types of problems which form the content of modern 
day mathematics in elementary school education. 

Key words: basic operations in arithmetic, problems in arithmetic, Tongwen Suanzhi, 
written calculation. 

Introduction 

In the early part of the seventeenth century the official-scholar LI Zhi-zao (李之

藻 1565-1630) of the Ming Dynasty, in collaboration with the Italian Jesuit 
Matteo RICCI (利瑪竇 1552-1610), compiled the treatise Tongwen Suanzhi (同
文算指, literally meaning “rules of arithmetic common to cultures”) (Li and 
Ricci, 1613/1993), which first transmitted into China in a systematic and 
comprehensive way the art of written calculation that had been in common 
practice in Europe since the sixteenth century.  This treatise, accomplished in 
1613, was a compilation based on the 1583 European text Epitome Arithmeticae 
Practicae (literally meaning “abridgement of arithmetic in practice”) of 
Christopher CLAVIUS (1538-1612) and the 1592 Chinese mathematical classic 
Suanfa Tongzong (算法統宗, literally meaning “unified source of computational 
methods”) of CHENG Da-wei (程大位 1533-1606) (Cheng, 1592/1993).  This 
work is also an attempt of LI Zhi-zao to integrate European mathematics with 
traditional Chinese mathematics, which was a prevalent intellectual trend of the 
time known as zhongxi huitong (中西會通, literally meaning “integration of 
Chinese and Western [learning]), started by the dedicated work of another 
official-scholar XU Guang-qi (徐光啟 1562-1633) who translated the first six 
books of Euclid’s Elements (from a fifteen-book version compiled by 
Christopher CLAVIUS in the latter part of the sixteenth century) also in 
collaboration with Matteo RICCI and published it as Jihe Yuanben (幾何原本, 
literally meaning “source of quantity”) in 1607 (Siu, 2011). 

     The aim of the present paper is not to present a historical study of the 
book — its content, its historical context and its influence on Chinese 
mathematics in the eighteenth-century Qing Dynasty.  For that historical aspect 
interested readers are invited to consult some more scholarly works (Takeda, 
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1954; Chen, 2002).  Rather, we try to see what pedagogical lessons can be 
gleaned from the book, in particular on the basic operations in arithmetic and 
related applications in various types of problems which form the content of 
modern day mathematics in elementary school education. 

Basic operations in arithmetic 

The first book in the first part (Preliminary Part) of Tongwen Suanzhi explains 
the notation in positional system and the four basic operations in arithmetic.  
Apart from division the other three operations – addition, subtraction, 
multiplication – are done in the way a schoolboy of today is familiar with.  
Division is done by the so-called galley method, which will be illustrated below.  
The second book deals with the arithmetic of fractions ending with a collection 
of miscellaneous problems to consolidate the skill in written calculation that has 
just been learnt. 

     It would be instructive to compare the transmitted algorithms with the 
methods in traditional Chinese mathematics.  We will look at how multiplication 
and division were done in ancient China as explained in Sunzi Suanjing (孫子算

經, literally meaning “Master Sun’s mathematical manual”) of the fourth/fifth 
century (Lam, 1966; Lam and Ang, 1992/2004; Guo, 1993).  The following two 
examples are taken from (Lam and Ang, 1992/2004) (see Fig. 1 and Fig. 2, with 
the last item in modern notation inserted for comparison and with rod numerals 
replaced by what we are familiar with today).  

 
Fig. 1: Multiplication in ancient China 
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method is casting out nines (or sevens), which indicates an awareness of modulo 
arithmetic.  As expected, it was assumed that the checking works without 
bothering about the mathematical fact that the method using modulo arithmetic 
tells when the working is wrong but cannot guarantee that the working is 
correct.  Compared to the practical usefulness of these methods, such logical slip 
is a minor blemish. 

More problems in arithmetic 

The second part (General Part) of Tongwen Suanzhi contains a large collection 
of various problems, which appeared in mathematical texts in traditional 
Chinese mathematics such as Suanfa Tongzong of CHENG Da-wei, which in 
turn were handed down from the famous ancient Chinese mathematical classic 
Jiuzhang Suanshu ( 九 章 算 術 , literally meaning “nine chapters on the 
mathematical art”) compiled between the second century B.C.E. and the first 
century C.E. (Guo, 1993).  These problems are treated in the newly introduced 
method of written calculation, thus amplifying the attempt of LI Zhi-zao in 
integrating Chinese mathematics with European mathematics. 

Let us look at just two examples out of the many.  The first example is on 
proportion treated by the method known in the Western world as “Rule of 
Three”, or the so-called “Golden Rule”.  The second example is on “extraction 
of square root with an accompanying term”, which is solving a quadratic 
equation in the Western term. 

Example 1 (in Section 1) . “Suppose 4 guan (貫) of money can purchase 12 jin 
(斤) of goods, how many jin of goods can 20 guan purchase?” 

Example 2 (in Section 14) . “Suppose a rectangular field has area 864 [square] 
bu (步) and its width is less than its length by 12 bu, what is its width?” 

Some pedagogical lessons 

(1)  The techniques developed at the time fit in with the historical development 
of the time.  One example is how the high cost of paper at the time explains why 
the galley method of multiplication was preferred before long division familiar 
to us today was developed and adopted later in history.  Another example is the 
very detailed explanation in the calculation using fractions that arose as a 
necessity in commercial activities involving a diversity of European currencies.  
Indeed, the rise of written calculation has a lot to do with the upsurge of 
commercial activities since the sixteenth century in Europe (Swetz, 1987).  The 
lesson for us is that the design of curriculum has to take into account 
contemporary need (or diminishing need) so as to ride with time.   

(2)  Old techniques may provide instructive exercises for the benefit of teaching 
and learning.  One example is multiplication by the gelosia method, also known 
as the grid method.  Another example is division by the galley method.  Still 
another example is the method of casting out nines.  These techniques are no 
longer necessary skills to be learnt nowadays but may offer good ways to 
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understand and to consolidate understanding if employed in a thoughtful manner.  
It may also add a humanistic touch to mathematical lessons by letting students 
see how people did things in the past. 

(3)  The first part (Preliminary Part) of Tongwen Suanzhi explains the four basic 
operations in arithmetic and the calculation with fractions.  The second part 
(General Part) is a comprehensive account on various problems treating 
proportion, extraction of square and cube roots, method of double false position, 
and solving linear and quadratic equations.  The third part (Special Part), which 
was undated and short, introduces basic knowledge in trigonometry.  The second 
part plays a central role in which the authors tried to make use of these problems 
to consolidate the skill in written calculation, at the same time indicating the 
prowess of written calculation.  This textbook design based on such a 
pedagogical objective is far superior to that of a heavy load of straightforward 
but boring drilling exercises in some modern day textbooks! 

The emphasis Tongwen Suanzhi placed on the learning and teaching of 
arithmetic exerted influence on the subsequent writing of textbooks in China.  
Instead of paying attention to teaching algorithms through the aid of mnemonic 
poems the underlying reasoning was brought into the study.  The use of counting 
rods and the abacus was gradually replaced by the use of written calculation. 

(4)  In ancient times people calculated by using manipulatives such as pebbles, 
sticks, counting rods, abacus, etc.  By today’s standard one may see these as 
clumsy and inefficient.  However, with sufficient practice this needs not present 
an obstacle to efficient calculation.  For an expert who had acquired the skill it 
can even mean a quick and convenient method.  Likewise, the adoption of an 
ancient recording system of numerals by the grouping method may seem 
cumbersome to a modern day schoolboy but not so for an ancient Egyptian scribe 
well versed in the art of calculation.  Hence, what is so good about positional 
system in numeration and what is so good about written calculation? 

The main advantage of written calculation lies in keeping intact a record of the 
intermediate steps which affords easy checking afterwards.  It also allows one to 
see the procedure and to gain understanding of the underlying reasoning without 
having to memorize what is going on during the calculation.  This is difficult to 
attain in calculation using manipulatives (although nowadays calculation by using 
manipulatives can gain its own pedagogical advantage in learning).  Along with 
this benefit the advantage of positional system is revealed.  Without the invention 
of a positional system written calculation as we know it cannot be invented. 

But then this leads us to the next question in this age of computers.  Ironically we 
are turning back the wheel of history in some sense in that we erase the 
intermediate steps when we calculate by punching a few keys on an electronic 
calculator!  For all practical purposes it is definitely much more efficient to 
calculate by using an electronic calculator than to calculate by hand, just like one 
would not like to cook by setting up a fire instead of using a kitchen stove.  It is 
true that because of that the emphasis in learning calculation would be shifted to 
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skill and knowledge in estimation in order to guard against careless manipulation 
or errors in the calculating machine.  But do we still need to pay so much 
attention to written calculation in schools?  For instance, in some places there is a 
suggestion for de-emphasis of long division. 

The rationale for learning written calculation, at least once in a person’s lifetime, 
seems to be the acquirement of understanding of the underlying principle of the 
basic operations in arithmetic.  For some learners this kind of understanding is 
essential in future endeavour.  Let us just cite one example about a commonplace 
operation as multiplication.  For the computation with very large numbers 
various algorithms had been developed to speed up the time by reducing the 
number of steps of simple multiplication of one-digit numbers, for instance the 
Karatsuba algorithm in the early 1960s, the Schönhage-Strassen algorithm in the 
early 1970s and the Fürer algorithm in the late 2000s (Gathen and Gerhard, 
1999/2003/2013).  In order to devise such algorithms one has to understand the 
underlying principle of multiplication.  Admittedly, only a fairly small 
percentage of the population of all school pupils will need to have that kind of 
understanding in their future career.  But it does not seem advisable to teach it 
only to these selected few after they reach a more advanced and specialized level.  
If it is going to be taught at all it would be advisable to teach it to all at the 
elementary school level.  To include this topic in the elementary school level we 
can regard the art of calculation through the basic operations in arithmetic as a 
cultural heritage handed down to us by our ancestors and had undergone 
improvement with time, and is therefore something worth knowing even though 
tedious drilling in the past practice is no longer needed nor desirable in this 
computer age.  Viewed in this light, written calculation still has its value in 
modern day education, but with a different emphasis.  In this respect, looking at 
it through a historical perspective, supplemented with exercises suitably designed 
and based on historical material (as mentioned in (2)), maybe a good alternative. 

(5)  In the preface as well as in two forewords to Tongwen Suanzhi LI Zhi-zao 
and his friends and fellow official-scholars XU Guang-qi and YANG Ting Jun   (
楊廷筠 , 1557-1627) stressed the meaning of tongwen (literally meaning 
“common cultures”) adopted as part of the title of the book (Li and Ricci, 
1613/1993), which exhibits their open mind and receptive attitude to foreign 
learning, at the same time indicating a deep appreciation of the common cultural 
root of mathematics despite different mathematical traditions. 
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CHINESE CORE TRADITION TO WHOLE NUMBER ARITHMETIC  

Xuhua Sun, University of Macau 

Abstract 

This paper discusses the ancient Chinese tradition of whole number arithmetic (WNA) 
and its influence on current curriculum practices. The ancient Chinese tradition is 
reviewed from both linguistic and historic-epistemological perspectives. Based on the 
Chinese linguistic habit, the early Chinese invented the most advanced number name 
and the most advanced calculation tools (counting rod and Suanpan or Chinese 
abacus), in which place value is the most overarching principle as the spirit of WNA. 
Traces of this influence can be found in contemporary curriculum practices. These 
include: i) number, addition and subtraction are closely connected; ii) place value is 
the dominant principle; and iii) composition and decomposition of numbers and 
problem variation are central idea. Their implications are discussed. 

Key words: addition and subtraction, Chinese tradition, number name, number system, 
place value, rod calculation, SuanPan 

Introduction  

For the past half century, Chinese students have repeatedly performed better 
than their peers in cross-national studies. Explanations for this have been sought 
in numerous cross-cultural studies. One well-known advantage of Chinese 
education is its foundation, known as “two-basics” (Zhang, 2006). Chinese 
education as part of Eastern civilisations may provide a resource for new 
thinking for global development. Whole number arithmetic (WNA) is the most 
important schooling stage, which could be a place to illustrate the value of the 
Confucian educational heritage. However, Chinese tradition and practice of 
WNA are rarely examined systematically, a missing paradigm of the 
international mathematics education community that has been underrepresented 
in the mathematics history and education community because of linguistic, 
geographical, and political issues. In this paper, we examine ancient Chinese 
tradition to WNA and its influence on the current curriculum practice, which 
affects number knowing, operations, applications, and further learning. We will 
start by describing early historical evidence for Chinese numerical practice, and 
then consider how this tradition continues in today’s instruction. 

Linguistic and historic-epistemological perspective 

The Hindu-Arabic system of numerals is more effective computation than any 
other known system of base ten numeration, and consequently has been adopted 
by countries all over the world during the last century, so that it is now 
essentially universal. However, it is interesting to note that Lam and Ang (2004) 
argue that the idea for the Hindu-Arabic system of writing and calculating 
derived from the old Chinese rod numeral system. This system, which was 
systematically presented in the Sunzi Suanjing (Lam and Ang, 2004), was 
transmitted to India during the 5-9th centuries, to the Arabic empire in the 10th 
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century, and then to Europe in the 13th century by the Silk Road (see Guo, 
2012). This indicates that the Chinese have long history and tradition in 
arithmetic. In fact, before the 14th century, ancient Chinese used the decimal 
place value number system. Based on the advanced number system, advanced 
arithmetic theories (e.g., the first fraction theory in 九章算术 Jiuzhang suanshu 
(Guo, 2012)) have been developed to solve application problems, wherein 
application mathematics traditions, not western theoretical mathematics tradition, 
were built. Notably, mathematics is called the academics of calculation in 
ancient times, which is an art of computation (算術) in the Chinese-spoken 
community before 1977, and could be related the foundation of the Chinese 
language as well.  

Chinese foundation of WNA: Chinese linguistic habit 

Chinese is one of the most widely used languages in the world. However, 
written Chinese is considered one of the most difficult languages to master due 
to its use of characters (Marton, Tse and Cheung, 2011). Unlike English and 
most Indo-European languages, written Chinese is logographic rather than 
alphabetic, and uses the radical (“section header”) as the basic writing unit. Most 
(80-90%) of characters are phono-semantic compounds, combining a semantic 
radical with a phonetic radical. Thus, the large majority of words have a 
compound, or part-part-whole structure. This differs from the phonetically based 
structure of writing in most Western languages, in which order is more 
important than the combination of parts. The difference can be seen in the 
structure of Chinese number words. For example, Chinese refer to the number 
12 as “ten-two” rather than use a single word, such as “twelve”. 

The unique feature of the Chinese language: A variety of classifiers (number 
unit)   

Another important feature of Chinese is that uses classifiers much more than 
Western languages. This is related the concept of ratio lv (率) , which is key to  
Liuhui’s commentary on Jiuzhang suanshu (九章算术刘徽注) (Guo, 2012). As in 
many East Asian languages, classifiers are required when using numerals with 
nouns. For example, the English expression “an apple” has to be replaced in 
Chinese by an “ones” (ge, 个) apple. There are many classifiers in Chinese that 
have no corresponding English words, and each type of object that is counted 
has a particular classifier associated with it. As a weakening of this rule, it is 
often acceptable to use the generic classifier “ones” in place of a more specific 
classifier. “Ones” was originally used to describe the magnitude of numbers 
related to the number unit. “Ones” has become the only general classifier in the 
Chinese language, the most important “number unit”, and it has been elaborated 
into other larger number classifiers (i.e., different number units) to describe 
larger magnitudes, such as tens (shi 十), hundreds (百), thousands (千), and ten 
thousands (万) in analogy with the metric units of mm, cm, dm, and m in 
English. 
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1. Numeration records both number name and number unit, which specifies the 
place value in a clearer way than others.  

2. Chinese numeration fully follows the calculation framework in terms of place 
value. 

The Chinese numeration is different from the western numeration where the 
number unit is rarely pointed out because of its strong calculation tradition.  

Chinese ancient belief of WNA: World is calculation  

Similar to the Greek concept of mathematics that number is world, the ancient 
Chinese believe that the only way of knowing the world is through calculation, 
which could be reflected in I ching (易經) in general. This is aslo expressed in the 
following quotation from the preface of Sunzi suanjing: 

Caculation is the whole of heaven and earth,the origins of all life, the beginning 
and end of all laws,father and mother of yinyang, the beginning of all stars, the 
inner and outer of three lights, the standards of five elements , the beginnging of 
four seasons, the origins of ten thousands matters ,and the general principles of 
six arts (Lam and Ang, 2004, p. 29). 

Chinese ancient inventions of WNA: The most advanced calculation tools  

With their advanced system of numeration, it is not surprising that the ancient 
Chinese invented the efficient systems of calculation embodied in the 
calculating rod and Suanpan (Chinese abacus) listed as UNESCO’s heritage. 
The rod has a history of more than 1,500 years. Suanpan replaced rod due to 
quick speed, which has a history of more than 2,500 years, Suanpan is 
considered the fifth most important invention in Chinese history. It came into 
widespread use during 1368 to 1644. Its use has decreased since the 1980s, 
when schools abandoned Suanpan in favor of written calculation and then digital 
calculators. 

Chinese ancient spirit of WNA: Place value is the most overarching principle 

Compared with the number line and other representations of numbers, the 
Chinese rod and abacus have a special framework with unique decimal place 
value concept specified in terms of one-place, ten-place, hundred-place, and so 
on. This framework allows for visible and easier calculation. For example, 
ancient rod addition calculation of 362368 + 657783 from Sunzi Suanjing 
(Fig. 2) is similar to the current written calculation from high place to low place. 
With the unique framework, rod/Suanpan has been the most advanced 
calculation tool in the world to quickly deal with four operations for hundreds 
years. No tool from other civilisations has the capacity to equal the rod/Suanpan 
(Lam and Ang, 2004). 
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heavy emphasis on calculation skills contrasts with American standards, and is 
reflected in higher requirements for speed in mental and paper and pencil 
calculations. Examples: addition and subtraction within 1-20 should be done at 
8-10 operations per minute; from 20-100 at 3-4 per minute; multiplication 
within 1-10, 3-4 per minute; written two-digit multiplication, 1 – 2 per minute; 
all with 90% accuracy. Mental calculation is also emphasised. The four core 
features of this tradition of computation are presented below. 

Three concepts of addition, subtraction, and number are connected  

Chinese curriculum developers connected the three core concepts of addition, 
subtraction, and number in all chapters of addition and subtraction using the 
following principles:  

1. Adding one into a number obtains its adjacent number.  

2. Subtracting one from the adjacent number gives the original number again. 

By this approach, not only are the three concepts of addition, subtraction and 
number tied closely together, but also connections are made between them and 
the concepts of inverse and of equation. This promotes not only doing and 
memorizing, but also reasoning. In contrast, in American curricula, the ideas of 
number, of addition and of subtraction are presented in 3 separate chapters, 
isolated from one another. Traces of this influence can be found in the Chinese 
unique numeration tradition:  

1. Place value is more explicit than other numeration system. 

2. Calculation procedure is embedded in numerations at same time.  

For example, ten-two is embedded as an addition procedure of ten plus two. 
Two tens is embedded as a multiplication procedure of two times ten. The 
English name twelve and twenty could not convey the same calculation 
procedures or function in same way. This idea could be an implicit point, but a 
unique feature of the Chinese curriculum inherited from language tradition. 

Place value is the overarching principle  

Chinese curriculums do not have a chapter of place value similar to that in 
American curriculum, but it is permeated in all chapters with reading and 
writing number activities as overarching principle, in which the Hindu-Arabian 
number is implicitly translated into Chinese language by adding/deleting 
numeration units because of unique language habits. This point is important 
because place value is designed as implicit core knowledge of knowing the 
number unit in the Chinese curriculum, which is different from the calculation 
vocabulary in the chapter of calculation in American curriculum mandatory 
practice (Howe, 2011). For example, Hindu-Arabian number 24 is translated 
into Chinese language as two tens and four ones ( 二十四个 ), wherein 
numeration units of tens and ones are added during the process of translation. 
Through this approach, the place value concept is practiced and developed. The 
meaning and denotation of 24 is made connection by clarifying the numeration 
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foundations for making sense of mathematics at all levels. However, developing 
this understanding is difficult since once the procedures are in place, it is hard 
make sense of the underlying mathematics (Pesek and Kirshner, 2000). One way 
to address this difficulty is to put PTs into a context in which they do not yet 
have the procedures available and thus have to make sense of the underlying 
mathematics and then compare and contrast between familiar and new contexts. 
This can be accomplished by allowing PTs to explore number and operation in 
different number systems and then make comparisons between the systems. In 
this study I examine how historical number systems can be leveraged to help 
PTs make sense of the base 10 place value system by stepping out of it and then 
comparing and contrasting between historic number systems and our base 10 
place value system. 

Theoretical Framework 

Variation theory states that one cannot know something if all one knows is that 
one thing (Ling Lo, 2012). To really understand something one needs to know 
what that thing is and what it is not. Thus to understand something you need to 
know at least two things (what it is and what it is not) as well as the difference 
(variation) between those two things (Marton, 2009). “According to Variation 
Theory, meanings do not originate primarily from sameness, but from 
difference, with sameness playing a secondary role.” (Marton in Lo, 2012 
foreword). Thus, to fully understand numbers and operation in the base 10 place 
value system one needs to not only know the base 10 place value system but 
also other number systems and the differences between the base 10 place value 
system and those other systems. In the above example (time context) PTs did not 
understand the base 10 place value system and the way the subtraction algorithm 
builds on the base 10 place value system (i.e. regrouping 1 unit into 10 units of 
the next smaller size) well enough to discern that the subtraction algorithm 
cannot be applied (without modification) to a time (not a base 10 place value 
system) context, because the relationship between hours and minutes is not a 10 
to one relationship.  

In addition to variation it is essential that PTs perceive the tasks that they are 
given as authentic. One way of making a task more authentic is by connecting 
the university classroom to the real world (in the case of PTs the K-12 
classroom) (Newman, King and Carmichael, 2007). Research has shown the 
importance of authentic tasks; “students who experienced higher levels of 
authentic instruction and assessment showed higher achievement than students 
who experienced lower levels of authentic instruction“ (Newman et al., 2007, p. 
vii). PTs in particular are motivated by tasks for which they see a real 
connection to their future classroom (i.e. they can use that task with children).  

Mathematically, to understand numbers in our base ten system one needs to 
understand that we have 10 symbols (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and each of those 
symbols represents a different sized group of ones (for example, 3 represents 3 
ones). Once we have ten ones we group those together into a group of ten. We 
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repeat this process with the tens, gathering up to 9 groups of tens before 
grouping 10 tens into the next sized group of hundreds. Thus once we have 10 
groups of any size we group those into the next sized group. Any number we 
have is then grouped into minimal groups of ones, tens, hundreds, etc. To 
represent these groups we reuse the same symbols we used to represent ones, 
and in our system the place of the symbol indicates its value. In a whole number 
the right most digit represents ones, the next digit to the left tens, the next digit 
to the left hundreds, and so forth. Thus in the number 2345, the 5 represents 5 
ones, the 4 represents 4 tens, the 3 represents 3 hundreds, and the 2 represents 2 
thousands. The successive grouping by tens also results in the ten to one 
relationship between adjacent digits (i.e. 1 thousand = 10 hundreds). This 
relationship is leveraged in many standard algorithms grouping and regrouping 
adjacent digits. To unpack these intricacies PTs need to understand that in our 
base 10 place value system (a) we have a limited number of symbols (0, …, 9), 
(b) each symbol represents the quantity of a particular sized group, depending 
on its location in the  number, (c) the group are successively formed by grouping 
10 of a unit type into the next unit type, (d) the size of the group is indicated by 
the digits’ place in a number, and (e) a zero is used to indicate do not have any 
of a certain sized group. Three historic number systems (Unary, Egyptian, 
Mayan) are used to successively vary along these five components so PTs can 
build up their understanding of the Hindu-Arabic system we use today, a base 10 
place value system (see Tab. 1). These historic number systems were chosen 
based on how they varied from the H.  
 

Number 
System 

Number 
of 

Symbols 

Can a symbol 
represent more 
than one value

Grouping 
System  

Place 
Value 

System 

Need 
for 

zero? 

Relationship 
of adjacent 

places 

Unary 1 No No No No N/A 

Egyptian Infinite No Yes  No No N/A 

Mayan 2 Yes No Yes  Yes 20 to 1 

Hindu-Arabic 10 Yes No Yes  Yes 10 to 1 

Tab. 1: Comparison between the characteristics of the number systems 

Literature Review 

Thanheiser (2009) identified 4 conceptions PTs hold when entering mathematics 
content courses for teachers (see Table 2). With only 30% of the PSTs holding a 
correct conception (reference units or groups of ones) and only 20% holding the 
most sophisticated conception (reference units). The reference units conception 
builds on the underlying base ten system and is required to explain all aspects of 
the algorithms. These results have been replicated across several studies at the 
beginning and the end of teacher education programs (Thanheiser, 2010, 2014; 
Thanheiser et al., 2013) showing that only 25% to 30% of PTs hold correct 
conceptions if those conceptions are not explicitly addressed in their teacher 
education programs. We also know that children “experience considerable 
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difficulty constructing appropriate number concepts of multidigit numeration 
and appropriate procedures for multidigit arithmetic’’ (Verschaffel, Greer, and 
De Corte, 2007, p. 565). Thus it is essential that we create activities especially 
designed to help PTs develop an understanding of base ten so they can help 
children develop a rich mathematical understanding.  
 

Conception PTs 

Reference units.  PSTs with this conception reliably conceive of the 
reference units for each digit and relate reference units to one another, 
seeing the 3 in 389 as 3 hundreds or 30 tens or 300 ones, the 8 as 8 tens or 
80 ones, and the 9 as 9 ones. They can reconceive of 1 hundred as 10 tens, 
and so on. 

3 
(20%) 

Groups of ones.  PSTs with this conception reliably conceive of all digits 
in terms of groups of ones (389 as 300 ones, 80 ones, and 9 ones) but not 
in terms of reference units; they do not relate reference units (e.g., 10 tens 
to 1 hundred). 

2 
(13%) 

Concatenated-digits plus. PSTs with this conception conceive of at least 
one digit as an incorrect unit type at least sometimes. They struggle when 
relating values of the digits to one another (e.g., in 389, 3 is 300 ones but 
the 8 is only 8 ones). 

7 
(47%) 

Concatenated-digits only.  PSTs holding this conception conceive of all 
digits in terms of ones (e.g., 548 as 5 ones, 4 ones, and 8 ones).  

3 
(20%) 

Tab. 2: Definition of conceptions in the context of the standard algorithm for the 
PTs in Thanheiser’s (2009) study 

Some research has explored the use of alternate bases with PTs to identify 
conceptions (Khoury and Zazkis, 1994; Zazkis and Khoury, 1993) and the 
development thereof (McClain, 2003; Yackel, Underwood and Elias, 2007) 
(Fasteen, Meluish and Thanheiser, 2015). Zazkis and Khoury used the context of 
base five decimal fractions to reveal PTs’ conceptions of the underlying 
structure of the number system. McClain and Yackel et al. immersed PTs in a 
base 8 context in a semester long class and found that the development of PTs’ 
concepts of numbers in base 8 mirrored the development of children’s concepts 
in the base 10 place value system. PTs often struggle with alternate bases 
because they do not see their relevance to teaching K-12 (alternate bases are not 
typically taught in K-12). However, PTs often enjoy the use of history in 
mathematics classrooms as it “highlights the interaction between mathematics 
and society” (Wilson and Chauvot, 2000, p. 642) and is often a part of the K-8 
curriculum. In this study I use historical number systems as a context to make 
sense of numbers and operation in the base 10 place value system by comparing 
and contrasting across the number systems and successively uncovering the 
complexities of the base 10 place value system. PTs typically enjoy learning 
about historical number systems and view them as authentic because they are 
relevant to their future teaching (ancient cultures including their number systems 
are part of the K-8 curriculum in the United States).  
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I build on some of my prior work (Thanheiser, 2014; Thanheiser and Rhoads, 
2009), which examined the use of the base 20 Mayan numeral system as a 
context to explore shifts in the value of digits when comparing the values of a 
“one” with one, two, and six zeros attached at the end. This study showed that 
the Mayan system allowed the PTs to discuss the relationships of the values of 
adjacent digits in a way that is not possible in the base 10 place value system. In 
this paper I further examine how a collection of number systems (Unary, 
Egyptian, Mayan, and the base 10 place value system) can be used with PTs to 
successively vary one component of the system and thus slowly build up to the 
complex base 10 place value system. Thus, I am using variation in task design. 

Methods: Data Collected 

Data is drawn from two sections of a mathematics content course for preservice 
teachers with a total of 36 PTs (13 PTs in a summer course and 23 PTs in a 
regular school year course). Both courses were 4 credit courses in a quarter 
system. The summer course met 4 days a week for 4 weeks, each meeting 
lasting 2 hours and 20 min. The regular quarter course met 2 days a week for 1 
hour and 50 min each over 10 weeks.  All PTs were interviewed before and after 
the course to identify their conceptions of number using Thanheiser’s (2009) 
framework (Tab. 2). The interviews were double coded with an agreement of 
88% (the disagreements were resolved through discussion). Both groups 
experienced the same sequence of tasks exposing them to alternate number 
systems described below. All PT work was collected and scanned and read to 
make sense of how PTs approached each task.  

Materials and Results of Task Design: Task Sequence and PT responses 

The Unary Activity presented students with the idea that all number systems 
share one thing in common; they have a symbol for 1 (tally). Students were 
presented with a sheet of tallies (about five hundred of them) and asked to count 
those. The tallies were purposefully not lined up by rows to necessitate counting 
all tallies (rather than counting the tallies in one row and then counting rows). 
The context being that an ancient farm owner who lived in a time when only 
tallies existed recorded how many cows he had.  The goal of the activity is to 
create an authentic need for grouping (needed to count without loosing track) 
and for symbols beyond the tally to record different sized groups. This activity is 
used to introduce number systems developed to record large numbers (grouping 
systems) in which groups of tallies are represented by new symbols (i.e. the 
Egyptian System). The variation emphasised between the Unary system and 
other systems is that other systems utilise various symbols to represent groups of 
various sizes while the Unary system only has groups of size 1 and thus only 
one symbol (the tally) (see Tab. 1). In the Unary activity PTs naturally grouped 
the tallies by 2s, 5s, 10s, or 20s. If they started with 2 or 5 they often grouped 
those groups again into larger groups. Thus, this activity is a motivation for 
grouping and explicates what grouping is used for, namely recording larger 
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numbers. The activity also most often leads to groupings found in historical 
number systems.  

The Egyptian Activity allowed PTs to explore the idea that while different 
symbols represent different sized groups; the location of the symbols does not 
matter. PTs were asked to convert numbers between the base 10 place value 
system and the Egyptian systems. Egyptian numerals were presented in mixed 
order (not ordered from largest to smallest) to highlight the fact that order does 
not matter in a grouping system. Numbers were also presented in non-minimal 
groupings (i.e. more than 10 tens listed in a number) to highlight that while 
easier to read, minimal grouping is not essential in a grouping system. Artifacts 
of children’s mathematical thinking were used to discuss the fact that a symbol 
for zero is not needed in a grouping system. For example, PTs were first asked 
to convert 4508 into Egyptian symbols and then viewed a video of children 
doing the same and discussing how/whether to represent the 0 tens. Following 
the exploration of the Egyptian system PTs were then asked to perform 
operations (i.e. multiplication) in this system. The variations emphasised 
between the Egyptian system and the Unary system is that the Egyptian system 
has more than one group size and more than one symbol, each symbol 
representing a different sized group. The variations emphasised between the 
Egyptian system and place value systems are (a) that in a place value system the 
location of a symbol determines the size of the group it represents, whereas in a 
grouping system the value of a symbol is independent of its location, (b) in a 
place value system there is a need for 0 while there is not need for 0 in a 
grouping system, and (c) operations are quite cumbersome in a grouping system 
as compared to a place value system (see Table 1). In the Egyptian Activity PTs 
noticed that the place of the symbols does not matter, however, for ease of 
reading and writing numbers they (just like the Egyptians) would order the 
symbols from largest to smallest. This can then lead to a discussion of how our 
base ten system has the same underlying grouping structure (ones, tens, 
hundreds, etc.) as the Egyptian system. When asked to perform operations (such 
as multiplication) in the Egyptian system PTs realise how awkward such 
operations are in grouping systems. They were asked to double a fairly large 
Egyptian number and used repeated addition followed by regrouping. They were 
then asked to think about how to figure how many 30 times that number would 
and responses were along the lines of “this would result in a profane amount of 
symbol,” and “it would be difficult,” as well as “it would be really 
cumbersome,” etc. Thus this activity highlighted the advantages of grouping 
systems (i.e. recording large numbers, values of symbols are fixed) and their 
limitations (cumbersome for calculations).  

The Mayan Activity allowed PTs to explore a place value system in a base 20 
system. First students familiarised themselves with the Mayan number system. 
They were presented with the first 30 Mayan numbers and then asked what a 
one with one zero (20), a one with two zeros (400) and a one with six zeros (64 
x 106) represents. After this activity - which was designed to help PTs explicate 
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the underlying base system resulting in a x20 relationship between adjacent 
digits – PTs were asked to invent addition and subtraction algorithms in the 
Mayan system. The variation emphasised between the Mayan system and the 
base 10 place value system is the explication of the underlying base (20 vs 10) 
and the relationship between adjacent unit types as x20 (Mayan) and x10 (the 
base 10 place value system). In the Mayan Activity PTs struggled identifying 
the value of a one with two zeros and a one with six zeros (see (Thanheiser, 
2014) for a more detailed description of those struggles). The most common 
misconceptions were a one with two zeroes interpreted as 200 (since a one with 
one zero represented 20 and a zero was incorrectly appended to that 20) and a 
one with six zeroes as 20,000,000 (same line of reasoning). Two arguments 
were used by PTs to make sense of the one with two and six zeros. The first 
argument filled every place to capacity (19) before spilling into the next place, 
thus arguing that 19 ones and one more make a one with one zero (20), and 19 
(20s) and 19 ones (399) and one more would make a one with two zeros (400). 
This argument is in line with a groups of ones conception (see Table 1). The 
second argument utilised the multiplicative relationship between adjacent places 
as x20, so the first place represents ones, the second 20, the third 20x20=40, etc. 
This argument is inline with a reference units conception (see Tab. 1). The 
power of this task derives from the fact that conceptions, which would not be 
easily observable in the base 10 place value system, become visible and can be 
examined by the PTs (i.e. appending zeros above) (Zazkis and Khoury, 1993). 
This can then prompt a discussion why procedures such as appending zeros 
work in the base 10 place value system. Along the same lines regrouping needs 
to be examined when working on adding and subtracting numbers, and the fact 
that we ungroup a group of larger size into the next smaller groups is explicated 
(as it is not hidden behind a procedure). PTs will also often quite naturally 
invent sense making algorithms in the context of the Mayan numbers and thus 
experience sense making connected to operations.   

Compare and contrast the different systems. Once PTs make sense of each of 
these systems they are asked to describe a grouping system and a place value 
system and discuss the similarities and differences among them and identify the 
important aspects of a place value system.  

PT’s Conceptions and Discussion 

Each of the activities helped PTs learn important information about numbers in 
the base 10 place value system by pulling the PTs out of their typical context 
and discussing the differences (variations) between systems. Almost all PTs 
developed more sophisticate concepts of number in the base ten system 
throughout the course. The distribution of the 36 PSTs’ conceptions at the 
beginning of the course was 2 reference units, 7 groups of one, 18 concatenated-
digits plus, and 9 concatenated-digits only. At the end of the course the 
distribution was 27 reference units, 4 groups of one, 4 concatenated-digits plus, 
and 1 concatenated-digits only. 
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Comparing and contrasting the different systems allows PTs to compare 
similarities and differences among the number systems, to explicated aspects of 
each, especially the base 10 place value system, and thus to build a better 
understanding of what the base 10 place value system is.  
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WHOLE NUMBER IN ANCIENT CHINESE CIVILISATION: 

A SURVEY BASED ON THE SYSTEM OF COUNTING-UNITS AND 

THE EXPRESSIONS 

Dahai Zou 

Institute for the History of Natural Sciences, Chinese Academy of Sciences, 
China 

Abstract 

Whole numbers are used in any civilization. In this paper, I will discuss the 
characteristics of whole numbers in ancient Chinese civilization. Chinese has been 
using the system of decimal numbers to count and calculate, but we can find that the 
system of numbers and its expressions have had some differences among different 
periods and different situations. This is a very complicated subject. In order to limit the 
length of the paper to 8 pages, I here only give a brief discussion on the basis of whole 
number expressions from the following aspects: representation by Chinese characters, 
manipulation with calculation tools, and representation by Chinese numerical symbols. 

Key words: numerical notations, counting rods, whole numbers in ancient China 

Whole numbers in ancient Chinese writing 

In ancient Chinese writing, numbers are expressed by basic numerical 
characters, words or their combinations.  

The basic numerical characters or words 

We can classify the basic numerical characters or words into two types:  

Nine characters for numbers from 1 to 9 
 

Hindu-Arabic numerals  1 2 3 4 5 6 7 8 9 

Chinese characters 一 二 三 四 五 六 七 八 九 

Hanyu Pinyin  

(Chinese phonetic script) 

yī èr sān sì wǔ liù qī bā jiǔ 

Fig. 1: Chinese characters for numbers 1-9 

Number units 

Some characters or words are number units for the powers of 10 (Guo, 1993, 
p.1128). We list them from small to large order as follows:  

Hindu-Arabic numerals 10 102 103 104         

Chinese characters 十 百 千 萬 億 兆 京,经 垓,姟,絯 秭 穰 溝 澗 

Hanyu Pinyin shí bǎi qiān wàn yì zhào jīng gāi zī rǎng gōu jiàn
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    Hindu-Arabic 
numerals 

        

Chinese characters 正 載 極 恒河沙 阿僧祗 那由他 不可思议 無量數 

Hanyu Pinyin zhèng zǎi jí hénghéshā āsēnzhī nàyóutā bùkěsīyì wūliàngshù

Fig. 2: Chinese characters for number units 

Among the above number units, the names of the last five (from hénghéshā 恒

河沙 to wūliàngshù 無量數) were from Buddhist Scriptures while others (from 
shí 十 to jí 極) were from Chinese own words (Li, 1934). 

The first four number units shí 十 , bǎi 百 , qiān 千  and wàn 萬  always 
respectively represent 10, 102, 103 and 104. The other number units vary with 
different systems of notation of numbers. These words (from yì 億  to 
wūliàngshù 无量數) are called large numbers (dàshù 大數). Among different 
sources, large numbers may have very few differences in order.  

There were differences among different systems of large number units (Li, 
1934).  

(1) 10 times of a number unit make the next.  

This system was used probably during the period in pre-Qin period and possibly 
in Western Han dynasty as well. 

 (2) From wàn 萬 (104) on, wàn 萬 (104) times of a number unit make the next. 

This system probably has been used since Western Han dynasty. 

(3) Wàn 萬 (104) times of wàn 萬 (104) is yì 億 (108), from yì 億 on, wàn wàn 萬
萬 (108) times of a number unit make the next. 

We don’t know whether this system is introduced from Buddhist Scriptures. 
This system was widely used from Han to Ming Dynasties. 

(4) From wàn 萬 (104) on, the square of a number unit makes the next. 

(5) From wàn 萬 (104) on, bǎi 百 (100) times of a number unit make the next. 

Both systems were rarely used and were probably from Buddhist Scriptures. 

Whole numbers expressed by the combinations of basic numerical characters 
or words. 

The basic numerical characters or words can express any whole numbers by 
themselves or their combinations. The ways of the combination vary with 
different systems of large number units. But all systems have similarities in 
denoting numbers smaller than 105. 

The expression of whole numbers smaller than 105 

(1) The numbers in the pattern of a (a = 1, 2, …, 9) times of 10, a times of 102, a 
times of 103 and a times of 104 are respectively represented in the patterns a shí
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Characteristics of whole numbers in ancient China 

Adoption of decimal system, or even place-value decimal systems  

As shown above, different systems of notation of numbers in ancient China are 
all of base ten, and very simple. The system in Chinese characters only uses a 
minority of basic number words and number units (usually five or six units are 
enough), and the multiple-rule to represent whole numbers. This can give a 
direct impression how much a number is. The other systems of notation are 
based on decimal place-value systems, and use even less basic symbols. When 
operating calculations by counting rods or Chinese abacus (suanpan), the 
intermediate steps are usually erased. This can make the operation only need a 
small space, and can avoid the trouble of preparing ink, brush and paper or 
bamboo slips. The other advantage of these two tools is that the arithmetic 
operations can be started either from the lower digit or from the higher digit.  

Method of detached coefficients for modern algebraic expressions 

The counting rods can express very complicated mathematical knowledge, 
including a set of higher degree equations with up to 4 unknowns. When ancient 
Chinese expressed algebraic expressions or equations, they used the method of 
detached coefficients, and took the positions of coefficients to indicate the 
unknowns and their powers. For example, we can express the mathematical 
relations given in the problem 3 of chapter 8 of the Nine Chapters on 
Mathematical Procedures (Jiuzhang Suanshu 九章算術 , ca. middle of 1st 

century BCE)) as the simultaneous equations	൝
ݔ2  ݕ ൌ 1
ݕ3  ݖ ൌ 1
ݖ4  ݔ ൌ 1

. The Nine Chapters 

solves the problem by the method named fangcheng 方程 that looks like a 
matrix, as shown in Fig. 7-1. In every column of Fig. 7-1, the unknowns x, y, z 
and the constant are indicated by the positions of coefficients from top to 
bottom. 

left middle right 

 

left middle right

 

left middle right

 

left middle right

   1  2 1     2 

    3 1  3 1 -1 3 1 

   4 1  4 1 -8 8 1  

   1 1 1 1 1 -1 1 1 1 

Fig. 7-1 Fig. 7-2  Fig. 7-3  Fig. 7-4 

Fig. 7:  Expression and operation of fangcheng 

Ancient Chinese solved the fangcheng with a method similar to Gauss 
elimination. The structure of fangcheng and the corresponding method of 
elimination make the necessity of the introduction of negative numbers (Zou, 
2010), which can be shown clearly in Fig.7-3 and Fig. 7-4.  
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Distinction between odd numbers and even numbers 

The difference between odd numbers and even numbers seemed to be noticed in 
very early period. There were 36 stone knives unearthed from the Xuejiagang 薛

家崗 Ruins (ca.5190 BCE±125) at Qianshan 潜山 in Anhui 安徽 province. 
Among 36 knives, only 1 knife with 4 holes, each of the others has an odd 
number holes (Shuo & Yang, 2003). These knives with odd number holes indicate 
that the ancient Chinese attached great importance to odd numbers. 

Ancient Chinese connected odd and even numbers to yang 陽 and yin 陰, or 
something related to them. 

 Chinese mathematical documents usually pay much attention to 2. When 
simplifying fractions, ancient Chinese would usually first examine whether the 
numerator and denominator can be both divided by 2, and then would find other 
common divisors.  

The “one” as the most important number 

 The Chinese character “yī 一” (one) has many meanings: one; whole, all; same, 
equal; the origin or beginning of everything; Tao; to unify, etc. The Lao Zi says: 
“From Tao there comes ‘yī 一’ (one). From ‘yī 一’ (one) there comes ‘èr 二’ 
(two). From ‘èr 二’ (two) there comes ‘sān 三’(three). From ‘sān 三’ (three) 
there produces “all things” (道生一，一生二，二生三，三生萬物). This 
expression connects the numbers to Taoist’s cosmology, which is still on the 
basis of the notion that one is the base of other numbers. In the third century, Liu 
Hui 劉徽 said, “Small things are the beginnings of large things, and one is the 
mother (origin) of numbers, therefore with respect to using rates they must be 
regarded as equivalent to one.” (少者多之始，一者数之母，故为率者必等之

于一) (Guo, Dauben & Xu, 2013, p.177-178). This expression admits that two 
magnitudes of the same kind should have a common unit to be measured. The 
cognition is related to the calculation of decimal approximate value of the square 
roots or cube roots which irrational numbers are known to us. It probably had 
influence to the fact that ancient Chinese did not find irrational numbers. 

Common divisor and the thought on “prime to each other” 

Ancient Chinese also paid attention to the relations between whole numbers. 
Both the unearthed Suanshu Shu 筭數書 (before 186 BCE) and the Nine 
Chapters record the method for finding common divisor of numerator and 
denominator of a fraction. The method can find the biggest common divisor, and 
is equivalent to the corresponding method in Euclid’s Elements. 

Ancient Chinese did not pay much attention to prime numbers. But they pay 
attention to the relation of two whole numbers which are mutually prime. This 
notion is very important in the problems of dayan 大衍 , concerning linear 
congruences. The solution of these problems needs to obtain a set of whole 
numbers among which any two numbers are mutually prime (Qian, 1966). The 
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method for finding common divisor can help ancient mathematicians to simplify 
a pair of whole numbers to make the numbers be mutually prime. 
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THEME 2:  WHOLE NUMBER THINKING, LEARNING AND 
DEVELOPMENT 

Lieven Verschaffel(1), Joanne Mulligan(2) 
(1) KU University, Leuven, Belgium, (2) Macquarie University, Australia 

Introduction 

Theme 2 addresses essentially cognitive aspects of learning and development of 
WNA, building further on the state-of-the-art as summarized in reviews of the 
research literature on WNA of, for instance, Fuson (1992) and Verschaffel, 
Greer and De Corte (2007). However, some papers view teaching as inextricably 
linked within any discussion about learning and development.  

One of the key questions that this theme raises is whether there are synergies 
between different perspectives. And if so how can we integrate these different 
perspectives into a more coherent view about the foundations and development 
of WNA concepts and skills? 

Several papers direct attention to new developments in the research field of early 
number (as described in a recent overview of English and Mulligan, 2014). 
Some re-conceptualisations of traditional aspects of early number and WNA are 
introduced. These focus on mathematics learning and development of other 
aspects such as visuo-spatial processes, pattern, kinaesthetic and embodied 
action and their relationship to development of number sense. The role of the 
number line as a mental model (Dehaene, 1997; Siegler and Opfer, 2003) is 
raised in several studies.  

The inclusion of several cross-cultural studies on WNA in the middle 
elementary years provides a rich comparison with emerging research from 
Chinese researchers.   

Studies of Number Development 

Two large cross-sectional studies focus on developmental aspects of young 
children’s number learning which provide a lens for re-examining ‘traditional’ 
features of number acquisition. A cross-cultural study (Cyprus and the 
Netherlands) of Kindergartners’ number competence by Elia and van den 
Heuvel-Panhuizen focuses on counting, additive and multiplicative thinking. 

Milikovic examines the development of young Serbian children’s initial 
understanding of representations of whole numbers and counting strategies in a 
large study of 3- to 7-year olds. Culturally invented (formal) representations 
such as set representation and number line were found to be limited in their 
recordings. 

Gould draws upon a large Australian large study of children in the first years of 
schools aimed at improving the numeracy and literacy in disadvantaged 
communities. A case study exemplifies how numerals are identified by relying 
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on a mental number line by using location to retrieve number names. This 
raises the question addressed in other papers focused on how the individual’s
brain processes numbers differently.  
Obersteiner and colleagues propose a coherent five-level competence model for 
WNA in the lower grades of elementary school taking account of psychological 
perspectives. 

 

Embodiment and Visuo-spatial Approaches to Number Sense 

Mulligan and Woolcott provide a discussion paper on the underlying nature of 
number. They present a broader view of mathematics (including WNA) as 
linked to spatial interaction with the environment; the concept of connectivity 
across concepts and the development of underlying pattern and structural 
relationships is central to their view. 

The Italian Percontare project (Baccaglini-Frank) built upon a collaboration 
between cognitive psychologists and mathematics educators, aimed at 
developing teaching strategies for preventing and addressing early low 
achievement in arithmetic. It takes an innovative approach to the development of 
number sense, which is grounded upon a kinaesthetic and visual-spatial 
approach to part-whole relationships.  

Towards a Neuro-scientific Approach 

Some papers reflect the increasing role of neuro-scientific concepts and methods 
in research of WNA learning and development. 

Sinclair and Coles draw upon neuro-scientific research to highlight the significant role 
of symbol to symbol connections and the use of fingers and touch counting exemplified 
in their ‘Touch Counts’ iPad app.  

Nesher and Shaul focus on the semantics and syntax of use of symbols ‘+’ and 
‘=’ in an innovative experimental study utilising event related potential (ERP) to 
measure brain activity while performing different WNA tasks. They focus on the 
differential processing of sums less than 10 with young students.  

Studies on Mental and Written Arithmetic in the Elementary Grades  

Three Chinese studies provide new insights into mental and written whole 
number arithmetic by students in the middle elementary grades.  He focuses on 
cognitive strategies for solving addition and subtraction problems. Yang 
highlights the conceptual difficulties of students’ judging the reasonableness of 
results in whole number calculations. Ma et al. analyse and categorise students’ 
systematic errors for three-digit multiplication and links these errors to teaching 
strategies. 

In another, methodologically oriented, study Verschaffel et al. compare two 
kinds of empirical evidence (one verbal and one non-verbal) for children’s use 
of a special type of strategy for doing mental subtraction, namely subtraction-
by-addition. 
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In a South African study focused on early addition, Roberts turns our attention 
to the role of teachers by providing a framework to support teachers’ 
interpretation of learners’ representations when engaging with whole number 
additive relation tasks. 

Further Questions for Group Discussion  

(1) To what extent is basic number sense innate? To what extent is it 
affected by socio-cultural and environmental influences? 

(2) What is the relationship of basic number sense to WNA. Is it the main 
precursor (predictor) of WNA competence? 

(3) How can interdisciplinary and cross cultural studies contribute to shifting 
views of WNA learning, and what implications does this research have 
for practice? 
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PREVENTING LOW ACHIEVEMENT IN ARITHEMTIC THROUGH 
THE DIDACTICAL MATERIALS OF THE PERCONTARE PROJECT  

Anna Baccaglini-Frank, University of Modena and Reggio Emilia, Italy 

Abstract 

PerContare is an innovative Italian project, built upon collaboration between cognitive 
psychologists and mathematics educators, aimed at developing teaching strategies for 
preventing and addressing early low achievement in arithmetic. The paper describes 
two emblematic examples of activities proposed within the project to foster the 
development of number sense that are grounded upon a kinaesthetic and visual-spatial 
approach. A study within the project was conducted to investigate the effectiveness of 
the materials used in the experimental classes. Results revealed a higher performance 
of the experimental group on a number of items of the assessment batteries. Moreover, 
this group contained half as many subjects with performance below the cut off score 
on the AC-MT battery compared with the control group. This suggests that the 
didactical materials developed in PerContare do contribute significantly to diminishing 
the number of potential false positives in the diagnoses of dyscalculia. 

Key words: calculation, dyscalculia, fingers, inclusive classroom, part-whole relation 

Introduction 

The PerContare project is an Italian inter-regional 3-year project (2011-2014) 
aimed at developing effective inclusive teaching strategies and materials to help 
primary school teachers (in Grades 1, 2, and 3) address low achievement, 
especially of students who are potentially at risk of being diagnosed with 
developmental dyscalculia (Butterworth, 2005). The teaching strategies and 
materials developed involve the use of digital and physical artefacts to help 
students construct mathematical meanings in a solid way, within the Theory of 
Semiotic Mediation (Bartolini Bussi and Mariotti, 2008).  

This paper focuses on two emblematic examples of practices proposed within 
the PerContare project (also see Baccaglini-Frank and Bartolini Bussi, 2012; 
Baccaglini-Frank and Scorza, 2013), aimed at fostering interiorization of part-
whole relations and awareness of ‘structural’ aspects of natural numbers (1) 
through strategies that include particular uses of fingers, and (2) through 
manipulation of straws in bundles of ten. In the following section I will describe 
the theoretical grounding of the proposed practices, and then discuss the video 
on which this paper is based. 

Theoretical Grounding 

Studies in mathematics education have highlighted how sensori-motor, 
perceptive, and kinaesthetic experiences are fundamental for the formation of 
mathematical concepts – even highly abstract ones (Gallese and Lakoff, 2005; 
Radford, 2014). Various educators and researchers have designed didactical 
activities significantly based on bodily experience and on the manipulation of 
concrete objects. For example, Bartolini Bussi and Mariotti (2008), adopt a 
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semiotic perspective, whereby student’s use of specific artefacts in solving 
mathematical problems contributes to his/her development of mathematical 
meanings, in a potentially “coherent” way with respect to the mathematical 
meanings aimed at in the teaching activity. Also research in cognitive 
psychology – though from a different perspective – has identified specific and 
preferential channels of access and elaboration of information. For students with 
learning difficulties these include the non-verbal visual-spatial and the 
kinesthetic channels (Stella and Grandi, 2011).  

Let us think about how these elements can apply to the domain of number sense. 
There is no monolithic interpretation of this notion across the communities of 
cognitive scientists and of mathematics educators, and not even within the 
community of mathematics educators alone (e.g. Berch, 2005). However, there 
seems to be a certain consensus about some features of the notion, which have 
important implications for mathematics education. The development of number 
sense is seen as a necessary condition for learning formal arithmetic at the early 
elementary level (e.g., Griffin, Case and Siegler, 1994; Verschaffel and De 
Corte, 1996) and it is critical to early algebraic reasoning, particularly in relation 
to perceiving the “structure” of number (Mulligan and Mitchelmore, 2013).  

Moreover, literature from the fields of neuroscience, developmental psychology, 
and mathematics education indicate that using fingers for counting and 
representing numbers (Brissiaud, 1992), but also in more basic ways 
(Butterworth, 2005; Gracia-Bafalluy and Noel, 2008), can have a positive effect 
on the development of numerical abilities and of number sense. Across fields it 
is agreed upon that both formal and informal instruction can enhance number 
sense development prior to entering school. The importance of the role 
attributed to the use of fingers in the development of number sense by the 
research literature is highly resonant with the frame of embodied cognition. 

Part-whole relations and numerical structure 

Perceiving pattern and structure is a fundamental way of thinking that should be 
fostered in young children (e.g. Mulligan and Mitchelmore, 2013). Moreover, 
lack of the use of this way of thinking seems to characterise children with low 
mathematical performance. Indeed, Mulligan and her colleagues, over several 
studies, found that “low achievers” (as defined by their teachers) are more likely 
to produce poorly organised representations, they tend to use unitary counting 
exclusively, and appear unable to visualise part-whole relations. This led the 
researchers to an hypothesis that was confirmed in later studies: “the more a 
student’s internal representational system has developed structurally, the more 
coherent, well organised, and stable in its structural aspects will be their 
external representations and the more mathematically competent the student 
will be” (ibid, p. 34). 

Part-whole relations arise from what Resnick et al. (1991) have described as 
protoquantitative part-whole schemas that “organise children’s knowledge about 
the ways in which material around them comes apart and goes together” (ibid., 
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p. 32). The interiorisation of the part-whole relation between quantities entails 
understanding of addition and subtraction as dialectically interrelated actions 
that arise from such relation (Schmittau, 2011), and recognising that numbers 
are abstract units that can be partitioned and then recombined in different ways 
to facilitate numerical (also mental) calculation. Hands and fingers can be used 
to foster development of the part-whole relation, in particular with respect to 5 
and 10, in a naturally embodied way.    

Emblematic examples from PerContare 

All the didactical materials are collected in an online teachers’ guide, accessible 
for free (at percontare.asphi.it). Each activity is presented as follows: an estimate 
is given on the time necessary for the activity; then the teacher is guided through 
the preparation and given a suggestion for the task to propose; the next section 
briefly describes what the teacher can expect, based on the field-testing of the 
activity (this section may contain videos and commentaries of actual classroom 
outcomes); the next section describes the mathematical meanings that the 
activity intends to promote; then proposals on how to construct these 
mathematical meanings are given; and finally various student-sheets and 
possible homework is provided.  

The various sections proposed for each activity in the teacher’s guide are 
designed to help the teacher proceed according to the framework of Semiotic 
Mediation, keeping in mind what the objective-mathematical meanings for each 
activity are, and giving suggestions about how to help students develop them. 

The “fingers game” 

The first example comes from a video recorded in a first grade, in November, 
when the author (A) was proposing the “fingers game”. She describes a 
configuration of fingers saying how many are up or down on each hand, while 
keeping them behind her back, and asks what number she is representing with 
the fingers that are up. After about 5 minutes of playing the game, A proposes to 
ask a ‘harder’ question. 

A: So now shall we do a harder one? 
Class: Yes! 
A: So, on one hand… I have three fingers lowered... three fingers lowered… and 
on the other I have two raised. 
Some kids: two. 
A: No, how many are raised?... Do it with your hands. [A looks at all students’ 
fingers raised and lowered on each hand.] 
A: So, one hand has three lowered, and the other has two raised… How many 
fingers are raised? 
Class: Four, two...four... 
A: Let's see how different people did it. [A looks at all students’ fingers raised 
and lowered on each hand.] 
A: Do it with your fingers. 
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large numbers of straws it is easier to group the straws in bundles of ten, since 
this way they can use their ability to count by tens (even though initially there 
might not be deep meaning associated to the process). Moreover, children are 
used to making bundles of ten straws from other games proposed. However, 
children are not explicitly told ‘how to’ represent numbers with tied up and 
untied straws. The activity described below introduces this discovery. It is 
typically proposed around November-December of first grade. 

The students are initially given 30 straws each and they are asked to represent 
the day of the month in which the activity is proposed, using their straws. They 
are initially invited to come up with ideas and share and discuss them. Once an 
agreement is reached, phase two proposes to ask students to  

a) use the straws to represent a number (up to 30) given orally (verbal code); 

b) use the straws to represent a number (up to 30) written in digits (symbolic 
code) on the blackboard; 

c) use the straws to represent a number (up to 30) written in letters (visual-verbal 
code) on the blackboard; 

d) write on their notebooks using digits the numbers represented with straws 
drawn on the blackboard. 

The tasks proposed in this activity involve various transcoding processes 
(Dehaene, 1992): the verbal code, the symbolic code, and the visual-verbal code 
are used and put in relation with the structural “straw representation”. Such a 
representation can support students with difficulties because it maintains an 
analogical format (there is exactly the number of straws that the given number 
represents) that also recalls symbolic aspects (the tens are grouped) of the 
numbers involved. Numbers in the “straw representation” maintain a physical 
connotation, activating the visual and kinaesthetic-tactile channels, and can act 
as a trampoline for students to pass from one code to the other. 

The teacher is also invited to make use of horizontal parentheses under sets of 
straws to indicate the part-whole relationship s/he is attending to. For example, 
if the teacher wants to guide the students’ attention to the composition of 36 as 
‘three ten’ and ‘six’ s/he can put a horizontal parenthesis under the three bundles 
of ten straws on the left and write ‘3 ten’ or ‘30’ and a second one under the six 
untied straws on the right (see Fig. 2) and write ‘6’. A final horizontal 
parenthesis under everything can be used to mark the whole quantity ‘36’.  

Soon after this activity the teacher is invited to use transparent boxes to hold 
bundles of straws (placed on the left, where the tens digit sits) and free straws 
(placed on the right, where the unit digits sit). Ten straws can be taken from the 
container on the far right and bundled up at any time. It is not necessary – like in 
the case of the abacus – to make a bundle as soon as there are ten straws. 
Making a bundle and placing it in the tens box makes recognising the number 
easier, but there is always the same number of straws in total. We have found 
that for numbers below one hundred the system of straws in boxes works quite 
well as an alternative for the abacus, which notoriously creates many difficulties 
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for the students. Many of such difficulties seem to arise from the abstraction 
necessary in seeing a same ball of the abacus as ‘one’ or ‘ten’ based on whether 
it is put on the stick to the far right, or on the next stick to the left. Though the 
conventionality of the decimal positional notation is present in the representation 
with boxes of straws (as with the abacus), this artefact maintains a strong 
connection to the actual numerosity being represented, as it only gives a 
perceptually different structure to the same number of items being considered. 

A study on the effectiveness of the didactical materials 

Within the greater project, a specific study was carried out with the aim of 
gaining insight into the effectiveness of the didactical materials developed. A 
sample of 208 children (10 classes) was selected at the beginning of their first 
grade and followed until their third grade. No child with IQ score below average 
was included in the sample. The sample consisted of two groups: an 
experimental group of 100 children (5 classes) whose teachers used all 
didactical materials proposed, and a control group of 108 children (5 classes) 
whose teachers were not aware of the didactical materials. To both groups was 
administered a set of assessment tests on arithmetical abilities related to 
numbers and calculation, as in the typical tests used for diagnosing children at 
risk (Biancardi et al., 2011). The tests were administered three times to the 
classes of both groups, in the form of a game: in May of the first grade, and in 
January-February and again in May of the second grade.  

The assessment battery for first graders contained the following tasks: 
(1) writing numbers (numbers under 1000 dictated in random order), 
(2) subitizing (numerosities from 2 to 7), (3) estimation (two numerosities were 
compared), (4) enumeration (counting a set of dots and writing the numerosity 
in symbolic notation), (5) magnitude judgment (choosing the symbol for the 
greater number), (6) quantity judgment (deciding whether two representations, 
one analogical and one symbolic, of a number referred to the same number or 
not), (7) insertions on the number line (placing a number on a number line with 
tacks and numbers 0 and 20 marked), (8) reverse counting (writing numbers in 
reverse order on the number line, starting from a given number), (9) additions 
(written operations, of which three need composition of tens), (10) subtractions 
(written operations, in which the greater number is within 10). For each task of 
each test the number of correct answers was collected. 

The assessment battery for the second graders in January-February consisted of 
seven of the same types of tasks (1, 2, 3, 5, 8, 9, 10), that were only made more 
complex, and of three different tasks (decomposition, ordering increasingly and 
decreasingly). In May the assessment was the same as in February, only a task 
on multiplication was added. For each task of each test the number of correct 
answers was collected. 

In order to verify the validity of the results obtained with the newly developed 
assessment batteries, in November of the third grade, the AC-MT battery 
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(Cornoldi et al., 2012) was administered to the whole sample of subjects, 
together with a test for collective evaluation of reading ability DCL (Caldarola 
et al., 2012), and the dictation of a sequence from a battery for the evaluation of 
writing and orthographic competence (Tressoldi et al., 2013). 

Results and Conclusion 

The results of the assessments at the end of the first grade show a substantially 
better performance of the experimental group on the following tasks: magnitude 
judgment, addition and subtraction. Moreover, in the experimental group four 
subjects of the 100 show low proficiency on at least four tasks of the battery, 
while in the control group eight subjects of the 108 appeared to be in this 
condition. The results of the January-February administration in second grade 
confirmed a significantly higher performance of the experimental group on the 
addition and subtraction, and also on the tasks on ordering increasingly and 
decreasingly. The third administration of the assessment battery in May of the 
second grade again confirmed these results. 

As for the results on the validity of the assessment battery developed within the 
project, data show a significant correlation (p > 0.05) between the newly 
designed tasks and the standardised battery. In particular, there appears to be 
greater reliability (α = 0.8) for the tasks that evaluate numerical knowledge. The 
comparison between the means of the scores obtained by the two groups on the 
tasks of the standardised calculation test (AC-MT) show a significant difference 
(t student = p > 0.05) on speed, operations and number knowledge. The 
experimental group appears to have higher mean scores on every task of the 
standardised test. Moreover, the percentage of subjects in the experimental 
group with performances at or below the cut off score on the AC-MT battery 
was about half of that of these subjects in the control group (7% vs. 13%). These 
findings in particular suggest that the didactical materials developed in 
PerContare do contribute significantly to diminishing the number of potential 
false positives in the diagnoses of dyscalculia. 
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Abstract 

In this study the number competence of kindergartners was investigated. Based on a series 
of items involving counting, subitizing, additive reasoning and multiplicative reasoning 
we collected data from a sample of kindergartners in the Netherlands (N = 334) and 
Cyprus (N = 304). A confirmatory factor analysis showed that the four-factor structure fit 
to the empirical data from the Netherlands, and that the competence of the kindergartners 
in Cyprus reflected a two-factor structure including extended counting and additive 
reasoning. With respect to this latter, common number component, the Netherlands 
children outperformed those from Cyprus. In both countries the children who were in the 
second year of kindergarten did better than those who were in the first year. In the 
Netherlands, out of the four components, multiplicative reasoning was the most difficult, 
whereas in Cyprus additive reasoning was more difficult than extended counting. 

Key words: differences between countries, kindergartners, number performance, 
structure of number competence 

Introduction 

Number is the most fundamental topic of mathematics in primary school (Sarama 
and Clements, 2008), but children start learning about numbers and develop basic 
skills and concepts in arithmetic already before they are taught mathematics 
formally from Grade 1 on (e.g., Gervasoni and Perry, 2015). In fact, the 
foundation for children’s understanding of number is laid in their preschool and 
kindergarten years when they learn about quantities, numbers, operations, and 
relations between quantities as a way of modelling their world (Nunes, 2012). 

The number concept comprises several components, which children need to 
develop and link to each other to build a deep understanding of the concept 
(Sarama and Clements, 2008). Most studies on early number development have 
examined children’s competences by focusing on these number components 
separately from each other. Taking a more comprehensive approach, this study 
aims to investigate the structure of young children’s number competence with a 
focus on four major sub-domains of number development: counting, subitizing, 
additive reasoning and multiplicative reasoning. The nature of this structure in 
children in two countries is also a concern of the study. 

The domain of number 

Counting 

Counting is considered a key component in the development of the concept of 
number (e.g., Sarama and Clements, 2008). By using counting in everyday 
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experiences children construct basic knowledge about numbers resulting in being 
able to find the numerosity of a collection of objects. In order to succeed in this, 
children have to acquire the ability of oral counting (knowing the sequence of 
number words), the one-to-one correspondence between the set of objects and the 
number words, the ability to keep track of the counted objects and the objects that 
have not been counted and the cardinality principle (that the numerosity of a set of 
objects is indicated by the last number word of the counting process) (Baroody and 
Wilkins, 1999; Kilpatrick, Swafford and Findel, 2001). 

Subitizing 

Another way of determining the numerosity of a collection of items is subitizing. 
This means that children can recognise instantly the number of small collections 
(Baroody and Wilkins, 1999). The development of this ability is considered to 
take place even before children have learned to count objects reliably (Baroody, 
2004). Based on the different mechanisms underlying subitizing, a distinction is 
made between perceptual and conceptual subitizing (Clements, 1999). Perceptual 
subitizing refers to directly seeing how many objects there are. Conceptual 
subitizing is quickly figuring out the numerosity of a larger collection of objects 
by viewing it as being composed of smaller groups of objects. 

Additive reasoning 

Children’s early experiences with counting (Eisenhardt et al., 2014) and 
subitizing (Clements, 1999) form the basis for additive reasoning (addition and 
subtraction). This starts already at a young age. Most preschoolers can understand 
and solve simple additions and subtractions at the age of three, often by using real 
objects to model the tasks (Kilpatrick et al., 2001) through perceptual counting 
(see Eisenhardt et al., 2014). Playing with collections of objects supports 
children’s development of the intuitive ideas of adding to/having something more 
and taking away/having something less (Baroody and Wilkins, 1999). Later, at 
the age of five or six, children acquire a basic understanding of part-whole 
relationships (Sophian and McCorgay, 1994), which is a great achievement in the 
development of the understanding of additive relations and of number sense in 
general. It means that they understand that any number can be represented as the 
sum of other numbers (additive composition) (Nunes, 2012), which helps them, 
for example, to solve missing-addend problems (Sarama and Clements, 2008). 

Multiplicative reasoning 

The domain of multiplicative reasoning, which includes multiplication and 
division, is clearly distinct from the domain of additive reasoning (e.g., Clark 
and Kamii, 1996; Vergnaud, 1983). Previous studies have shown that in the first 
grades of primary school, before formal instruction on multiplicative reasoning, 
children can resolve a substantial amount of problems in this domain (Bakker et 
al., 2014; Mulligan and Mitchelmore, 1997). A study by Carpenter et al. (1993) 
revealed that even children at the kindergarten level were able to solve various 
multiplication and division word problems. Research suggests that children’s 
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multiplicative knowledge is strongly influenced by the characteristics of the 
problems offered to them. A study of Bakker et al. (2014) showed that ‘equal 
groups’ problems were the easiest problems and that problems with pictures 
representing the multiplicative situation are easier than problems which are 
presented without countable objects. The same study also showed that 
multiplication and division problems were at same difficulty level, which could 
be accounted to an intuitive understanding of the connection between the two 
operations (see also Mulligan and Mitchelmore, 1997). 

Cultural aspects in the learning of number 

Most of the comparative studies between different cultures have concentrated on 
comparing the mathematics competences between Asian, Oceanian and South 
American students and students from the western countries. A common finding of 
these studies, which starts to appear even in the earliest years of children’s 
development, is that, for example, Asian children outperform Western children in 
the domain of number concepts (Anderson, Anderson and Thauberge, 2008; 
Starkey and Klein, 2008). A number of factors that were found to account for this 
difference include “linguistic regularities, parental and teacher mediation styles, 
different cultural expectations, and how mathematics is practised within different 
cultural groups, both in and out of school” (Anderson et al., 2008, p. 119). 
Whether these differences have been found also within Western countries whose 
cultural traditions may be closer to each other is to our knowledge unknown. 

The present study 

The aim of the study was to map kindergartners’ number competence by 
identifying its key components and investigating their performance in these key 
components in two countries. Considering the major subdomains of early number 
knowledge, we investigated: (a) whether kindergartners’ number competence can 
be distinguished into four factors, namely, counting, subitizing, additive reasoning 
and multiplicative reasoning, (b) how able kindergartners are in the number 
competence component each factor stands for and (c) whether the previous issues 
differ for children in different countries. 

Methods 

Set up of the study 

A survey was carried out in the Netherlands and in Cyprus. The kindergartners’ 
number competence was assessed by administering two booklets, each containing 
items about counting, subitizing, additive reasoning and multiplicative reasoning. 

Participants 

The participating children in the Netherlands were from kindergarten classes in 18 
primary schools situated in the province of Utrecht. Each school participated only 
with one class containing first (K1) and second year (K2) kindergartners. The 
total Netherlands sample included in the analysis contained 334 children, 176 
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Every item covers one page and contains an illustration depicting a situation 
and/or a number of small illustrations that represent the possible answers. After 
a test item was read aloud to them, the children had to answer by underlining or 
putting a circle around the picture or pictures that represent the correct answer. 
Correct responses were coded as 1, and incorrect ones as 0. 

Results 

Components of early number competence 

Confirmatory factor analysis (CFA) was applied, using MPLUS (Muthén and 
Muthén, 2010) to investigate whether different items in the topic of number can 
form different factors which reflect different types of competence (early number 
competence components) in the two samples. In order to evaluate model fit, 
three fit indices were computed (Marcoulides and Schumacker, 1996): the chi-
square to its degree of freedom ratio (χ2/df should be less than 2); the 
comparative fit index (CFI should be higher than .9); and the root mean-square 
error of approximation (RMSEA should be close to or lower than .08). 

The results of the CFA are presented in Fig. 2. On the left the structural equation 
model is shown with the latent variables of the number competence components 
and their indicators for the Netherlands sample. We evaluated the construct 
validity of this model by examining whether the 14 items loaded adequately on 
each of the four number competence factors described above: counting, 
subitizing, additive reasoning and multiplicative reasoning. The CFA showed that 
this model reflected the empirical data quite well, as the descriptive-fit measures 
indicated support for the hypothesised model (χ2/df = 1.10, CFI = .99 and 
RMSEA = .02). This means that students’ early number competence in the 
Netherlands can be distinguished into four factors: counting, subitizing, additive 
reasoning and multiplicative reasoning. All factor loadings were statistically 
significant and most of them were rather large; the total range is from .36 to .86. 
The interrelations between the factors were significant and considerably strong, 
ranging from .72 to .95. In a general sense, this indicates that children in the 
Netherlands who were efficient in one number subdomain were quite competent 
in another subdomain and vice versa.  

To evaluate the construct validity of this model in the Cyprus sample, CFA was 
used. The results of the analysis showed that the correlations between some latent 
variables (factors) were greater than 1 indicating that the four-factor structure did 
not make sense for the empirical data on number competence of young students in 
Cyprus. Another model with a smaller number of factors had to be explored. The 
model that best fitted the Cyprus data (CFI = .95, χ2/df = 1.16, RMSEA = .02) 
was the one presented in the right part of Fig. 2, which includes two factors. 
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Fig. 2: Structural equation model for early number competence components in the 
Netherlands (left) and Cyprus (right) 

In this model the items cake, candleholder and apples, were found to load 
adequately to one factor which stands for additive reasoning, as it is the case for the 
Netherlands sample. The items lollipops, sausages, ladybugs, hands sweets, legs 
and mittens were found to load adequately on the other factor. Although these items 
were initially used to measure three different number competences, namely, 
counting, subitizing and multiplicative reasoning, they can all be solved with the 
use of counting. Therefore, we considered the second factor in the Cyprus model to 
stand for counting. To distinguish this factor from the factor that stands for 
counting in the model of the Netherlands we named it “extended counting”. This 
means that students’ early number competence in Cyprus can be distinguished into 
two factors: extended counting and additive reasoning. As it is shown in the right 
part of Fig. 2, most factor loadings were rather high; the total range was from .28 to 
.88. It is to be noted that four items, that is, marbles, shoe boxes, socks and 
building-blocks are not included in the model because although we expected these 
items to be regressed on the factor “extended counting” their loadings on the 
particular factor were not statistically significant. This indicated that children’s 
observed performance on these items was not related to the latent factor of 
“extended counting” and as a result they were eliminated from the model (Brown, 
2006). The interrelation between the two factors, corresponding to students’ 
competence in counting and additive reasoning, was significant and considerably 
strong (.65). This indicates that students in Cyprus who were competent in counting 
were efficient also in additive reasoning and vice versa. 
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Kindergartners’ performance in each number competence component 

Tab. 1 shows that for the total sample of kindergartners in the Netherlands, 
performance in counting (M = .52), additive reasoning (M = .51) and subitizing 
(M = .55) was significantly higher than performance in multiplicative reasoning 
(M = .35). These differences were found to be significant (due to limited space we 
left out detailed statistical information). Also, the children in the Netherlands 
appeared to perform better in subitizing than in additive reasoning. This difference 
was found to be marginally significant. For the common factor between the 
structural models of the two countries, that is, additive reasoning, kindergartners in 
the Netherlands performed significantly better than the kindergartners in Cyprus. 

Similar to the results in the total sample of the Netherlands, we also found for the 
two kindergarten years that children performed significantly better in counting, 
subitizing and additive reasoning than in multiplicative reasoning. K1 children in 
the Netherlands demonstrated signifantly higher performance in subitizing than in 
counting and additive reasoning, which was not the case for the K2 children. For 
Cyprus, the results in the total sample was similar to those found for the two 
kindergarten years, namely that children performed significantly better in extended 
counting than in additive reasoning. Moreover, in both kindergarten years the 
Netherlands kindergartners outperformed the kindergartners in Cyprus in additive 
reasoning. When we compared the scores in the two kindergarten years for the 
various number competence components, we found that in both countries the K2 
children significantly outperformed the K1 children in all components. 

Component NL Component  Cyprus 

 M MK2-
MK1 

 M MK2-
MK1  K1+K2  K1 K2  K1+K2 K1 K2 

Counting .52 .34 .63 .29* Ext counting .49 .36 .54 .18*
Add reasoning .51 .35 .59 .24* Add reasoning .38 .26 .43 .17*
Subitizing .55 .45 .60 .15*      
Mult reasoning .35 .23 .42 .19*      

N 334 123 211   304 86 218  

Tab. 1: Mean score for each early number competence component for the whole 
sample and each kindergarten year in the Netherlands and in Cyprus; differences in 

mean scores between kindergarten years in both countries (* p < .01) 

Discussion and conclusion 

This study provides evidence for the multidimensional structure of 
kindergartners’ number competence. The investigated four-factor structure 
including counting, subitizing, additive reasoning and multiplicative reasoning 
indeed reflected the number competence, but only in the children from the 
Netherlands. For the children in Cyprus, a two-factor structure, including 
extended counting and additive reasoning was more adequate to capture their 
number competence. A possible reason for this finding could be that the 
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children’s profile might be influenced by the Cyprus kindergarten’s mathematics 
curriculum and teaching practices, which emphasize counting and additive 
reasoning and give less attention to subitizing and multiplicative reasoning. To 
solve items referring to these latter competences, Cyprus children may have 
applied counting strategies instead, which were quite familiar to them and which 
could be applied because the items included countable objects. Another finding 
was that for additive reasoning, the component the two samples had in common, 
the Netherlands kindergartners outperformed the children from Cyprus. In sum, 
our study revealed differences in children from two countries in key components 
of early number competence. However, this conclusion should be taken with 
prudence, because our sample was small, and was not representative for the 
countries’ population. A further limitation of our study was that our collection of 
items did not cover the full domain of number and operations. Further research 
is necessary to cancel out these limitations and also to identify more in-depth the 
sources of differences in number competence of kindergartners in different 
countries. 
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RECALLING A NUMBER LINE TO IDENTIFY NUMERALS 

Peter Gould, NSW Department of Education and Communities, Australia 

Abstract 

In Early Action for Success, a strategy to lift the literacy and numeracy performance of 
students in the early years in primary schools serving disadvantaged communities in 
New South Wales (Australia), schools have engaged in the close monitoring of student 
progress in whole number knowledge. This has involved tracking progress in oral 
counting, strategies to determine the sum or difference of two quantities and 
identifying numerals. A videoed interview with one of the students revealed an 
unusual approach to numeral identification. This 7-year-old’s process for identifying 
numerals appeared to rely on locating them on a mental number line and using their 
location to retrieve their names. This is at odds with the proposition that children learn 
to map number words and numerals onto a core representation of numerosity. It does 
provide support for the idea that different brains process numbers differently. 

Key words: language of number, numeral identification, numeral recognition, 
representations of quantity, writing numerals. 

Introduction 

When children start the first year of formal schooling in public schools in New 
South Wales, their teachers conduct a one-to-one interview with each child to 
determine what whole number knowledge the children have (Gould, 2012). The 
teachers use a standardised interview that assesses knowledge of the forward 
sequence of number words, numeral identification, the use of counting to solve 
addition and subtraction problems, and instant recognition of small quantities 
(Fuson, 1988; Steffe and Cobb, 1988; Wright, 1994). This information is 
essential to planning teaching activities to meet the needs of all students and 
provides a snapshot of the school entry number knowledge of over 65 000 
children with an average age of 5.3 years. 

These various aspects of number knowledge have been described in a learning 
framework (Wright and Gould, 2002). However, to use whole number 
effectively, children must integrate many layers of verbal, procedural, symbolic 
and conceptual meaning. The knowledge of sequences of number words, 
forwards and backwards by ones and tens, and strategies used to answer addition 
and subtraction questions are interrelated and interdependent. For example, 
counting objects by allocating a number word to each object once, and 
recognising that the last number word stated corresponds to the total, clearly 
relies on correctly producing the sequence of counting words. Knowledge of the 
forward sequence of number words is effectively used in the service of 
quantifying. 

Children in Australia, as in many other countries, must also learn that quantities 
are associated not only with number words but also Western Arabic numerals. 
Both “four” and “4” can be used as symbols to represent the quantity associated 
with a collection of any four things. Although words, objects and numerals can 
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all be used to represent quantity, recent research suggests that the brain may 
process numeric symbols differently from number words (Shum et al., 2013). 

Understanding how these connections across the representations of quantity 
operate is important. Neuropsychological models of number processing attempt 
to specify how the different representations of numbers are interconnected 
(Dehaene and Cohen, 1998). Children could conceivably learn to map spoken 
and written numerals onto each other. However, quantity and language do not 
appear to simply map to each other (Gelman and Butterworth, 2005) and 
different brains process numbers differently (Krause, et al., 2014). 

The process in which a number is translated from one format into another one is 
referred to as number transcoding (Imbo et al., 2014). Considering numerals 
from the perspective of psycholinguistics, number symbols can be described in 
terms of their production and recognition (Mark-Zigdon and Tirosh, 2008). 
Selecting a specified numeral from a randomly arranged group of numerals in 
response to hearing it is described as numeral recognition. That is, numeral 
recognition is a receptive skill. Being able to name a specific numeral when it is 
shown to you is referred to as numeral identification. Numeral identification is a 
productive skill. Some children are able to recognise a numeral in response to an 
aural cue but not produce the number word in response to seeing the numeral. 
Numeral recognition and numeral identification operate in a mod akin to a dual 
carriageway. However, operating with number is not always simply based on 
verbal processes (Brysbaert, Fias and Noël, 1998). Noël and Seron (1997) have 
further argued that code-dependent intermediate representations may be used in 
mathematical operations. 

As part of the New South Wales Literacy and Numeracy Action Plan, over 200 
public primary schools have been closely monitoring the progress of students’ 
whole number knowledge in the first three school years. This has required 
schools to regularly report students’ progress in oral counting, developing 
strategies to determine the sum or difference of two quantities as well as 
identifying numerals. At the request of one of the schools the author conducted a 
clinical interview with a student who was experiencing difficulty linking the 
various representations of quantity and, in particular, numerals. The purpose of 
the clinical interview was to diagnose the student’s use of counting to determine 
quantity and the association between quantity, number words and numerals. This 
paper reports on the results of the clinical interview and the implications of one 
use of a mental number line on the development of early number proficiency.  

Materials and Methods 

The male student who is the subject of the clinical interview was 7 years old and 
was the 26th student videoed on the day. Within this paper I use the pseudonym 
Jed to refer to him.  

Jed was in Year 2, his third year in a primary school serving a low socio-
economic community. The Assistant Principal at the school provided a detailed 
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background of Jed’s achievements at school and commented that the last time 
she worked with him; he counted his fingers starting from one to display seven 
fingers. That is, he used a perceptual counting strategy to make seven. It was 
also reported that Jed could not remember the numeral ‘7’ for a whole week. 
This is extremely unusual for a student in the third year of school, as more than 
50% of students starting Kindergarten (the first year of school in NSW) can 
identify the numerals 1 to 10 (Gould, 2012). 

After the clinical interview, I asked the Assistant Principal to determine how Jed 
responded to writing numerals and to creating finger patterns for numbers. In 
particular, I wanted to know how far Jed could correctly write the sequence of 
numerals and if he could generate numerals in response to hearing them. 

The clinical interview started with the task of determining how many small 
square foam tiles were on the table in front of the student. Twenty-four tiles of 
the one colour were provided to Jed, in no obvious order.  

Results 

Approximately halfway through counting the 24 tiles, Jed stopped and said it 
was “a tricky number”. When he was asked to start again and count in a clear 
voice, he correctly counted 12 tiles and then stopped again; apparently uncertain 
of what came next. When asked, “What comes after twelve?” he again 
responded that it was getting ‘trickier’. The interviewer then asked if he could 
continue counting if he knew that thirteen came next. Following this prompt, 
and with encouragement, he was able to state that fourteen came next. He then 
continued the oral count correctly to eighteen were he again stopped. 

It is not unusual for students learning to count in English to learn the number 
words from eleven to twenty more slowly and with more errors than in many 
other languages. However, this challenge is usually successfully addressed in the 
first year of school. 

Moving the tiles aside, the interviewer asked Jed to start counting from one and 
to go as far as he could. It is possible that keeping track of the count by 
matching the number words to the objects might have impeded Jed’s production 
of the number words. Jed quickly gave a correct oral count to thirteen, omitted 
fourteen, said fifteen, and then recognised that this was not correct, and stopped. 
On his next attempt he again omitted fourteen and appeared to be uncertain of 
the counting words past thirteen. 

When asked if he could count backwards from ten, it became evident that he 
could not. Jed was then asked a number of questions to determine the range of 
his memory for serial order. For example, he was asked to recite what he knew 
of the alphabet. He responded, “a, b, c, d, e, f, g, h” and could go no further.  

Jed was then asked a series of questions to determine his awareness of numbers 
in his environment. His responses indicated that he has a home telephone, but 
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did not know the telephone number. Jed knew the street name of his home but 
not the number. 

Even within the range of numbers that he could successfully count, Jed appeared 
to be reliant on reproducing the whole string. For example, he could not start 
counting from ‘ten’. 

Linking numerals and number words 

The interviewer sought to investigate any links Jed could make between the 
sequence of counting words and numerals.  

Jed was asked how far he had previously counted and, as he could not 
remember, he was asked to count again. This time he stopped at “twelve”. The 
interviewer reminded him that he had previously gone one number further. With 
encouragement he was able to state that the next number was “thirteen”. 

The interviewer selected the initial group of numeral cards because they were 
near the end of Jed’s oral counting range. The numeral ‘8’ was added to the 
group of numeral cards as the Assistant Principal had referred to Jed describing 
it as “two circles on top of each other”. When asked which of the cards he 
recognised, Jed responded by selecting the ‘12’. He then tentatively identified it 
as ‘eleven’ and self-corrected to indicate ‘twelve’. 

Although Jed could not identify ‘15’ he could, with effort, identify ‘5’. This 
suggested that he was not using the ‘1’ as a positional tag for ten in reading 
numerals. That is, he may not be decoding the ‘15’ as a ‘1’ and a ‘5’.  

When he identified the ‘5’, he thought about it for some time before answering. 
When asked how he worked it out, Jed responded that he recognised the 3 then 
he went to the next number. He couldn’t identify the ‘8’, ‘15’, ‘13’ or ‘14’. 
Moreover, Jed couldn’t really identify the ‘12’ but rather appeared to be using 
some process such as counting to determine its name. When the interviewer 
returned to ask Jed to identify ‘5’ he could be heard to say ‘three’ before 
subvocalising the count to ‘5’. The interviewer then asked if Jed remembered 
what the ‘3’ is, and pictured where the ‘5’ is, while gesturing a ‘point count’ 
process. 

When presented with ‘4’, Jed again appeared to be using ‘3’ as a reference point 
to identify ‘4’. He confirmed that he imagined where the numbers are on a 
number line. Jed could readily identify the numerals ‘1’, ‘2’ and ‘3’ but 
appeared to need to ‘calculate’ the names of other numerals. Although he 
worked out ‘7’, he said he did this by recognising a number and counting on 
two. However, he did not rapidly identify ‘5’ but rather determined the 
corresponding number word by counting from three. 

Jed appeared to use a form of a mental number line from 1 to 10, with the 
location of the numerals often unclear above 5. When asked to identify ‘6’ Jed 
repeatedly asked if it was upside down. He then answered that ‘6’ was ‘five’. 
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Discussion and conclusion 

Neuropsychological models of number processing have attempted to describe 
the way in which mental representations of numbers are interconnected. 
McCloskey (1992) proposed a model with a single abstract quantity 
representation surrounded by comprehension and production modules for Arabic 
numerals and number words, as well as calculation mechanisms. This model 
successfully explained the performance of a number of patients with 
neuropsychological impairments of number processing. 

One of the limitations of the McCloskey model is the absence of direct pathways 
between various modules, such as seeing a number word and saying the number 
word. Campbell (1994) proposed an encoding-complex perspective where 
separate modality specific number codes exist. According to this model, number 
skills would be based on multiple forms of internal representation and could be 
realised in many ways. Number processing could vary as a function of cultural 
or idiosyncratic experience. 

The idea that number processing could vary as a function of idiosyncratic 
experience aligns with Jed’s method of recalling an ordered line of numerals to 
identify numerals. Rather than an instant process of identifying numerals, Jed’s 
transcoding is performed as a semantic process; he gives meaning to the 
symbols by using a counting sequence. Jed counted to match a number word to a 
recalled sequence of numerals. His method is atypical in that people normally 
transcode between verbal and Arabic numerals by means of an asemantic 
system; the semantic route is usually only activated when the number has to be 
used in some other task (Power and Dal Martello, 1997). 

Jed’s method of identifying and recalling numerals is at odds with any 
proposition that children learn to map both number words and numerals onto a 
core representation of numerosity. Does the commonly used triple-code model 
adequately describe Jed’s method of identifying numerals? 

The triple-code model (Cohen, Dehaene and Verstichel, 1994) assumes that 
there are three different codes associated with number: Arabic (numeral), verbal 
and analogue magnitude. The Arabic code is responsible for multi-digit 
calculations while simple calculations and verbal counting are executed by 
verbal code. The first two codes are clearly notation dependent. The analogue 
magnitude code, used for comparing the size of numbers and number 
approximation, is considered to be notation independent. The triple-code model 
of neuropsychology associates activity in different parts of the brain with each 
node of the triple-code model.  

The depiction of the triple-code model (Fig. 3) is based on Cohen, Dehaene and 
Verstichel (1994). It shows a semantic pathway, activating the quantity 
associated with a numeral, as well as an asemantic Arabic to verbal translation 
route. 
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HOW DO CHINESE STUDENTS SOLVE ADDITION / SUBTRACTION 
PROBLEMS: A REVIEW OF COGNITIVE STRATEGY 

Shengqing He, Hangzhou Normal University, China 

Abstract 

Chinese learners’ excellent achievement in mathematics, especially in calculation, has 
caused a spread of curiosity from the international countries. Chinese learner’s 
characteristics in mathematics may have some enlightenment for the international 
mathematics education. This article reviews the researches which involve 2 basic 
problems (simple addition / subtraction and equivalence problems) and analysed 
Chinese children’s cognitive strategy in WNA. 

Key words: Chinese student, WNA, cognitive strategy 

Introduction 

In recent decades, Chinese students’ excellent performance in mathematics, 
especially in whole number calculation, has caused a spread of curiosity from 
the international countries, which drives the international scholars to study 
Chinese mathematical learner’s characteristics (e.g. Biggs and Watkins, 1996; 
Marton, Dall’Alba and Lai, 1993, etc.). A comparative study (Liu, Xu and 
Geary, 1993) indicated that the addition calculating scores of Chinese students is 
3 times as that of American ones. Specifically, Chinese students use more 
advanced strategies and faster retrieval speed (Tab. 1). 

Strategy 
% Reaction time(ms) 

Chinese American Chinese American 
counting fingers — 36 — 4,300 
verbal counting 4 28 2,300 3,900 

decomposition and combination 10 7 1,800 4,000 
retrieving 86 29 1,100 3,000 

Tab. 1: The strategies in addition tasks 

To make a close analysis of the table above, we may easily summarise that the 
usage and reaction time of retrieving1 of Chinese students are both 3 times short 
as that of American ones. American students use counting strategy (counting 
fingers or verbal counting) more frequently than Chinese counterparts. In other 
words, Chinese students are advanced than the American peers both in term of 
strategy and efficiency. Comparatively, the usage of retrieving for American 
children is just significantly increased after admission and become the dominant 

                                           

 

 
1 Retrieving refers to the strategy that student calculate by recall the facts in the long term 
memory. 
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strategy only at grade 3 (Wo, Li and Chen, 2002). Actually, even to a larger 
extent, Chinese youths’ performance in arithmetic tests is better than American 
counterparts in that they tend to use more cost-effective strategies (high 
accuracy and time-saving), according to some cross-cultural researches (e.g. Liu 
et al., 1996). To some extent, the frequent usage of retrieving may be closely 
related with Chinese curriculum philosophy which emphasises the “double-
base” 2  (Zhang, 2006), “practice makes perfect” (Li, 1996) and “ingenious 
practice” (Stevenson and Lee, 1990). In this paper, the author will review the 
typical studies conducted by the cognitive psychologists and mathematics 
education scholars in China and try to explore the basic features of the WNA 
strategy for Chinese students. 

Methods 

We chose some high-cited Chinese papers published within latest decades from 
CNKI to investigate the typical strategies of Chinese students from age 5-11. 
Research studies3 that appeared during the latest decades were included if they 
fell into the following criteria: 

Published studies that focus on Chinese children’s (or, students’) strategy (or, 
methods) solving the whole number addition and / or subtraction problems, in 
addition, these studies also analysed the strategy development features. For the 
above criteria, studies include quantitative, longitudinal research published in 
academic journals, in conference proceedings, in Doctor’s or Master’s 
dissertations and any other available resources in CNKI, no matter it is 
conducted by scholars of psychology or mathematics education. 

In this paper, the author would like to elaborate several typical research studies 
in order to underscore and highlight some particularly interesting, valuable or 
even little-known conclusions that are worth discussing. Other studies serve as 
support materials. 

Results 

Addition and subtraction strategy for students age 5-9 

Wo and his colleagues (2002) conducted an experiment of 72 5-7 year-old 
children on the strategy characteristics of addition problems with different 
difficulty (Tab. 2).  

 

                                           

 

 
2 Double-base refers to basic knowledge and basic skills in fundamental mathematics. 
3 We define research studies as those that featured original analysis of the authors’ or publicly 
available data. 
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Simple addition Medium difficulty High difficulty 

(01) 2+9 (11) 10+8 (15) 51+66 
(07) 9+2 (17) 8+10 (14) 246+7 
(02) 4+9 (12) 4+15 (20) 7+246 
(08) 9+4 (18) 15+4 (16) 231+16 
(03) 3+6 (13) 9+15  
(09) 6+3 (19) 15+9  
(04) 7+9 (06) 21+15  
(10) 9+7   
(05) 7+8   

Tab. 2: The addition tasks 

The study documented several strategies that Chinese students usually use: 
retrieving, counting from 1, counting from the smaller, counting from the bigger, 
make 10 and mental counting4. Mental counting is a particularly cost-effective 
strategy for Chinese children when compared with American counterparts (Wo, 
et al, 2002), because the Chinese pronunciation bytes of number are shorter than 
English ones, which can enlarge the digital memory span and facilitate the 
mental calculation procedure (Miller & Sigler, 1987; Sigler, Lee, & Stevenson, 
1986). In addition, this is highly associated with the word formation in different 
cultures: in Chinese spelling, numbers beyond 10 are spelled as “ten one” “ten 
two”, etc., which underscores the concept of decimal (wei zhi, in Chinese) and 
facilitates the mental counting (Geary, Thomas, Fan, et al, 1993; Gwary, 
Frensch, & Wiley, 1993). A striking contrast is that Chinese pupils can even 
calculate the basic addition / subtraction questions within 100 mentally at their 
preschool stage (Liu, et al, 1993) while only a half American college students 
(Liu, Chen, Geary, & Salthouse, 1996) can do this.  

The study also analyzed the developmental features of children aged 5-7 (Table 
3). The chi-square shows that the strategy usage is significantly different among 
the ages (χ2 (2, 422) = 30.905, p < 0.001). So, it can be easily concluded that 
with the age and experience accumulated, children tend to use the faster or more 
convenient strategies such as retrieving, make 10 and mental counting. 
Accordingly, the usage of counting (counting from 1, counting from the smaller 
and counting from the bigger) decreases. 

The data in Tab. 3 indicate indicate that retrieving becomes the dominant 
strategy even at the age of 5 (50.0%), which is earlier than American peers for 
about 2 years (Wo et al, 2002). We can also easily find an obvious optimization 
in “counting strategy”: the usage of counting from 1 decreased from 17.4% to 0% 

                                           

 

 
4 Basically, mental counting refers to an “inner strategy” that student get the answer by heart 
without using written calculation. 
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and counting from the smaller decreased from 9.9% to 0.5% and counting from 
the bigger decreased from 10.9% to 1.0% (and be replaced by retrieving at the 
age of 7). In addition, the usage of mental counting increased from 1.8% to 3.1%, 
through it was not frequently used. It is also worth noting that mental counting is 
different from retrieving, for the former is “calculating” while the latter is 
“mechanical”. More specifically, children may resort to retrieving to solve the 
questions like “9+8”, while they may fail to use it to solve the ones like “97+29” 
because they haven’t input the answer into long-term memory. So, faced with 
such sophisticated questions, mental counting may be a suitable strategy in the 
case that no draft is accessible. 

Strategy usage 5 year-old 6 year-old 7 year-old 

Retrieving 50.0 61.8 82.7 
Counting from 1 17.4 4.9 0.0 

Counting from the smaller 9.9 6.5 0.5 
Counting from the bigger 10.9 26.8 1.0 

Make 10 9.0 0.0 11.5 
Mental counting 1.8 0.0 3.1 
Decomposition 0.0 0.0 1.0 

Tab. 3: The strategies of children age 5-7 

In addition to strategies, the usage, correct rate and reaction time of the basic 
strategies in each age group is reported in the following (Table 4). It can be 
clearly found that the correct rate of 5 year-old children from the highest to the 
lowest are making 10, counting from the bigger, retrieving and counting from 1. 
Furthermore, the reaction time of each strategy is significantly different. The 
correct rate of 6 year-old children from the highest to the lowest are counting 
from the bigger, retrieving and counting from 1. Furthermore, the reaction times 
of retrieving between counting from 1 and counting from the bigger are 
significantly different (F (1, 63) = 37.018, p< 0.001; F (1, 83) = 24.225, p < 
0.001), while the reaction times of counting from 1 and counting from the bigger 
are not significantly different (F (1, 35) = 0.193, p > 0.05), which indicates that, 
for 6 year-old children, the reaction time of retrieving is obviously higher than 
for other strategies’, but the correct rate of counting is higher than that of 
retrieving. For 7 year-old children, the reaction time of retrieving and make 10 is 
not significantly different (F (1, 169) = 0.001, p> 0.05). 

Age Strategy Usage 
Correct 

rate 
Reaction 

time 
SD Frequency 

5 

Retrieving 51.3 54.2 12.60 13.04 32 

Counting from 1 18.3 42.9 26.86 12.86 9 

Counting from the bigger 19.2 72.7 15.93 9.52 16 

Make10 7.8 77.8 6.60 7.59 7 

6 Retrieving 61.3 73.7 6.27 4.84 56 
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there are 3 numbers added on the left and 2 added on the right and a “=” as the 
connection in the middle. Some scholars (e.g. Alibali, 1999; Perry, Church and 
Goldin-Meadow, 1988) pointed out that these mathematical tasks may be an 
ideal measuring tool for children’s WNA strategy, and Chinese scholars have 
conducted some experiments to explore children’s strategy characteristics based 
on this tool. 

Take Chen’s study (2005) as an example. Chen took 144 children aged 8-11 as 
participants and designed a group of questions which involve 12 addition 
equivalence problems. Specifically, these problems are organized in different 
types and difficulty according to the following dimensions: (1) The location of 
the blank. According to this dimension, the problems are differentiated into 2 
categories: blank after the “=” (e.g. 9 + 7 + 5 =   +9) and blank located in the 
final (e.g. 3 + 6 + 8 = 6 +   ). (2) The same number on both sides of the “=”. 
According to this dimension, the problems are divided into 2 categories: with / 
without the same number (e.g. 9 + 7 + 5 =   + 9, 7 + 5 + 8 =   + 4). (3) The digit 
of the addend. According to this dimension, the problems are divided into 3 
categories: all the addends are 1 digit, a two-digit addend in each side of the “=”, 
all the addends are two-digits. According to the above 3 dimensions, the 
questionnaire contains 12 addition equivalence problems (Tab. 5). 

NO. problem 
blank 

location 
the same 
addend ? 

the digit of the addend 

1 9+7+5=  +9 
after the “ 

= ” 
yes all are 1 digit 

2 7+5+8=  +4 
after the “ 

= ” 
no all are 1 digit 

3 3+6+8=6+   
in the 
final 

yes all are 1 digit 

4 4+7+8=5+   
in the 
final 

no all are 1 digit 

5 7+9+18=  +18 
after the “ 

= ” 
yes 

a two-digits in each side of the “ = 
” 

6 9+21+8=  +25 
after the “ 

= ” 
no 

a two-digits in each side of the “ = 
” 

7 7+16+6=9+16+   
in the 
final 

yes 
a two-digits in each side of the “ = 

” 

8 8+7+34=28+   
in the 
final 

no 
a two-digits in each side of the “ = 

” 

9 15+22+26=  +22 
after the “ 

= ” 
yes all are two-digits 

10 33+15+24=  +30 
after the “ 

= ” 
no all are two-digits 

11 28+23+18=28+   
in the 
final 

yes all are two-digits 

12 17+32+19=36+   
in the 
final 

no all are two-digits 

Tab. 5: The questionnaire structure and tasks 
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The study summarised some typical strategies that Chinese student use to deal 
with the addition equivalence problems (Tab. 6). 

Strategy categories Answer examples 

correct strategies  
combination “there is a ‘3’ in both side of the ‘=’, so just put 4 

plus 5 ” 
plus-minus 3+4=7,7=5=12,12-3=9 
make the equivalence 3+4+5=12，so the whole number of the right is 12 

… 
minus -plus e.g. 6+25+8=  +21. 25-21=4, so 6+8+4=18 
decomposition-
combination 

e.g. 3+6+8=4+  . borrow 1 from 6 to 3, then 
4+5+8=4+  . 

wrong strategies  
all the numbers added e.g. 3+6+8=4+  . plus 3, 6, 8 and 4, then the answer 

is 21 
add up to the “=” e.g. 3+6+8=4+  . plus 3, 6 and 8, then the answer is 

17 
add 2 numbers e.g. 3+6+8=4+  . plus 3 and 6, then the answer is 9 
guess judge by interests, hobbies, intuition, etc. 

Tab. 6: Typical strategies of equivalence problems 

The data above yielded a strategy library for the addition equivalence problems 
which involves the strategies like combination, plus-minus, make the 
equivalence, minus-plus, etc. In addition to minus-plus and decomposition-
combination (Chen et al., 2005), other strategies have been reported in the 
previous studies (e.g. Alibali & Goldin-Meadow, 1993; Perry et al, 1988; Rittle 
& Alibali, 1999). Take the question “8+7+34=28+  ” as an example for minus-
plus strategy, some children use the bigger number 34 on the left to minus 28 on 
the left which is close to 34 in number, and then get the answer 6 and plus it 
with the left 8 and 7. Take the question “4+7+8=5+  ” as an example for 
decomposition-combination strategy, some children decompose 8 into 3 and 5, 
and then plus 4, 7 and 3. Additionally, children can use more than two strategies 
to solve addition equivalence problems even at the age of 8, and the usage of 
right strategies (Table 6) is gradually increased with age, and within the right 
strategies, the usage of efficient strategies (e.g. combination, decomposition-
combination) are gradually increased while that of inefficient strategies are 
gradually reduced (e.g. plus-minus). Therefore, this study confirmed to Siegler’s 
(1999) Strategy Development Model, that is to say, children’s strategy on 
addition questions is time-adaptable, and due to the competition mechanism 
among the strategies, they resort to the high-automatic, accurate and “effortless” 
strategies. 

In addition, the above strategies can be classified into several levels in terms of 
their understanding of “=”. There are 2 basic meanings of “=” ---- one is 
operation (refers to operation process, “amount to”, “generate”, “get”) and the 
other is relationship (refers to “balance”, “equal to”). Students’ understanding of 
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the “=” directly affects their calculating strategy: if students can only understand 
that “ ‘=’ shows the operational orientation” – the ending of the operation – 
following with operation results, they can simply tend to use plus-minus strategy 
to solve the problem. If they can understand “ ‘=’ refers to balance”, they will 
probably resort to combination, minus-plus, decomposition-combination, etc. to 
solve the problem. Furthermore, decomposition-combination is a more advanced 
strategy than combination, for it involves not only the apparent equal numbers 
but also the underlying equivalence. 

Discussion 

Children’s cognitive strategy development is time-adaptable (Shrager, 1998; 
Siegler et al., 1999), and they tend to resort to the high-automatic, accurate and 
“effortless” strategies (e.g. retrieving) with the competition mechanism among 
the strategies. For Chinese children, retrieving is frequently used (around 50%) 
even at the age of 5, which is earlier than American peers for about 2 years (Wo 
et al., 2002). Additionally, mental counting is a particularly cost-effective 
strategy for Chinese children when solving these questions (Wo et al., 2002). 

The cognition of addition equivalence is closely related to the understanding of 
“=” (operation or relationship). For those who can only understand that “ ‘=’ is a 
sign of a computing ending, they can simply tend to use plus-minus strategy to 
solve the addition equivalence problems. For those who can understand “ ‘=’ 
refers to balance”, they would probably resort to combination, minus-plus, 
decomposition-combination etc. to solve the addition equivalence problems. 

From the perspective of development, for the simple addition or subtraction 
calculations, the strategy usage is significantly different among the ages, which 
indicates that the strategy tend to be mature and automatic with age. For the 
equivalence problems, children can use more than 2 strategies to solve them 
even at the age of 8, while children age 9-10 tend to use just 1 or 2 strategy, 
which shows that children begin to form and develop the more dominant 
strategy (Wang, 1996). In other words, age 8 may be the transition time of 
addition strategy. 
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ANALYSIS OF STUDENTS’ SYSTEMATIC ERRORS AND TEACHING 
STRATEGIES FOR 3-DIGIT MULTIPLICATION 

Yunpeng Ma, Shu Xie, Yanling Wang  
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Abstract 

With the advances made in curricula reform, knowledge of learners and learning plays 
a significant role in pedagogical research. Based on students’ error analysis, it could 
reflect teachers’ understanding and integrating knowledge of subject matter, students 
and instructional strategy. Through the analysis of students’ error patterns and 
teachers’ instructional strategies for systematic errors in 3-digit multiplication, the 
research has observed students making three typical errors. Though teachers have 
some estimation and awareness of student error patterns, further exploration and 
application of the rules are still needed. Teachers’ understanding of the nature of 
subject matter knowledge and students’ error affect their instructional implementation. 
In addition, textbooks greatly affect teaching and learning. This research suggests 
student errors could be the new perspective to explore pedagogical content knowledge 
and serve as curriculum resources for research and practice in teaching. Moreover, 
errors could also help students think and communicate mathematically. 

Key words: primary mathematics, pedagogical content knowledge, student errors 

Introduction  

Teaching and learning play a decisive role in curriculum reform. At the centre of 
pedagogy, learning is where curriculum reform should put greatest efforts. The 
current trend of international mathematical education reform puts emphasis on 
teaching for understanding (Hiebert and Carpenter, 1992). Understanding 
mathematics and instruction should centre on students’ understanding.  

Pedagogical Content Knowledge (PCK) affects teaching effectiveness. 
Researchers (e.g., Gess-newsome, 1999; Lederman and Latz, 1994; Li, 2006; 
Ma, et al., 2008; Veal and Kubasko, 2003) have shown that teaching 
performance and its effectiveness are related to PCK. PCK integrates teachers’ 
understanding of specific content with their knowledge of students’ 
misconceptions and errors as well as of relevant representation strategies for 
instruction.  

Student errors are vital instructional and learning resources. Many studies have 
shown error analysis is a vital professional competence, which plays a key role 
in successful instruction (Burton, 1978; Huang, Huo and Xu, 2014; Weinstein, 
Husman and Dierking, 2000; Zhen and Liang, 1998). 

Few researches on teachers’ PCK and teaching strategies in primary schools are 
based on students’ learning errors. Although some are built on specific content 
knowledge, they have not fully exposed the nature of content knowledge, 
resulting in general conclusions. As for student error research, pencil-paper tests 
help to gather large quantities of error types, but give limited insight into 
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students’ thinking process. When researching errors, we need not only know 
their patterns, but also explore why such patterns occur. So based on student 
errors, through qualitative research methods, we can, from the perspective of 
researchers, teachers and students, have deeper understanding of teachers’ PCK 
by analysing students’ erroneous thinking process and their causes as well as 
instructional understanding and representation on the teachers’ part. 

This research aims to answer the following questions: 

 What are students’ systematic error patterns in 3-digit multiplication, and 
their underlying reasons? 

 What are teachers’ knowledge recognition and analysis of students’ learning 
errors in 3-digit multiplication? 

 How is teachers’ instructional decision-making based on students’ learning 
errors in 3-digit multiplication? 

Research Methodology 

Theoretical framework 

Many scholars such as Shulman (1987), Grossman (1990), Magnusson (1994), 
Marks (1990), Park (2010), Tsamir (1988), and Ball (2008), have tried to define 
PCK without reaching a consensus. Being the result of multi-domain knowledge 
interaction, PCK has been universally considered as the integration of 
knowledge of students’ typical errors, teaching strategies and content knowledge 
in instructional practice. Knowledge of students is placed at the centre of PCK 
with knowledge of representation and content knowledge following. Therefore, 
the research of teachers’ PCK can be carried out in those three aspects, 
exploring its function in thinking and integrating the aforementioned knowledge 
elements during instructional decision-making.  

Among the diversified categories of student learning errors, systematic errors 
has been either widely cited or researched, through which the essence of 
mathematic learning, understanding and processing can be fully understood. 
This article departs from the error classification put up by Cox 
(1975),emphasising systematic error patterns and their causes. The repeated 
occurrences of systematic errors are a result of wrong algorithm or operation and 
are assumed to be caused by misconceptions or learning difficulties. The other 
type called random errors is mainly due to impatience, lack of thinking, 
obstructed memory retrieval, etc. (Errors that fall short of offering reasons or 
proofs are excluded from this research.)  

Research context and participants 

3-digit multiplication in primary mathematics was taken as a case context for 
analyse. Three teachers (T-g & T-s from Primary school F, City C and T-m from 
Primary school E, City A) are chosen from Grade 4, as well as all the students in 
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their classes. All of them got consent from school boards, principals, the 
teachers themselves and students’ parents. 

Methods of data collection 

Interview. Pre-and post-class interview of teachers were conducted to know 
teachers’ understanding of the content, as well as its important and difficult parts 
when teaching, knowledge of students’ learning, estimation of common errors, 
analysis of their causes, and error-related teaching strategies. Post-class 
interview aimed to realise the disparity between pre-consumption and real 
teaching, as well as shed light on questions raised during teaching. Student 
interviews took place during group activities and post-class. The interviewees 
were error-making students who were required to think aloud and describe their 
thinking process, displaying indirectly students’ thoughts, error representation 
and process. Interviews from the perspective of experts were intended to find 
out teaching standards and orientation under this context. In addition, comments 
and analysis on teachers’ knowledge status of the content, knowledge of 
students learning and appropriateness of teaching strategies when facing a 
certain situation were collected, as well as students’ errors. Furthermore, 
interviews were designed to reveal what knowledge a teacher should know in an 
ideal state. 

Observation. Classroom teaching was recorded during the whole process. 
Observation in class mainly focused on the teachers’ activities as they taught 
certain contents mentioned in pre-class interviews, especially, teachers’ 
awareness of student errors, attitudes, and teaching strategies. Samples of 
student errors were collected during the observation.  

Material collection. Homework, exercises and test papers were all collected. 
Errors were picked out for coding. 

Methods of data analysis  

In order to map student errors patterns, homework, exercises and test papers 
were analysed. Attribution analysis and categorisation were employed when 
coding. At the same time, the proportional distributions of students’ errors were 
counted. Two external evaluators (subject expert E-m, primary mathematics 
researcher E-w) were introduced to review teachers’ pre- and post-class 
interviews, as well as classroom teaching recording. They scored the teachers’ 
PCK according to the PCK rubric developed by Xie (2013, revised from Park 
and Oliver, 2008). Meanwhile they analysed and commented on the data. The 
evaluators’ scoring coefficients of the three teachers were rs=0.661，p<0.01；
rs=0.732 ， p<0.01 ； rs=1, which resulted in relatively high consistencies 
implying that the results are reliable.  

Results 
Students’ error types and analysis  

According to statistics of errors in students’ homework and exercises, 
a comprehensive  analysis  of  students’ computational  process and results were 
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assisted by teachers’ and experts’ interviews as well as students’ thinking aloud. 
The calculation of error frequency and proportion as well as the analysis of 
relevant causes among 1595 computation items of 3- and 2-digit multiplication 
show the following results: The total error frequency is 85, accounting for 
5.33% of the whole sample. Random error frequency is 5, including copying 
wrong topic and wrong numbers, accounting for 5.88% of all error types; the 
other errors belong to systematic errors. Since this research puts emphasis on the 
analysis of systematic errors related to mathematics itself, the aforementioned 
careless and random errors are excluded from further analysis. Three typical 
error types and their related subtypes and details are given in Tab. 1. 
According to statistics, error distribution is different in all classes. Procedural 
misconception and faulty decomposition are major mistakes made by students in 
T-g’s class. Mistakes during computational process can be found in T-s’ class. 
T-m’s class showed a considerably higher proportion of procedural 
misconceptions and calculating mistakes. Based on observations conducted 
during classes and interviews, teacher T-g did not offer good scaffolding 
experiences during procedural instruction, to help bridge decomposition and 
vertical multiplication. Teacher T-s put more emphasis on conceptual than on 
procedural knowledge, while teacher T-m focused more on difficult and 
challenging exercises without students’ thorough understanding of and 
familiarisation with the procedure, leading to a higher error proportion. 
Teachers’ understanding of students’ errors and awareness activities  
Teachers predicted and understood most of students’ errors. The previous 
observations have indicated that the three teachers have a certain knowledge 
base in terms of students’ understanding. Based on interviews, it can be 
indicated that the teachers can evaluate the learning situation accurately. They 
are on “proficient” level in understanding students’ prior knowledge (such as the 
multiplication table, multiplication of two-digit with two-digit, multiplication of 
three-digit with one-digit numbers), and basic mathematic competence (various 
computational methods such as vertical algorithm and factor split, etc.). Based 
on experience from years of teaching, the teachers had views and 
presuppositions as to the cause of students’ errors in this learning content. T-m 
realised that many of the students’ errors were due to erroneous procedures, 
especially during the error-prone process in columns alignment. In an interview, 
T-m could not offer enough examples for students’ recurring errors, and he 
incorrectly attributed most of the errors to failure in grasping the right 
procedure. In contrast, T-g and T-s can give more comprehensive examples and 
analysed the mistakes specifically. T-s could give a more coherent, 
comprehensive classification and attribution analysis (E-m, E-w). It was also 
observed that all teachers could not predict some of the students’ errors, but 
during the interviews they able to reflect and analyse. 
Teachers were not aware of students’ errors patterns and misjudged some 
occasionally. In the study, it was observed that teachers could pre-set and 
realized most errors made by students, and, in turn, they could be more aware 
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during the teaching process. But they cannot take care of all of students’ errors 
due to time constraints. So teachers would simply attribute the errors to sloppy 
calculating without providing detailed strategies which can help students to 
analyse which part led to their calculation errors; rather, they would give 
students simple suggestions as “wrong, try again” or “be more careful”. In the 
statistical analysis of students’ errors, the continuous characteristics of errors are 
found in T-m’s Class. The same types of errors made by the same students in the 
first class also appear in the second class, which shows the teacher’s 
unawareness of the continuous characteristics of students’ errors. In the 
instructional strategies based on a specific issue, it was observed T-s either puts 
too much emphasis on the unity and clarity of computation or demonstrates 
inaccurate professional judgment. 
Teachers’ instructional strategies related to students’ errors 
In instructional design, based on the presupposition of students’ errors, teachers 
were able to relate their teaching plan with its implementation. Teachers 
employed appropriate instructional strategies based on analysis of students’ 
errors. In the classroom, teachers were able to carry out teaching activities based 
on the knowledge of students’ understanding. The main teaching procedure was 
to lead in through cases on textbook, use a variety of methods to calculate the 
“114 × 21”, and then share their methods within groups and report one of their 
methods. During the process of independent calculating and group discussions, 
the teacher observed the students’ calculations and helped them to correct errors 
by posing questions. As for some common and typical algorithms (including 
erroneous algorithm), teachers displayed them in the class and let the students 
verbalise the process of calculating and explain their reasons. Especially for 
those typical errors, the teacher asked the students to challenge each other by 
asking questions until the misconception was clarified.  
Based on the evaluation of experts, as for their proficiency in teaching strategies, 
T-s, T-m, T-g were ranked “Excellent”, “Good” and “Pass” respectively. T-s 
and T-m made proficient performance in teaching content, using strategies for 
instructional key points which challenged students’ misconceptions, learning 
mistakes and learning difficulties. Based on students’ feedback, teaching 
strategies and their adaption made by T-m were on the “Pass” level; T-g’s 
teaching proficiency in the above-mentioned three aspects fell somewhere 
between “Good” and “Pass”. 
It was noted however that teachers should strive to improve their reflections. For 
instance, T-g was not specific enough in the analysis of students and teaching 
strategies for improvement. Instead, he thought that many students would be 
able to improve solely by practising more. 

Conclusion and Implications 

Conclusion 

Three types of systematic errors displayed by students in multiplication of         
3-digit with 2-digit numbers. Based on the problem solving process and errors 
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analyses, students displayed three typical types of systematic errors: 
computational error, misconception of multiplication, and erroneous procedure, 
respectively accounting for 72.94%, 15.29% and 5.88%. Computational errors 
accounted for a large proportion of errors. Thus, teachers need to pay close 
attention to this kind of error while teaching through practicing well the 
multiplication tables and carrying with standard mark, to reduce or avoid the 
occurrence of errors. Besides, teachers should focus on helping students in 
learning the multiplication procedure, so that students can truly understand how 
to cross-multiply the ones and tens columns and add partial products together, 
especially the meaning of tens column multiplication and columns alignment.  

Teachers ability to predict students’ errors, rules exploration and application 
should be further improved. The research shows that teachers had some 
knowledge on students’ errors types and could analyse the causes of errors, and 
presuppose teaching strategies. Teachers need to consciously discover and 
identify students’ errors in teaching and should be able to further analyse their 
reasons. However, when facing students’ errors, teachers neither were able to 
realise the instructional value of errors nor were they able to analyse the types of 
errors, their proportion, and related instructional adjustments consciously.  

Teachers’ understanding of the nature of subject matter knowledge and students’ 
errors has impact on their instructional implementation. According to results 
from the experts’ evaluation, the three teachers’ subject knowledge was all at a 
skilled level. But during classroom teaching, the teachers’ specific teaching 
strategies varied. The results of the experts’ evaluation further showed that T-s’s 
proficiency in grasping instructional difficult and key points was on the 
“Excellent” level, and T-g on “Good” level, and T-m upon “Pass” level. It was 
also observed that teachers tended to design and implement teaching plans based 
on personal understanding, ignoring previous strictly-followed instructional 
goals. Therefore, teachers with higher abilities can find core content in lesson 
quickly but teachers’ behaviour could make students not pay more attention to 
important learning contents. 

Textbook arrangement has great impact on teaching and learning. Teaching 
material is the medium between teaching and studying, which plays a very 
important guiding function, however, it is not hard to find cases where the 
specific design or content could mislead teachers and students. For example, the 
design of estimation impacts teachers’ understanding of instruction and 
allocation of teaching time. Using graph paper affects students’ understanding of 
place value, which leads to students’ rigid application of graphing method and 
misconceptions of place value, resulting in erroneous products. 

Implications 

At present, most international researches focus on the current situation and the 
characteristics of PCK (Lederman and Latz,1994; Hill, Ball and Schilling, 2004, 
2008; Li, 2006; Lee, 2007; Ma,2010; Park,2011). However, there are few 
studies that explore teachers’ PCK from students’ errors perspective. Knowledge 
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of students is at the core of PCK-integrated knowledge, which affects teaching 
strategies. Students’ errors are relatively important in the knowledge of students, 
which can be affected by prior knowledge, misconceptions, learning difficulties, 
etc. Teachers’ understanding of students’ errors can reflect their understanding 
of subject matter knowledge and knowledge of students, as well as 
appropriateness of instructional strategies. 

Students’ errors could be resources to promote teaching research and practice. 
Some errors are recurring, regular, with certain continuity (unless teachers offer 
proper guide), with certain technical requirement, which can be attributed to 
specific difficult experiences in learning or some external interference (Radatz, 
1980). Therefore, analysing and accumulating the types of errors and reasons 
could help evidence-based teaching plan and differentiated teaching. 

Using error samples is a way to help students’ mathematical communication and 
thinking. As a process of educational reform, requirements for students shift 
from mastery of knowledge and skills to students’ learning itself and cultivation 
of thinking ability (as mentioned in US NCTM, the British curriculum standards,  
etc.). Mathematical communication among teachers and students by using errors 
is encouraged, which could enhance students’ abilities to express their thinking 
in mathematics. Based on in-depth analysis of students’ errors, teachers could 
help them form a stable and sound knowledge system by correcting students’ 
understanding in an appropriate way. 
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COUNTING STRATEGIES AND SYSTEM OF NATURAL NUMBER 
REPRESENTATIONS IN YOUNG CHILDREN 

Jasmina Milinković, University of Belgrade, Serbia 

Abstract 

This study examines development of young children‘s initial understanding of 
representations of whole numbers and counting strategies. It was conducted with 661 
children aged 3 to 7 years. The children were individually interviewed on various tasks 
involving different representations of numbers 1 to 10.  The study provides evidence 
of the pathway to development in counting from pointing fingers to silent immediate 
recognition of numerical quantities. Key developments in understanding numbers at 
ages 3 to 7 appear to be (1) counting up, (2) constructing one-to-one correspondence, 
and (3) drawing a specified number of objects. The results indicate gradual acquisition 
of the system of natural number representations. 

Key words: constructing knowledge, counting, natural numbers, system of 
representations 

Introduction  

How do children come to understand numbers? “How humans come to learn 
about the counting system of their culture is closely related to the nature of our 
initial representation of number, because in order to understand counting we 
must somehow relate it to our prior number concepts” (Wynn, 1992, p. 220). It 
seems that the study of children’s initial learning about natural numbers has 
already provided a coherent body of research. Piaget’s theory of cognitive 
development included explanation of children’s development of understanding 
of numbers with a focus on conservation and one-to-one correspondence 
(reversibility). Later, researchers did not oppose Piaget’s major findings about 
acquisition and utilization of conservation of concept of numbers (Sigel and 
Hooper, 1968) but did take a different stand on the issue. His point that 
children’s understanding of numbers depends on their cognitive level was 
challenged by others (Bruner, 1966; Gelman and Gallistel, 1978; Le Corre and 
Carey, 2008). Bruner, Le Correy and Carey argued that knowledge of the 
counting principles is not innate but constructed out of representations. 

Goldin and Shteingold assert that successful mathematical thinking involves 
understanding of different representations of the same concept and ability to 
rationalize similarities and differences among representations (Goldin and 
Shgteingold, 2001, p. 9). Kamii et al. (2001) reflected on Piaget’s theory while 
discussing representations and abstraction in children’s numerical reasoning. 
They assert that there are three kinds of knowledge (physical, social (knowledge 
of conventions) and logico-mathematical (mental relationships between 
concepts) and two kinds of abstractions, empirical and constructive. 

Today, researchers are primarily focused on intervention studies in the primary 
grades (White, 2010). Earlier, it was also recognised that base-ten number 
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concepts provide the basis of invented strategies of arithmetic operations 
(Carpenter et al., 1998).  We believe that it is worth trying to bring new 
interpretation of the pathway to development of initial understanding of whole 
numbers. Our work is grounded in Bruner’s theory of three modes of 
representations (Bruner, 1966). At age 3 to 7 years children are expected to rely 
on iconic representations. At age 7, they are expected to be in symbolic stage, 
thus they should develop correspondence between signs (symbols of numbers) 
and what they represent. (Note that the proposed stages of development do not 
imply different modes of thought as Piaget believed).  

First, we attended to counting strategies. Verbal numeral sequences are 
considered to be the first explicit representation of natural numbers.  Counting is 
a method to label quantities.  Le Corre and Carey note that it is true that  “the 
verbal numeral list deployed in a count routine is the first explicit representation 
of the natural numbers mastered by children growing up in numerate societies” 
(Le Corre and Carey, 2008, p. 651). Fuson (1992) remarks that counting is 
culturally determined. She explains that in developing counting strategies 
children need to learn a) the number sequence (language), b) the physical way of 
pointing, c) making correspondence between entities and numbers, d) methods 
to remember, and  e) cardinal significance of counting (Fuson, 1992, p. 248). 
She reported that substantial competence of American preschool children in 
counting (Fuson, 1988). Fuson provided comprehensive analysis of counting 
strategies based on increasing integration of sequencing, counting and 
cardinality. Here, we make simple distinction between counting strategies based 
on three features: use of physical activities, loud or voiceless counting and speed 
of counting. We also examine when young children develop correspondence 
between certain representations and numerosity.   

Our aim is to increase our understanding of the development of representations 
of numbers in young children. Through structured interviews we aim to gain 
further insight into children’s understanding of numbers.   

Materials and Methods 

A sample of 661 children aged 3 to 7 years was individually interviewed.  The 
interviewer read the questions from the protocol and recorded the answers in 
writing immediately.  The obtained data was entered into a spreadsheet and 
these data was grouped.  Bar graphs and tables were used to make clear findings.  
We also used χ2 test to test independence of variables. (We calculated 
contingences tables using statistical program at  
http://www.physics.csbsju.edu/cgi-bin/stats/contingency.) 

Sample  

The sample was drawn from preschools in a large city of Serbia.  There were 68 
children aged 3 to 4 years, 157 children aged 4 to 5 years, 200 children aged 5 to 
6 years, and 236 children 6 to 7 years old. Children were randomly drawn from 
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the population of children in preschools in the city. Note that the attendance of 
preschools is obligatory in Serbia at age 6 to 7. 

Interview items 

Children were successively given ten tasks (Q1 to Q10) involving: a) counting 
objects, b) drawing certain number of objects and sets with certain number of 
elements, c) determining one-to-one correspondence between elements in a set 
and in string of circles, d) finishing up drawings of box diagram and of number 
line, and e) writing numbers.  Since some tasks had two or three parts, children 
actually responded on 24 items. In this paper we will focus attention on a limited 
number of questions. 

There were three counting tasks.  In the first of those questions, Q1, a child was 
asked to count an array of stars.  The interviewer recorded which one of the 
strategies the child used: (A) pointing by finger, (B) counting aloud, 
(V) counting voicelessly, (G) immediately responding, or (X) no answer. There 
were drawings of one, three and six stars in a row.  In question Q3, children 
were asked to draw a set with appropriate number of elements (A) three 
elements, (B) five elements, and (V) nine elements. In question Q6 the 
interviewer asked a child to loudly count ten pencils. They simply recorded 
whether the child successfully counted pencils. 

Then, there were tasks examining one-to-one correspondence with set 
representation.  Children were asked to colour as many circles as there were cats 
in a set.  There were two cases: (A) cats were drawn in a row in a rectangle field 
and (B) cats were spread unevenly within an ellipse. 

Next, there were two tasks to “finish drawing“.  In Q7, there was a drawing of 
box diagram with two equal boxes. Children were asked to finish the drawing 
“to have four“.  Second, in Q8, they were asked to finish drawing on a number 
line “up to number five“. 

Children were also questioned on their ability to write number symbols in Q9 
and Q10(V). They had to write numbers given in words. Later, they were asked 
to write the biggest number they knew. In the last question, Q10 they were asked 
what is the smallest and the biggest number they knew. 

Results  

First we will discuss results related to counting strategies, than we will turn 
attention to representations. 

Types of counting strategies used in Q2 may be seen in the Fig 1. Note that, 
from the youngest to the oldest, children by large did not make mistakes in 
counting one, three and six stars in a row which is in accordance with Fuson’s  
findings (Fuson, 1988).  
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Fig. 1: Counting strategies, (A) finger pointing, (B) count aloud, (V) count voicelessly, 

(G) immediate response, (X) no response     

While the youngest rely on fingers pointing strategy and count aloud strategy, 
older children tended to count voicelessly or to give immediate response.  The 
difference in counting skill appeared to be significantly bigger when they were 
asked to count ten pencils. Only 26 percent of children aged 3 to 4 years 
successfully counted up to 10. The percentage of correct answers doubled within 
next year generation. Forty-six percent of 4 to 5 year old children counted up to 
10. Almost all children aged 5 and older counted up to 10 without skipping any 
number. Precisely, success was 96 percent of children aged 5 to 6 and 97 percent 
of children aged 6 to 7 years. 

In the following item, Q3 (A to V) children draw sets with three, five and nine 
elements. Tab. 1 displays percent of correct answers on each item, at different 
age level. 

Item Age 
3 to 4 

Age 
 4 to 5 

Age 
5 to 6 

Age 
6 to 7 

Q3 (A) 16% 43% 65% 82% 
Q3 (B) 7% 39% 60% 81% 
Q3 (V) 6% 24% 54% 73% 

Tab. 1: Set representation   

The percentage of correct answers in Tab. 1 shows how successful children were 
in counting stars (Q1). Although all three items had basically the same request, 
it is evident that it was more difficult to count up to 9 than up to 3 when drawing 
objects. (We should mention that we judged answer incorrect when there was no 
line drawn to represent set.) 

Next, we discuss Q4. This question we consider as a variant of conservation task 
whereas counting cats and then counting and colouring circles in a string shows 
understanding of one-to-one correspondence. Thus, mental activity of counting 
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The easiest task in our interview was to draw as many candles as they have 
years on a cake.  Except for the youngest children where 46 (68%) draw the 
right number of candles, all other groups of children were more than 90% 
successful. 

Discussion and conclusion 

In the reported study we were particularly concerned with the counting 
strategies. The analysis of the interviews with children unveiled a course of 
growth in initial understanding numbers.  

Also, our findings show that as they grow older, children steadily exhibit 
development in the ability to use different types of representations. Certain 
culturally invented (formal) representations such as set representation and 
number line are limited in younger children which may explain children’s 
relative failure in their use.  It supports Kamii’s (2001) findings about a close 
relationship between graphic representations and level of abstraction of number 
concepts as asserted by Piaget.      

The findings indicate continuous development of whole number representations 
in children. Counting up, constructing one-to-one correspondence and drawing 
specified number of objects emerge to be key developments at age 3 to 7. Later 
comes understanding of set representation and lastly, number line 
representation.   

Our study does not say anything about how children learned counting or about 
representations of numbers.  However, we are not proposing that children 
individually came to understanding different number representations.  We 
suggest that if we are going to make planned effort to introduce them, we should 
follow the route illuminated to some extent in this study.   

Our aim was to contribute to better understanding of the beginning trajectory of 
learning about numbers. Here, we acknowledge the need for further study of 
initial development of children’s understanding of the set of natural numbers. 
Understanding the concept of number is fundamental for learning mathematics. 
It is achieved to a certain level during early years. We should not underestimate 
this but also, we should not overestimate it. 
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WHAT LIES BENEATH? CONCEPTUAL CONNECTIVITY 
UNDERLYING WHOLE NUMBER ARITHMETIC 

  Joanne Mulligan(1), Geoff Woolcott(2)  
(1) Macquarie University, (2) Southern Cross University, Australia 

Abstract 

Whole number arithmetic (WNA) is considered central to mathematics in the modern 
industrialised world. New developments in the cognitive and neurocognitive sciences, 
however, propose that WNA should be viewed in relation to the domain of 
mathematics more broadly and the real world interactions from which mathematics 
have developed. This may require mathematics to be conceptualised as a coherent 
domain that develops from human interaction, and that is reliant on spatial negotiation 
of one’s environment. A lens on conceptual connectivity integral to an awareness of 
spatial pattern and structure, therefore, may offer a more complete picture of the 
connectivity that underlies WNA. A stronger focus on ‘non-numerosity’ attributes of 
mathematics learning and how they underpin WNA and mathematics more generally is 
proposed.  

Key words: number, spatial reasoning, structural grouping, whole number arithmetic 

Introduction 

Whole number arithmetic (WNA) is integral to the modern mathematics 
curriculum, due in large part to requirements for a numerate workforce in 
modern industry. As a result, the teaching and learning of WNA within the 
subject of mathematics comprises an important component of curricula across 
industrialised societies (OECD, 2003). In these curricula, WNA is considered 
generally as a component of Number, one of several strands that have developed 
as the subject of mathematics (e.g., Kline, 1996). Mathematics in this context is 
assumed to be coherent subject whose teaching and learning is facilitated 
through use of such curricula. There has been traditionally an emphasis, 
however, on WNA and the strand of Number rather than on other strands, 
arguably through a focus on issues associated with numeracy and technology 
(e.g., OECD, 2003). Indeed, problems with learning of WNA, such as in 
dyscalculia, have been shown to have economic significance for GDP, due 
partly to effects on financial and statistical literacy (e.g., OECD, 2010). 

The emphasis on teaching of WNA, however, has been subject to debate in 
recent curricula review, shifting direction to other strands such as algebra and 
statistics. There is increasing evidence of broad variability in the learning of 
WNA across industrialised societies as well as in the learning of mathematics 
concepts connected to WNA (e.g., Atweh et al., 2012). While there may be 
multiple reasons for this, the issue may centre on conceptual connectivity within 
mathematics (Woolcott, 2013), lack of coherency about mathematics as a 
complex whole (Mowat and Davis, 2010), and lack of a complete view of the 
relationship of mathematics to other domains (Lakoff and Núñez, 2000). 
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Modern cognitive and neurocognitive perspectives 

Recent developments in the cognitive and neurocognitive7 sciences indicate that 
such issues may be examined using a broad perspective that considers human 
interaction with the world as the primary basis for teaching and learning 
(Woolcott, 2011). Mathematics learning may be seen from this perspective as 
determined by a wide range of human interactions, sometimes seen in terms of 
socio-cultural and physical factors as an interaction of genetics and environment 
(e.g., Kovas and Plomin, 2007). These factors may be connected in a complex 
way, however, that may allow approaches based in systems views (e.g., Davis 
and Renert, 2014; Woolcott, 2011). Within these contexts, the human activities 
that underpin the learning of mathematics, or learning in general, are yet to be 
fully described (e.g., Lakoff and Núñez, 2000).  

Is it just about whole number arithmetic (WNA)? 

This discussion paper proposes that an emphasis on the teaching and learning of 
WNA in mathematics may be misdirected in that it is not focused on underlying 
common features and relationships. The need for mathematics expertise may be 
better served through a new approach to viewing how the strands in mathematics 
are connected as a coherent whole and how these develop from interaction with 
the three-dimensional world. An important consideration within this approach is 
how the ability to generalise from environmental interaction, inextricably linked 
with spatial ability8 and spatial reasoning, may function in the development of 
mathematics generally (e.g., Devlin, 2012).  

Any such approach requires an understanding of the particular features of 
accumulated culture that underlie mathematics, particularly in terms of 
mathematics considered as a social construct (Dehaene, 2009). Consideration, 
therefore, must be given to the body of knowledge, skills and experiences 
(culture9 in the sense of Tomasello, 1999) that comprises mathematics in a given 
individual and consideration of how the culture that constitutes school 
mathematics accumulates across a given society (Woolcott, 2013). Emergence 
through spatial interactions is an important feature of such accumulation (e.g., 
see Davis and Renert, 2014). 

 
                                           

 

 
7  The term ‘cognitive’ is used for studies generally found in cognitive or educational 
psychology and ‘neurocognitive’ for studies specifically derived from biology or, in 
particular, neuroscience  
8  Spatial ability is used here as an umbrella term and includes spatial sense or spatial 
differentiation. 
9 Not to be confused with the more diffuse concept of culture used in terms such as socio-
cultural. 
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Conceptual connectivity and exceptionality 

Conceptual connectivity can be seen as a lens for focusing, in both cognitive and 
neurocognitive studies, on the environmental interactions that underpin 
mathematics. The notion of connectivity has been examined in studies of 
exceptional students with both high and low performance in mathematics, 
including cases where learning of WNA is influenced by pathology, as well as in 
cases of ‘twice exceptional’ students, who have high ability in mathematics but 
low ability in other subject domains (Woolcott, 2013). This lens has been used 
also in examination of developmental dyscalculia in cases where there are 
difficulties in mathematics learning, including WNA and spatial reasoning, due 
to individual differences in processing of environmental information (e.g., 
Butterworth, Varma and Laurillard, 2011). Mulligan and colleagues (e.g., 
Mulligan et al., 2013) have applied a connectivity lens in studies of 
mathematical pattern and structure with young gifted children, indicating that 
WNA may also be enhanced through awareness of structural relationships.  

Arithmetical or mathematical? 

Mathematics education research, and studies in cognitive neuroscience, have 
indicated that the development of abstract arithmetical notions and procedures in 
school mathematics may depend on such attributes as number sense, subitizing 
(the rapid and accurate perception of small numerosities), comparison of 
numerical magnitudes, location on a number line, axis differentiation and 
symmetry (e.g., Dehaene, 2009; Mulligan et al., 2013). This view of 
development has support from neurocognitive studies of students (and non-
school age adults) who were exceptional in that they did not have, or could not 
use, all of these attributes (e.g., Butterworth et al., 2011; Dehane, 2009). Modern 
teaching and learning of WNA has incorporated some of these features into 
interventions for low ability students and students who are performing below 
specified benchmarks in mathematics, but with a focus on numerosity rather 
than other mathematical attributes (e.g., Wright, Martland and Stafford, 2006). 

Non-numerosity – links to spatial reasoning 

Some studies have argued that there may be benefit in a stronger focus on ‘non-
numerosity’ attributes of mathematics learning and that these may actually 
underpin WNA and mathematics more generally. In studies based in cognitive 
psychology, for example, Mulligan and colleagues (e.g., Mulligan et al., 2013) 
have shown that WNA, and mathematics in general, can be improved through a 
pedagogical approach that targets the development of abstract generalisations 
rather than focusing on WNA. Such studies, which examine the development of 
spatial aspects of patterns and spatial structures across mathematics concepts, 
indicate that such features as differentiation of foreground/background, 
alignment (collinear or axis), unitizing and equal grouping, transformation, 
recognition of shape and equal areas, are critical to mathematical development. 
These features can be improved through intervention (Mulligan et al., 2013). 
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In related classroom studies, this approach has been shown to improve the 
overall mathematics performance of students of low ability, including their 
performance in WNA (Mulligan et al., 2013). The features include elements of 
spatial differentiation as well as the categorisation and analysis of patterns that 
are critical to spatial reasoning. This implies that such features, including ability 
to develop co-linearity, spatial organisation and spatial memory, may underpin 
development in WNA as well as other mathematical concepts. 

The Awareness of Mathematical Pattern and Structure (AMPS) construct 

The ability to generalise spatial structures, based on similarities and differences 
observed by an individual, has not traditionally been considered relevant to the 
domain of Number learning, including WNA. An example would be the spatial 
structure of a 10x10 grid for representing 100. Mulligan and colleagues 
(Mulligan et al., 2013) have described and measured a general underlying 
construct, AMPS, that lies beneath and connects mathematical concepts and 
relationships. The AMPS construct involves, for example, the following 
structural groupings. 

Sequences: recognising a (linear) series of objects or symbols arranged in a 
definite order or using repetitions, i.e., repeating and growing patterns and 
number sequences.  

Structured Counting: counting in groups, such as counting by 2s or 5s or on a 
numeral track with the equal grouping structure recognised as multiplicative.  

Shape and Alignment: recognising structural features of two- and three-
dimensional (2D & 3D) shapes and graphical representations, constructing units 
of measure, such as co-linearity (horizontal and vertical coordination), similarity 
and congruence, and such properties as equal sides, opposite and adjacent sides, 
right angles, horizontal and vertical, parallel and perpendicular lines. 

Equal Spacing: partitioning of lengths, other 2D or 3D spaces and objects into 
equal parts, such as constructing units of measure. It is fundamental to 
representing fractions, scales and intervals.  

Partitioning: division of lengths, other 2D or 3D spaces, objects and quantities, 
into unequal or equal parts, including fractions and units of measure. 

Mulligan and colleagues (e.g., see Mulligan, Mitchelmore and Stephanou, 2015) 
have applied the analysis of AMPS to the assessment of early mathematics 
based on pattern and structural relationships. The development of the AMPS 
construct is based on the complex connectivity between these structural 
groupings where some features are salient across structural groupings and some 
are more integral to a particular structural grouping (e.g., Woolcott, 
Chamberlain and Mulligan, 2015—under review). For example, Sequences and 
Structured Counting both involve the idea of equal groups or units represented 
in a linear way. These may be linked to Shape and Alignment where students 
may count using a 2D grid. Equal Spacing and Partitioning both involve division 



ICMI Study 23                                              Theme 2, Mulligan & Woolcott, Conceptual Connectivity 

224 
 

into equal parts. A student’s AMPS level reflects how these interrelationships 
may occur for that individual.  

If we take AMPS as a general indicator, then we cannot assume in teaching 
WNA that a child may already know, perhaps intrinsically, how spatial 
information can be represented as Number. Number may be an artificial 
classification or representation of information that the child has interpreted 
spatially. Consider, for example, that subitizing may require knowledge that 
spatially differentiated circles (let’s call them ‘dots’) in a field can be classified 
by a child as number or, in a similar way, that a shape (square) or a pictorial 
graphic can also be classified in terms of number, but that this classification 
must, in fact, be learned or imposed rather than intrinsic to the learner. A spatial 
pattern (of dots, say) can also be classified in a number of different ways, for 
example, in terms of the spatial arrangement, such as an array, or in terms of 
partitions according to colour. 

The current focus in early mathematics on spatial differentiation, primarily in 
relation to number, may limit opportunities for development of alternative 
spatial differentiations, even though such alternatives may have a positive effect 
on the learning of WNA. In a similar way, teaching multiplication only as 
repeated addition, for example, does not consider those students who use spatial 
structure to develop multiplicative thinking; they can generalise that repeating 
equal groups is different from repeating unequal groups. Students who use 
multiplicative thinking may be able to see a pattern in multiplication facts, such 
as the 3 x pattern, by visualising groupings based on spatial structuring. Such 
students may be able to subdivide a larger group using equal-grouping structure, 
rather than by adding and unitary counting. 

Non-numerosity – examples based in neurocognitive studies 

The view that WNA relies partly on the development of non-numerosity, such as 
in strands other than Number, is supported also from modern neurocognitive 
studies. Dehaene and others (e.g., Dehaene, 2009) for example, have shown that 
mathematics development in a school context depends, not just on such specific 
WNA attributes as number sense, but also on such cognitive features, arguably 
inbuilt, as axis differentiation and symmetry. Some neurocognitive studies, in 
fact, have argued further that the learning and remembering of mathematics 
depends on features that enable categorisation, abstractions or generalisations 
from learned information (e.g., Edelman, 2007). Based in studies of exceptional 
students, for example, Geake and colleagues (e.g., Geake, 2009) have defined 
gifted students as those who most effectively employ abstractions, as fluid 
analogies, for explanation and clarification. Analogising can be conceptualised 
as a process underpinning creative aspects of intelligence. 

Mathematics as patterns and rules 

It can be argued from Geake’s (2009) studies and those of Mulligan and 
colleagues (e.g., Mulligan et al., 2013), that analogising and generalising may be 
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what underpins knowledge connectivity within mathematics and between 
mathematics and other subjects. In line with such views, the prominent 
mathematician and somewhat controversial mathematics education 
spokesperson, Keith Devlin, has suggested that mathematics is ‘more than 
arithmetic’ and that generalisation of rules from identification and analysis of 
patterns is, in fact, the key to mathematical thinking (Devlin, 2012, p. 1). 
Although Devlin argues the separation of mathematics from other subject 
domains on the basis of the development of laws and axioms from such 
generalisations, these may be a feature of cognition in a general sense. What 
Devlin sees as important, in relation to WNA, is that the generalisations and 
abstractions required for mathematics do not necessarily involve patterns that 
are exclusively the domain of number, but rather these patterns may include 
patterns of shape, motion and behaviour as well as other patterns both real and 
imagined. This parallels the views of Mulligan and colleagues about AMPS. 

Temple Grandin, a truly exceptional savant with autism, has argued further that 
extreme differences in ability to abstract or generalise are a feature of people on 
the autism spectrum (e.g., Grandin, 2009). She has argued that this ability may 
be sub-categorised for some high functioning individuals with autism as either 
thinking in pictures, thinking in patterns, or thinking based on verbal logic. This 
appears to imply that those who are gifted in mathematics require ability to 
generalise from numerical patterns, rather than from pictures (spatial 
representations). However, in line with Devlin’s view, Grandin (2009) has 
suggested that this may be because modern mathematics does not consider 
adequately the spatial sense required for people who predominantly ‘think in 
pictures’. These thinkers may benefit from mathematics teaching approaches 
that are not based solely on analysis of and generalisation from number patterns. 

Mathematics and interaction with the world 

A broad perspective that can be drawn from such studies is that all students 
categorise information from spatial interactions with their 3D world and the 
generalisations and abstractions from these categorisations are what constitutes 
their conceptual connectivity. What is generally described as a concept is 
arguably a description of the complex network of connections that make up such 
categorisations, abstractions and generalisations. Only some of these may 
pertain to the artificial construct of mathematics, a subject based generally in 
societal expectations (e.g., Dehaene, 2009). Mathematics may be underpinned, 
therefore, on conceptual connectivity based in spatial negotiation (e.g., Woolcott 
et al., 2014).  

Such complex connectivity, however, relies on an already operational system 
that did not evolve with institutional education in mind (Sylwester, 1995), even 
if some of the operational features of this system are considered as related to 
mathematics. Lakoff and colleagues (e.g., Lakoff and Núñez, 2000) have 
argued, based on the environmental interactions of such an operational system, 
that mathematical coherence can be argued from the point of view of 
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mathematics being developed as a connected set of embodied metaphors and 
related abstractions and inferences (although see Edelman, 2007 for an 
alternative argument). Mowat and Davis (2010) have shown how such 
mathematical coherence may be examined through use of complex networks 
based in the view of Lakoff and Núñez (2000) and this idea is being examined 
using empirical data (e.g., Woolcott et al., 2015; Woolcott et al., 2014). 

Implications for further research 

It may well be, based on viewing WNA and mathematics through the lens of 
connectivity, that the place of WNA may need to be reconsidered in relation to 
underlying patterns and structures inextricably linked to spatial ability and 
spatial reasoning. Spatial negotiation may arguably be the basis of the 
categorisations, generalisations and abstractions that form the basis of the 
growth of individual and human culture and cultural accumulation (in the sense 
of Tomasello, 1999). This is in concord with the view that spatial ability is a 
spontaneous part of Sylwester’s (1995) already operational system, and that this 
ability is crucial in human negotiation of the 3D world. Such an argument 
supports the views, summarised above, that WNA may benefit from new 
perspectives on mathematical coherence, such as AMPS, through examination 
of how spatial ability and spatial reasoning underpin such coherence.  

This paper suggests, therefore, that studies that examine the place of WNA in 
mathematics may need to draw upon newly-developing environmental 
connectivity theories, as well as the neurocognitive studies that emphasise 
human connection with environment (e.g., Edelman, 2007). Such theories may 
be useful in examining, from a scientific perspective, how learned information is 
accommodated in the artificially constructed subject domains, including 
mathematics, that have developed in the industrial education model and that are 
driven by historical practice (e.g., OECD, 2003, 2010).  

Integration of such theories may be useful in examining how analysis of 
perceived environmental differences and similarities, including analysis of 
patterns, as well as resultant generalisations and abstractions, are separated as 
the domain of mathematics. Such examination may provide a different picture of 
how WNA and other components of mathematics are linked to other subjects in 
some contexts, but separable in others. Spatial ability and spatial reasoning may 
be the underlying connection here. Through the integration of modern science 
and complexity theory with educational theories and practices, it may be 
arguable that WNA is connected in a complex way to an underlying construct, 
AMPS—what lies beneath. 
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ON THE SEMANTICS AND SYNTAX OF '+' AND '=' SIGNS 

Pearla Nesher, Shelley Shaul, Haifa University, Israel 

Abstract 

The research reported here is on the semantics and syntax of the signs '+' and '=' as 
exhibited in an event related potential (ERP) study. The experiment examined three 
variants of addition sentences consisting of sums smaller than 10, and investigates the 
differential processing of the numbers vs. the '+', and  '=' signs.   

Key words: addition, ERP, math signs, semantics 

Introduction 

The research reported here is on the semantics and syntax of the signs '+' and '=' 
as exhibited in an event related potential (ERP) study. ERPs are used to collect 
brain activity while performing different cognitive tasks. This method permits 
direct observation of information processing at different levels of analysis. ERPs 
consist of various discrete components, which are related to different stages of 
information processing. The components reflect the time course of sensory and 
cognitive processes with millisecond resolution that cannot be directly inferred 
from behavioural measures (i.e., reaction times [RTs]). The experiment was 
conducted with students who are skilled in math and supposed to solve addition 
facts with numbers smaller than 10 in an automatic fashion .We believe our 
results have implications for the teaching of arithmetic in early grade. 

Additive triplets are 'privileged triplets'   

Not every combination of three numbers makes up a true addition sentence. 
There are 'privileged triplets' of numbers that make true addition sentences 
(Baroody, 1999; Nesher and Katriel, 1977). The triplet (2, 3, 5) is an example of 
a 'privileged' triplet; These three numbers create a correct addition sentence 
(2 + 3 = 5). (2, 3, 7) is not a 'privileged triplet' because these three numbers are 
not part of any correct addition sum and they are not connected to each other. In 
fact, there are only a few 'privileged triples' whose sums are smaller than 10, and 
they occupy the attention of first-grade children for many months. In learning 
the links between numbers that are 'privileged triplets' they form automatic 
associations (LeFerve et al., 1988), so that in an addition exercise such as '2 + 3 
= ?', the number '5' is retrieved automatically from long-term memory (Szucs 
and Csepe, 2005). It is not clear how these facts are stored - is it the whole 
equation, or are the numbers and other signs taken separately into account? 
LeFerve et al. (1988), in their Stroop experiment, have demonstrated the 
possibility that numbers are additively associated and their sums are obligatory 
activated even in stimuli that omit the '+' sign and the task does not demand 
finding the sum. 

The semantics of the '+,'  '-' and '=' signs 

In the current study we differentiate between the semantics of the specific 
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numbers and the more general signs '+,' '-' and '='. Usually, in early teaching of 
simple addition facts one tends to emphasise the correct numerical answer. 
However, except the specific numbers (i.e., 2, 3, 5), other signs appear in the 
addition sentence (the '+' or '-,' and the '=' sign) which act as general rules and 
operate on all numbers. There is a difference between the '+,' '-' and '=' signs. 
They carry differential syntax and semantics. The '+' is an operation sign while 
the '=' is a relation sign. Moreover, addition and subtraction both describe the 
same situation of parts and a whole (Sophian and McCorgray, 1994). The 
underlying structure of the numerical sentence a + b = c (or b + a = c) and          
c – b = a (or c – a = b) is the same. However, the surface structure differs. In 
addition the numbers on the two sides of the '+' sign refer to the parts (named 
'addends' in numerals) and the number after the '=' sign refers to the equivalent 
whole amount (the 'sum' in numbers). In subtraction the role of the numbers 
differs. The number left of the '-' sign refers to the sum and the number to the 
right of the '-' sign is one of the addends. The number to right of the '=' sign in 
subtraction refers to the second addend. The above interpretation encompasses 
the semantics of the signs '+', '-' and '='. From this point of view, it is understood 
why a string of symbols such as '3 = 4 + =', is syntactically unacceptable.  

Competing triplets 

The phenomenon of 'competing triplet' was studied under several names: 
'associative confusions' (Winkelman and Schmidt, 1974), 'associative lures' 
(Zbrodoff and Logan, 1986; Lemaire et al.,1994), 'relatedness' (Ashcraft, 1995, 
Desmet et al., 2012), and 'consistent–inconsistent lures' (Domahs et al., 2007). 
The above effect indicates the associative nature of arithmetic facts in long-term 
memory and that the presentation of the operands primes not just one answer, 
but rather a set of results (Niedeggen and Rosler, 1999; Szucs and Soltesz, 
2010). We use the term 'competing triplet' rather than 'related facts' to stress the 
fact that we deal with a more constrained situation, since there is just one 
'competing triplet' to each additive problem that can also be the correct solution 
for the subtraction of the two given numbers (e.g., 3 – 2 = 1). Being a possible 
correct solution for subtraction renders the competition of the 'competing triples' 
even more plausible.  

How is the automated solution achieved?  

The status of the arithmetic signs in the automatic process is not clear. Are the 
specific numbers with their associative connection to plausible privileged 
triplets (Campbell and Graham, 1985; McCloskey, 1992) attended to first, 
followed by or in parallel to the operation signs which dictate which triplet is the 
correct solution? Or, alternatively, are the addition facts stored as an entirety as 
a proper mathematical sentence? The cross interference between operations, 
such as supplying an incorrect multiplication answer that is correct for addition 
(e.g., 8 x 4 = 12), might support the hypothesis that there are stronger links 
among triplets of numbers and that the operations signs are activated separately. 
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Usually, an addition stimulus (exercise) consists of two among the three 
numbers of the expected triplet (i.e., 3 + 2 = ?). If the facts are stored in long-
term memory as full sentences (including the '+' sign) then there is one and only 
one true reply (5 in the above example). However, if numbers are attended to 
first with a repertoire of competing associations, and the semantic considerations 
(of the +/- and = signs) are made separately (Domahs et al., 2007), then the 
required third number can belong to two additive triplets. For example, given 3 
and 2 (as above: 3 + 2 = ?), either 5 or 1 could be triggered (by the triplets 
[3, 2, 5] and [3, 2, 1]). This might produce a conflict. The triplet [3, 2, 1] is a 
'competing triplet' to the triplet [2, 3, 5] in the above example. 

The structure of the experiment  

In this study we employed the well-established 'distance effect' as a relative 
measure to the 'competing triplets' effect. The distance effect states that when 
comparing two numbers it will take longer to decide which one is bigger when 
the distance (difference) between the two numbers is small and less time when 
the distance is large. The research question was: How do different types of 
answers to canonical addition, sums smaller than, 10 affect the performance and 
brain activity of regular calculating students? There were three possible 
conditions: (a) a correct result (b) an incorrect result belonging to a 'competing 
triplet' with a large distance from the correct result, and (c) a result which 
deviates from the correct answer by +1or -1 (see Tab. 1). Thus, the (b) condition 
is the larger distance and the (c) condition is the smaller distance from the 
correct answer. One hundred and forty four sums were presented randomly to 
the centre of the computer screen for 2000 ms with an ISI of 700 ms. The task 
was a verification task. An addition problem (a + b =) was presented with an 
answer and the subject was requested to decide whether the answer was correct 
or incorrect by pressing a button on the keyboard. One third of the sums were 
correct and the rest incorrect with planned distracters. All the sums were created 
with the following 9 sets of numbers: (2, 3, 5), (2, 4, 6), (2, 5, 7), (2, 6, 8), (2, 7, 
9), (3, 4, 7), (3, 5, 8), (3, 6, 9), and (4, 5, 9), omitting triplets that include 0, 1 
and equal addends. These are all possible combinations for sums smaller 
than 10.  
 

(a) correct (b) competing triplet ( c) +/- 1 

3 + 5 = 8 3 + 5 = 2 3 + 5 = 7 

5 + 3 = 8 5 + 3 = 2 5 + 3 = 7 
 
 (a) Sample of a correct sum which represents a privilege triplet.  
(b) Sample of a competing triplet, correct numbers with incorrect sign or incorrect 
order of the numbers.  
(c) Numbers which do not compose a additive triplet and the result is close (+/- 1) to 
the correct answer.  

Tab. 1: The three conditions of the different types of addition sums and examples  
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N-170 is a negative component and is thought to reflect categorical coding and 
perceptual analysis of the visual stimuli. (Tanaka and Curran, 2001) proposed 
that the N170 reflects expert visual object recognition. At about N170 
significant differences were observed in the latency and the amplitude of some 
electrodes. An effect of 'privileged triples' vs. 'non-privileged' is detected. Thus, 
at first there is demarcation between conditions (a) and (b) vs. (c) There was no 
difference between the correct answer and the 'competing triplet' which 
appeared about 13 ms later. See Fig. 1(a). N400 has been found to be a domain 
general index of semantic congruence. Niedeggen and Rosler (1999) suggested, 
in their study of multiplication problems, N400 as an arithmetic component. 
Further studies of additive sums indicated also the N400 amplitude as a function 
of the incongruency (Szucs and Soltesz, 2010). We observed significant 
difference in the amplitude of N400: the highest amplitude was for the near 
answer (+/- 1) which was higher than the correct, ; the lowest amplitude was for 
the 'competing triplet' answer. P600 (LPC-late positive component) is a positive 
component which is syntax related (Martin-Loeches et al., 2006). It is elicited 
when a sequence has an incorrect ending. It has been suggested that the P600 
occurs when a stimulus is difficult to integrate into a structure of the preceding 
context. The P600 has been observed in mathematical rules violations too as 
Niedeggen and Rosler (1999) found for unrelated answers (e.g. 4 * 8 = 26).  In 
our experiment significant differences were found in P600 amplitude and 
latency [see Fig. 1 (b) and (c)]. Thus, the demarcation was found between 
conditions (a) and (c) vs. (b). 

Final remarks 

The behavioural results of our study are similar to previous studies which have 
shown that verification of correct addition sums are performed faster than 
incorrect sums; (Szucs and Csepe, 2005). The 'competing triplet' took the 
longest time to decide whether the sum is correct or not. The ERP results can 
help us understand that different types of symbols are processed at different time 
frames, and only after approximately 600 ms the integration between all the 
information is obtained.   

Educational implications: In first grade we usually teach the number facts of 
'privileged triplets' that become associated in the brain. These triplets should be 
fostered within their underlying additive structure, accentuate their linked 
surface structure forms, and emphasize more the semantics of the signs and 
not merely the numbers, and the task of finding a correct answer (number).  
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Abstract 

Competence models have been developed to describe levels of competence in 
mathematics and particularly in the domain of whole numbers. So far, only 
descriptions of what competence at different levels actually means are available, but 
current models do not describe how children can reach the next level. In this article, 
we propose a fine-grained description of the five levels of competence in the domain 
of numbers as proposed in a competence model for the primary school level that was 
based on theoretical and empirical research. Moreover, we discuss students’ errors on 
three items to show how such a detailed analysis can provide additional information 
about how to support students in their development. We suggest that with such a 
combined empirical-psychological perspective, competence models can provide 
guidance for instruction. 

Key words: arithmetic, mathematical competence, number and operations, patterns 
and structures, whole number reasoning 

Introduction 

Whole number arithmetic is an essential part of mathematical competence at the 
primary school level. However, what mathematical competence at this level 
actually means and how it develops remains a matter of current theoretical and 
empirical educational research. In the past decades, competency models and 
levels of mathematical competence have been described in the context of 
international large-scale assessments such as PISA (Programme for International 
Student Assessment). In these studies, levels of competence were identified 
empirically by students’ performance on a set of items. These models are useful 
tools in order to better understand what constitutes mathematical competence. 
However, from a mathematics educational perspective, competency models 
based on empirical data only have some important constraints. For example, 
they do not provide information on how to support students in reaching higher 
levels of mathematical competence. Obviously, competence models should 
better take into account theories of mathematics education, but theory-based 
descriptions mostly lack the idea of levels. Theoretical models have been used to 
describe which mathematical competences children are expected to have 
acquired at the end of primary education. On the basis of such models, for 
example, standards for school mathematics have been introduced in many 
countries, which usually do not include a differentiation between high and low 
performance (e.g., CCSSI, 2010). For theoretically derived models it is therefore 
important to validate them empirically, because individual competence does not 
necessarily develop in accordance with the inherent structure of the learning 



ICMI Study 23                                                                              Theme 2, Obersteiner, et al., Competency Models  

236 
 

content. Furthermore, in order to understand student’s development of 
mathematical competence, cognitive aspects of mathematical learning need to be 
considered. 

The aim of this article is to shed light on primary school children’s mathematical 
competence in the domain of (whole) numbers. First, we describe number 
competence on the basis of a competence model for school mathematics 
suggested by Reiss, Roppelt, Haag, Pant, and Köller (2012). In particular, we 
describe in detail what competence means at the five levels of competence 
specified in the model. We then report on the results of a German national 
assessment of third graders, which was based on the theoretical model. Here, we 
focus on individual children’s responses to specific items and discuss how such 
data can offer insight into children’s cognition. For this purpose, we make use of 
psychological theories that may explain the developmental steps a child has to 
take in order to reach the next level of competence. An important example of 
such a theory is the concept of the zone of proximal development, which dates 
back to Vygotsky (1978). In essence, the zone of proximal development 
describes the discrepancy between what learners are able to do and what they 
are able to do only with the help of instruction. In our context, focussing on this 
zone can help describing in more detail how children at a certain competency 
level can be supported by their teachers in order to reach a higher level of 
competence.  

The Competence Model 

Levels of mathematical competence can be described for both the entire subject 
area and the different content domains. To understand competence in the domain 
of whole numbers, we focus on the content domains of number and operations 
and patterns and structures. The latter plays a particularly important role for a 
deep conceptual understanding of number and the structure of the number 
system. In the following, we describe in detail what whole number competence 
means on five competence levels (from Level I – lowest competence to level V 
– highest competence) in both content domains. This competence model was 
developed by Reiss, Heinze, and Pekrun (2007), based on detailed analyses of 
the mathematical learning content and theories of cognitive development. The 
model was validated by these authors as well as by Reiss and Winkelmann 
(2009). The following description is a further development of this model, which 
is supported by further empirical data (Reiss et al., 2012).  

Number and Operations 

Competence Level I includes technical background knowledge such as routine 
procedures on the basis of simple conceptual knowledge. On this level, students 
know the basic structure of the decimal system such as the classification of 
numbers into ones, tens, hundreds etc. They also know every basic single-digit 
multiplication and addition problem. Subtraction and addition of lower numbers 
can be completed partly written. While doing this, students are able to check for 



ICMI Study 23                                                                              Theme 2, Obersteiner, et al., Competency Models  

237 
 

the accuracy of their solutions. Written addition can be used correctly if two 
summands are used. Written subtraction can be used if there are no carries over 
ten. In simple problems, students make use of the relationship between addition 
and subtraction. Strategies that students have learned during their first years at 
school – such as doubling a number – are applied to higher numbers. Simple 
numbers, especially those within the 100s and 1000s, can be shown on a number 
line with appropriate scale and the size of that number can be compared with 
other numbers along the sequence. 

Competence Level II requires the simple use of basic knowledge for routine 
procedures within a clearly defined context. Students on this level use the 
structure of the decimal system when dealing with various representations of 
numbers. They recognise ordering principles and use these principles when 
continuing number patterns or during structural counting. Simple problems 
related to basic types of calculation are conducted mentally, partly written or 
fully written; occasionally, students find the solutions through systematic trial 
and error. During such trials, students conduct rough estimations and use those 
to determine the value range of their solutions. They correctly use both 
fundamental mathematical terms (such as “sum”) and basic mathematical 
procedures to solve simple word problems. 

Competence Level III includes the recognition and use of relationships within a 
familiar context. The numbers that were taught as part of the curriculum are 
securely read and written in various representations (such as in a place value 
panel). Also, the number zero can be assigned correctly. Students are proficient 
in every type of partly written or written calculation procedure that is part of the 
curriculum, but division is limited to single-digit divisors. They can use basic 
procedures of mental arithmetic even in unfamiliar contexts. They can transfer 
the multiplication table to a larger range of numbers, conduct rough estimations 
securely, and round the results meaningfully, even when the numbers are high. 
Students recognise the relationship between addition and subtraction, as well as 
between multiplication and division. They can recognise and communicate 
simple structural aspects (e.g. in relation to sequences of the multiplication 
table) if the contents were practiced before. In addition, they model simple 
object matters and find solutions, as long as the numbers used are within the 
number range covered by the curriculum. 

Competence Level IV describes the secure and flexible use of conceptual 
knowledge and procedures within the curricular scope. Students solve problems 
securely using all types and variations of the calculations taught as part of the 
curriculum of fourth grade10. This includes particularly written division. During 
calculation, students systematically use the attributes of the decimal system and 
                                           

 

 
10 Note that in most German federal states, primary education includes grades 1–4. 
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the relationships between operations. They also apply this knowledge when 
investigating number sequences, for example when finding incorrect numbers in 
a sequence or when explaining the underlying procedures for the sequence. 
Different calculation procedures are combined flexibly and solutions are 
estimated or rounded appropriately. Students use solution strategies such as 
systematic trial and error even for more complex problems. Rules for calculation 
are well known and can be applied meaningfully. Complex situations can be 
modelled adequately and worked on correctly, and solutions can be presented 
appropriately. The students’ conceptual knowledge also includes special 
technical terms, which the students can use and communicate appropriately. 

Competence Level V is the highest level. It includes modelling complex 
problems and independent development of adequate strategies. Difficult 
mathematical problems can be solved correctly using various strategies. 
Relationships between numbers are recognised according to the situation. 
Mathematical rules, such as the factorability of natural numbers, are used in 
problem solving. Based on basic mathematical principles, even difficult 
solutions can be worked on and are solved through procedures such as 
systematic trial and error. Special aspects such ass calculations with fractions or 
decimals do not pose any problems. Also, students are able to comprehend and 
describe different approaches to a solution. 

Patterns and Structures 

On Competence Level I, students recognise simple principles that create patterns 
of familiar numerical relationships, such as easy sequences from the 
multiplication table, especially doubling of numbers. 

Children on Competence Level II are able to apply a given rule for continuing 
simple number sequences, and recognise incorrect numbers within such 
sequences. They also recognise the basic structure in simple pictures or number 
sequences (such as a sequence of addition by a small number). They securely 
indicate numbers up to a thousand on place value panels; in addition, they can 
change those numbers along the place value panel following instructions. 
Students recognise and use proportional attributions (such as doubling). 

Competence Level III means that students recognise the principles behind 
relatively complex patterns and can continue such patterns. During this process, 
students use their analytical abilities. When asked to determine a specific 
element at a given place, they do not require concrete materials or active 
manipulations to solve the problem. They can recognise and explain the 
principles in number patterns if numbers are used that are part of the curriculum. 
In addition, students selectively manipulate numbers within a number sequence 
and meaningfully interpret the results. They also recognise and interpret 
proportional relationships. Finally, students recognise and interpret functional 
relationships in simple real-life contexts. Specifically, students use proportional 
relationships for modelling and problem solving. 
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On Competence Level IV, students can analyse complex patterns and can 
continue these patterns graphically or numerically. Number patterns are 
recognised even if patterns are not based on addition of a given number or on 
multiplication by a given factor, and even if the number sequences are not given 
as numbers but as terms. In addition, students recognise the relationships among 
various presentations (for example visual and numerical representations) even if 
the sequences or patterns are difficult. Following instructions, they can 
independently and systematically change the presentations of numbers on a 
place value panel even if the numbers are very high. They also utilise 
proportional relationships when modelling and solving word problems. 

Competence Level V includes the ability to securely deal with difficult number 
sequences (i.e., including square numbers or sequences that include several 
different calculation techniques). Children can recognise principles even if they 
need to combine different mathematical operations and are able to explain these 
principles. They create arithmetical patterns following given criteria and thereby 
develop their own strategies. Proportional relationships of simple fractional 
numbers and decimal fractions can be applied, and students can interpret tables 
that show such proportions. They can even model, analyse and use unfamiliar 
functional relationships in real-life contexts. 

Materials and Methods 

The model outlined above was used as a basis for annual national assessments in 
German third-grade classrooms. These assessments intend to make teachers 
understand better how their students perform compared to other students. 
Moreover, teachers may see not only whether solutions are wrong or right but 
also how tasks were solved. In the following, we report on students’ 
performance on three items, which were presented in the pilot studies of the 
2009 and 2011 assessments. Each item was presented to at least 550 students. 
Previous analyses of the whole data set showed a high fit to the dichotomous 
Rasch model, so that item difficulty and student competence could be located on 
the same metric scale. This allowed a detailed description of what students are 
able to achieve at a certain level, and therefore an empirical evaluation of the 
theoretical competence levels of the model. In the following analyses, we are 
particularly interested in students’ incorrect answers to specific items in order to 
describe what prevented students who gave these answers from solving the item 
correctly. We will present the items together with the empirical results. 

Results  

Item 1: Place Values 

In this item, the students were asked to explain the error that Paul has made 
when representing the number 370 in the place value table (see Fig. 1). 
According to the model, this item represents competence level II, because it 
requires basic understanding of the decimal number system and the ability to use 
a well-known representation. 
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Fig. 1: Item 1 – Place Values 

The empirical competence level of this item was the same as the theoretical one 
(Level II). 56 % of the children were able to provide a correct solution. Of the 
responses that were coded as incorrect, 23% were non-responses, suggesting that 
these children did not understand the place value system as such or the 
representation used in this item. When children provided incorrect answers, they 
most frequently showed a basic understanding of the place value system but 
gave incomplete responses to the question. Many children argued that Paul has 
only paid attention to the ones, or that he has ignored the tens. Such answers 
were coded as wrong because a correct response required reference to the 
transposition of the ones and the tens. This illustrates that the dichotomous 
coding is not sufficient to provide detailed information for instruction. The 
closer look on student responses shows that some students did understand the 
decimal number system and how numbers can be represented in the place value 
table, they were just unable to provide complete argumentations for the observed 
problem situation. The educational implication could be that those children need 
particular support of their argumentation and communication skills. 

Item 2: Number Pairs  

This item required understanding of numerical relationships. The task was to 
give reasons why one of the number pairs did not match the other pairs (see Fig. 
2). To do so, it was necessary to refer to the sum of each two numbers of a pair. 
Accordingly, the theoretical competence level required to solve this item was 
Level III (“recognise and explain the principles in number patterns if numbers 
are used that are part of the curriculum”). 

 
Fig. 2: Item 2 – Number Pairs 

 

 
 
Paul wants to show the number 370 in a place value table. However, he makes a 
mistake. Explain his mistake. 

T O 

 

Why does the number pair  not fit in with the others?  
Give reasons. 
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The data analysis showed that this item was on level IV, with 34% of the 
children solving the item correctly. The children who did not solve the item 
correctly referred to different irrelevant aspects of the item, for example, that the 
number 5 is missing in the pattern, or that the number pair given in the question 
already existed in the set of pairs. Some tried to apply operations other than 
addition to the number pairs (e.g., multiplication: “93 is not a multiple of six.”). 
32% of the students did not show any work and thus did not provide any 
information on their problems or misconceptions. From a psychological 
perspective, in order to solve this task correctly, one needs to recognise that all 
the number pairs consist of one number that is close to 100 and another number 
that is numerically small. This in turn requires the ability to quickly activate 
numerical magnitudes of number symbols, an ability that has been referred to as 
“number sense” (e.g., Dehaene, 1997). Although we can assume that most 
children in grade 3 have actually acquired a basic sense of numbers, it is 
probably not self-evident that they are able to make use of it in a problem 
situation. As an educational implication, we may conclude that support of 
applying basic understanding of numerical magnitudes in problem solving 
situations could help children reach the next level of competence. 

Item 3: Number Sequence 

In this item, the number sequence needed to be completed (see Fig. 3), which 
required understanding that each number can be generated from the previous 
one by subtracting a number that is increased by one each time, starting with 11. 
The second part of the item (part b) required the ability to communicate the 
strategy used for solving the first part (a). Accordingly, the theoretical 
competence levels of the two parts of this item were IV and V, respectively. 

 
Fig. 3: Item 3 – Number Sequence 

The empirical data showed that 27% of the students were able to fill in the 
missing number (as required on competence level IV) but just 14% could write 
down the rule for calculation, which would be required on competence level V. 
Most of the children who found the right missing number but failed on the 
second part did not give any rule or explanation. Most likely, these children did 
have in mind the rule for calculation but were unable to write it down, probably 
because the number that needed to be subtracted varied from one number of the 
sequence to the other. Obviously, these students had difficulties in formulating 
and communicating their (correctly applied) solution strategy. As a consequence 

Look at the number sequence. 
 
111 100 88 __________ 61 
 
a) What is the missing number? 
 
 
b) Write down the rule for calculation! 
 
 



ICMI Study 23                                                                              Theme 2, Obersteiner, et al., Competency Models  

242 
 

for education, explicit training on mathematical argumentation and 
communication could be effective to increase children’s competence level. 

Discussion and Conclusion 

We presented a detailed description of what competence means on the five 
levels of competence as proposed in the model by Reiss et al. (2012). In 
addition, we discussed student errors from a psychological point of view in 
order to explain why those students who gave incorrect responses failed to reach 
a certain level of competence. As the examples have shown, many students 
showed basic abilities in the domain of whole numbers, but had difficulties in 
applying their knowledge in problem solving situations or giving reasons for 
their solutions. Establishing mathematical argumentation and communication in 
the mathematics classroom could be beneficial in two ways, firstly, to enhance 
students’ mathematical competence, and secondly, to provide the teacher with 
valuable information on students’ difficulties and their stage of development. 

To conclude, we consider a combined empirical-psychological perspective as 
pursued in this article as fruitful, because empirically based models of 
mathematical competence can provide reliable information about the 
mathematical abilities of a broad population of learners. The psychological 
perspective can add important information on students’ cognition, and therefore 
inform teachers about ways to support their students. 

References 
CCSSI (2010). Common Core State Standards Initiative. Common Core State Standards for 

Mathematics. Retrieved from www.corestandards.org on 24 September 2014. 

Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: 
Oxford University Press. 

Reiss, K., Heinze, A., & Pekrun, R. (2007). Mathematische Kompetenz und ihre Entwicklung 
in der Grundschule. In Prenzel, M., Gogolin, I., & Krüger, H. H. (Eds.), 
Kompetenzdiagnostik. Sonderheft 8 der Zeitschrift für Erziehungswissenschaft 
[Diagnostic competence] (pp. 107–127). Wiesbaden: Verlag für Sozialwissenschaften. 

Reiss, K., Roppelt, A., Haag, N., Pant, H. A., & Köller, O. (2012). Kompenzstufenmodelle im 
Fach Mathematik [Competence models for mathematics]. In Stanat, P., Pant, H. A., 
Böhme, K., & Richter, D. (Eds.), Kompetenzen von Schülerinnen und Schülern am Ende 
der vierten Jahrgangsstufe in den Fächern Deutsch und Mathematik. Ergebnisse des 
IQB-Ländervergleichs 2011 [Students’ competences in German language and 
mathematics at the end of fourth grade] (pp. 72–84). Münster: Waxmann. 

Reiss, K., & Winkelmann, H. (2009). Kompetenzstufenmodelle für das Fach Mathematik im 
Primarbereich [Competence models for primary school mathematics]. In Granzer, D., 
Köller, O., Bremerich-Vos, A., van den Heuvel-Panhuizen, M., Reiss, K., & Walther, 
G. (Eds.), Bildungsstandards Deutsch und Mathematik. Leistungsmessung in der 
Grundschule [Standards for German language and mathematics. Performance 
assessment in primary schools] (pp. 120–141). Weinheim: Beltz. 

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. 
Cambridge, MA: Harvard University Press. 

 



ICMI Study 23                                                          Theme 2, Roberts, Whole Number Relations in Early Grades 

243 
 

INTERPRETING CHILDREN’S REPRESENTATIONS OF WHOLE 
NUMBER ADDITIVE RELATIONS IN THE EARLY GRADES 

Nicky Roberts, University of the Witwatersrand, South Africa 

Abstract 

This paper proposes a framework to support teachers’ interpretation of learners’ 
representations when engaging with whole number additive relation tasks. It builds on 
previous South African research on a conceptual framework for the specialisation of 
modes of representation in early grade mathematics. Using a combination of empirical 
data of learners’ representations of additive relations and literature, the adapted 
framework is exemplified focusing on shifts within modes of representation which 
denote a move from counting to calculating.   

Key words: additive relations, Foundation Phase, models, representations, South 
Africa, whole number  

Introduction  

Globally there is acknowledgment that children’s early number development 
progresses from early counting in ones into mental calculation procedures which 
make use of group-wise actions (non-unit counting strategies) which require 
reified notions of number (Sfard, 2008). This learning trajectory from counting 
to calculating is succinctly described by Askew and Brown (2003) as a 
progression from ‘count all, count on from the first number, count on from the 
larger number, use known facts and derive number facts’. These researchers also 
suggest that there is a related progression in children’s representations of whole 
number arithmetic from limited number sense being related to representations 
that are closer to concrete actions, to good number sense being related to more 
compressed symbolic representations (Askew and Brown, 2003).  

There is growing consensus in South Africa that one of the major factors 
inhibiting learners’ mathematical progression is continued using of counting in 
ones strategies for mathematical calculations. This has been highlighted by 
Hoadley (2012) drawing on several earlier studies. In the Foundation Phase, 
Ensor et al. (2009) identified that learners remain reliant on counting-based 
strategies for calculations, and do not shift to more abstract calculation 
strategies. This was confirmed by Schollar (2008) who reported the prevalence 
of concrete counting strategies well into the Intermediate Phase.  

In this paper I put forward a conceptual framework for interpreting children’s 
external representations of whole number additive relations in the early grades, 
which takes into account the identified concern of the lack of shift from 
counting to calculating.  

Methods 

This paper forms part of a broader PhD classroom based study on children’s use 
of narrative in mathematics learning where the content focus was whole number 
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additive relations in the early grades. Narrative encompasses both oral 
storytelling and other external representations such as gestures, drawings or 
writing. The study formed part of a broader development project where the 
ongoing professional development of Foundation Phase teachers to improve 
teaching and learning of mathematics was in focus. 

The paper draws on the mathematics education literature on modes of 
representation and an empirical base of children’s diagrammatic representations 
from a ten-day Grade 2 teaching intervention in a poor township school in South 
Africa. It focuses on the representations developed by a particular child: 
Retabile (pseudonym), over the course of these ten consecutive school days. 
Where necessary a contrasting example from another child’s work is presented. I 
keep the child invariant, and period of consideration short (10 days)  to 
demonstrate that the early stages of whole number arithmetic is a messy process 
where a child moves between different calculations strategies and uses multiple 
modes of representation within a limited timeframe.  

Results and Discussion  

In this section I explain my use of modes of representation and its origins. I then 
propose a framework for interpreting representations of whole number additive 
relations and exemplify the use of this framework for the iconic, indexical and 
symbolic modes of representation with examples from Retabile’s work.  

Modes of representation 

Several researchers have identified the importance of representations in 
supporting children’s problem solving processes in mathematics, referring to 
these with various terms for example: picture and models (Deloache, 1991), 
representations (Eisner, 1993), models, images, and tools (Askew, 2012). I use 
the concept ‘external representations’ (hereafter ‘representations’) to denote 
children‘s markings, drawings and writings in mathematics. This is taken to be a 
form of communication which makes children’s internal representations 
(thinking) visible to self and others.	 

Dowling (1998) drew on the work of Peirce to develop three modes of 
signification: iconic, indexical and symbolic in an analysis of representations in 
a mathematics textbook scheme in England. Ensor et al. (2009) used Dowling’s 
work to categorise the representation of number evident in early grade South 
African classrooms describing each mode as follows: 

 Concrete apparatus which entailed the manipulation of physical objects…This 
apparatus was used for counting and for calculation-by-counting strategies) 

 Iconic (images of everyday context realistic depictions) apparatus including 
photographs, cartoons or drawings. This apparatus was used as concrete apparatus 
by could not be manipulated in the same way. 

 Indexical (images of everyday contexts – generic rather than realistic depiction of 
everyday contexts) apparatus features drawing of sticks, tallies, dots, circles and 



ICMI Study 23                                                          Theme 2, Roberts, Whole Number Relations in Early Grades 

245 
 

other shapes represent everyday objects. This apparatus was used for counting and 
calculating-by-counting tasks 

 Symbolic – number based (use of numerals to represent numbers) apparatus 
including number lines (structured or semi structured) number charts, number cards. 
This mode of representation supported calculation without counting but could also 
be used for calculation-by-counting tasks 

 Symbolic-syntactical (use of mathematical notation to produce mathematical 
statements). This mode of representation is abstract and entails the deciphering and 
production of mathematical statements. It relies on known number facts, and facts 
which can be derived without counting. 

 No representation used. This refers to tasks which learners are asked to carry out 
which did not entail the use of modes of representation.  

(Ensor et al., 2009, p.17)  

Venkat and Askew (2012) note the shifts in specialisation from concrete to 
abstract representations in the Ensor et al. (2009) framework but suggest that 
there are gradations within these representational categories which relate to 
building calculating that is likely to involve some reified number facts and some 
counting.  

I take up Venkat and Askew’s modification and exemplify it through Retabile’s 
work, arguing that working within a particular mode of representation, makes it 
possible to discern shifts from counting to calculating when attention is focused 
on the structure of, and actions on, representations.  

Conceptual framework for interpreting representations  

I constrain attention to representations of whole number additive relations in the 
early grades. I conceptualise these representations as defining an ‘example 
space’ where ‘examples are usually not isolated; rather they are perceived as 
instances or classes of potential examples’ (Watson and Mason, 2005, p. 51). 
Consistent with the notion of example spaces I consider ‘dimensions of possible 
variation’ and the ‘range of permissible change’ within the example space 
(Watson and Mason, 2005, p. 51).  

There are several important features to which I have attended when interpreting 
learner’s representations. Firstly, I consider the particular circumstance that 
determines why a learner is using a particular representation, be it their own 
invention, self-selected from a range of teacher presented options, or prompted 
by a teacher.  Secondly mathematical representation occurs within a social 
context making the learners’ representation dependent on the nature of the 
mathematical task. Thirdly central to mathematical thinking is the ability to 
flexibly move between multiple representations.  I recognise that circumstance, 
task and flexibility are important dimensions of possible variation when 
interpreting learner representations as the backdrop for this paper.   

The modes of representation, as defined by Ensor et al. (2009), are useful 
distinctions and I consider these to be the first dimension of possible variation 
when interpreting learners’ representations. The other three dimensions of 



ICMI Study 23                                                          Theme 2, Roberts, Whole Number Relations in Early Grades 

246 
 

possible variation are dimensions for interpreting representations within a 
particular mode of representation. The second dimension is the arrangement of 
elements within a representation, referring to the spatial positioning of elements 
in relation to each other. The third dimension is the group-wise depictions 
evident in a child’s representation. The way children group items and act on 
their groups, suggests shifts of attention between considering each object as a 
member of a group and acting on the group itself. In the context of early grade 
learners’ work on additive relations, these groups are commonly single objects 
(one’s), pair-wise, 5-wise or 10-wise groups. Together the arrangement of 
objects, and the group-wise depictions may be considered to define the structure 
of the representation. The learners’ actions (the fourth dimension) made visible 
by their gestures or markings are significant because they depict change or 
movement in their representations. Changes children make to representations 
depict a process and offer insights into the chronology of the development of 
their representation.  

Tab. 1 provides a summary of the conceptual framework for the analysis 
showing the four dimensions of possible variation and their related range of 
permissible variation. 

Dimension Range of permissible variation 

Representation 
mode 

Concrete Iconic Indexical Symbolic Syntactical

Structure: 
Arrangement 

None Horizontal 
linear 
 

Left-right 
partition 

Top-
bottom 
partition 

Array 
 

Structure:  
Group-wise 

1s 2s 5s 10s Other 

Action Enclosing Gesturing Erasing 
or 
moving 

Depiction 
of change  

Other 

Tab. 1: Conceptual framework  

I turn now to three of the modes of representation – iconic, indexical and 
symbolic – to illustrate how I use each dimension of possible variation to 
interpret what Retabile was communicating. The sequencing of the modes of 
representation in this paper should not be used to interpret a progression by 
Retabile in relation to these modes. She used various modes of representations 
for different tasks and at different times over the10 day intervention period. 

Iconic modes of representation 

The following example pair contrasts different arrangements evident in 
Retabile’s iconic representations. 
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In the first example Retabile’s arrangement was linear with no apparent 
grouping. She then acted on this representation by crossing out each one of the 
15 iconic sweets. She supported this with a syntactical representation of the 
related number sentence: 20 – 15 = 5. The second example shows a shift 
towards a group-wise depiction of 16 where the dice patterns of 5s are evident. 
The action in the representation is the enclosure of two groups of five to depict 
one group of ten. Retabile also expresses this with symbolic representation of 
the number symbol 16. Both representations make use of a ‘counting in ones’ 
strategy, however the second example shows Retabile imposing a group-wise 
structure through her arrangement of the ones and her action of encircling the 
group of ten. 

That counting strategies can be shifted from counting in ones towards a group-
wise concept of ten within the indexical mode of representation, is evident with 
this contrasting example from another child’s work. 

 

 
Task 85 – 55 = … 
Representation 
mode 

Indexical and syntactical 

Arrangement Pair-wise groups of ten 

Group-wise 10s (although all ones still visible) 
Action Marking take-away (in groups of 10) 

Fig. 2: Group-wise indexical representation  

Like Retabile this child uses a take-away model of subtraction, showing this by 
crossing out elements in her representation. However this child’s take-away 
action is group-wise as she crosses out each group of ten, and not each one 
within the group of ten. This learner continues to show tens as pair-wise groups 
of ones. 

Symbolic syntactical modes of representation 

The type of indexical representations shown above (for unit-counting and 10-
wise depictions using ones) can be shifted by introducing number symbols as 
thinkable objects into these indexical representations. 

Here Retabile uses the operation symbol + to signify the mathematical actions. 
In the first example she encloses the 2 + 8 to depict a group of 10. In the second 
example she breaks down the 30 and 40 into groups of 10 (which she depicts 
with enclosed number symbols). This work suggests use of known facts, as 
Retabile recognises the 8 and 2 as making 10, and breaks down 30 and 40 into 
three and four groups of 10 respectively. She provides no evidence of working 
in ones in her representation. The representations show a mixture of symbolic 
syntactical representations and indexical representations. Her indexical action of 
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‘A TRILLION IS AFTER ONE HUNDRED’: EARLY NUMBER AND 
THE DEVELOPMENT OF SYMBOLIC AWARENESS 

Nathalie Sinclair(1), Alf Coles (2) 

(1) Simon Fraser University, (2)University of Bristol 

Abstract 

In this paper, we draw on neuro-scientific evidence that questions the typical 
developmental sequence posited by researchers, of a movement from considering 
actions on concrete objects, to the culmination in abstract mental structures. A clear 
hypothesis emerging is that what is significant in the learning of mathematics is not 
being able to link symbols to objects in a manner that is often considered accessible or 
natural, but being able to link symbols to other symbols. There are also neuro-
scientific studies that implicate the significant role of fingers and touch in the learning 
of early number. We report on the use of the innovative ‘TouchCounts’ iPad app, 
which supports children in the development of number. What children become 
engaged and energised by is precisely the development of symbol-symbol awareness. 
There is a need for further research into how students gain symbolic fluency, 
particularly in relation to early number. 

Key words: early number, neuro-science, ordinal, symbolic awareness, touchscreen 

Introduction  

This paper is focused on whole number thinking, learning and development. We 
address, in particular, the question:  

How can we integrate different perspectives about the foundations and 
development of whole number arithmetic concepts and skills? (ICMI, Study Call) 

A first distinction is important, between ordinal and cardinal aspects of number. 
Typically, ordinality refers to the capacity to place numbers in sequence; for 
example, to know that 4 comes before 5 and after 3 in the sequence of natural 
numbers. Cardinality refers to the capacity to link numbers to collections, e.g., 
to know that “4” is the correct representation to denote a group of four objects. 
We believe the current emphasis on cardinal awareness in learning number may 
be misplaced (Coles, 2014b). In this paper we make a start on exploring: what is 
involved in developing ordinal awareness of number? What are the potential 
affordances? How might help children attend to ordinality? We draw on three 
sources of evidence: first neuro-scientific; second (only briefly) the pedagogy of 
Gattegno and Davydov; and third an empirical study.  

Neuro-scientific evidence 

Experiments in the 1970s appeared to suggest that ordinality occurred in young 
children at a much earlier age than cardinality (Brainerd, 1979). Recently, the 
kind of ingenious psychological experiment conducted in the twentieth century, 
has given way to brain research. One of the findings of broad agreement from 
neuro-science is that humans share an early (in evolutionary terms) Approximate 
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Number System (ANS), our ‘number sense’ which we use to judge the relative 
size of groups of objects (Neider and Dehaene, 2009), i.e., the ANS is a non-
symbolic form of numerical awareness. Research is currently being undertaken 
to try and map out how the ANS links to our use of numerical symbols, since 
there is evidence that ANS acuity is correlated with later mathematical 
achievement (e.g., Gilmore et al., 2010). 

Mathematical proficiency requires the co-ordinated action of many brain regions 
(Susac and Braeutigam, 2014). Research in recent years has shown that how 
children understand and manipulate number symbols (e.g., Hindu-Arabic 
numerals: 1, 2, 3, …) is an especially crucial building block (Lyons et al., 2014). 
How well a child is able to reason about direct relations between number 
symbols (e.g., whether three numbers are in order of size) is one of the strongest 
predictors of skills such as mental arithmetic (Lyons et al., 2014). Children with 
developmental dyscalculia, a persistent problem in mathematics education, also 
show consistent deficits in number symbol processing (Noël and Rousselle, 
2011). 

Neural evidence shows that accessing ordinal information is what distinguishes 
abstract number symbol use from a more perceptually grounded sense of 
magnitude. Accessing ordinal information from numerical symbols relies on a 
different network of brain regions and shows qualitatively different behavioural 
patterns when compared to ordinal processing of perceptual magnitudes (Lyons 
and Beilock, 2013). One does not need to access a perceptual feeling or ‘sense’ 
of 1,000,001 to know that it is one more than 1,000,000, because 1,000,001 
immediately succeeds 1,000,000 in the whole number count list. A simple 
assessment of how quickly a person can judge the relative ordinality of three 
numbers predicts how well that person can do highly sophisticated mental 
arithmetic problems with a correlation of r =0.7 (Lyons and Beilock, 2011). This 
relation holds when controlling for other numerical skills and ordering in non-
numerical domains (e.g., letters). 

Evidence from a large sample of Dutch children (N =1391) in years 1-6 of 
school has corroborated the notion that symbolic number skills overshadow non-
symbolic skills in terms of how well the former predict mathematical 
achievement (Lyons et al., 2014). Beginning in year 2, the ability to assess the 
relative order of number symbols is an increasingly strong predictor of 
mathematical achievement. How well children can directly access the order of 
highly familiar number sequences (e.g., 3 – 4 – 5) maps onto the individual 
variance in children’s mental arithmetic achievement (Lyons a Beilock, 2011).  

To summarise the findings detailed above, consider the following five aspects of 
number sense: the ANS; non-symbolic cardinal processing; non-symbolic 
ordinal processing; symbolic cardinal processing; symbolic ordinal processing. 
What Lyons and Beilock (e.g., 2011, 2013) have found is that symbolic ordinal 
processing is the ‘odd man out’ of the set, in neuro-imaging and behavioural 
tests. A clear hypothesis to emerge from this work is that students’ awareness of 
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ordinality may be distinct from awareness of cardinality and, in terms of 
developing skills needed for success in mathematics, that ordinality is the more 
significant. Neural and psychological sources of evidence converge to show the 
ability to understand and manipulate number symbols is crucial for further 
mathematical success. The capacity to articulate relations between numerals 
flexibly, such as their relative order, is particularly crucial. While these studies 
point to the importance of ordinality, they do not shed light on what is involved 
in ordinal awareness, nor how it may be developed. 

Pedagogical insights 

When students underachieve in mathematics, they are generally offered concrete 
resources and materials. The neuro-science suggests work on linking symbols to 
objects may reinforce the very way of thinking that underachieving students 
need to overcome to become successful. We hypothesise that what these 
students need is support to work with symbols in their relationship to other 
symbols. This hypothesis represents a radical challenge to current practice in the 
UK and Canada (and elsewhere) where, as stated above, the emphasis in the first 
years of schooling is firmly on linking number symbols to collections of objects. 
Current emphasis is also placed on cardinality as well, based in part on 
Butterworth’s (2005) work, which emphasises children’s arithmetic abilities –
which involve working with numbers as objects, whether through subitising or 
adding on (see Clements, 1999). Even the influential work of Gelman and 
Gallistel (1978), which identifies five counting principles, there is a substantial 
and driving focus on cardinality.  

There is an intriguing parallel, however, between our hypothesis and the 
(perhaps neglected) work of Gattegno (1974) and Davydov (1990) both of 
whose curriculum for early number were based on developing awareness of 
relations between lengths (Dougherty, 2008), where what are symbolised are 
relations between objects (greater than, less than, double, half), rather than, say, 
using numerals to label ‘how many’ objects are in a collection. Gattegno 
introduced work on place value, as a linguistic ‘know-how’ and not something 
that required ‘understanding’. He developed a tens chart that can be used to 
provoke awareness of number relations (see Coles, 2014a for recent work on the 
chart). He also made extensive use of fingers (both the teacher’s and the 
children’s) as haptic symbolic devices for working on number relations, with a 
focus on correspondence and complementarity. We see awareness of number, in 
these curricula, arising out of linguistic skill and awareness of relations in a 
manner that does not emphasise a cardinal focus on counting collections. 
Linguistic skill and awareness of relations (which we see as aspects of 
ordinality) can be used to answer questions (as suggested above) such as what 
number is one bigger than a million. 

In the remainder of this paper, we investigate how TouchCounts (Sinclair and 
Jackiw, 2011) might shed light on how children develop ordinal awareness. 
Elsewhere, we have described how it supports the development of finger gnosis 
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(Sinclair and Pimm, 2014) and offers opportunities for children to work with 
cardinal aspects of numbers (Sinclair and Heyd-Metzuyanim, 2014). In this 
paper, we focus on children’s attention to the numerical symbols featured to 
study the possibly unique opportunities that TouchCounts offers for working 
with symbols in relation to other symbols. We analyse an episode in which a 
group of four-year-old children engage in a typical task that involves trying to 
“get to 100”.  

Methodology 

The data for this paper comes from a larger research project aimed at studying 
the use of TouchCounts with young children. The setting is a day-care facility in 
which the first author set up a desk in one corner of the room and children (ages 
three to five years old) were allowed to come and go as they wish (as per the 
culture of this day-care). This means that there were sometimes eight to ten 
children crowded around, and sometimes only one child. It also means that not 
every one of the twenty-four children in the day-care participated in the study; 
conversely, some children participated in almost every session. Most of the time, 
there are three to four children involved at a given time. The research sessions 
took place once every one or two weeks for a total of 22 sessions.  

The researcher allowed the children to explore, but also proposed certain tasks, 
depending on the child’s experience using TouchCounts. In this case, and 
throughout, the first author was the adult working with the children, and so the 
pronoun “I” will be used to describe her actions and intentions. The sessions 
lasted about one hour, but the children tended to spend between five and fifteen 
minutes at a time. In addition to exploring the effectiveness of different tasks, 
the study aimed to examine how the children attended to the visual, tangible and 
aural dimensions of the environment, and how this related to their actions, 
gestures and speech around number. For this paper, we have chosen an episode 
that occurred in one of the later research sessions in which four four-year-old 
boys are involved. We chose this episode because it highlighted the way in 
which the children attended to number symbols. Our aim is to show what is 
possible when children are in a context that allows for attention to symbol-
symbol relationships, in order to propose that research is needed to explore the 
potential, at primary school, of a more ordinal emphasis on number. 

Materials and Methods 

The TouchCounts Operating World 

We focus our description of TouchCounts on the Operating World, which was 
the one used in the episode we will analyse. Tapping on the screen in this world 
creates autonomous sets of numbers. The user starts by placing one or several 
fingers on the screen, which immediately creates a large disc that encompasses 
all the fingers, which bears a numeral corresponding to the combined number of 
fingers touching the screen, together with each one of the fingers creating its 
own, smaller (and unnumbered) disc centred on each fingertip (see Fig. 1a). 
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‘irregular’ in the sense that it could, and perhaps should, be named ‘five-ty-
five’). A focus on number-naming is a pre-cursor to an ordinal awareness of 
relative size. In considering 44 and then 55, Henri perhaps demonstrates the 
beginnings of an awareness of this relative ordering. He is not attending to the 
cardinality of the numbers, in the sense of showing concern about ‘how big’ the 
numbers are, but seems to be taken by a symbolic pattern (two digits the same). 

There is other evidence that the children’s attention is on the ordering of 
symbols associated with the herds they have created. They not only repeat the 
named numbers that TouchCounts speaks aloud but make statements about the 
order of the herds, as in when Dipak asserts that they made 100 and then 204 
and when Henri asserts that a trillion comes after one hundred. We see it as 
significant that he uses the phrase ‘comes after’ (an ordinal awareness) rather 
than, e.g., ‘is bigger than’. Addition takes place in time on TouchCounts. 
Perhaps because they are working with large numbers, it is virtually impossible 
for them to actually attend to the quantity of coloured discs in the herd, which 
means that they are not attending to the relationship between the number symbol 
and the collection of disks. They are certainly attending to the growing size of 
the disc (at one point, George says that they should make the herd be bigger than 
the screen; and, at several other points, the boys talk about the size of the herd 
and their desire to make it bigger), which may support a more qualitative 
comparison between numbers—as in the comparison of 100 and 204 then a 
trillion and 100. The fact they are so motivated to get to 100 seems important in 
orienting attention towards number symbols, since these alone (or the 
TouchCounts voice) let them know if they reach their goal. We hypothesise that 
since the iPad takes care of labelling and saying the number names, the 
children’s attention can shift to seeing how the digits relate to the spoken names 
and the order of numbers much larger than typically used in school at age 4. 

Discussion and conclusion 

This paper suggests that ordinality, arising out of awareness of symbol-symbol 
relationships (for example as encoded in the count) plays a vital, and often 
neglected, role in the early learning of number. Evidence for this proposal 
converges from three sources: neuro-scientific studies, the pedagogy of 
Gattegno (1974) and Davydov (1990) and an empirical study into the use of the 
innovative TouchCounts. There has only been space to offer one example of the 
data gathered on the use of TouchCounts, but this except showed children 
attending to and becoming engaged by symbol-symbol relations, sequencing and 
ordering, i.e., the more relational and ordinal aspects of number. Children of 
pre-school age (in the UK and Canada) are not exposed to numbers beyond 20 in 
the classroom, let alone the process of addition. Yet we see evidence of the 
mathematical thinking and playfulness that working more symbolically with 
number can occasion. We propose that research is needed to explore the 
potential of taking a more ordinal approach to the early learning of number. We 
are engaged in researching further the use of TouchCounts and other resources 
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that can be used to work with children on awareness of ordinality and number 
structure. TouchCounts allows, or perhaps even forces, attention to be placed in 
the symbols that we care about and their connections to each other. In addition 
to their pedagogical insight, we venture that the kinds of results we have 
presented in this paper can provide neuroscientists with richer and perhaps more 
pedagogically-sound approaches to studying the development of number. 
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Abstract 

This paper reviews and contrasts two lines of related studies done at our research 
centre on the use of the subtraction by addition strategy to solve symbolically 
presented two-digit subtractions: one wherein we used verbal protocol methods and 
one wherein the focus was on the analysis of children’s reaction times. In all studies, 
we investigated if children made use of the subtraction by addition strategy and 
whether they switch between the subtraction by addition strategy and the direct 
subtraction strategy to solve these problems, and if so whether they base their strategy 
choice on the relative size of the subtrahend. The results of both lines of study were 
quite different. Whereas the first type of studies yielded little or no evidence for the 
use of the subtraction by addition strategy among children, in the latter ones children 
did show clear evidence of not only the use of this strategy but also its flexible 
application on the basis of the relative size of the subtrahend. Theoretical, 
methodological and educational implications are discussed. 

Key words: flexible arithmetic, mental arithmetic, reaction times, strategy 
choice, subtraction, verbal protocols 

Introduction 

In the last four decades, a worldwide reform movement has changed some of the 
founding principles of elementary mathematics education. According to these 
reform-based ideas, instruction should no longer focus on solving school 
mathematics exercises quickly and accurately by means of the school-taught 
standard strategies (i.e., routine expertise), but children should solve 
mathematical tasks efficiently, creatively, and flexibly with a variety of 
meaningfully acquired strategies (i.e., adaptive expertise) (e.g., Hatano, 2003; 
Kilpatrick, Swafford and Findell, 2001; Verschaffel, Greer and De Corte, 2007). 
Although this idea of flexibility is also endorsed in the current attainment targets 
of mathematics education in Flanders (Vlaams Ministerie van Onderwijs en 
Vorming, 2010), Flemish publishers of mathematics textbooks and elementary 
school teachers still seem to value the fast and accurate execution of one 
strategy over the flexible use of different (self-invented) strategies (Torbeyns, 
De Smedt, Ghesquière and Verschaffel, 2009a). Moreover, there is still a lot of 
discussion whether strategy variety and flexibility should also be seen as 
important goals for mathematically weaker children (e.g., Kilpatrick et al., 2001; 
Verschaffel et al., 2007). 
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One of the mathematical subdomains in which strategy variety and flexibility 
can be especially aimed for and stimulated, is multi-digit mental subtraction. As 
for many other curricular domains, it has been shown that children develop 
various strategies to mentally solve subtractions (e.g., Beishuizen, 1993; 
Verschaffel et al., 2007). Most interesting within the context of the present paper 
is the observation that children sometimes solve subtractions by using an 
addition operation (Torbeyns et al., 2009a; Torbeyns, Ghesquière and 
Verschaffel, 2009; Verschaffel, Bryant and Torbeyns, 2012). They report, for 
instance, that they solve a problem such as 75 – 43 =. by asking how much 
needs to be added to the smallest number to get to the largest one, for example 
by doing 43 + 2 = 45 and 45 + 30 = 75, so the answer is 2 + 30 = 32. 
Consequently, by looking at the operation that underlies the solution process, 
two types of strategies can be distinguished: (1) direct subtraction strategies, in 
which the subtrahend is directly subtracted from the minuend (e.g., 75 – 43 =. by 
75 – 40 = 35, 35 – 3 = 32), and (2) subtraction by addition strategies, in which 
one determines how much needs to be added to the subtrahend to get to the 
minuend (e.g., 75 – 43 =. by 43 + 30 = 73 and 73 + 2 = 75, so the answer is 
30 + 2 = 32).  

Over the years, several studies at our centre have investigated the use of the 
subtraction by addition strategy on symbolically presented subtraction problems, 
using Lemaire and Siegler’s (1995) model of strategy change and strategy 
choice as a theoretical framework, and particularly focused on the parameter that 
refers to the adaptiveness or flexibility of individual strategy choices. In this 
model of strategy change and strategy choice, a strategy choice is called flexible 
if the individual chooses the strategy from his/her strategy repertoire that will 
lead fastest to an accurate answer. Based on a rational task analysis, direct 
subtraction is assumed to elicit few and/or small counting/calculation steps when 
the subtrahend is relatively small compared to the difference (e.g., 81 – 2 =.), 
but more and/or larger steps when the subtrahend is relatively large compared to 
the difference (e.g., 81 – 79 =.). Following the same logic, the opposite process 
is expected for the subtraction by addition strategy, i.e., few and/or small 
counting/calculation steps when the subtrahend is relatively large, but more 
and/or larger steps when the subtrahend is relatively small compared to the 
difference. This suggests that for problems such as 81 – 2 =., which are 
characterized by relatively small subtrahends, the calculation steps that have to 
be taken when performing a direct subtraction strategy are very small and easy, 
and such a quick and easy counting/subtraction process will lead very often to a 
correct answer. In contrast, for problems with a relatively large subtrahend 
compared to the difference such as 81 – 79 =., the calculation steps of the direct 
subtraction strategy are bigger and more error-prone compared to performing a 
subtraction by addition strategy.  
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Studies based on verbal protocol data 

Remarkably, well-documented evidence of elementary school children’s use of 
the subtraction by addition strategy is very scarce (e.g., De Smedt et al., 2010; 
Torbeyns et al., 2009a, 2009b). For example, Torbeyns et al. (2009a) asked 
Flemish second-, third-, and fourth-graders to mentally solve two-digit 
subtractions in two tasks. In the first task, the Spontaneous Strategy Use Task, 
children were asked to solve each problem as fast and as accurately as possible 
with their preferred strategy, and to verbally report both the answer and the 
strategy they used after solving each problem. Five out of the 15 presented two-
digit subtractions had a relatively large subtrahend (as in 81 – 79 =.) and were 
assumed to trigger the subtraction by addition strategy. Still, children hardly 
applied this strategy spontaneously: Less than 10% of the second- and third-
graders (resp. 4% and 8%) and only 15% of the fourth-graders spontaneously 
applied the subtraction by addition strategy on at least one subtraction with a 
relatively large subtrahend. In the second task, the Variability on Demand Task, 
children were asked to generate up to five different strategies for solving four 
two-digit subtractions. In this task, two subtractions were assumed to trigger the 
subtraction by addition strategy. Surprisingly, the frequency of subtraction by 
addition strategies hardly differed from the first task: Only 4% of the second-
graders, 13% of the third-graders, and 21% of the fourth-graders reported 
subtraction by addition as a possible way to solve (at least one of) the two 
problems. On the basis of these results, the authors concluded that the 
subtraction by addition strategy was not included in most children’s strategy 
repertoire. 

Similar results were reported by Torbeyns et al. (2009b) when comparing two 
groups of second- to fourth-graders who were asked to write down their solution 
steps when solving symbolically presented two-digit subtractions. These two 
groups only differed in the instruction received about the subtraction by addition 
strategy. In the first group, the no-instruction-group, no instruction about this 
strategy was given, whereas the second group, the instruction group, had 
followed a mathematics textbook from first grade on that focused on the 
subtraction by addition strategy as a valuable alternative for the direct 
subtraction strategy for problems with a large subtrahend. Both groups of 
children were asked to solve the same 16 two-digit subtractions in whatever way 
they wanted, and to write down their solution steps. Half of the subtractions 
were designed with a large subtrahend and a difference smaller than 10, to elicit 
the use of subtraction by addition as much as possible. However, only 2% of the 
children from the no-instruction-group and not more than 15% of the children 
from the instruction group used subtraction by addition at least once. Again, 
these authors concluded that the subtraction by addition strategy was hardly 
used, even by children who had received instruction and practice in this strategy. 

Taking into account the above mentioned results, De Smedt et al. (2010) tried to 
stimulate the use of subtraction by addition in third-grade children through an 
implicit and an explicit learning environment. Participants were divided over the 
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two learning environments, both of which involved four training sessions. In the 
implicit learning environment, children were confronted with an unusually large 
number of two-digit subtractions with a relatively large subtrahend. This was 
done because Flemish textbooks hardly contain this type of subtractions, 
although they are most suitable for discovering the computational advantage of 
the subtraction by addition strategy. Children in the explicit learning 
environment were instructed to solve each problem once with direct subtraction 
and once with subtraction by addition, which was explained at the beginning of 
each training session. None of the children from the implicit learning 
environment reported using the subtraction by addition strategy in the test 
session halfway the training, at the end of the training, or in the retention session 
one month later. In the explicit learning environment, only 6% of the children 
reported using the subtraction by addition strategy in the test session after two 
training sessions, only 11% reported subtraction by addition by the end of the 
training sessions, and only 10% reported it one month later. From these low 
percentages, the authors inferred that – even in the explicit learning environment 
– third-grade children experienced great difficulties with picking up and 
integrating the subtraction by addition strategy into their strategy repertoire. 

One important limitation of the studies reviewed above is that they relied 
exclusively on verbal or written data to detect the subtraction by addition 
strategy. These methods might, however, not be the best way to identify certain 
types of mental calculation strategies (e.g., Ericsson and Simon, 1993). 
Consequently, the results of previous research on children’s use of subtraction 
by addition might represent an underestimation of their actual use of this 
strategy. In this respect, we point to the inconsistency between the verbal reports 
and children’s reaction time data in De Smedt et al. (2010). The vast majority of 
the third-graders in this study only reported to use the direct subtraction strategy. 
However, if this had actually been the case, there should have been an increase 
in children’s reaction times from problems with relatively small subtrahends 
(e.g., 81 – 2 =.) over problems with medium-sized subtrahends (e.g., 81 – 43 =.) 
to problems with relatively large subtrahends (e.g., 81 – 79 =.), because 
according to the above-mentioned rational task analysis, subtracting a larger 
subtrahend requires more and/or larger calculation steps. The observed reaction 
time patterns, however, argue against this interpretation: not only problems with 
relatively small but also problems with relatively large subtrahends were solved 
faster than problems with medium-sized subtrahends. These reaction time data 
thus suggest that the verbal report data were not always in line with the 
strategies actually applied by these children. More specifically, they indicate that 
the subtraction by addition strategy might have been used more frequently than 
suggested by the children’s verbal reports.  

We therefore aimed at studying the use of subtraction by addition with other, 
non-verbal methods for inferring strategy use. More particularly, we applied 
non-verbal methods for investigating the flexible use of subtraction by addition 
in both single- and multi-digit subtraction, first in adults and then in both 
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typically developing children and children with mathematical learning 
disabilities. In the present paper, we focus on the reaction time studies with 
children in the number domain 20-100 (for other studies see Peters, 2013).  

Studies based on reaction time data  

In a first reaction-time study (Peters et al., 2013), we investigated fourth- to 
sixth-grade typically developing children’s use of subtraction by addition by 
offering them four types of two-digit subtractions in both the standard 
subtraction format (81 – 37 =.) and in an addition format (37 + . = 81). We 
distinguished among four subtraction types on the basis of the combination of 
the magnitude of subtrahend (S) compared to difference (D), i.e., S < D or 
S > D, as well as the numerical distance between S and D, i.e., small or large. 
Small-distance problems were defined by S and D differing by less than 10, 
whereas in large-distance problems S and D differed by at least 10 and either S 
or D was a one-digit number. We analysed children’s use of the direct 
subtraction and the subtraction by addition strategy in two steps. In the first step, 
based on Groen and Poll’s (1973) analyses in the domain of single-digit 
arithmetic, we compared the fit of three linear regression models in which 
children’s reaction times were predicted by respectively the subtrahend (S), the 
difference (D), and the minimum of the subtrahend and the difference 
(min[D, S]). The first model represents children only using the direct subtraction 
strategy: reaction times are best predicted by the size of the known subtrahend 
and thus indicative of the consistent use of the direct subtraction strategy, 
because it takes longer to subtract 79 from a given number than to subtract 2 
from that number. The second model represents the consistent use of the 
subtraction by addition strategy: children’s reaction times are best predicted by 
the size of the to-be-determined difference and thus indicative of the use of the 
subtraction by addition strategy, because it takes longer to determine how much 
needs to be added to get at a given number when the difference between both 
numbers is relatively large (“How much needs to be added to 2 to have 81?”) 
than when it is relatively small (“How much needs to be added to 79 to have 
81?”). Finally, the third model represents the flexible use of both direct 
subtraction and subtraction by addition, as reaction times are best predicted by 
the minimum of the subtrahend and the difference. In the second step, we 
compared reaction times on subtractions presented in the standard subtraction 
format and in the addition format. The results of both types of analyses 
converged to the conclusion that fourth- to sixth-children flexibly switched 
between direct subtraction and subtraction by addition based on the combination 
of two features of the subtrahend: If the subtrahend was smaller than the 
difference (e.g., 81 − 2=.), direct subtraction was the dominant strategy; if the 
subtrahend was larger than the difference (e.g., 83 – 79 =.), subtraction by 
addition was mainly used. However, this pattern was only observed when the 
numerical distance between subtrahend and difference was large.  
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Afterwards, we investigated the use of subtraction by addition in children with 
mathematical learning disabilities (MLD) (Peters et al., 2014). Especially for 
these children the idea of stimulating strategy variability and flexibility is still 
subject to discussion among scholars (Kilpatrick et al., 2001; Verschaffel et al., 
2007). Some researchers and policy makers advise to teach MLD children only 
one solution strategy, others advocate stimulating the flexible use of various 
strategies, as for typically developing children. To contribute to this debate, we 
investigated the use of the subtraction by addition strategy to mentally solve 
two-digit subtractions in 44 children with MLD. We conducted a replication of 
the previous study, and thus again used two non-verbal research methods to 
infer strategy use patterns. First, we fitted three regression models to the reaction 
times of 32 two-digit subtractions. Additionally, we compared performance on 
problems presented in the standard subtraction and in the addition format. On 
the basis of these analyses, we found that MLD children – similar to their 
typically developing peers – flexibly switch between the traditionally taught 
direct subtraction strategy and subtraction by addition, based on the relative size 
of the subtrahend. These findings challenge typical special education classroom 
practices, which only focus on the routine mastery of the direct subtraction 
strategy.  

Discussion and conclusion 

We have reported on two lines of related studies on elementary school children’s 
use of the subtraction by addition strategy to solve symbolically presented two-
digit subtractions: one wherein we used verbal protocol methods and one 
wherein the focus was on the analysis of children’s reaction times. In all studies, 
we investigated if children made use of the subtraction by addition strategy and 
whether they switch between the subtraction by addition strategy and the direct 
subtraction strategy to solve the problems. And, if so, whether they base their 
strategy choice on the relative size of the subtrahend.  

The results of these two lines of study were quite different. Whereas the first 
type of studies yielded little or no evidence for the use of the subtraction by 
addition strategy among children, in the latter ones children did show clear 
evidence of not only the use of this strategy but also its flexible application on 
the basis of the relative size of the subtrahend. Based on the convincing 
reaction-time findings reported in the latter set of studies, we have to question 
why in previous research children did not report using the subtraction by 
addition strategy. Were they not aware of the calculation steps they had 
executed? Did they have difficulties in articulating precisely how they found the 
answer (and therefore reported the direct subtraction strategy, which they had 
learnt to verbalize during the numerous mathematics lessons wherein they had 
practiced that strategy)? Or, did they deliberately hide the use of the subtraction 
by addition strategy because they taught it was not valued, or even not allowed, 
to solve a subtraction problem in that way? All these explanations seem 
possible, and should be examined in more detail in further research. However, 
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the two non-verbal research methods used in the presented reaction time studies 
have their limitations too (see Peters, 2013). Other research methods, such as 
using eye-movements and neuroscientific data, could therefore be used in future 
studies to further investigate and enhance the validity of both verbal and non-
verbal research methods through triangulation.  

From a practical point of view, teachers, teacher trainers, and material 
developers should be made aware of the possible problems linked to asking 
children how they solved a problem, and, more specifically, of the fact that 
children’s verbal protocols may not always reflect their actual strategies.  
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PERFORMANCE OF FOURTH GRADERS IN JUDGING 
REASONABLENESS OF COMPUTATIONAL RESULTS FOR WHOLE 

NUMBERS 

Der-Ching Yang, Graduate Institute of Mathematics and Science Education, 
National Chiayi University, Taiwan 

Abstract 

To investigate the performance of fourth graders in and the use of methods for judging 
the reasonableness of computational results pertaining to whole numbers, 790 fourth 
graders from Southern Taiwan were selected to participate in this study. Results 
showed that the performance of the participants in solving problems related to judging 
the reasonableness of computational results was poor. Only one-fourth of the students 
could apply the number-sense-based method to answer the problems in the answer tier. 
Several misconceptions were found to exist.  

Key words: fourth grade, number sense, reasonableness judgement 

Introduction  

Teaching and learning number sense are considered key components of 
mathematics education internationally (Berch, 2005; Dunphy, 2007; Menon, 
2004; McIntosh et al., 1997; Yang and Wu, 2010; Yang and Li, 2013). In 
particular, studies have shown that a lack of number sense is likely to result in 
mathematics learning difficulties (Gersten, Jordan and Flojo, 2005; Jordan, 
Glutting and Ramineni, 2010; Mazzocco and Thompson, 2005). This shows the 
importance of number sense.  

The capability to judge the reasonableness of computational results is considered 
a key characteristic of number sense (McIntosh et al., 1997; Yang and Wu, 2010; 
Yang and Li, 2013). In addition, Principles and Standards of School 
Mathematics, which is published by the National Council of Teachers of 
Mathematics [NCTM], states that all students should be able to “judge the 
reasonableness of computational results” (NCTM, 2000, p. 32). This shows the 
importance of judging the reasonableness of results. However, few studies have 
focused on this topic (Alajmi and Reys, 2007). Therefore, the objective of the 
current study was to examine the performance of fourth graders in judging the 
reasonableness of results pertaining to whole numbers.  

“Judging the reasonableness of computational results” implies the application of 
flexible methods by a person to judge the reasonableness of an answer. For 
example, when estimating the height of 101 towers with 101 floors, children 
should use information they know, such as each floor being approximately 4 m 
high, and thereby determine the height of the 101 floors to be approximately 400 
m. Consequently, 450 m is a reasonable answer, whereas 150, 250, and 350 m 
are not reasonable answers (Yang and Wu, 2010). 
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Methods 

Sample 

Seven hundred and ninety fourth graders from elementary schools in Southern 
Taiwan were selected to participate in this study. The schools considered in this 
study included those with large, middle-sized, and small student classes, and the 
students in these schools were from a wide range of socioeconomic backgrounds. 

Instrument 

A Web-based two-tier number sense diagnostic test designed by Yang, Li and 
Chiang (2007) to assess the number sense performance of elementary school 
children was used in this study. The first-tier test assessed the answers of the 
students to number-sense-related questions, and the second-tier test examined 
the reasons for the choices made in the first-tier test. The Cronbach α of the two-
tier test was .828. Four categories were defined in the Web-based two-tier test, 
and each category contained eight questions. The test contained 32 questions in 
total. Because the focus of this study was on whole numbers, the questions of 
only one category (judging the reasonableness of computational results) are 
reported here. 

Data Analysis 

The test was administered online, and all answers were collected online. The 
answers were then analysed by using SPSS 17.0 for obtaining statistical results. 
The data were analysed on a computer. For the first-tier test, the computer 
classified the answers into correct and incorrect answers and calculated the 
percentage of both answers. For the second-tier test, the selections of the 
students were classified into a number-sense (NS)-based method, a rule-based 
method, misconceptions, and guessing by the computer, according to the choice 
they made.  

Results  

The eight questions related to judging the reasonableness of computational 
results, the percentage of correct answers of the sample students for each 
question in the first-tier test, and the percentage of responses for each question 
in the second-tier test are shown in Tab. 1. The results show that the average 
correct percentage for the eight items ranged from 31.8% to 60.8%. The average 
correct percentage for all the items was 51.7%. In addition, the results show that 
the percentage of students using the NS-based method to respond to the 
questions ranged from 7.9% to 38.2%. The mean percentage of students using 
the NS-based method to answer the questions was only 24.7%. However, the 
percentage of students who answered on the basis of misconceptions ranged 
from 24.2% to 51.3%. The average percentage for misconception for all the 
items was approximately 38.1%. Moreover, the range of percentages for 
guessing was 12.1% to 22.1%, and the average percentage for guessing for all 
the items was 15.7%.  
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Question First-tier test Second-tier test 

 Correct % 
NS- 

based 
Rule- 
Based 

Misconception Guessing 

Item 1 51.6% 38.1% 7.6% 40.7% 12.6% 
Item 2 31.8% 15.2% 21.1% 51.3% 12.1% 
Item 3 52.0% 38.2% 7.9% 39.3% 14.4% 
Item 4 45.6% 19.8% 20.0% 46.0% 13.7% 
Item 5 52.7% 18.0% 31.0% 38.5% 12.6% 
Item 6 59.0% 7.9% 43.0% 27.5% 21.3% 
Item 7 59.9% 36.1% 16.7% 24.2% 22.1% 
Item 8 60.8% 24.1% 21.5% 37.6% 16.6% 
Total 51.7% 24.7% 21.1% 38.1% 15.7% 

Tab. 1: Performance of students in judging reasonableness of computational results 

In the first (answer)-tier test, the average percentages of the correct and incorrect 
answers for the eight items were 51.7% and 48.3%, respectively. In the second 
(reason)-tier test, the average percentages for the use of the NS-based method, 
rule-based method, misconceptions, and guessing for the eight items were 
24.7%, 21.9%, 37.7%, and 15.7%, respectively.  

The details of the responses of the students to each item are as follows: 

Item 1. Whose statement is the most reasonable?  
            Joe: “I can fit 5000 textbooks into my school bag.” 
            Lin: “I can lift a pig that weighs 5000 grams.” 
            Kan: “I can fit 5000 M&M’s into my mouth.” 

Joe 
11.5% 

4.1% 
My school bag is very large, so 5000 textbooks can certainly 
fit into it. 

5.1% 
Textbooks are very thin, so my school bag can hold 5000 
textbooks. 

2.3% I am guessing.  

Lin * 
51.2% 

38.1%# The amount of 5000 g is equal to 5 kg, which I can lift.  
7.5% The amount of 5000 g is equal to 0.5 kg, which I can lift.        
5.6% I am guessing.  

Kan 
21.2% 

1.3% 
I like eating M&M’s, so I can fit 5000 M&M’s in my mouth 
all at once.  

17.5% 
Each M&M’s is very small, so I can fit 5000 M&M’s in my 
mouth all at once.  

2.4% I am guessing.  
Can’t 
tell 

14.9% 

12.7% I have not actually done it, so I can’t judge.  

2.2% I am guessing.  
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Notes. The difficulty index and discrimination power of this item were .526 and .266. 
         * indicates correct answer; # indicates the NS-based method. 

Several misconceptions were found. For example, approximately 11.5% of the 
fourth graders believed that “My school bag is very large, so 5000 textbooks can 
certainly fit into it” or “Textbooks are very thin, so my school bag can hold 5000 
textbooks”; 21.2% of the students believed that “I can fit 5000 M&M’s into my 
mouth.”  

Item 2. How many digits are there in the sum of 2 three-digit numbers?  

Note. The difficulty index and discrimination power of this item were .317 and .484. 

Several misconceptions were found. For example, approximately 50% of the 
students believed that because 3 + 3 = 6, the sum of 2 three-digit numbers 
should be a six-digit number, or because thirty-something plus thirty-something 

Three-
digit 

number 
 

7.6% 

3.6% 
A three-digit number plus another three-digit number 
must be a three-digit number.  

3.2% 
Because 100 + 100 = 200, a three-digit number plus 
another three-digit number should also be a three-digit 
number. 

0.8% I am guessing. 

Four-
digit 

number 
9.8% 

3.7% 
The number will become larger after the addition, so a 
three-digit number plus another three-digit number gives a 
four-digit number.  

4.3% 
Because 900 + 900 = 1800, a three-digit number plus 
another three-digit number should be a four-digit number. 

1.8% I am guessing. 

Three-
digit 

number 
or four-

digit 
number 
31.8% * 

15.2%#

A small three-digit number plus another small three-digit 
number could be a three-digit number, and a large three-
digit number plus another large three-digit number could 
yield a four-digit number. 

9.4% 

Because 100 + 100 = 200, a three-digit number plus 
another three-digit number can be a three-digit number; 
however, because 900 + 900 = 1800, the sum can also be 
a four-digit number. 

4.2% 
There are two different selections in this choice, so this is  
the answer. 

3.0% I am guessing. 

Six-
digit 

number 
50.4% 

33.5% 
Because 3 + 3 = 6, the answer should be a six-digit 
number. 

10.4% 
Because thirty-something plus thirty-something equals 
sixty-something, a three-digit number plus another three-
digit number should be a six-digit number. 

6.5% I am guessing. 
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equals sixty-something, a three-digit number plus another three-digit number 
should be a six-digit number. 

Item 3. Larry says: I drink 500____of milk every morning.  
Which of the following measurement units can best complete the sentence?  

Liter  
（L） 
21.3% 

12.2% 
Compared with the other answers, it is the most rational 
answer.  

5.1% 
An amount of 1 L is very little, so I can drink 500 L of 
milk.  

4.1% I am guessing. 

Deciliter 
（dL） 
24.2% 

11.9% 
If compared with the other answers, it is the most rational 
answer.  

8.4% An amount of 1 dl isn’t much, so I can drink 500 dl. 
3.9% I am guessing. 

Milliliter 
(mL) 

52.0%* 

38.2%#
I drink approximately 350 mL of milk every day, so the 
measurement unit “mL” is rational.  

7.9% An amount of 1 mL isn’t much, so I can drink 500 mL. 
6.0% I am guessing. 

Can’t 
tell 

2.2% 

1.7% Without measuring, I can’t decide the answer. 

0.4% I am guessing. 

Note. The difficulty index and discrimination power of this item were .504 and .333. 

Many students can remember that 1 L equals 1000 mL. However, they cannot 
estimate how much 500 L is. Therefore, approximately 21.3% of the students 
believed that “I drink 500 L of milk every morning” is correct.  

Item 4. John is 10 years old this year and he is 130 centimetres tall. Under 
normal circumstances, how tall will he be when he is 20 years old? 

130 
4.7% 

3.4% Heights of 260, 350, and 170 cm are too large. 
1.3% I am guessing. 

 170 
45.6%* 

20.0% 
Heights of 260 and 350 cm are too large, and a height of 
130 cm is too small.  

19.8%# 
He’s only 10 years old and already has a height of 130 cm. 
After 10 more years, he’s sure to become taller, so 170 cm 
is the most rational answer.  

5.6% I am guessing. 

260 
44.8% 

9.9% 
Because 130 ÷ 10 = 13, he grows 13 cm a year. Therefore, 
when he is 20 years old, he should be 13 × 20 = 260 cm.  

29.5% 
He’s grown 130 cm in ten years, and in the next 10 years, 
he should grow another 130 cm. Therefore, 130 + 130 = 
260. 

5.4% I am guessing. 
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350 
4.6% 

3.2% 
A 20-year-old adult should be very tall, so a height of 350 
cm is the most rational answer.  

1.4% I am guessing. 

Note. The difficulty index and discrimination power of this item were .453 and .264. 

Approximately 44.8% of the students incorrectly believed that “because 130 ÷ 
10 = 13, he grows 13 cm a year, and therefore, the height at 20 years of age 
should be 13 × 20 = 260 cm” or “He’s grown 130 cm in ten years and in 10 
more years he should grow another 130 cm, leading to a total height of 130 + 
130 = 260.”  

Item 5. What is the height from the floor to the ceiling in a classroom? Which of 
the following statements is reasonable? 

300 cm  
52.7%* 

6.2% This is what the textbooks say.  
24.8% Values of 300 mm and 300 m are impossible.  

18.0%#
The height from the floor to the ceiling is approximately 
equal to the height of two children, which is 
approximately 300 cm.  

3.7% I am guessing. 

300 mm 
9.6% 

1.3% 
The floor is not very far from the ceiling, so the height 
should be 300 mm. 

3.0% Values of 300 cm and 300 m are too large. 
3.0% The value of 300 cm is too small, and 300 m is too large. 
2.3% I am guessing. 

300 m  
33.3% 

14.2% 
The values of 300 cm and 300 mm are too small, so 300 
m is the most rational answer. 

14.2% 
It is very far from the floor to the ceiling, so 300 m is the 
most rational answer. 

4.9% I am guessing. 
Can’t tell 

4.4% 
2.8% Without measuring, I can’t decide the answer. 
1.7% I am guessing. 

Note. The difficulty index and discrimination power of this item were .542 and .434. 

Approximately 33.3% of the students incorrectly thought that the height from 
the floor to the ceiling of a classroom was 300 m. This shows that many students 
cannot gage the meanings of meter and centimetre. 

Discussion and conclusion 

The results showed the poor performance of sample students in judging the 
reasonableness of results. Only approximately one-fourth of the students could 
apply the number-sense-based method to solve problems. The results are 
consistent with those of previous studies conducted in Taiwan (Li and Yang, 
2010; Yang and Li, 2008). In addition, approximately one-third of the sample 
students had misconceptions when judging the reasonableness of results. Several 
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misconceptions were found to exist. For example, 11.5% of the fourth graders 
believed that “I can fit 5000 textbooks into my school bag,” and 21.1% of the 
fourth graders believed that “I can fit 5000 M&M’s into my mouth.” 
Approximately 50% of the students thought that the sum of 2 three-digit 
numbers should be a six-digit number because 3 + 3 = 6, and approximately 
21.3% of the fourth graders believed that “I drink 500 L of milk every morning.” 
Approximately 44.8% of students thought that “because 130 ÷ 10 = 13, his 
height increased by 13 cm a year, and therefore, at the age of 20 years, his 
height should be 13 × 20 = 260 cm” or “he’s grown 130 cm in ten years, and in 
10 more years he should grow another 130 cm.” These findings show that the 
sample students have major misconceptions when judging the reasonableness of 
results. This implies that number-sense-related activities should be introduced in 
the mathematics curriculum to improve the number sense of Taiwanese children.  

In summary, the key findings of this study indicated that the sample students 
performed poorly in answering questions related to judging the reasonableness 
of computational results and had high percentages of misconceptions. In 
addition, more than 15% of the sample students made their reason choice by 
guessing. It appears that some of the sample students had low confidence when 
answering these questions. Although the national curriculum in Taiwan 
emphasises number sense, few activities are found in the elementary 
mathematics textbooks. To enhance the number sense of students, number-
sense-related activities should be introduced in the mathematics curriculum. A 
major contribution of this study is that it shows that the Web-based two-tier 
number sense diagnostic test can be used to detect the number sense 
performance of students through their answer choice and reason choice. The test 
showed the poor performance of students in judging the reasonableness of 
computational results, the existence of several major misconceptions, and the 
use of guesswork by students for obtaining the answer and reasons. 
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THEME 3: ASPECTS THAT AFFECT WHOLE NUMBER LEARNING 

Maria G. Bartolini Bussi(1), Maitree Inprasitha(2) 

(1) University of Modena and Reggio Emilia, Italy 
(2) Khon Kaen University, Thailand 

Introduction  

While theme 2 addresses thinking, learning and development aspects of whole 
number learning, and refers mainly to the learner’s side, theme 3 addresses the 
conditions that affect whole number learning and includes cultural, social, 
political and institutional aspects of the teaching-learning activity. In this 
perspective, awareness of the context where an empirical study is carried out is 
essential to understand the choices, methodologies and findings reported by 
authors. This awareness is slowly entering in the international community of 
mathematics educators (Bartolini Bussi and Martignone, 2013), although it has 
been highlighted in the past (see Durkheim, 1911, quoted by Mercier & Quilio) 
and summarised by the sentence “Teaching is a cultural activity” (Stigler and 
Hiebert, 1999, p. 86) quoted by Inprasitha. 

The thirteen papers accepted for this theme address contextual issues from 
different perspectives. We summarise them as follows. 

Language 

The contribution of participants from many different contexts offers a unique 
possibility for first hand reports about the language issues, which may foster or 
hinder the construction of mathematical meanings.  

For instance, Chinese language mirrors, in a transparent way, place value 
representation (Ni), as do other Asian languages, like Thai (Inprasitha) or Maori 
language (Young-Loveridge). The consistency of number naming systems with 
the base-ten system has been hypothesised to assist children in doing well on 
tasks relevant to base-10 values, such as counting skills and place-value 
competence. However, according to Ni, this interpretation is difficult because 
we lack studies controlling for cultural or family processes (e.g., parental 
expectation, parental assistance, and preschool education) as confounding 
variables that could also influence children’s numerical development. Rather, 
we have evidence that adult instruction, also in the family context, may play a 
major role (Ma and Cobb, 1995). 

On the contrary, European languages are not so transparent. We may quote the 
French case (where 92 is said as “four twenty twelve,” corresponding to 4 x 20 + 
12) that, according to Dehaene (1997) introduces additional difficulties for 
French speaking children. This French reading is different from the English 
reading. Peter-Koop et al. report also the German language structure for naming 
2-digit numbers, that is based on ones and tens as opposed to tens and ones in 
the base-10 numeral form (e.g., 26 is read Sechsundzwanzig, that is six and 
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countries/regions (France, Belgium, Quebec and the French Swiss). Here, 
language is viewed as only one of the variables to be considered, when 
addressing the functioning principles of education systems. 

Tools 

There is a cluster of papers addressing different kinds of tools, either traditional, 
or related to information and communication technologies. The use of tools is 
reported, predominantly, by authors coming from the Western world (consistent 
with the report by Borba and Bartolini Bussi (2008) at the Symposium held in 
Rome to celebrate the centennial of the foundation of ICMI).  

In the papers the following tools are in focus: 

- The number line (Bartolini), with the historic-epistemological, cognitive and 
didactical analysis of a very popular teaching aid; 

- Tallies and sequences of tallies (finite sequence, of course, eventually empty) 
as a working definition of natural number with prospective teachers (Hodgson 
and Lajoie); 

- Multi-base arithmetic blocks and arithmetic rack or Slavonic abacus 
(Rottmann), with the report of practices for special needs education, realised in 
Germany, drawing on a four-phase-model to support the development of basic 
computational ideas; 

- Cuisenaire rods (Ball and Bass), with the report of a case of instruction that 
aims to cultivate productive mathematical persistence in elementary students in 
the context of a challenging problem of whole number arithmetic in the context 
of a mathematics programme, the Elementary Mathematics Laboratory (EML), 
for economically disadvantaged fifth graders; 

- Tools from everyday life such as a sheet of stamps with regular arrangements 
in ten lines and ten columns (Inprasitha); 

- Multiplicative mini-games in a special case of computer games (van den 
Heuvel-Panhuizen et al.) played in different formal and informal contexts, with 
the report of a large-scale cluster-randomized longitudinal experiment carried 
out in the Netherlands; 

- A duo of artefacts (Soury-Lavergne and Maschietto), constituted by a 
mechanical arithmetic machine (inspired by the instrument designed by Pascal 
in the 17th century) and its digital counterpart, to enable six-year old students to 
learn about numbers. The experiment, developed in collaboration between a 
French and an Italian teacher educator shows the separate conceptualisation 
processes fostered by the physical and the virtual instruments; 

- An intentionally designed virtual manipulative (place-value chart, that runs on 
I-pads), discussed by Ladel and Kortenkamp, and contrasted with other tools 
such as multi-base arithmetic blocks with reference to a flexible understanding 
of place value. 
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The last two papers address issues relating to the comparison of potentialities of 
concrete and virtual manipulatives in classroom experiments, and are important 
given that these discussions are sometimes skipped in the enthusiastic and 
uncritical presentation of virtual manipulatives as easier and cheaper surrogates 
of concrete ones (see http://nlvm.usu.edu/en/nav/siteinfo.html). 

Teacher education 

An overarching issue that encompasses the conditions for the learning of whole 
number arithmetic concerns teacher education and the effects it may have on 
students’ mathematical working and attitude. All the above papers, in some 
sense, hint at the importance of teacher education for the effective use of either 
language or tools.  
Two specific programmes for teacher education are addressed within theme 3: 
- A programme for pre-service teacher education developed in Canada (Hodgson 
and Lajoie) that stresses the complementary roles played by mathematicians and 
mathematics educators; 
- A programme developed in Thailand in order to adapt the Japanese Lesson 
Study to the Thai context (Inprasitha). 

Questions for discussion in the working group 

Different kinds of papers are collected in this theme, with partial overlapping 
with issues addressed in the other themes. Some of them address general 
background issues: the number line in the Western tradition (Bartolini); the two 
basics (i. e. basic mathematic concepts and basic mathematic skills) in the 
Chinese tradition (Ni). But most papers report on empirical studies in different 
contexts (Australia, Canada, France, Germany, Hong Kong, Italy, New Zealand, 
The Netherlands, Thailand, US). In some cases the empirical studies address 
special education (Rottman, Bakker) or economically disadvantaged pupils (Ball 
and Bass). 

Some of the questions raised in the Discussion Documents are still open and 
need to be addressed or deepened during group discussion: 

(1) What main challenges for learning whole number arithmetic are faced by 
marginalized students or, in general, in difficult contexts?  

(2) Are there classroom studies on the comparison of different kinds of tools 
(e.g. concrete vs. virtual ones)? 

(3) Which tools used in different contexts exploit traditional activities 
around whole number arithmetic? It would be interesting to prepare an 
annotated list of references of tools used in classroom practice, with 
videos to explain, in more illustrative ways, how the tool is, or might be, 
used.  
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LEARNING MULTIPLICATIVE REASONING BY PLAYING 
COMPUTER GAMES 

Marjoke Bakker(1)(2), Marja van den Heuvel-Panhuizen(1), Alexander Robitzsch(3) 
(1) Freudenthal Institute, Faculty of Science & Faculty of Social and Behavioural 

Sciences, Utrecht University, Netherlands, (2) Centre for Language Studies, Radboud 
University Nijmegen, Netherlands, (3) Federal Institute for Education Research, 
Innovation and Development of the Austrian School System, Salzburg, Austria 

Abstract 

This paper reports about a large-scale longitudinal field experiment investigating the 
effects of online mathematics mini-games on second- and third-graders’ multiplicative 
reasoning abilities. The study included students in regular primary education (n = 719) 
and special primary education (n = 81). There were three experimental conditions: 
playing multiplicative mini-games at school, at home, and at home with debriefing at 
school. In the control condition mini-games on other mathematical topics were played 
at school. For regular primary education, results showed that the mini-games were 
most effective in the home-school condition, where they promoted both multiplicative 
skills and insight (significant ds ranging from 0.22 to 0.29). In the school condition, an 
effect was only found for insight in Grade 2 (d = 0.35); in the home condition there 
were no effects. In special primary education, a significant effect was found for the 
school condition in improving multiplicative fact knowledge (d = 0.39). 

Key words: mathematics computer games, multiplicative reasoning, primary 
education, special primary education 

Introduction 

Computer games are more and more becoming part of primary school 
mathematics education (e.g., Alexopoulou et al., 2006). The most important 
benefits of games are their motivational characteristics (e.g., Garris, Ahlers and 
Driskell, 2002), and their possibility to provide immediate feedback (e.g., 
Prensky, 2001). Also for students in special education, mathematics computer 
games are promising educational tools (e.g., Brown et al., 2011). Yet, although 
meta-analyses did show that in general the use of ICT in mathematics education 
positively affects learning outcomes (Li and Ma, 2010; Slavin and Lake, 2008), 
there is still insufficient evidence for the effectiveness of computer games in 
particular (Bai et al., 2012). The present paper aims to provide such evidence for 
the domain of multiplicative reasoning (multiplication and division), for both 
regular and special primary education. 

In learning multiplicative reasoning, it is important to develop ready knowledge 
of number facts (the multiplication tables), and skills in calculating multiplication 
and division operations. In addition, students need to develop insight in, or 
understanding of, multiplicative number relations (e.g., Anghileri, 2006; Nunes et 
al., 2012). They should, for example, have insight into the factors of numbers and 
the properties of multiplication, like the commutative property (e.g., 3 × 7 = 7 × 3) 
and the distributive property (e.g., 6 × 7 = 5 × 7 + 1 × 7). These three aspects of 
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multiplicative reasoning ability – number fact knowledge, operation skills, and 
insight – parallel the three types of knowledge often distinguished in mathematics 
education: declarative knowledge, procedural knowledge, and conceptual 
knowledge (see, e.g., Miller and Hudson, 2007). 

Though most of the computer games and other educational software currently 
used in mathematics education focus on number fact knowledge and operation 
skills (e.g., Mullis et al., 2012), computer games can also be employed for 
developing mathematical insight (e.g., Klawe, 1998). The instructional power of 
games that are focused on insight development is often related to the educational 
theory of experiential learning (see, e.g., Kebritchi, Hirumi and Bai, 2010). In 
such games, students can learn new concepts and rules by exploring and 
experimenting with different mathematical strategies and discovering which 
strategies are convenient. With experiential learning games, class discussion – 
also called debriefing – is important to promote reflection on and generalisation 
of what is learned (e.g., Garris et al., 2002; Klawe, 1998). 

Educational games can be played in different settings. Playing in a formal 
setting at school has the advantage that all instructional aspects of the games can 
be exploited by discussing them in a lesson. However, playing in an informal 
setting at home has advantages as well. Besides the benefit of extra learning 
time (e.g., Honey and Hilton, 2011), playing at home may lead to increased 
learner control, which is often mentioned as an important motivating factor of 
educational computer games (e.g., Malone and Lepper, 1987). A possible 
approach that combines the advantages of playing at school and those of playing 
at home, is playing the games at home with a debriefing at school (see Kolovou, 
Van den Heuvel-Panhuizen and Köller, 2013). 

Research question 

Does an intervention with multiplicative mini-games – either played at school, 
played at home, or played at home and debriefed at school – affect regular and 
special primary education students’ learning outcomes in multiplicative 
reasoning; i.e. knowledge, skills, and insight? 

Method 

Study set-up 

To answer our research question we set up a large-scale cluster-randomised 
longitudinal experiment (see also Bakker, Van den Heuvel-Panhuizen and 
Robitzsch, 2015a, 2015b). The experiment included three experimental conditions 
with multiplicative mini-games – playing the games at school integrated in a 
lesson, playing the games at home without attention at school, and playing the 
games at home with a debriefing at school – and one control condition in which 
the students played at school mini-games on other mathematics topics. In the 
conditions where the games were played at home, the games were presented as a 
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Results 

For the students in regular primary education (Tab. 1), the games were found to 
be effective in enhancing skills and insight, but not knowledge. Specifically, in 
the home-school condition the intervention had a significant positive effect on 
both skills (d = 0.26 for the Grade 2-3 intervention) and insight (d = 0.29 for the 
Grade 2 intervention; d = 0.22 for the Grade 2-3 intervention). In the school 
condition the games only significantly affected insight, and only the Grade 2 
intervention was effective (d = 0.35). No significant effects were found in the 
home condition (p > .05). For the special education students (Tab. 2), it was 
found that the games, played at school, were effective in enhancing 
multiplicative fact knowledge (d = 0.39), but not in enhancing skills/insight.  

 Knowledge  Skills  Insight 

Condition βps SE d  βps SE d  βps SE D 

 Posttest Grade 2 (effect of Grade 2 intervention) 

School 0.01 0.24 0.01  0.10 0.24 0.09  0.39* 0.22 0.35 

Home -0.16 0.23 -0.16  -0.04 0.20 -0.03  0.21† 0.15 0.19 

Home-school 0.08 0.26 0.08  0.21 0.20 0.18  0.32* 0.19 0.29 

 Posttest Grade 3 (effect of Grade 2-3 intervention) 

School -0.19 0.23 -0.20  0.10 0.18 0.09  0.15 0.19 0.13 

Home -0.05 0.16 -0.05  0.03 0.14 0.03  -0.02 0.12 -0.02 

Home-school 0.16 0.13 0.16  0.28* 0.16 0.26  0.24* 0.12 0.22 

Note. The pretest score, gender, age, parental education, home language, and general 
mathematics ability score were included as covariates. βps = partially standardised regression 
coefficient of the condition dummy variable predicting posttest score. 
† p < .10. * p < .05. One-tailed. 

Tab. 1: Effects of the interventions in regular primary education on knowledge, skills, 
and insight in Grade 2 and 3 (as compared to the control group) 

 

 Knowledge  Skills/insight 

Condition βps SE d  βps SE d 

School -0.01 0.15 -0.02  0.19* 0.11 0.39 

Note. The pretest score, age, and general mathematics ability score were included as 
covariates. βps = partially standardised regression coefficient of the condition dummy variable 
predicting posttest score. 
* p < .05. One-tailed. 

Tab. 2: Effects of the intervention in special primary education on knowledge and 
skills/insight in Grade 2 (as compared to the control group) 
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Conclusion and discussion 

For regular primary education, our study shows that the most effective way of 
integrating multiplicative mini-games in mathematics education is by offering 
them to students to play at home, and debriefing them at school. When the mini-
games were offered in this way, they positively affected both students’ skills in 
calculating multiplicative problems and their insight in multiplicative number 
relations (significant ds ranging from 0.22 to 0.29). Also playing the games at 
school, integrated in a lesson, was found to be effective, but only in promoting 
insight in Grade 2 (d = 0.35). Playing the games at home without attention at 
school did not affect students’ learning of multiplicative reasoning. 

The finding that the games were most effective when played at home and 
debriefed at school can be explained by this intervention having the combined 
advantage of playing at home (extra time on task, more learner control) and 
playing at school (debriefing). Playing at home without debriefing was not 
effective, indicating the importance of debriefing sessions in learning from the 
games. As proposed by, for example, Garris et al. (2002) and Klawe (1998), the 
debriefing sessions may have led students to reflect on what they had learned in 
the games, enabling them to generalise their learning beyond the game context. 
However, in our study the debriefing sessions may also have served as an 
encouragement for students to play the games at home. Indeed, in the home-
school condition, the games were played more often than in the home-condition. 

For special primary education, we found that the mini-games, played at school, 
were effective in promoting students’ multiplicative fact knowledge, but not 
their multiplicative skills and insights. Yet, although there was no added value 
of the mini-games for skills and insight, an intervention with mini-games can 
still be seen as a “safe approach” to be employed as part of the multiplicative 
reasoning programme in special education, as learning outcomes were not 
different from those obtained in the control group.  

The finding of an effect on knowledge but not skills/insight in special primary 
education is in contrast with our findings for regular primary education, where 
there were effects on skills and insight but not on knowledge. Possibly, for the 
special primary education students, who often are considerably behind in their 
learning, there was still much to improve in basic multiplicative fact knowledge. 
Also, multiplicative fact knowledge may, for these students, have been easiest to 
acquire from the game, because it requires least transfer (see, e.g., Shiah et al., 
1994): multiplicative facts occurred in most games in the same way (with the 
× symbol) as in the textbooks and assessments. Students in regular primary 
education may have had enough opportunities for automatizing the 
multiplication tables in the regular mathematics curriculum, leaving room for 
the acquisition of more advanced types of knowledge. For them, the games were 
especially useful for acquiring insight, which may be related to the nature of the 
mini-games used, allowing for free exploration and experimentation 
(experiential learning). 
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The finding that the home and home-school condition were not adequately 
carried out by the special education teachers may indicate that having students 
playing mathematics games at home by themselves is not in line with the current 
practices of teachers in special primary education. 

In conclusion, our study shows that both in regular and special primary 
education, mini-games can effectively be used to promote students’ learning of 
multiplicative reasoning. Yet, the two school types appear to differ in terms of 
the aspects of multiplicative reasoning that are affected by the games, and in 
terms of the way in which the games can best be offered to the students. 

In the course of our research project, it appeared that a large-scale study situated 
in school practice is hard to carry out. Because of teachers’ busy schedules it 
was hard to find teachers willing to participate in a long-term study, and to 
motivate teachers in subsequent grades to continue the study. However, we think 
that conducting this research in real school settings to collect evidence for the 
effectiveness of mathematics games in (special) primary education was worth 
the effort. It provided us with knowledge of when mathematics mini-games are 
useful. Moreover, as the interventions were delivered by the teachers 
themselves, our results are directly applicable to the school practice. 
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HELPING STUDENTS LEARN TO PERSEVERE 
WITH CHALLENGING MATHEMATICS 

Deborah Loewenberg Ball, Hyman Bass, University of Michigan, U.S.A. 

  Abstract 

“Perseverance,” an important psychological construct, matters for mathematics 
learning because solving challenging mathematics problems often requires a kind of 
uncomfortable persistence.  However, school experience often values speed over 
persistence, and young learners are rarely guided explicitly to see that perseverance is 
needed or how to stick productively with a problem. This paper examines a case of a 
class of 10-year old students, and analyses how they are explicitly helped to learn 
whole number arithmetic while also developing skills of perseverance and persistence. 
Three aspects of the instruction comprise the focus:  (1) the nature of the mathematical 
task on which the class was working, (2) the staging of students’ work on the problem, 
and (3) how perseverance – for this problem and beyond – was supported.  The paper 
concludes with several questions that our analysis suggests as important for next steps 
in trying to understand mathematical perseverance. 

Key words: instruction, mathematical perseverance, proof 

Introduction: “Sticking With It” in Mathematics 

A common finding is that U.S. students tend to give up if they cannot figure out 
how to solve a complex problem within a few minutes. Stevenson and Stigler 
(1992) report, from a study comparing U.S. students with their counterparts in 
other countries, that, on average, U.S. students tend more than others to believe 
that mathematics depends more on talent than effort. These same students often 
persist with other challenges outside of school – perfecting a jump shot in 
basketball, constructing puzzles, or practicing a difficult musical piece.  But in 
school they develop the sense that mathematics is more a matter of talent and 
speed than persistence and effort. And although they are exhorted to try, rarely 
are they helped to learn what to do to persevere productively.  Further, when 
they develop a sense that they are not good at “mathematics”, they are even less 
likely to try to work on puzzling problems. Could this persistent cultural 
assumption be challenged (U. S. Department of Education, 2013)? What might 
instruction look like that would aim to help students, especially those who have 
been discouraged in school and who feel themselves not to be “good at” 
mathematics, to have both the skills and the confidence to persevere in 
mathematics (Cuoco et al., 1996)?  

(How) Might Mathematical Perseverance Be Developed? 

In this paper we analyse a case of instruction that aims to cultivate productive 
mathematical persistence in elementary students in the context of a challenging 
problem of whole number arithmetic. Of interest in our research are learners 
who, in average, have not had opportunities or encouragement to succeed in 
school mathematics, especially with challenging and complex work, and who, 
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by fifth grade, are already less willing to try problems that seem hard or 
confusing.  Our analysis focuses on the role and interaction of three instructional 
elements: (1) the mathematical task, (2) the teacher’s role and practices, and 
(3) the whole class discussions. The whole number arithmetic task in our study 
has an unusual feature that is particularly salient with regard to cultivating 
perseverance: it is mathematically impossible.1 The class’s work to produce a 
proof is the context for our analysis of what is involved in helping students 
learning to persevere with a challenging mathematics problem. 

Instructional and Research Context 

Our investigation of mathematical perseverance took place in the context of a 
mathematics programme, the Elementary Mathematics Laboratory (EML), for 
fifth graders that takes place at the University of Michigan every summer2. The 
programme enrols approximately 30 students from a local working class, 
racially and ethnically diverse, school district. A majority of the students are 
economically disadvantaged, from a community with a growing number of 
homeless children3. Mathematics achievement in this district, was indicated by 
students’ scores on the state assessment. These data show that approximately 
70% of all fourth graders are “not proficient,” the lowest level of attainment4. 
Most of the students have gaps in their skills and knowledge and typically have 
not enjoyed or felt confident with school mathematics. About 75 – 80% of the 
students identify as black or mixed race, and about 10 – 12% identify as 
Latino/a. Given the students’ past school histories with mathematics, their 
persistence is a key issue. They tend not to be confident and when they 
encounter unfamiliar problems, they tend to say that they cannot work on them 
because they do not understand or have not been taught the material. Therefore, 
a goal of the programme is to increase students’ skills with, and actual 
experience of, mathematical perseverance.  

The Train Problem as a Context for Developing Mathematical 
Perseverance 

One reason for using an impossible problem is that the students assume that all 
problems in school are solvable, and if they are unable to solve a problem, it 

                                           

 

 
1 Mathematical problems without solution have a colorful and distinguished history (Suzuki, 
2009) in mathematics (for example Fermat’s Last Theorem), but we have found two 
references to their deliberate use with elementary students, in Burchartz and Stein (1998), and 
Tirosh et al. (2015). 
2  Our research group has been designing and studying the teaching and learning of 
mathematics in the Elementary Mathematics Laboratory (EML) for over ten years. 
3 Source: 2014 Report Card for Washtenaw County Children and Youth. 
4 Source:  Michigan School Data, Annual Education Report 2012-13, for the communities that 
comprise the EML partner school district. 
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The Staging of The Students’ Work on the Problem  

The students’ work on the train problem stretched over several days, spending 
about 45 minutes to an hour each day.  The trajectory proceeded through six 
stages:  (1) becoming familiar with the context; (2) collective making sense of 
and interpreting the problem, and identifying conditions; (3) building and 
checking trains and recording results; (4) confronting the scope and feeling 
discouraged and overwhelmed; (5) cutting the problem down to manageable 
size; (6) proving and becoming confident that no solution exists.  The teaching 
across these stages makes explicit specific practices of tackling and persisting 
with a difficult mathematics problem. At each stage, these practices were 
highlighted and labelled, modelled, scaffolded, and rehearsed and refined.   

The students were first introduced to the territory with the task below, which 
designed to help them to uncover some of the key features of the context and to 
practice reasoning about “trains”: 

The EML Train Company makes five different-sized train cars: a 1-person car, a 2-
person car, a 3-person car, a 4-person car, and a 5-person car.  These cars can be 
connected to form trains that hold different numbers of people.  Try to build some 
trains.  You can use only these five types of cars to build trains, and you can use at 
most one of each type of car in each train.   

What are the different numbers of people that the EML Train Company can build 
trains to hold? 

As the students explored, built, and discussed the trains, they were able to 
conclude that the greatest number of possible passengers is 15, and that a 15-
passenger train requires all of the cars.  They also figured out the least number 
of passengers possible is either 0 (no cars) or 1 (only the white).5  After a period 
of working on how to build trains for different numbers of passengers, the 
students were given the problem with the story of the customer: 

A customer named Mr. X wants to order a special five-car train that uses one of each 
of the different-sized cars.  He wants to be able to break apart his five-car train to form 
smaller trains that could hold exactly 1 to 15 people.  In addition he wants to be able to 
form these smaller trains using cars that are next to each other in the larger train. 

Can the EML Train Company fill the customer’s order?  Explain how you know. 

The teacher helped the students to make sense of what the words in the problem 
meant, experimenting with what it means to “break apart” a train and to “form 
smaller trains” with cars that are next to each other that hold other numbers of 
passengers. For example, in working with one possible train (Fig. 2), students 
practiced showing that smaller trains that hold 1, 2, 3, 4, 5, 6, and 7 are possible.  
They were stuck trying to find a smaller train that holds 8 passengers. The 
                                           

 

 
5 It is interesting to listen to fifth graders debate whether a train with no cars is in fact a train. 
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Stage of the 
work 

Instructional moves 
and steps 

Learning goal 
for students 

Supporting 
students’ 

progress on 
this problem 

Supporting 
students’ 
learning 

more general 
practices of 

perseverance 
1. becoming 

familiar 
with the 
context 

have students work on 
a simpler problem that 
establishes the 
conventions for 
building trains 

Practice 
reasoning about 
trains, practice 
with explaining 

 
✔ 

 

2. collective 
making 
sense of and 
interpreting 
the problem, 
and 
identifying 
conditions 

engage students in 
reading and discussing 
the problem 
lead students in 
practicing one possible 
solution with one train 
guide students to 
extract the conditions 
of the problem 

learning 
strategies for 
making sense of 
and interpreting a 
problem 
identifying 
conditions of a 
problem 

 
✔ 
 

 
✔ 

3. building and 
checking 
trains and 
recording 
results 

have students work on 
building trains and 
making records on 
their own 
encourage students to 
check solutions using 
the core constraints of 
the problem 

using conditions 
of a problem to 
check solutions 
making records 
of one’s work on 
a long problem 

 
✔ 

 
✔ 

 
✔ 

 
✔ 

4. confronting 
the scope 
and feeling 
discouraged  

allow students to begin 
to wallow in the 
enormity of the 
problem, stimulating 
desire to find a simpler 
way through it 

using feeling of 
“stuckness” to 
seek ways to 
simplify problem 

 
✔ 

 

5. cutting the 
problem 
down to 
manageable 
size 

consider suggestion 
that the red and white 
be on the end 
refer students to prior 
work on permutations 
of three  

investigating a 
conjecture and 
seeking to prove 
or disprove it 
using results of 
prior work, 
connect to other 
ideas 

 
✔ 
 
 
✔ 

 
 
 

 
✔ 

6. proving and 
becoming 
confident 
that no 
solution 
exists 

guide students to 
practice presenting to 
the customer that his 
order cannot be filled  

linking the 
imperative to 
convince 
someone as an 
imperative for 
mathematical 
proof 

 
✔ 

 
✔ 

Tab. 1:  Instructional moves and learning goals across stages of students’ work on the 
train problem 
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The collective challenge of trying to fill Mr. X’s order required frequent group 
discussions to check possible solutions and to consider strategies. And the 
context created a situation that readily supported making the work visible.  
Although the playfulness of the story was obvious, and no fifth grader believed 
it as “real”, the collective engagement and motivation to solve the problem 
nevertheless created a kind of authenticity.  

Tab. 1 summarises the instructional moves and steps used in guiding the 
students’ effort to solve the train problem. Some moves seem more likely to 
have promoted students’ learning of general skills of mathematical perseverance 
than others. 

As she supported the students in developing skills of perseverance, the teacher’s 
instructional moves helped to make explicit the specific things that she and the 
class were doing as they pursued solution to the problem.  One significant move 
was naming and labelling particular tools for mathematical work (Ball, Lewis 
and Hoover, 2008). A second pattern in the teacher’s efforts to make visible the 
practices specific to persevering with the train problem was the way she 
highlighted and underscored things that she or students did and together 
unpacked explained what made them helpful. A third technique was to co-
sponsor the mathematical work. As she saw individual students trying or doing 
things that could be of general interest or use, she would work quietly with an 
individual (or sometimes a pair or threesome), helping the student to extend and 
further articulate the idea or technique so that it could be shared with the class.  
A fourth instructional move employed regularly by the teacher was to create 
pauses for reflection on progress, questions, stuckness, and new insights.   

Taking Stock and Next Steps  

While psychologists investigate differences in people’s persistence in the face of 
difficulty (Dweck, 1999, 2006; Duckworth et al., 2007; Mischel et al., 1972), 
children and adults also exercise varying perseverance across the challenges 
they encounter. We take the perspective that perseverance is a domain-specific 
bundle of skills that support confidence in the struggle to succeed. School 
mathematics is filled with moments of frustration and being stuck, but students 
too often are not taught practices that enable successful perseverance with 
complex mathematics.   

Important questions are raised by our analysis of this case that merit further 
study. One centres on our hypothesis that to be helped to persevere with a 
particular problem helps students to build more general strategies for 
mathematical perseverance. Because we conceive of perseverance as a bundle of 
practices, we posit that learning is best situated in actual cases where doing 
is entailed. If students are helped to work on complex and challenging problems, 
and succeed at them, does this also set them up to know what to do when they 
are working alone on another problem? Is the perseverance involved in these 
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students’ learning to solve complex problems within whole number arithmetic 
usable by them when they encounter a challenging geometry problem? 

A second issue centres on the role of believing in one’s own ability to solve a 
problem and of motivation. We are arguing that a critical component of 
perseverance is skill and technique.  But does confidence play a role, and if so, 
what sort of confidence and how does it interact with technique, if at all? Does 
caring about the goal matter, and if so how does this play out? To what extent 
are these questions cultural, situated in the contexts of schooling in the U.S.?  
Might these issues appear and play out differently across national contexts?  

A third has to do with the measurement of mathematical perseverance. To study 
the sorts of questions identified above would require sensitive and valid 
measures of persistence with difficult mathematics. Developing reliable ways to 
do this would advance our understanding of efforts to develop perseverance, as 
well as extend conceptualisation of perseverance itself. 

Finally, we became interested in the possibility that perseverance may be a 
collective as well as an individual capability. Can perseverance be usefully 
construed as distributed among members of a group and if so, how might this be 
both cultivated and used? 
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THE NUMBER LINE: A “WESTERN” TEACHING AID 

Maria G. Bartolini Bussi, Università di Modena e Reggio Emilia, Italy 

Abstract 

This paper aims at discussing a very popular teaching aid, the so-called number line, 
where whole numbers are introduced as labels on unit marks by means of a measuring 
process and where additions and subtractions can be realised, as operators, with jumps 
forwards and backwards. Traces of this early approach can be found in the teaching 
practices of most Western countries, but, surprisingly, not in the most popular Chinese 
textbooks. A question arises: where does the difference come from? In the following, I 
review some Western literature to sketch out the analysis of the number line as a 
teaching aid, from the historic-epistemological, cognitive and didactical perspectives. 
Later some paradigmatic practices from different countries are presented.  

Key words: addition, measuring, mental number line, number line, subtraction 

Introduction  

The intention of writing this paper arose after a dialogue with Sun Xuhua about 
the most popular teaching approaches to whole numbers. When discussing uses 
of the number line in the two cultures (Italian and Chinese) I realised that it is 
not used in China as much as in the West. This brought me to reflect on how 
some Western popular approaches are not mandatory, but dependent on culture. 
As has happened for me in the past (Bartolini Bussi and Martignone, 2013; 
Bartolini Bussi, Ramploud and Anna Baccaglini-Frank, 2014), noticing this 
difference was a stimulus towards the reconstruction of the roots of our tradition 
(from the historic-epistemological, cognitive and didactical perspectives), or, 
following Jullien (2008), towards the “discovery of our own unthought”. 

Historic-epistemological perspectives 

Epistemological perspective 

Hans Freudenthal, a past ICMI President (1967-1970), has devoted several 
volumes to the epistemological foundation of mathematics education. In the 
Didactical Phenomenology of Mathematical Structures (1983), Freudenthal 
introduces magnitudes, criticising traditional teaching where measuring is 
delayed until children are ready to learn common and decimal fractions.  

“The first step in analysing a magnitude, where measuring the magnitude is 
articulated by the natural multiples of a unit, is possible and desirable at an early 
age; counting can and must immediately be transferred from discrete quantities, 
represented by sets, to magnitudes. Modern textbooks start measuring much 
earlier than tradition allows, but unfortunately this kind of measuring is not yet 
sufficiently integrated with the operations on natural numbers. The device 
beyond praise that visualises magnitudes and at the same time the natural 
numbers articulating them is the number line, where initially only the natural 
numbers are individualised and named. In the didactics of secondary instruction 
the number line has been accepted, though it is often still imperfectly and 
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Speech) he is Retreated 3 Yards; or he wants 3 Yards of being so Forward as he 
was at A” (ibid., p. 265). 

Wallis’ number line does not show numerals, but reference to units (Yards). The 
marks are drawn at regular intervals. The starting point A is the origin of the 
mark (“zero”) whilst the other points are reached with a positive (forward) or 
negative (backwards) number of steps. Actually “zero” as a label on a number 
line does not entail the same difficulty and incomprehension raised by zero as 
either a number or a digit in place value (see below); also the understanding of 
negative numbers, very difficult until the end of the 18th century, is facilitated. 

 (Neuro) cognitive perspectives 

The mental number line 

(Neuro) cognitive scientists study the representation of numbers in a spatial 
format along the so-called “mental number line,” whereby smaller numbers 
occupy relatively leftward locations (in the case of horizontal representations) or 
lower locations (in the case of vertical representations) compared with larger 
numbers. This idea dates back to Galton (1880) and is now focused in many 
experimental studies (for a short review, Butterworth, 1999). There is evidence 
in recent studies that blindness alters the direction of mental number line 
(Pasqualotto, Shichiro and Proulx, 2014), suggesting that the left-to-right 
organisation can be affected by the enviromental factors and visual perception. 
Actually a few studies show some correlation between the direction of writing 
and the direction of the number line (Bender and Beller, 2011). 

The number line as a conceptual metaphor 

There is a function of the number line in cognitive linguistics. In their 
programme to understand where mathematics comes from, i.e. what is the 
cognitive structure of sophisticated mathematical ideas, Lakoff and Nunez 
(2000) have taken an embodied approach, assuming the motion along a path as 
one of the grounding metaphor for arithmetic. They argue that abstract 
mathematical notions have their origins in our specific embodiment and could 
not have been construed differently. Conceptual metaphors work as projections 
from a domain (in this case the spatial experience of motion along a path) to 
another domain (in this case the arithmetic of whole numbers). The idea is not 
new (see Wallis, above) and was already used by Herbst (1997) who referred to 
Black’s theory of conceptual metaphor (1962), which inspired the modern 
development of cognitive linguistics, in order to analyse the way of introducing 
and using the number line in a set of textbooks from Argentina. 

A short interlude: towards classroom practices 

It is worthwhile to highlight the potential of the number line as a teaching aid. 
The number line hints at the relationship between whole numbers and 
magnitudes, initiated in the classical age, and fosters the extension to fractions 
and rational numbers, by means of measuring. Either real or evoked motion on 
the line hints at the generation of infinitely many whole numbers, by iterating 
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Abstract 

This paper focuses on the preparation of pre-service primary school teachers in 
relation to the teaching and learning of whole number arithmetic. Using as a context 
teacher education in Québec (Canada), we aim at stressing the complementary role of 
mathematicians and mathematics educators in such an endeavour. We first present 
some specificities of our teacher education system. The contribution of 
mathematicians is then highlighted through the approach used for establishing the 
foundations of whole number arithmetic. Comments are finally offered on how the 
didactical component of the preparation of teachers can be integrated in such a context. 

Key words: context for the reconstruction of whole number arithmetic, foundations of 
arithmetic, preparation for teaching elementary arithmetic, role of mathematicians       

Introduction  

The mathematical preparation of pre-service schoolteachers, in particular of the 
primary level, has for a very long while been a matter of concern and discussion. 
Already at the time of the inception of the International Commission on 
Mathematical Instruction (ICMI), in the early twentieth century, the eminent 
German mathematician Felix Klein (1849-1925) – who was to become the first 
president of ICMI – had been presenting a series of lectures mainly intended for 
secondary school teachers of mathematics (Klein, 1932). Parts of his comments 
however, especially in the first chapter entitled ‘Calculating with Natural 
Numbers’, pertain directly to primary school mathematics and the needed 
mathematical background and vision with which teachers of that level, in his 
opinion, should be familiar. The issue of the mathematical preparation of 
primary school teachers has regularly come back to the forefront over the 
following decades, as testified for instance by the paper of Rappaport (1958) 
published right in the peak of the “Sputnik shock” in the United States and 
proposing a review of research on the preparation of teachers of arithmetic.  

The mathematical education of primary school teachers is a complex and 
multifaceted task requiring the contribution of different actors, and the aim of 
this paper is to stress the complementary role played by mathematicians and 
mathematics educators. We present a pre-service framework in which we have 
for long been involved, with a particular emphasis on Whole Number Arithmetic 
(WNA), and discuss aspects of our practice, both from a mathematical and a 
didactical perspective. The contribution of mathematicians is highlighted mainly 
through the approach used for establishing the foundations of WNA. Comments 
are finally presented on how mathematics educators can integrate in such a 
context a didactical component to the preparation of teachers of arithmetic. 
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Teacher education in Québec 

We first briefly survey the evolution of our teacher education system over recent 
decades. We concentrate here on the province of Québec, education being in 
Canada a provincial responsibility. 

From normal school to university education 

Up to the 1970s, teacher education was offered in Québec through a network of 
normal schools originating from the mid-1800s. The 1960s witnessed a major 
reform of Québec’s whole education system, from primary to post-secondary 
education, one of whose many outcomes was an increase in the expected level of 
qualification of teachers. The normal schools were consequently integrated into 
the university system in the early 1970s, thus ensuring a minimum of 16 years of 
schooling for teachers. It was also considered that being educated in a context 
propitious to research would benefit to the future schoolteachers. 

As part of an important reform of the teacher education system, some twenty 
years later, it was stipulated that teacher education must take place within a 
concurrent programme. (See Tatto, Lerman and Novotná, (2009, p. 18) for 
comments on the notion of concurrent preparation of teachers, as opposed to a 
consecutive model.) The decision to become a schoolteacher is thus taken by the 
student upon university entrance.  

Mathematicians’ contribution to the programme of Université Laval 

Most components of the teacher education programme at any Québec university 
are governed by parameters determined by the MEQ (2001). Yet there is still 
place for some flexibility, so that each university is able to organise with a 
flavour of its own its programme of study and the environment for the offering 
of the courses. At the time of the abolition of the normal schools system in the 
early 1970s, the Department of Mathematics and Statistics at Université Laval 
was invited to become directly involved in the education of primary school 
teachers. The Department then reacted positively to this totally new 
responsibility and this resulted in the creation of two mathematics courses 
(Arithmetic and Geometry) specifically designed with primary education in mind 
and still forming today the core of the mathematical preparation for prospective 
primary teachers at Laval.  

A central aim of these two courses is to allow students to develop a robust and 
sound vision of the mathematics that they will be working with their pupils. We 
hope this way to foster their confidence in both their own math capabilities and 
critical analysis skills, and help them become autonomous in their mathematical 
(and pedagogical) judgments about primary school mathematics. We consider 
that prospective teachers need to develop a very specific mathematical expertise, 
as they are to become the experts of the mathematics connected to the education 
of primary school pupils. In that regard, we wish to present our students with 
opportunities for significant mathematical experiences, both in theoretical terms 
and in hands-on contexts. This approach can be seen as related to several 



ICMI Study 23                                                                        Theme 3, Hodgson & Lajoie, Preparation of Teachers 

309 
 

research works, such as that of Grossman, Wilson and Shulman (1989), stressing 
the importance of a sound teachers’ knowledge of mathematical content. It also 
has connections with the famous study of Ma (1999) concerning a “profound 
understanding of mathematics”, as well as with the work of Ball and Bass 
(2003) about “mathematical knowledge for teaching”. 

The Laval programme also comprises three mathematics education courses 
(didactique des mathématiques, in French) offered by the Faculty of Education, 
for a total of five courses devoted to mathematics and its teaching. The presence 
of math education courses is naturally a standard pattern among universities in 
Québec or Canada. But the Laval model is somewhat unusual with regard to the 
role of mathematicians. Bednarz (2012, Tab. 1 and 2) presents a summary of the 
place given to mathematics courses in programmes for prospective primary 
teachers both in Canada and Québec. One can see how varied the possible 
arrangements are – from no math course at all, or one unspecified course but 
with no attention to the needs of future primary school teachers, to one or even 
two courses specially intended for primary teachers. In some cases the specific 
math course is offered by the Faculty of Education, so that in such a context 
primary teachers will have no direct contact with mathematicians. 

Preparing mathematically for the teaching of WNA 

A substantial part of the Arithmetic course taught at Université Laval aims at 
helping prospective teachers to become familiar with the foundations of WNA. 
When this course was created, in the 1970s, it was at first on a strongly set-
theoretic vision that arithmetic was based: as was customary in those “New 
Math” days, concepts related to sets were considered as more primitive than 
those related to numbers. The spirit of the times is well captured by the 
following quotation, from a chapter on ‘Primary Mathematics’ in a report of an 
ICMI-supported workshop organised by UNESCO in 1971: 

All modern reformed programmes have introduced the study of sets into 
mathematical instruction. This topic is perhaps the most visible trait of an actual 
change in primary mathematics teaching. (…) The use of sets in (…) 
mathematical instruction varies greatly from one country to another. However 
there is a universal trend to use sets to develop the concept of cardinal or natural 
numbers, and the four rational operations on natural numbers. (UNESCO, 1973, 
pp. 5-6) 

In the early days of our course, natural numbers were presented as cardinalities 
of finite sets, and arithmetic operations were defined in terms of set-theoretic 
operations. However, it was soon felt that while possibly appealing on 
psychological grounds or because of the fads of the time, this approach was far 
from optimal for many of our students. Are sets and their operations really to be 
considered as more “primitive” than numbers and basic arithmetic operations?  

A concrete model for the whole numbers 

A major shift occurred in our approach to basic arithmetic when it was decided 
to restrict sets to the role of a “linguistic” tool for communication, instead of 
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primitive concepts on which the whole arithmetical building should be based. 
Natural numbers can be captured in a robust way by thinking of them as 
counting numbers, and this vision can be rendered concretely, in a written form, 
through the notion of a tally (or stroke). A natural number is “naturally” defined 
as a sequence of tallies – a finite sequence, of course, eventually empty. The set 
of natural numbers is thus the set comprising all the finite sequences of tallies. 
And this can be accepted as a working definition with prospective teachers. 

Operations on whole numbers can then be introduced in terms of operations on 
sequences of tallies. For instance the addition of two numbers is defined as the 
juxtaposition of sequences of tallies (Fig. 1, for the sum of three and four). And 
multiplication is defined as the replacement of each tally of one sequence of 
tallies by replicas of the other sequence, eventually presenting the result as a 
rectangular array (or matrix) of tallies (Fig. 2, three times four).  

              ���� 
 ��� ����      ���� 
       ���� 

Fig. 1: Sum of three and four     Fig. 2: Three times four 

(It is understood that the two sequences in Fig. 1 are considered to be brought 
close one to the other so to form a single sequence of seven tallies, while the 
matrix of Fig. 2 is restructured so to become a sequence of twelve tallies.) 

The fundamental notion of equality of two given natural numbers is captured 
through the fact that the corresponding sequences of tallies are identical, which 
can be rendered via the establishment, between the tallies forming these 
sequences, of a one-to-one correspondence – a most natural concept requiring no 
sophisticated set-theoretic support. This in turn allows to actually prove 
fundamental properties, such as the commutativity of addition: given two 
arbitrary sequences of tallies, say made of a and b tallies, one shows through a 
one-to-one correspondence that the order of juxtaposition does not matter. 

A crucial point in such an approach to WNA, it should be stressed again, is that 
natural numbers are fully defined, and not simply accepted as a kind of a priori 
notion, v.g., a concept possibly emerging more or less out of the blue jointly 
with a certain representation scheme – somewhat sophisticated, one must admit:  

0, 1, 2, …, 9, 10, 11, …, 20, 21, …, 99, 100, 101, … 

(i.e., our usual base-ten positional value numeration system). In other words, we 
thus avoid the possible confusion between the nature (or essence) of natural 
numbers, and their actual representation via a numeration system – however 
important the latter may be in practice. Operations on numbers are just as well 
defined – not taken for granted –, and their properties proved – and not simply 
observed. Such an approach allows to really concentrate on the foundations of 
arithmetic in a way fully appropriate for sustaining reflections pertaining to 
primary education. We aim at offering students the opportunity for a personal 
reconstruction of elementary arithmetic. In our experience, such an approach can 
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be instrumental in helping prospective teachers develop the necessary 
“conceptual understanding” so to perceive mathematics not as a mere bunch of 
facts to be memorised, but rather as a coordinated system of ideas. It contributes 
to the growth of autonomy and critical analysis skills mentioned earlier. 

Not surprisingly the approach to natural numbers via tallies has a long history. 
Strokes or notches on bones, or marks on a wall, are even presented by Mainzer 
(1991, p. 9) as an “early stone age” vision of counting numbers – Ifrah (2000, 
p. 64) speaks more prudently of tally sticks as being “first used at least forty 
thousand years ago”. These have obvious links to usual numeration systems, as 
shown for instance by Ifrah in his discussion of the origin of Roman or Etruscan 
numerals (2000, pp. 191-197), whose conclusion is that without any “possible 
doubt”, they “derive directly from counting on tally sticks” (p. 196) – see also 
Ifrah’s comments on the “Chinese scientific positional system” (pp. 278 sqq). 
While such marks clearly point to the development of written representations, 
other related early concretisations of numbers include beads or counters, 
eventually leading to the use of calculating instruments such as the abacus or the 
suan pan – see the section “From pebbles to abacus” in Ifrah (pp. 125-126).  

Representing natural numbers as lists of strokes is also at the basis of the 
didactical reflection proposed by Wittmann (1975, p. 60), who in turn refers to 
the work of the logician Lorenzen (1955) as a source for such a constructive (or 
operative) foundation of natural numbers. This “unary” vision is indeed often 
encountered in various works pertaining to logic, for instance in Kleene (1952, 
p. 359) in relation to computability. In a spirit similar to tallies, Courant and 
Robbins (1947, pp. 2-3) base their study of the laws governing the arithmetic of 
whole numbers on the use of boxes of aligned dots. (The interested reader will 
find in Klein (1932, pp. 11-13) a detailed survey of ways of establishing the 
foundations of arithmetic, including through a set-theoretic approach.) 

Mathematical thread for WNA  

Space prevents us here from presenting in any detail how the concrete model of 
tallies is actually used in our Arithmetic course. Suffices it to say that after 
proposing our students a brief encounter with positional numeration systems in 
bases other than ten – a somewhat destabilising introduction into the course, but 
an excellent way of helping them “refresh” their WNA skills and reflect on basic 
algorithms which they know but not necessarily understand fully –, we move to 
a more general and theoretic level, where natural numbers and their operations 
are defined and the basic properties of WNA are proved, as indicated above. 

From that point, the Arithmetic course continues in a double direction: 
introduction of other numerical sets, on the one hand, so to take care of 
“deficiencies” encountered in the arithmetic of natural numbers – these 
extensions of WNA can be construed in the spirit of the so-called Principle of 
the permanence of equivalent forms formulated by George Peacock (1791-
1858); and seeing natural numbers “in action”, so to say, through a problem-
solving approach with an aim at exploring situations pertinent to primary 
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education. Typical problems related to WNA that can be used in such a context 
are discussed for instance in Cassidy and Hodgson (1982) or Hodgson (2004). 

Preparing didactically for the teaching of WNA 

How could a math educator working with students after the Arithmetic course 
help them develop a didactical expertise truly anchored to the mathematical 
competence acquired with the mathematician? Building on the notion of tallies, 
we present in the following a few possible pathways. 

First, it should be stressed that the tally model, which acts in the Arithmetic 
course as a context in the sense of Gravemeijer and Doorman (1999) – that is, an 
anchoring point for the reconstruction, by preservice primary school teachers, of 
WNA – is still available for the math educator’s contribution. This approach can 
then be used again, either in order to revisit selected mathematical concepts 
encountered previously, or as a stimulus for launching a didactical reflection. 

The experience with the tally model in the Arithmetic course provides students 
with a strong intuition for the potentialities of one robust and valid tool for the 
study of WNA. This experience can also serve as a solid basis when working in 
other contexts, and in particular with different concrete models. Moreover, as 
the context of tallies is familiar to students, it can be analysed and compared to 
other situations. This allows students to discuss its relevance when teaching 
WNA to primary school pupils, and judge its specific merits or limitations.   

One of the specificities of the tally model that it may be pertinent to consider in 
a math education course is that it is neither a positional, nor a grouping, model. 
Most of the models to which primary teachers tend to turn in their teaching of 
arithmetic, in particular when considering operations on natural numbers, are 
positional models. Hence one may wonder what may attract a primary teacher to 
make use, even if only for a while, of the tally model in her teaching. Such a 
questioning appears fully pertinent for any prospective teacher, but it is 
particularly opportune in the Québec context, as our elementary school teachers 
are expected to bring their pupils to devise their own processes for mental and 
written computations on natural numbers, before teaching them recognised, 
standard, algorithms (MEQ, 2001). Grades 1 and 2 pupils, for example, are 
expected to develop their own mental and written processes to determine the 
sum or difference of two natural numbers, and should not be taught conventional 
processes until the beginning of grade 3 (MEQ, 2001, p. 151). Such a stance is 
certainly not new, nor is it specific to Québec (see for instance Madell, 1985). 
But it is well supported in the literature, as several studies (such as Fuson et al., 
1997, Carpenter et al., 1998 or Gravemeijer and van Galen, 2003) have 
suggested that children develop a deeper and more flexible understanding of 
operations through the development of their own processes. These “personal” 
processes will have a real meaning for them, rather than being standard 
algorithms that get merely taught, or even “dropped from above”. 
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Research in mathematics education suggests that primary school pupils, when 
placed in a context where they are lead to develop their own processes, will tend 
to use by themselves various counting strategies in order to create algorithms 
that do not (necessarily) rely on properties of our positional numeration system 
(Madell, 1985; Thompson, 1992). It thus seems highly appropriate to examine, 
in such a context, what a model like that based on tallies may bring to pupils. 

Discussion and conclusion 

Expectations towards primary school teachers regarding the teaching of 
mathematics are huge. Bringing pupils to devise their own processes for mental 
and written computations on natural numbers before teaching them standard 
algorithms is, in the case of the province of Québec, only one example of such 
expectations. As stated by Madell (1985, p. 22) thirty years ago, this type of 
approach does not make the teacher’s job easy, as “teachers must not sit back 
idly and wait for discoveries”! In fact, teachers need to set up contexts in which 
their pupils will be able to devise their own processes, and they need to be ready 
to provide guidance when necessary. Moreover, understanding a child’s 
proposed method of computation can in itself become a highly demanding task 
for the teacher, as this goes well beyond being merely able to perform each 
single step of the algorithm (that is, knowing how the algorithm works, and not 
really why). In order to be able to understand why a particular method does or 
does not work, teachers should be able to recognise the mathematical properties 
and other mathematical ideas used in the process. This specific expertise in turn 
points to the acquisition of the critical analysis skills that we mentioned above. 

While such expectations towards primary school teachers do not make the 
teachers’ job easy, they certainly do not make their preparation any easier as 
well! In such a context, we see both mathematicians and math educators as 
having specific and complementary roles to play in helping their students 
become autonomous in their mathematical and pedagogical judgments about 
primary school mathematics, and in particular about WNA. 
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AN OPEN APPROACH INCORPORATING LESSON STUDY:  
AN INNOVATION FOR TEACHING WHOLE NUMBER ARITHMETIC  
Maitree Inprasitha, Faculty of Education, Khon Kaen University, Thailand  

Abstract 
This paper reviews the traditional Thai approach to teaching mathematics and the 
unsatisfactory results that have thus far resulted from this approach. The author 
identifies a major cause for this poor performance as being the primary tool used by 
the teachers in Thai schools, the mathematics textbook, in particular the pedagogical 
approach that these textbooks follow. This analysis highlights the distinction between 
the Thai and Japanese mathematics textbooks, where the Japanese text takes a problem 
solving approach versus the Thai version’s computational model. What follows is a 
proposal on how to adapt both the Japanese lesson study and the structured problem 
solving teaching approach to the Thai context, and then combine those two elements to 
form an innovative solution to the problem of teaching mathematics. This solution, the 
‘Open Approach Incorporating Lesson Study’, was the basis for the classroom 
research that was undertaken. In this exemplar 1st grade students learned to gain 
meaningful understanding of whole number arithmetic via mathematics activities in 
the actual class taught by fifth year intern students during the mid-semester of 2013 
and 2014 academic years at two lesson study project schools. 

Key words: lesson study, mathematics textbook, open approach  

Introduction  

Teaching and learning whole number arithmetic in schools in Thailand is very 
crucial and yet has not improved for many decades. The National Test (NT) 
average score in Year 3 between 2010 to 2013 is 42.04/100 and Ordinary 
National Evaluation Test (O-NET) average scores in Year 6 between 2010 to 
2013 is 41.24/100 (National Institute of Educational Testing Service [NIETS], 
2013). This is consistent with international scores such as TIMSS and PISA and 
has not seen consistent improvement over the last ten years (Chiangkul, 2007; 
NIETS, 2013; Office of the Educational Council, 2012). The cause for these 
unsatisfactory results has been attributed, by some, to the teachers themselves 
and led to the demand for a reform of the teacher’s standards in Thailand 
(Yamkasikorn, 2011).  However, Stigler and Hiebert (1999) cautioned that rather 
than blame the teachers, it would be best to consider the tools that teachers are 
using in their classrooms. The primary tool of the mathematics teacher in Thai 
schools is the textbook. IEA results during the 1980s showed that more than 
90% of Thai mathematics teachers use the textbook as a tool for teaching: they 
taught contents appeared in the textbook and let the students do exercises from 
those textbooks. Most of the exercises and the instruction guidelines in these 
textbooks still emphasise computation skills and techniques to accomplish those 
exercises in a short time (Anderson, Ryan and Shapiro, 1989).  

The second tool to be considered is the pedagogical approach. Teaching 
mathematics in Thailand, for the most part, means preparing lesson plans, 
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DEVELOPMENT OF CONCEPTUAL UNDERSTANDING OF PLACE 
VALUE 

Silke Ladel(1), Ulrich Kortenkamp(2)  
(1) University of Saarland, (2) University of Potsdam, Germany 

Abstract 

In this article we establish a relationship between the concepts of place value and of 
bundling and unbundling. Based on results of a qualitative (N=255) and a quantitative 
study (N=51) with German primary school students we suggest a three-step instruction 
of these concepts that connects the various concepts and principles in a stringent way. 
The study has also shown that a large part of the tested students could be classified 
into groups that either think flexibly with respect to place value or show certain errors 
that can be traced to linguistic problems and problems that are induced by the material 
used for teaching. 

Key words: flexible understanding, part-whole concept, place value, virtual 
manipulatives 

Introduction 

The understanding of place value and the ability to use place value in a flexible 
way is a necessary requirement for further learning of arithmetic, e.g. efficient 
arithmetic strategies or written algorithmic. But as place value is already 
required when exceeding the number range until 9, it is very important to ensure 
its understanding already in grade 1 and to build up on it in grade 2 and 3. 

Hereinafter we are going to present the properties of our numeration system and 
how these connect to the acquisition of place value concepts. We describe how 
children develop a flexible understanding of place value and show how they 
deepen this understanding to a conceptual understanding by relating place value 
to the principle of bundling and unbundling. Also we show results of a 
qualitative and a quantitative study of 2nd- and 3rd-graders with respect to place 
value. 

Theoretical Framework 

The incomplete developed understanding of place value and the non-insight in 
the principle of bundling and unbundling states two main reasons of arithmetical 
weakness (Wartha and Schulz, 2011). Although place value and bundling are 
closely interrelated it is important for the didactical planning and analysis to 
distinguish them. Whereas bundling means that elements of a given amount are 
collected in groups of the same cardinality, place value means that the place (or 
position) of a digit in a given number provides information about the value of 
this digit. 

In German-speaking countries a particular difficulty is the transposition of 
places in the oral form. A number such as 425 is spoken as “vierhundert 
fünfundzwanzig” – “four hundred five and twenty” in the literal translation. This 
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creates an additional problem in the early teaching of whole numbers. 
Langermann (1912) already states that the parallelism between number system 
and number words leads to confusion, in particular for “those students who think 
the most”.6 

Ross (1989) states four properties of our numeration system: the positional 
property (1), the base-ten property (2), the multiplicative property (3) and the 
additive property (4). To achieve a conceptual knowledge about numbers – a 
knowledge that is rich in relations – children have to connect their knowledge 
about these properties to the principle of bundling and unbundling (5) that 
stands as a fifth property (Ladel and Kortenkamp, 2014a). 

“The network of the concept of place value grows, if relationships are 
established to bundling and unbundling when adding or subtracting multi-digit 
numbers.” (Gerster and Schultz, 2007, p. 30, translation by the authors): In the 
following we will establish the relationship between the concepts of place value 
to bundling and unbundling in the developmental process of children.  

Children develop a general part-whole concept (I) already in early years 
(Resnick et al., 1991). They experience the additive composition of numbers that 
follows the additive property of our number system. 

General part-whole concept: 

(I) P1 + P2 + … + Pk = W 

 

Additive property (4) 

On the basis of this general part-whole concept a teacher can instruct children to 
create “special” parts. The fact that these special parts are multiples of powers of 
ten is a convention, due to our decimal numeration system (base-ten property). 
At an early stage this is also the point where the children learn to bundle and 
unbundle. They learn to switch between different kinds of bundling, e.g. 23 O = 
2 T 3 O = 1 T 13 O, etc. The bundle units (O = Ones, T = Tens, H = Hundreds, 
…) are the multiples of powers of ten. In that way children can develop a 
decimal part-whole concept (II). 

Decimal part-whole concept: 

(II) nk•10k + nk-1•10k-1 + … no•100 = W 

 

Base-ten property (2) 

The parts (summands), ni•10i, in (II) are multiples of powers of ten but ni is not 
necessarily single digit. If we actually have a look at different kinds of symbolic 
number representations, there is only one of them that needs single digits for 
each bundle and hence the positional property to describe an amount in a definite 
way – the number in standard notation. All others (e.g. numbers indicated by 

                                           

 

 
6  Original text: „So kommt es, daß der gleichzeitige Gebrauch des Zahlwort- und 
Ziffernsystems die Schüler zu Anfang sehr oft zu Irrtümern verführt und gerade die am 
meisten, die am meisten denken“ (Langermann, 1912, p. 47). 
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bundle units, numerals, numbers in a place value chart) do not need the positional 
property because there are other indicators (e.g. the bundle unit, words like “-
teen”, the title column) that give information about the value of the number. In 
this regard it is only numbers in standard notation that require a continued 
bundling and hence single digit parts of multiples of powers of ten (III). 

Standard decimal part-whole concept: 

(III) nk•10k + nk-1•10k-1 + … no•100 = W, 
and ni<10 for all i 

 

Base-ten property  
Continued bundling; single digit  

A major problem is how to get from the principle of bundling to place value. 
This is the point where the children have to connect their knowledge about the 
properties of numbers to the principle of continued bundling. Digits in a number 
do not have different appearances like cubes or bars in base-ten blocks that are 
used to introduce bundling, neither they have different colours (e.g. following 
the Montessori-method). It is only the place that is decisive for their value.  

If we follow the learning process of arithmetical content (Aebli, 1987) the 
children first of all have to experience place value in an inactive way. In 
connecting their knowledge about bundling with place value they have to 
experience that e.g. 1 ten is worth 10 ones, that means by changing the place of 
a digit or a token in the place value chart its amount has to be multiplied or 
divided by a multiple of powers of tens (multiplicative property).  

While working with tokens in a place value chart there are different 
“behaviours” (Ladel and Kortenkamp, 2013a). Moving a token from the tens to 
the ones may mean that the value of this token changes. The children mostly 
experience this meaning of the action while working with physical material, as 
this is usually immutable. If they move a token from the tens to the ones, it is 
still one token but its value changed from a ten to a one and hence the value of 
the whole number changed its value by -10 + 1= -9. Another meaning of moving 
a token could be that the token is multiplied or divided by a multiple of powers 
of ten to keep the same value, thus: it is unbundled or bundled. In this regard 
place value is connected with bundling. Both meanings are important in 
understanding place value. To support the connection of bundling with place 
value the child has to experience the aforementioned multiplication or division. 
We suggest doing this in three steps (see Fig. 1). 

In step one, the child is bundling and unbundling with base ten blocks and learns 
that there are ones and tens and that 10 ones have the same value as 1 ten. In 
step two, we introduce the place value chart with the bundling material in the 
title bar. The amount of ones and tens has to be illustrated by homogeneous 
counters (or tokens) like tally marks or points. The children learn that if the 
counters are homogeneous and they want to change the place they have to 
bundle or unbundle. In that way they connect bundling and place value by 
bundling in the place value chart. In step three, the children only move the 
counters and experience the bundling and unbundling by an automatic 
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We define the flexible understanding of place value as the ability to switch 
between different possibilities to split a whole in parts whereupon the parts are 
multiples of powers of ten (Ladel and Kortenkamp, 2014a). Therefore we have 
to distinguish between different kinds of partitioning (See Fig. 2). As we could 
already see in (II) and (III) there are standard and nonstandard partitionings. In 
the standard partitioning we have a continued bundling with single-digit 
multiples of powers of tens (e.g. 2H 3T 1O). In the nonstandard partitionings we 
distinguish again in strong and not strong. In the not strong nonstandard 
partitioning it might be necessary to perform bundling and to add bundles in 
order to get to the standard partitioning (e.g. 1H 13T 1O = (1+1)H 3T 1O), 
whereas the strong nonstandard partitioning does not need an additional addition 
(e.g. 23T 1O). 

Materials and Methods 

For our study we refer to Artefact-Centred Activity Theory (ACAT) (Ladel and 
Kortenkamp, 2013b). We focus in the following on the main axis of interaction 
that follows the subject-artefact-object line. The subject, that is the student, 
externalises its concepts regarding an object, here place value, via an artefact. 
The artefact itself externalises the object through a suitable representation and 
visualisation. Through manipulating the artefact, the student can experience 
place value mediated by it. What place value exactly means depends on what we 
want to teach. In that way we put our knowledge in the artefact, we design it in 
that way that the children can internalise the knowledge we want them to learn 
by using it. 

The virtual manipulative that was used in our research has been described in 
(Ladel and Kortenkamp, 2013a) and other places. We are using an iPad-App that 
enables children to place tokens and to move them between places. 
Simultaneously the token counts are displayed in the title bar. When moving a 
token between places, the unbundling and bundling as described above are 
carried out automatically. 

Results  

Both a quantitative and a qualitative study have been carried out. In the 
quantitative study 255 students in grade 3 (age 8-9) from Halle (Saale) and 
Saarbrücken, Germany, as well as from Luxembourg took part. 

The test instrument (Ladel and Kortenkamp, 2014a) consisted of three parts, 
each to be administered in 10 minutes. In the first part students had to compare 
numbers given in value-unit notation, for example 2H 5T 3O and 2H 4T 17O. 
They also had to translate value-unit notation into standard notation, for example 
3O 2H 5T into 253. The value-unit notations in both tasks were using non-
standard and non-strong partitionings, and the places were not guaranteed to be 
in the correct order (highest bundle first). 
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In the second part, children were asked to translate images of tokens in a place 
value chart into standard notation of numbers and vice-versa. For creating the 
charts, we always asked for several representations (if possible) of the same 
number. 

The third part was similar to the first part, but using other numbers. 

The analysis of students’ answers showed that a significant amount of students 
was not able to solve these problems correctly. We concentrated the analysis on 
the translation from a standard number into a place value chart picture in the 
second part. This showed that only 56 students (22%) were able to give several 
correct representations, 31 students (12%) were showing flexible interpretations 
but had minor errors (usually wrong counting).  19 students (7%) made mistakes 
that can be explained by working with base-ten material in another way than the 
3-step instruction suggested above. Besides students who were using other 
symbols (24 = 9%), only one representation (16 = 6%), other arrangements or 
value changing representations (5 + 4 = 4%), the largest group (69 = 27%) were 
those who just permutated the tokens in the representation – i.e., they just 
disregarded place value completely.7 

While the data suggests that an extensive use of the digital artefact (half of the 
students had access to it) could help students to better understand  the 
connection between bundling/debundling and place value, further research is 
necessary to support this finding. In particular, the 3-step programme should be 
tested over the full introduction of whole numbers in primary school or early 
mathematics learning. A deeper analysis using Statistical Implicative Analysis 
of the data is available in (Ladel and Kortenkamp, 2014a).  

The results of the quantitative study (see also Ladel and Kortenkamp, 2014b) are 
in line with the interviews in the qualitative study. Here, we arranged a manual-
based interview with 52 children at the end of grade 2 (age 7-8). Children were 
again asked to compare numbers given in value-unit notation. Also, we asked 
how many tokens they need to represent 35 in a T/O place value chart. They 
were given tokens and the virtual manipulative to demonstrate their findings. 

The qualitative study revealed four types of typical errors that were used to 
design the test instrument of the quantitative study. In particular, when 
comparing numbers in value-unit notation (1) Children just copied the individual 
digits of numbers from left to right just omitting the bundle units; (2) Children 
decided that the number of largest bundles is also guiding which number is 
larger, not taking into account carry overs from smaller bundles – which is only 
correct in standard partitionings; (3) Children did not compose bundles into a 

                                           

 

 
7 The remaining 26 answers were unclassifiable. 
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common number, but took each bundle as a separate number; (4) Children only 
used the bundle with the largest quantity as indicator for the largest number. 

Two other results are connected to base-ten material: When asked to show 35 in 
the T/O place value chart, they placed 30 (thirty) tokens in the tens column and 
5 in the ones column, which actually represents 305. After questioning this, the 
students confirmed that it does not matter whether there are 30 or 3 tokens in 
that column – which is an obvious error (and problem) that could be identified 
again in the quantitative study. Similarly, students claimed that it is necessary to 
use blue tokens for the ones and red ones for the tens, and only those who 
already understood the role of tokens were able to abstract from this. Using the 
virtual place value chart later in the interview, students could experience a value 
preserving movement of tokens between different places. After this experience, 
students were questioning their initial findings and came up with a more flexible 
understanding of place value. 

Discussion and conclusion 

Place value is a significant problem for German students. In our study we could 
identify major misconceptions, in particular a missing sense for the importance 
of places. For spoken numbers, this is not a problem, as the bundling units are 
integrated into the number words – “-tausend” (thousand), “-hundert” (hundred), 
“-zig” (corresponds to the English -ty suffix for indicating tens) indicate the 
value of digits, and the bundle units are not in the usual order of written 
numbers: 325 is denoted by the German word “dreihundertfünfundzwanzig” (3H 
5O 2T). 

In our research we could identify typical mistakes and also indicators for a 
flexible understanding of place value. Also, the quantitative study showed that 
students having such a flexible understanding made less errors in the other parts 
of the test instrument. Using a virtual manipulative we have a chance of teaching 
such a flexible understanding. 

In our further research we will investigate whether the three-step programmeme 
presented above will support students in connecting the concepts of place value 
and bundling / unbundling and thus help them to think flexibly with respect to 
representations in a place value chart. Also, we are currently doing further video 
studies that should help us to further connect the results of the quantitative and 
the qualitative study. 

Finally, a comparison to students in a different cultural setting, in particular one 
with a different number word system that does not contain the intrinsic 
difficulties of the German system, would be helpful to identify the cause of the 
rather high number of failing students in our test. As the exercise test instrument 
is not language-specific, this could be done easily given a test group of primary 
school students.  
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Abstract 

This paper presents the generic results from a report on the efficiency of primary level 
mathematics teaching in French-speaking countries. The World Bank wanted to know 
the details of certain classroom practices in these countries, and their efficiency with 
regard to specific profiles of pupils. However, there are no large-scale empirical 
studies providing evidence-based results on this question in the French-speaking 
world. Education and educational systems tend to be more subjects of politics and 
opinion. We seek to provide some generic results as regards the way educational 
systems work, as well as some specific results in various French-speaking countries, so 
as to understand how teachers and pupils interact within the framework of these 
systems of knowledge transmission. 

Key words: classroom practices, conditions of efficiency in educational systems, 
evidence based good practices, French-speaking countries, primary level mathematics 
teaching, specific results (countries and populations) on the effectiveness of 
mathematics teaching  

Introduction 

The relative efficiency of modern teaching systems have made them almost 
universal and have led to them becoming the standard means for the 
transmission of all knowledge, whether it be theoretical, technical or 
technological. They are the standard of reference in most cultures when trying to 
transmit knowledge to many sectors of a population, especially when these 
cultures establish a written description of formal education to transmit 
knowledge from one person to another (Chevallard and Mercier, 1987). 

But the reasons for the efficiency of our systems of education are little 
understood, as are the reasons for their ineffectiveness for certain kinds of 
knowledge and skills; we still have little understanding of the influence of 
possible factors involved in this ineffectiveness, such as certain educational 
techniques, a certain kind of public, or certain social groups. This renders 
interventions aiming at their improvement a delicate operation. Teaching 
systems and their social ecology have not been the object of precise research and 
so remain relatively closed systems on which individual decisions have had no 
impact: "The education in use in a given society at a precise moment of its 
evolution, is a set of practices, of ways of doing, and of customs […] They are 
not, as we believed for a long time, more or less arbitrary and artificial 
contrivances […] It is vain to believe that we bring up our children as we wish. 
We are forced to follow the rules which are reigning in the social background 
where we live." (Durkheim, 1911). Durkheim, at the time when he invented 
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sociology and produced a sociology of educational knowledge, asserted some 
principles expressing the conditions of efficiency for a system of education.   

In the same manner, we try to understand the conditions of efficiency of diverse 
systems of education, these conditions being considered as normal for the 
societies in which they are established. We then study them as social systems 
manifesting one or several specific techniques for a generic task, in the same 
way that systems for the transportation of goods or management systems of 
retirement pensions vary according to countries and the social groups in these 
countries. These systems depend not only on rational decisions but also on a 
complex network of constraints, which determine various types of teaching 
situations (Brousseau, 1997, Dewey, 1958). Given the social ecology of each 
specific observed situation, we try to give a synthesis of specific situations 
where knowledge is transmitted when analysing each case individually. During 
the term of this investigation we realised that there are no systematic works of 
experimental design on classroom practices and their efficiency relative to a 
specified public, and hence no studies producing statistical results of empirical 
observation.  However, we were able to identify some generic results from our 
research. The functioning principles of educational systems are the main results 
of research in the didactics of mathematics and in the sociology of education in 
the French-speaking world. The conditions for efficiency of this functioning 
have been confirmed by the results of doctoral works, which are mainly 
concerned with the precise study of a case described in detail, or the 
identification of a phenomenon and its influence (see for example Matheron, 
2010). 

We include within our analyses other fields of existing works, for example that 
of social disparities with a synthesis on the countries of sub-Saharan Africa 
(Mingat, 2006); this study made an outstandingly precise analysis of the 
variables of the problem and the possible political factors involved. It identified 
peculiarities in the distribution of the internal disparities in a country (according 
to the genre or the family capital), which seemed to concern both the Sahelian 
and French-speaking countries. The details are described more exactly in larger 
publications and sometimes more precisely, as in the French case (Duru-Bellat 
and Mingat, 1994). It is from classrooms’ educational practices that certain 
questions arise, and for which we will try to find some answers.  

The historical context of the educational system in France  

Our analysis begins with the historical context of teaching practice in France, 
which allows us to understand some of the inertia of a system which has left in 
place structures of thought and action from the past. At the very beginning of the 
XXth century, education in France had two areas of interest and two systems. 
Free compulsory education in the "Primary" system and a parallel paying system 
which catered for the privileged children of big cities, and which led to the 
entrance examination for university. The latter system was that of "republican 
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elitism" and the primary school was the school of the hard-working people, 
labourer and worker. 

The unification of both systems began in 1959 and ended in 1974.  Public 
primary education became "elementary", whereas public secondary education 
split into "Middle school" for everybody and schooling became compulsory up 
to 16 years-old. Nowadays, schools strictly separate different ages into different 
levels, which hardens the system and leads to low-performing pupils repeating 
(Prost, 1982). This characteristic of the French system in France and elsewhere 
in the French-speaking systems of education, (see for example the Report 
PASEC on Senegal), is that it has resisted the test of time so that, the French 
“Republican school” has remained an elitist one. The idea of “general access to 
the best education" produced a "preparatory school for higher education". 
African French-speaking countries seem to have inherited the problem. This is 
the means by which these educational systems reproduce social inequality. 

Is there any evidence of the effectiveness of mathematics teaching in French-
speaking countries?  

What are the conditions of validity to enable better decision-making which 
would direct the system of education toward greater efficiency?  

Such are the elements that we will consider, first in known works which deal 
with the conditions of the production of announced results; such works are 
readily available and can therefore be submitted for critical discussion. From 
this analysis we can then present results that could help in decision-making. We 
are aware that decisions regarding teaching systems are a matter of "moral 
science"; a science for judgment and action, close to political action, and the 
related decisions are too often established on the basis of sociology. 

From this approach, it will be possible to give some proof of efficiency 
regarding traditional transmission techniques of elementary mathematical 
knowledge used by many teachers. We take into account where possible, 
existing works or their absence, by referring to social situations; we also have to 
identify the social balances of which every technique is a product; from this we 
will be able to discern if it is possible to envisage changes, and thus have some 
possibility of imagining the expected effects, including what will be likely to 
resist time such as local practices. 

What proofs should we retain from classes in French-speaking countries 
throughout the world, which link the performance in mathematics of pupils in 
primary classes to the teaching practices in the classroom?   

We have thus taken these punctual results as local estimations of the 
effectiveness of practices in observed classes, whether these estimations be that 
of a teacher or a researcher having proposed a teaching situation. We have then 
taken into account the variables that our four “principles” describe, and in-
keeping with a style of reasoning familiar in physics, we have considered 
punctual observations as manifestations of a particular value of these four major 
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variables, the conjunction of which is used as a generic model of teaching 
systems. 

However, we recognise that a social system, in this case for learning, does not 
function in the same way for all those whose behaviour it organises; we consider 
social groups as ecological environments for teaching practices; niches which 
may allow teaching practices to exist, depending on whether they are successful 
or not. This is how we have interpreted work which includes as contextual 
elements the family environment, or social and cultural environments where 
pupils were raised (Mercier and Buty, 2004).  

We thus claim to have identified for our generic results, certain styles of 
classroom practice, as well as some external conditions which determine the 
success or failure of learning and are the specific conditions of existence of 
these styles of classroom practice. 

Generic and specific results 

We shall first present with regard to interactions between teachers and pupils in 
mathematics classes, the principles which are our proof, that is to say, results 
which are considered as proven, and which we believe were produced by 
didactic research in French-speaking regions. 

Some functioning principles of education  

Principle number 1 states an economic aspect of teaching systems and 
statements 1.n specify a number of consequences. Principle 2 states a given 
property of teaching systems and statements 2.n provide a number of 
consequences relative to the learning properties that these systems produce.  
Principle 3 states a constraint true of all teaching, which is related to the action 
of pupils, and statements 3.n provide a number of consequences. Principle 4 
states the results of what can be termed “the epistemological position” in 
teaching research, which is termed didactics in France. The consequences 
concern the curriculum and will not be treated here. 

Principle 1: The efficiency of a modern teaching system is linked to a 
rationalisation of the teaching of knowledge, which is thus converted into a 
school discipline and presented according to an established order. 

Principle 1.1: Pupils learn not only what is taught explicitly, but also in the 
majority of cases, what is useful in order to learn this teaching. 

Principle 1.2: Study is the link between teaching and learning 

Principle 1.3: The teacher begins at the beginning 

Principle 1.4: The beginning of a taught lesson has meaning in a society where 
teaching is organised; this fact should not therefore be considered as the 
teacher’s choice. 
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Principle 1.5: In practice, the teacher organises the pupils’ progress such that 
they are not expected to know something they have not been taught, and this 
may be explicitly agreed with them. 

Principle 1.6: What is taught indicates and determines what must be learnt, in 
so far as the necessary conditions to study it, at school or beyond, are present. 

Principle 2: The teacher instructs a body of individuals who study as a group; 
this group is formed by his or her action, as well as the pre-existing social 
disposition of the pupils toward study. 

Principle 2.1: The relationship of the pupils with the knowledge taught cannot 
be separated from what is learnt as a result of the teaching situation which 
created the need for that knowledge. 

Principle 2.2: The relationship of the pupils with the knowledge taught cannot 
be separated from situations where they will experience being tested on their 
learning, and in which it will be necessary to act with the help of their learning. 

Principle 3: The different ways of organising study, which the pupils manage 
together or individually, determines the kinds of knowledge that they can learn. 

Principle 3.1: It is not possible to teach explicitly everything that is useful and 
that must be learnt. 

Principle 3.2: Pupils learn independently when the teacher is indicating 
problems to be resolved during the teaching.-  

Principle 3.3: Efficient teachers organise the learning conditions of what needs 
to be understood implicitly to be able to use the knowledge explicitly taught; to 
do that the teacher must be aware of their existence and control the conditions 
necessary to their existence. 

Principle 4: Mathematics is a collection of practices mustering symbolic tools in 
both graphic and written form, which come into existence thanks to gestural and 
language practices that indicate their meaning and enable them to be controlled. 

These principles are at work in every classroom but the way they are expressed 
is specific to each classroom. 

Four different results depending on the country or the citizens in question 

Repeating a year 

We have compared the results of sociological studies in various countries and 
cultures, and in this way indicated the importance of the question of repeating a 
year; it is practised with very young pupils in French-speaking countries where 
it appears to be linked to time-consuming revision practices. In our opinion, 
these practices are indicative of a bureaucratic management of the mass of 
pupils and the teaching of knowledge. Every year it discourages a substantial 
number of pupils who leave the school system prematurely. It also leads to a 
significant number of illiterate adults. 
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Change presupposes abandoning the ideology of republican elitism inherited 
from the colonial era, as it is no longer what is needed by modern nations. 

Chorus learning 

In countries where pre-elementary school is religious (koranic), learning is first 
experienced as learning in a group in chorus. Reading then follows, well before 
the written and graphic representation activities which enable the autonomous 
production of texts and graphic work leading to symbolic calculation. Results in 
mathematics in these countries, particularly in the Sahel region, are significantly 
lower than in other countries such as Madagascar. This corresponds to our 
fourth principle which states that mathematical activity is symbolic and 
fundamentally a form of writing which should therefore be given precedence at 
the beginning of schooling. 

Symbolic and concrete 

Language statements accompany symbolic work. In mathematics this 
phenomena is described with the term “modelling”, and it can give a direction to 
teaching right from the pre-elementary level; it should be carried out alongside 
representation practices and the measurement of objects, as well as spatial sense. 
This is another aspect of the fourth principle. 

It appears that the more a society accepts these ideas, the more teachers 
successfully develop them in the classroom, and this then increases their level of 
efficiency.  

This is because in these conditions, teachers can deal with problems in class that 
make sense to pupils’ families; they can enable the pupils to invent systems of 
representation, which they can then appropriate as symbolic objects. The pupils 
learn that mathematics is a means to find answers to numerous important 
questions, which is why it is taught to all pupils in a universal educational 
system. 

Positive discrimination 

All available studies, either sociological or didactic, show the ineffectiveness of 
policies of positive discrimination, or even their tendency to be counter-
productive. It is possible to make a comparison with observations of the 
ineffectiveness of policies in the field of special educational needs, which 
nevertheless work in English-speaking cultures. We should therefore consider 
this fact as a once again poorly explained consequence of the bureaucratic 
organisation of teaching in French-speaking countries, which does not enable 
the smooth management of certain pupils’ progress.  

More results  

There are two essential questions with regard to the curriculum in French-
speaking countries.  

The first concerns the decline of work on measuring practices and the use of the 
decimal system of measurement. Digital resources have rendered such practices 
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obsolete whereas they had been the foundation of the study of decimal numbers, 
as a filter for rational numbers and a precursor to real numbers. Traditional 
instruments systematically offered the possibility of reading graduations and 
sub-divisions and transformed any measure into an evaluation of a length, which 
requires mobilizing the units of the metric system and interpreting the   
positional numeral system (Chambris, 2008).  

Finally, it is worth noting the considerable time required to learn the uselessly 
complex names of numbers. International studies show that the high level of 
success at the beginning of the learning process by pupils from Asian cultures is 
due to the rationality of the Asian designation of numbers. Any form of 
simplification on this question would lead to decisive progress for those 
societies that adopted it, especially when the average length of time in school is 
five years. 

Discussion and conclusion 

However we should note that in France, a new style of research in mathematics 
teaching has emerged with the PIREF, the Incentive Programme of Research in 
Education in Training. Inter-disciplinary experiments (didactics, sociology, and 
psychology) on the first year of primary school teaching of mathematics have 
shown the different levels of efficiency of some teachers with regard to 
mathematics or reading, which directs attention to their personal relationship 
with these subjects (Sensevy et al., 2013). They are a reminder of the work of 
Shulman’s students, and in particular those of Ma on pedagogical content 
knowledge.  
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HOW THE CHINESE METHODS PRODUCE ARITHMETIC 
PROFICIENCY IN CHILDREN  

Yujing Ni, the Chinese University of Hong Kong, HKSAR, China   

Abstract  

This paper explicates the several features of mathematics education in early years in 
mainland China that are considered to have contributed to the arithmetic proficiency in 
Chinese children. Of particular significance are the features of elementary school 
curriculum, textbooks and classroom instruction, and the cultural values on learning 
mathematics. These work as a social-cultural system, elements that are instrumental in 
shaping the achievement of mathematics learning in Chinese children. The content of 
this paper is developed based on the three previous works by Ni and her colleagues.  

Key words: arithmetic, Chinese mathematics education, two-basics 

Introduction  

Compared to young children in other countries, Chinese young children show 
impressive achievement in the basic arithmetic, such as in generating cardinal 
and ordinal number names (Miller al., 2000), understanding of the base-10 
system and concept of place value (Fuson and Kwon, 1991; Fuson and Li, 
2009), using decompositions as the primary backup strategy to solve simple 
addition problems (Geary et al., 1993; 1996), and an earlier emergence of linear 
representation of number magnitude (Siegler and Mu, 2008). The Chinese 
children’s achievement in the basic arithmetic led researchers and educators to 
have inquired about its contributing factors. One interpretation was attributed to 
a greater regularity in Chinese number naming system between 11 and 20 and 
also between 10 and 100. For example, numbers between 11 and 20 are formed 
by compounding the “tens word” with the “unit word”. Thus, the numbers 11 
and 12 are spoken as “ten-one” and “ten-two”, while 20 is spoken as “two-tens” 
and 62 is spoken as “six-tens-two.” The consistency of the Chinese number 
naming system with a base-ten system has been hypothesised to assist children 
in doing well on tasks relevant to base-10 values, such as counting skills and 
place-value competence (Miura et al., 1994). However, this interpretation has 
been difficult because none of these studies controlled for cultural or family 
processes (e.g., parental expectation, parental assistance, and preschool 
education) as confounding variables that could also influence children’s 
numerical development. On the other hand, several studies have demonstrated 
that adult instruction mediates the role of the linguistic feature of such a number 
naming system (Saxton and Towse, 1998; Othman, 2004).  

In the following, this paper will show how the cultural factors, including 
elementary curriculum objectives, textbooks and classroom instruction, and the 
cultural values put on education and mathematics are instrumental in shaping the 
arithmetic proficiency in Chinese children.  
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The Emphasis of “Two-basics” in Elementary School Mathematics  

The Chinese mathematics curriculum, which is nationally mandated, has 
evolved from merely focusing on “the two basics” (basic mathematic concepts 
and basic mathematic skills) to emphasising mathematic problem solving built 
on the two basics (Liu and Sun, 2002; Ministry of Education, 2001; Ni et al., 
2011). Nevertheless, throughout the evolution of the curriculum, the two-basics 
have remained as the foundation of Chinese school mathematics (Zhang, Li and 
Tang, 2004). The two-basics approach stresses the importance of acquisition of 
foundational knowledge, content and skills. Consequently, arithmetic is the most 
significant part of the Chinese elementary mathematics curriculum because 
arithmetic constitutes the foundation of the definition system derived from the 
concept of unit (L. Ma, 2013; X. Ma, 1996). First-grade students are required to 
mentally perform addition and subtraction using numbers up to and including 
one hundred (Ministry of Education, 2001). This is achieved by the way that 
Chinese elementary school mathematics is organised. Ma (2013) characterises 
the Chinese elementary mathematics with “core-subject structure” in contrast to 
the US elementary mathematics with “strands structure.” Whole numbers and 
fractions are the core body of the Chinese elementary mathematics curriculum 
whereas the US curriculum containing many parallel strands (e.g., number and 
operations, problem solving, measurement, data analysis and probability, etc., 
NCTM, 2000) juxtaposed but may not being well connected. The emphasis of 
foundational mathematics in the Chinese elementary mathematics curriculum is 
also reflected in the recursive way to organise the instruction on whole numbers 
and operations. For example, the first 30 weeks of mathematics instruction 
focuses only on arithmetic with the first 10 numerals and their addition and 
subtraction, followed with addition and subtraction within the first 20 numerals, 
progressing to addition and subtraction with regrouping between numbers 20 
and 100. Along the sequence of the three sections from 0-10 to 11-20 and then 
to 20-100, the key concepts, such as “the composition of ten,” “place value,” 
and “composing and decomposing a higher value unit” are recursively illustrated 
and repeated practiced, laying a solid foundation for later mathematics learning 
(Ma, 1999; 2013). 

Teaching Materials and Classroom Instruction with High Cognitive 
Demand 

Curriculum materials, especially textbooks and the corresponding teaching 
manuals are the most important vehicles used to implement the nationally 
mandated curriculum in the mainland China. The development and publishing of 
textbooks is closely regulated and monitored by the central government, the 
Ministry of Education. In the country, there are only a few officially designated 
publishers who are allowed to develop textbooks and teaching manuals.  

Comparative studies of mathematics textbooks indicated that there were high 
cognitive demands made of students using Chinese textbooks and that there was 
a link of the cognitive demands to the mathematics achievement of Chinese 
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students (Ding and Li, 2010; Li et al., 2008). One indication of the high 
cognitive demand is the emphasis on the acquisition and use of mathematical 
language as the development of mathematical proficiency is inextricably 
dependent on the mastery of the language for mathematics.  

Li et al. (2008) showed that the US teacher preparation textbooks treated the “=” 
sign and its implication for primary school students as cursory. The expressions 
to explain the “=” sign often do not focus on equality as symbolising a relation. 
On the contrary, Chinese mathematics method textbooks and student textbooks 
highlight equality as a relation by introducing the equal sign in a context of 
relationships and interpreting the sign as “balance,” “sameness,” or 
“equivalence.” The equal sign often appears simultaneously with the sign “>” 
and “’<” to highlight the equal sign representing a relation. The Chinese texts 
suggest teachers use the one-to-one correspondence concept and procedure to 
assist students in better understanding of the equal, greater, and less than 
symbols. The studies (Ding and Li, 2010; Li et al., 2008) indicate that 
differences in the curricular and pedagogical treatments reflected in the 
curriculum materials can be a source of the disparity between the Chinese 
students and the US students’ understanding of equality as a relation.   

In addition to the textbooks, teaching manuals are also key tools for Chinese 
teachers, assisting them to learn about subject matter as well as ways of 
teaching. In fact, the Chinese teaching manuals are often very useful for teachers 
because they specify the objectives of teaching and explicitly identify what is 
“important” and “difficult” in each teaching unit. Specific teaching suggestions 
are provided for each lesson (Li, 2004). The important points of curriculum 
content are not only significant for students to learn and master, but also 
important for teachers, enabling them to develop a profound understanding of 
mathematics for teaching. For example, for teaching first grade students about 
subtraction with word problems such as “There are 10 boys and 7 girls in a 
class. How many more boys are there than the number of girls?”, the teacher 
manual advises the importance of teaching children to use the one-to-one 
correspondence principle to compare two quantities. The manual stresses the 
importance of being able to address and overcome the possible misconception in 
students to think 10 minus 7 for the word problem as removing seven girls from 
the group of ten boys.  

Such teaching manuals have probably contributed to Chinese mathematics 
teachers to develop a tendency to follow accurate mathematical expressions in 
classroom instruction based on their understanding of mathematics knowledge 
for teaching. In teaching subtraction with regrouping, the majority of the 
Chinese teachers interviewed in Ma’s study (1999) described the borrowing step 
in the algorithm as “a process decomposing a unit of higher value instead of 
saying ‘you borrow 1 ten from the tens place’” (p.8), as advised by the teacher 
manual on instruction. One third-grade teacher explained why she thought the 
expression of “decomposing a unit of higher value” was conceptually accurate: 
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“…. ‘Borrowing’ can’t explain why you can take 10 to the ones place. But 
‘decomposing’ can.” (Ma, 1999, p. 9)  

Chinese teachers pay close attention to details and expressions of students’ 
responses to answering mathematics questions. Cai (2004) analysed U.S. and 
Chinese teachers’ scoring of student responses. One set of student responses was 
to the following question: One step needs one block, two steps needs three 
blocks, three steps needs 6 blocks, four steps need 10 blocks….How many 
blocks are needed to build a 20-step staircase? One student response was shown 
as this: 1 + 2 = 3 + 3 = 6 + 4 = 10 + 5 = 15 + 6 = 21 + 7 = 28 + 8 = 36 + 9 
….190 + 20 = 210. Over 60% of the US teachers gave the response 4 points (the 
highest point) and about 30% of them assigned it 3 points. In contrast, about a 
third of the Chinese teachers rated it 0 or 1 point and nearly half gave 2 or 3 
points. Most of the Chinese teachers were intolerant of the errors. They 
commented that the answer was correct but two sides of an equal sign should be 
equal. Student errors such as this regarding the equal sign as “do something” for 
an answer probably contributes to the late difficulty that students have when 
learning algebra by treating an algebraic equation not as indicating a 
mathematical relation but as indicating “do something” for an answer. 
Therefore, the conceptual acquisition of mathematical representation 
conventions does not merely mean applying labels to what one perceives. 
Learning conventions may act as the catalyst for some conceptual changes 
(Lehrer and Lesh, 2003). It has been shown that the acquisition of the counting 
conventions may contribute to children’s understanding of cardinality and 
ordinality of numbers. Similarly, the acquisition of the equal sign may positively 
influence the late learning of algebra in Chinese students.  

Cultural Values on Learning Mathematics  

The Chinese way of teaching and learning arithmetic to children is also 
supported by its cultural-social contexts (Ni, 2012; Ni, Chiu and Cheng, 2010). 
Among others, Chinese mothers believe that their children should master both 
skills before first grade in order to support academic success in early childhood 
education whereas US mothers value literacy skills more than mathematics skills 
in early childhood education, (Hatano, 1990; Stevenson and Lee et al., 1990). In 
addition, Chinese parents believe that children’s trajectories in mathematics 
achievement are already established early in preschool and tend to persist in 
elementary school; thus, they think that preschool children who lag behind their 
peers in mathematics performance tend to fall further behind in elementary 
school. Hence, Chinese parents, put early pressure on their children to learn, and 
on preschools to teach, the mathematics curricula. Chinese parents’ expectations 
affect preschool curriculum and instruction. To meet parental demands, 
preschool mathematics curricula have absorbed mathematics curricula from 
elementary schools in Hong Kong and major cities in mainland China (Starkey 
and Klein, 2008; Cheng and Chan, 2005). Urban Chinese children who attended 
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regular preschool and kindergarten education usually can count, add, and 
subtract 0-20 proficiently before entering first grade (Zhang et al., 2004).   

The above discussion is intended to show that Chinese children’s mathematics 
proficiency is a product of the social-cultural system which includes, among 
others, a nationally mandate school mathematics curriculum emphasizing the 
two basics, textbooks and classroom instruction of high cognitive demand to 
serve the two-basic curriculum, and the social context valuing early mathematics 
education. However, the strengths of Chinese children’s mathematics 
proficiency are accompanied with notable weakness. For example, there could 
be an inherent problem with the curriculum system in the basic approach to 
mathematics thinking. Factors such as trial and error, induction, imagination and 
hypothesis testing are not significant part of mathematic curriculum and 
instruction (X. Ma, 1996; Wong et al., 2002). Probably as a consequence, for 
example, Chinese students appeared less tolerant for ambiguity in mathematics 
classroom (Wang and Murphy, 2004), less willing to take risks when solving 
mathematic problems (Cai and Cifarelli, 2004). The interest and confidence in 
learning mathematics of Chinese students was shown to deteriorate over the 
years as they moved up to higher grades (Liu and Sun, 2002; Ni et al., 2011). 
However, an analysis of the limitations in Chinese students’ mathematics 
achievement requires a separate paper.  
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Abstract 

This paper compares the whole number knowledge of 7-year-old Australian and 
German children and their longitudinal counting development. Children’s knowledge 
was assessed using the one-on-one Early Numeracy Interview and the associated 
growth point framework. The findings highlight that Australian children had greater 
knowledge of Counting and Place Value ideas, while German children had greater 
knowledge of Addition and Subtraction strategies. These variations are likely due to 
the different curriculum emphases in the two countries and differing language 
structures for naming 2-digit numbers.   

Key words: arithmetic strategies, assessment, language structures, teaching strategies  

Introduction  

Understanding the mathematical capabilities and knowledge of young children 
is necessary for designing high quality curriculum, assessment and teaching 
methods that enable all children to thrive mathematically at school. Many 
studies show that young children are capable of learning and using informal 
mathematical ideas as part of their everyday lives, but countries vary in the ways 
that they introduce whole number arithmetic learning to young children. 
Australian and German early childhood mathematics curricula differ in terms of 
some content and goals. While in Germany the focus is on understanding 
numbers from 1 to 20 and on the development of addition and subtraction 
strategies, in Australia the emphasis is on counting and place value activities and 
calculation strategies are emphasised later. A key question is how these 
variations influence young children’s learning. In order to explore this question, 
the authors compared the whole number knowledge of 7-year-old Australian and 
German children. The children’s knowledge was determined using the task-
based Early Numeracy Interview and associated Whole Number Growth Point 
Framework (Clarke et al., 2002) that was first developed in Australia and then 
translated into German (Peter-Koop et al., 2007). 

Gaining Insights About Young Children’s Mathematics Knowledge Using 
the Early Numeracy Interview 

It is well established that teachers need access to high quality information about 
children’s mathematical knowledge in order to plan effective instruction and to 
monitor children’s progress. It is also known that formal written tests are 
limiting in providing this information about young children. For these reasons, 
the Early Numeracy Interview (Clarke et al., 2002; Peter-Koop et al., 2007) was 
designed especially for young children, is task-based and interactive, derived 
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from extensive research, and enables young children’s mathematical learning to 
be measured in multiple domains. This instrument was developed as part of the 
Early Numeracy Research Project (ENRP) (Clarke et al., 2002; Department of 
Education, Employment and Training, 2001). The principles underlying the 
construction of the tasks and the growth point framework were to:  

• describe the development of mathematical knowledge and understanding in 
the first three years of school in a useful form and language for teachers;  

• reflect the findings of relevant international and local research in mathematics 
(e.g., Fuson, 1992; Gould, 2000; Mulligan, 1998; Steffe, von Glasersfeld, 
Richards and Cobb, 1983; Wright, Martland and Stafford, 2000);  

• reflect, where possible, the structure of mathematics;  
• allow the mathematical knowledge of individuals and groups to be described;  
• enable a consideration of children who may be mathematically vulnerable 

(Gervasoni and Lindenskov, 2011, Peter-Koop and Grüßing, 2014). 

The assessment includes four whole number domains (Counting, Place Value, 
Addition and Subtraction Strategies, and Multiplication and Division Strategies) 
and three measurement domains (Time, Length and Mass); and two geometry 
domains (Properties of Shape and Visualisation). Only data for the whole 
number domains is included in this paper. The whole number tasks in the 
interview take between 20 to 30 minutes for each child and for the studies 
described in this paper were administered by classroom teachers in Australia and 
by pre-service teachers in Germany, who all followed a detailed script. The 
classroom teachers and pre-service teachers were very competent with using the 
interview and had participated in associated professional learning. Through-out 
the assessment interview process, given success with one task, the interviewer 
continued with the next tasks in a domain for as long as a child was successful, 
according to the script. The processes for validating the growth points, the 
interview items and the comparative achievement of students are described in 
full in Clarke et al. (2002). A critical role for the interviewer was to listen and 
observe the children, noting their responses, strategies and explanations while 
completing each task. These responses were noted on a detailed record sheet and 
then independently coded to  

• determine whether or not a response was correct;  
• identify the strategy used to complete a task; and  
• identify the growth point reached by a child overall in each domain. 

The data was entered into an SPSS database for analysis. Of particular interest 
for this paper were children’s growth points in the whole number domains. 

The Australian and German Primary School Systems 

In Australia children begin school as a whole cohort in February, after the 
summer holidays, when they are 5 years old (typical ages are from 4.5 to 5.5 
years). Australian children are encouraged to complete 15 hours of pre-school in 
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the year before they begin school. This is subsidised by the government. Formal 
mathematics education begins only when children begin school. 

In Germany children begin school at the age of 6 as a whole cohort in August at 
the start of the school year and after the summer holidays. Most children attend 
kindergarten prior to school enrolment for at least one year. More typically they 
attend kindergarten for 3 years between the ages of 3 and 6. Kindergarten 
education is not compulsory and does not follow a mathematics curriculum. 

Whole Number Aspects of Australian and German Mathematics Curricula 

The primary school mathematics curriculum in Australia is set by each State and 
Territory, but follows the framework provided by the Federal Government in 
consultation with the States. The Australian Curriculum: Mathematics (Austra-
lian Curriculum, Assessment and Reporting Authority, 2013) focuses on the 
domains of number and algebra, geometry and measurement, and probability 
and statistics. The curriculum also incorporates four proficiencies: under-
standing, fluency, problem solving and reasoning. There is a variety of text-
books used in primary schools, but it is also common for teachers not to use a 
text book at all, but rather devise their own tasks or draw on a variety of 
resources, including text books. 

Like Australia, the German mathematics curriculum is set by each State 
following the National Standards (Kultusministerkonferenz, 2005), i.e., the 
curriculum guidelines agreed to by all States. While there is a clear focus on 
arithmetic in Grades 1 and 2, other content areas include space and shape, 
measurement, pattern and structure as well as chance and data. In Germany the 
vast majority of primary mathematics teachers use one of the major textbooks. 

Approaches for Teaching Whole Number Arithmetic 

Teachers in Australia use a variety of teaching approaches for whole number 
arithmetic. One common approach is using problems connected to everyday 
experiences. It is also common for teachers to encourage the use of manipu-
latives and pictures for modelling a problem to assist children to find a solution. 
The use of tokens, blocks and counting frames are customary. Arithmetic racks 
are used by some. Children are encouraged to work in pairs or small groups to 
discuss their strategies and solutions. Many teachers use a framework, such as 
the ENRP Growth Point Framework, to evaluate the development of children’s 
whole number arithmetic strategies, and plan experiences that enable children to 
replace counting-based arithmetic strategies with basic and derived strategies 
such as building to ten, doubles and commutativity. Initially children work with 
whole numbers in the range of 1 to 20 and then expand to increasingly greater 
number ranges. At this point Multi-base Arithmetic Blocks (MAB) are often 
used to model the problems and support children’s calculation strategies. 

The vast majority of German primary mathematics teachers use a mathematics 
textbook. In Grade 1 the focus is on whole number arithmetic with numbers up 
to 20. Counting activities, comparing sets, getting to know and learning to write 
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the numerals from 0 to 9 as well as matching numerals to sets is the focus of the 
first 4 to 5 months of school. After that, firstly addition and then subtraction is 
introduced with the aim to help children understand the underlying concepts and 
to increasingly develop and use heuristic strategies based on derived-facts to 
replace initial counting-based arithmetic strategies. In most classrooms manipu-
latives such as the arithmetic rack would be used to model addition and 
subtraction strategies based on derived-facts.  

Comparing the Whole Number Knowledge of 7-Year-Old Children 

In order to compare the whole number knowledge of 7-year-old Australian and 
German children, Early Numeracy Interview data was compared for children 
who had completed Grade 1. Due to the different school starting ages and timing 
of assessments in the two countries, the selection of the two cohorts for 
comparison is pragmatic rather than precise. Therefore it is important to be clear 
about the similarities and differences between the German and Australian 
cohorts. Overall, we argue that comparing the groups, despite their differences, 
is useful for highlighting the progression of children’s development of whole 
number arithmetic and of the influence of curricula and teaching emphases. The 
assessment took place after the second year at school for the Australians and at 
the end of the first year at school for the German children. The Australian 
children attended school in the States of Victoria and Western Australia and 
were assessed after the summer holidays, as is customary, (at the beginning of 
Grade 2). The German students attended school in the Bielefeld region and were 
assessed before the summer holidays (at the end of Grade 1). The Australian 
students were assessed by their classroom teachers as part of the Bridging the 
Numeracy Gap in Low SES and Aboriginal Communities longitudinal study 
(Gervasoni et al., 2010), and the German students were assessed by pre-service 
teachers as part of a longitudinal study on children’s mathematical development 
from one year prior to school until the end of Grade 2 (first results of this study 
are reported in Kollhoff and Peter-Koop, 2014). The assessment data for both 
groups were analysed to determine children’s whole number Growth Points. Fig. 
1-4 show the growth point distributions for the whole number domains.  

Counting Knowledge 

There are some interesting differences noted between the two groups (Fig. 1). 
Most striking is that twice as many Australian children (60%) could count by 2s, 
5s and 10s from zero (GP4), compared with the German children (30%).  

It is notable that roughly the same percentage of students from both countries 
achieved the highest and lowest Counting growth points; the greatest differences 
exist for the 90 percent of students in the middle of the Counting growth point 
distribution. Curriculum comparisons between countries show that German 
students do not typically learn to count by 2s. 5s and 10s in Year 1, but 
Australian students do. This curriculum variation likely explains the difference. 



ICMI Stud

 

F
compa

Place 

Fig. 2 
the per
also b
numbe
also be
that is
numera
introdu
for the

Additio

In cont
many G
GP3 to
curricu
strateg
additio
Perhap
with b
childre

Multip

Overal
and Di
of Ger

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C

dy 23                

Fig. 1: Cou
arisons for

Value Kn

shows tha
rcentage o
e an arte

ers in Gra
e influence
 based on
al form. T
uced to an
e number 1

on and Su

trast to the
German st
o GP6 co
ulum guid
gies in Gr
on with th
ps this is 
basic and
en to const

plication a

ll, the Ger
ivision Str
rman child

53%

15%

18%

6%
4%

Germany
(n=408)

Countin
Compariso

                        

unting grow
r the 7-year

owledge 

at there is 
of studen
fact of th
de 1 whe
ed by the 
n ones an
This creat
nd learn th
13-19 in E

ubtraction

e Countin
tudents (6

ompared w
delines in 
rade 1. In

he use of m
not cond

d derived 
truct subtr

and Divisi

rman and A
rategies ar
dren usin

32%

7%

45%

12%
2%

Australia
(n=445)

g Growth
on for 7‐ye

       Theme 3

wth point 
r-old childr

a large di
ts who un

he curricu
reas the f
German la
nd tens as
tes cognit
hese oppo

English.  

n Strategie

ng and Pla
66%) use t
with Aust

both cou
n Australi
manipulati

ducive to 
strategie

raction con

ion Strateg

Australian
re quite sim
g abstract

 Point 
ear‐olds

6. Extend/ Ap

5. Skip count(

4. Skip count 

3. Forward/ba

2. Collections 

1. Rote count 

0. Number Na

3, Peter-Koop

350 

ren co

ifference 
nderstand 

ulum whic
focus is 2
anguage s
s opposed
tive confl

osing conv

es 

ace Value 
the count-
tralian stu
untries em
ia it is li
ives to m
students r

es, nor pr
ncepts.  

gies 

n growth p
milar (see
t strategie

1
pply

(from x)

(2/5/10)

ack(110)

 ‐20

t ‐20

ames

p et al., Child

Fig. 2: P
omparisons

between t
2-digit n

ch in Ger
-digit num
tructure fo

d to tens 
lict for yo
ventions. T

domains, 
down-to/u

udents (33
mphasise t
ikely that
odel a pro
replacing 
rovides s

point distr
e Fig. 4), e
es in mult

53%

30%

11%
5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

00%

Germ
(n=4

Plac
Com

dren’s Whole

Place value
s for the 7-

the two gr
numbers (
rmany em
mbers in A
or naming
and ones

oung child
This chall

Fig. 3 sho
up-to strate
3%). This 
the learnin
t teachers 
oblem and
counting-

sufficient 

ributions f
except for 
tiplicative

%

15%

%

61%

%
16%

% 8%

many
08)

Austra
(n=44

ce Value G
parison fo

e Number Kn

e growth po
-year-old c

roups conc
(GP2). Th
mphasises 
Australia. 
g 2-digit nu
s in the B
dren as th
lenge exis

ows that tw
tegy (inclu

is intrigu
ng of arit
 focus m

d find a so
-based str
opportun

for multipl
r the larger
e situation

%

%

%

alia
45)

Growth Po
or 7‐year‐

5. 

4. 4

3. 

2. 

1. 

0. 

nowledge 

oint 
hildren 

cerning 
his may 

1-digit 
It may 
umbers 

Base-10 
hey are 
sts only 

wice as 
usive of 
uing as 
thmetic 

more on 
olution. 
rategies 
nity for 

lication 
r group 

ns. This 

oint 
olds

Extend/Apply

4‐digit nos.

3‐digit nos.

2‐digit nos.

1‐digit nos.

Not Yet

 

y



ICMI Stud

 

confirm
arithm
strateg
and Pl
empha
childre
problem

Fig. 3: 
growth

The De

In orde
numbe
the two

The gr
the ma
(GP2) 
year-ol
of Aus
or GP2
attendi
countin
culum,
childre

dy 23                

ms the tre
etic strat

gies, while
lace Valu
asise teach
en who de
ms by the

Addition a
h point com

evelopmen

er to gain 
er knowled
o precedin

rowth poin
ajor differ
or count 
lds, most 
stralian stu
2 to GP4
ing kinde
ng activity
, but was 
en to coun

                        

end that 
tegies in 
e the Austr
ue. Neithe
hing Mult
emonstrat
mselves o

and subtrac
mparisons f

nt of Cou

insight ab
dge, we tra
ng years. T

nt distribu
rence bein
forwards 
German c

udents inc
4). Nearly 
rgarten w
y is a sig
not a foc

nt 20 items

       Theme 3

German c
addition

ralian stud
r the Gra
tiplication 
te these h
or with fam

ction strate
for 7-year-o

nting Kno

bout the l
aced child
The results

tions for t
ng the nu
and backw
children in
creased tw

half of t
were not y

nificant fo
cus in Ge
s changed 

3, Peter-Koop

351 

children a
n, subtrac
dents reac
ade 1 curr
 and Divi

higher gro
milies. Thi

egies 
olds 

Fig
p

owledge O

ongitudin
dren’s kno
s are show

the 5-year
umber of 
wards pas
ncreased o

wo growth 
the Germa
yet able t

focus of th
erman kin
dramatica

p et al., Child

appear to
ction, mu
ch higher g
riculum in
ision strat

owth poin
is is a frui

g. 4: Multip
point comp

Over Three

al develop
owledge in
wn in Fig.

r-old child
children 

t 109 (GP
one growt
points (ty
an six-yea
to count 
he Austral
ndergarten
ally after t

dren’s Whole

 develop 
ultiplicatio
growth po
n German
tegies. It 

nts explore
tful line fo

plication an
parisons for

e Years 

pment of c
n the Coun
5 and 6.  

dren are fa
able to c

P3). One y
th point, b
ypically fr
ar-old chi
20 object
lian prima

ns. The ab
they began

e Number Kn

more ad
on and d
oints in Co
ny nor Au
may be t
e these ki

for inquiry

nd division
r the 7-yea

children’s
nting Dom

airly simila
count 20 
year later, 
but a large
rom GP0 t
ildren wh
ts. This t
ary schoo
bility of G
n school. 

nowledge 

dvanced 
division 
ounting 
ustralia 
that the 
inds of 

y. 

n growth 
ar-olds 

s whole 
main for 

ar, with 
teddies 
as six-

e group 
to GP2, 

ho were 
type of 
l curri-

German 



ICMI Stud

 

Fig. 
point 

Discus

The co
childre
the Au
Austra
domain
Subtra
hypoth
two cu
numbe
numbe
5-7-ye
formal

One ad
used th
focus 
teacher
they a
embed
about 
learnin
promp
WNA 

dy 23                

5: Longitu
developme

ssion and 

omparison
en highligh
ustralian 7
alian child
ns, while 

action dom
hesise that
urricula an
ers. It app
ers influen
ar-old Au
lly explore

dvantage 
he ENI an
for instru
rs noticin
are not m

dded in the
the teach

ng. The fr
ted to use
problems 

                        

udinal coun
ent for Ger

Conclusi

ns betwee
ht some in
7-year-old
dren were
the Germ

mains, with
t these diff
nd by the
pears that
nce childre
ustralian 
e WNA at

for the Au
nd the asso
uction acro
g and the
making t
e growth p
ing strate
ramework
e manipu
posed for

       Theme 3

nting growt
rman childr

ion 

en the W
nteresting 

ds have sp
e more ad

man childr
h few dif

fferences c
e challeng

the curri
en’s WNA
and Ger
school m

ustralian c
ociated gro
oss the sc
en working
the antici
point fram
gies and 

k assists t
latives, si
r mathema

3, Peter-Koop

352 

th 
ren 

Fig

WNA know
difference

pent an ad
dvanced 

ren were m
fferences i
can be exp
ging Germ
iculum an
A learning
rman chil

matters, at l

children i
owth poin
chool yea
g towards
ipated pr

mework als
manipula

teachers to
imulation 
atical inqu

p et al., Child

g. 6: Longit
developme

wledge of
es. While 

dditional y
in the Co
more adva
in Multipl
plained by
man langu
nd langua
g and prog
ldren’s d
least in the

n this stu
nt framewo
ar. This ca
s accelera
rogress. T
so provide
atives that 
o know w
or abstra

uiry. 

dren’s Whole

tudinal cou
ent for Aus

f German
it is impo

year at sch
ounting a
anced in t
lication an

y different 
uage struc
age structu
gress. It is

differing o
e short ter

dy was th
ork to iden
an have t
ting child
The arith
e a useful g

may be 
when child
act reason

e Number Kn

unting grow
stralian chi

n and Au
ortant to no
hool, over

and Place 
the Additi
nd Divisio
t emphase
ctures for 
ures for n
s also like
opportuni

rm.  

hat their te
ntify the s
the advant
dren’s lear
hmetic str
guide to te
assist chi
dren need

ning to so

nowledge 

 

wth point 
ildren 

stralian 
ote that 
rall the 

Value 
ion and 
on. We 
s in the 
2-digit 

naming 
ely that 
ities to 

eachers 
specific 
tage of 
rning if 
rategies 
eachers 
ildren’s 
d to be 
lve the 



ICMI Study 23                                               Theme 3, Peter-Koop et al., Children’s Whole Number Knowledge 

353 
 

References 
Australian Curriculum, Assessment and Reporting Authority (ACARA) (2013). The 

Australian curriculum: mathematics v2.4. Retrieved 17 March 2013:  
http://www.australiancurriculum.edu.au/Mathematics/Curriculum/F-10. 

Clarke, D., Cheeseman, J., Gervasoni, A., Gronn, D., Horne, M., McDonough, A., 
Montgomery, P., Roche, A., Sullivan, P., Clarke, B., & Rowley, G. (2002). Early 
numeracy research project. Final report. Melbourne: Australian Catholic University. 

Department of Education, Employment and Training (2001). Early numeracy interview 
booklet. Melbourne: Department of Education, Employment and Training. 

Fuson, K. (1992). Research on whole number addition and subtraction. In Grouws, D. A. 
(Ed.), Handbook of research on mathematics teaching and learning (pp. 243-275). New 
York: Macmillan. 

Gervasoni, A., & Lindenskov, L. (2011). Students with ‘special rights’ for mathematics 
education. In Atweh, B., Graven, M., & Secada, W. P. (Eds.), Mapping Equity and 
Quality in Mathematics Education (pp. 307-323). New York: Springer. 

Gervasoni, A., Parish, L., Upton, C., Hadden, T., Turkenburg, K., Bevan, K., Livesey, C., 
Thompson, D., Croswell, M., & Southwell, J. (2010). Bridging the numeracy gap for 
students in low SES communities: The power of a whole school approach. In  Sparrow, 
B., Kissane, B., & Hurst, C. (Eds.), Shaping the future of mathematics education. 
Proceedings of the 33rd annual conference of the Mathematics Education Research 
Group of Australasia (Vol. 1, pp. 202-209). Fremantle: MERGA. 

Gould, P. (2000). Count Me In Too: Creating a choir in the swamp. Australian Council for 
Educational Research, Improving Numeracy Learning: What Does the Research Tell 
Us? (Proceedings of the ACER research conference 2000, pp. 23-26). Camberwell, 
Australia: ACER. 

Kollhoff, S., & Peter-Koop, A. (2014). Prior to school mathematical skills and knowledge of 
children low-achieving at the end of grade 1. In Liljedahl, P., Oesterle, S., Nicol, C., & 
Allan, D. (Eds.), Proceedings of the Joint Meeting of PME 38 und PME-NA 36 (Vol. 4, 
pp. 9-16). Vancouver: PME. 

Kultusministerkonferenz (2005). Bildungsstandards im Fach Mathematik für den 
Primarbereich. München: Luchterhand.  

Mulligan, J. (1998). A research-based framework for assessing early multiplication and 
division. In Kanes, C., Goos, M., & Warren, E. (Eds.), Teaching mathematics in new 
times: Proceedings of the 21st annual conference of the Mathematics Education 
Research Group of Australasia (Vol. 2, pp. 404-411). Brisbane: MERGA. 

Peter-Koop, A., & Grüßing, M. (2014). Early enhancement of kindergarten children 
potentially at risk in learning school mathematics – Design and findings of an 
intervention study. In Kortenkamp, U., Brandt, B., Benz, C., Krummheuer, G., Ladel, 
S., & Vogel, R. (Eds.), Early mathematics learning. Selected Papers of the POEM 2012 
Conference (pp. 307-321). New York: Springer. 

Peter-Koop, A., Wollring, B., Spindeler, B., & Grüßing, M. (2007). Elementar-
Mathematisches BasisInterview. Offenburg: Mildenberger.  

Steffe, L., von Glasersfeld, E., Richards, J., & Cobb, P. (1983). Children's counting types: 
Philosophy, theory, and application. New York: Praeger. 

Wright, R., Martland, J., & Stafford, A. (2000). Early numeracy: Assessment for teaching and 
intervention. London: Paul Chapman Publishing. 

 



ICMI Study 23                                                               Theme 3, Pimm & Sinclair, The Ordinal and the Fractional 

354 
 

THE ORDINAL AND THE FRACTIONAL: 
SOME REMARKS ON A TRANS-LINGUISTIC STUDY 

David Pimm, Nathalie Sinclair, Simon Fraser University, Canada 

Abstract 

This paper takes an initial, cross-linguistic look at the structures that comprise various 
sets of number words (cardinal, ordinal, fractional) in twenty different languages, as 
well as some of the syntactic features with which each language imbues them. The 
primary question concerns the relations between the ordinal and fractional forms and 
their joint relations to cardinals. One focal concern is to what extent the grammar of 
the language tacitly conveys information about the nature of these sets of numbers, 
starting from an observation that for some languages, such as English, fraction words 
and ordinals are identical. While the results are necessarily provisional in nature, the 
paper invites discussion and reflection across a wider range of participants’ languages. 

Key words: cardinal, comparative linguistics, fraction, language, number word, 
ordinal  

Introduction and background 

This paper sits, slightly uncomfortably, in the overlap of mathematics education, 
history of mathematics and comparative linguistics. In it, I report on the early 
stages of a larger investigation into number-word systems and structures present 
in the various languages of the world. By doing so, I suggest some of the 
linguistic knowledge (knowledge that varies by language) young learners need 
to acquire in order to count and compute successfully, where the verbal (both 
spoken and written, within a language) rather than extra-linguistic notations 
(such as numerals or symbols for operations) are in view. It also can serve as a 
placeholder for work in opposition to the increasing hegemony of English and 
its historical specificities as a language being presumed to be (even relatively) 
transparent with respect to mathematics. (For more on this, see, for instance, 
Barton, 2008, or Morgan et al., 2014.) 

In particular, it broadens the linguistic focus from solely cardinal words (e.g. 
one, two, three, ...) to include ordinal words (e.g. first, second, third, …) and 
fraction words (e.g. half, third, fourth, …) – sets of words that have not been 
much attended to systematically in the history of mathematics literature on 
counting words. One instance of this absence can be seen in Karl Menninger’s 
(1958/1969) extensive and authoritative 480 page work Number words and 
number symbols, where there are a mere handful (a hand not even quite full) or 
references either to ordinal or fraction words. The same is true, albeit to a 
slightly lesser extent, of the work of historian of mathematics Graham Flegg 
(1983, 1989, 2007). 

There are at least two contemporary reasons for believing that ordinals (and due 
to the verbal similarity of fraction words to ordinals across languages that is 
discussed in this paper, fractions) are of greater significance arithmetically than 
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is usually accorded them (not least in conventional school curricula). The first is 
emerging claims to this end in the neuro-scientific literature (e.g. Lyons and 
Beilock, 2011, 2013; Lyons et al., 2014), work that is further explored in 
Sinclair and Coles (2014). The second comes from mathematics education, with 
one important root in the extensive linguo-pedagogic work of Caleb Gattegno 
(e.g. 1974) and his intellectual descendants (e.g. Tahta, 1991; Hewitt, 2001), 
encouraging a view that cardinal counting (what I have elsewhere called 
transitive counting – see Pimm, 1995) may well be overemphasised in early 
schooling and that issues to do with order, as well as making overt use of the 
grammatical knowledge of their native tongue(s), may have greater salience in 
children becoming both numerate and arithmetically competent. There is also a 
historical reason, which emerges from Seidenberg’s (1962) extraordinary paper 
on the cultural origins of counting, which he sees at bottom as ordinal in nature. 
For more on this, see Sinclair and Pimm (in press). 

In addition, Bartolini Bussi et al. (2014) have recently posed the following 
question about the language of fractions: ‘Why is the denominator expressed in 
ordinal numbers?’ (p. 32). This caught my attention for a number of reasons: I 
had wondered about this myself; their question caused me to think whether this 
was a widespread phenomenon, linguistically, or was it limited to a few 
languages – the question itself does not mention a language; finally, I recalled 
reading something about it in relation to ancient Egyptian mathematics, but 
could that possibly have influenced a wide range of languages around the globe? 
(For more on my response to their piece, see Pimm, 2014.) 

The only place I have come across a history of mathematics saying anything 
remotely about this is in van der Waerden’s (1961) book Science awakening. 
Speaking of Ancient Egyptian fractions, he observes: 

Worthy of notice is the verbal expression for 2/3 which means literally “the two 
parts”. The complement, necessary to make a whole out of the two parts is “the 
third part”. 

In Greek one also speaks of 

  “The two parts”   2/3  — “the third part”   1/3 

  “The three parts” 3/4  — “the fourth part” 1/4. 

It presents quite naturally a concrete image: three parts and then a fourth part 
combine to make the whole. Analogously we can explain our use of the words 
third, fourth, fifth, etc. In this representation, the fifth part is the last part, which 
combines with the four other parts to make the unit. Philologically it does not 
make sense to speak of two fifths, because there is only one fifth part, viz. the 
last. (pp. 20-21) 

So van der Waerden is indirectly suggesting that one verbal link between ordinal 
and fraction arises from a very culturally particular way of thinking about 
fractions, which increased my curiosity about other languages from further 
afield. In one of his handful of fraction expression observations, Menninger 
(1969, p. 79) observes this uncommon naming feature (where a fraction is 
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named in terms as ‘the n-1 parts’ and then ‘the nth part’) as being true of Old 
Norse as well, and comments: “Quite surprisingly, a number of other languages 
do the same thing; this of course applies only to fractions commonly 
encountered in daily life, not to artificial fractions that occur in computations, 
such as 28/29”. In summary, this paper is empirical in respect to its use of data 
from different languages to address a question that underlies that of Bartolini 
Bussi et al (2014) given above, namely is the denominator expressed in what 
they term ‘ordinal numbers’ across languages and, if not, how is it formed? 

Methods 

The data discussed in this paper was generated by fairly prosaic means (possibly 
bordering on the simplistic), namely by identifying native speakers of various 
languages and then requesting them to produce written tables of cardinals, 
ordinals and fractions (extending them to the point where the generative pattern 
becomes regular). In addition, I went back to some of my informants with 
subsequent specific questions, e.g. concerning any semantic component to the 
suffixes. I initially invited contributions from the ‘departmental sample’ (25 
doctoral students in mathematics education in the Faculty of Education at Simon 
Fraser University). To some extent, then, this was an ‘opportunity’ sample, but 
one that I enriched as necessary, in order to gain access to a larger range of 
languages from a broad variety of language groups, and not just from the Indo-
European family. 

I took educated native speakers of each language as capable informants, 
especially in this context, as number words are generally regarded as among the 
most stable linguistic elements available and are frequently used to track other 
language variation (see Flegg, 1989, pp. 56-61). For the purposes of this paper, 
the nineteen languages examined with regard to cardinal ordinal and fraction 
words were as follows: Arabic, Czech, English, Estonian, Farsi, French, 
German, Greek, Hebrew, Hindi, Hungarian, Italian, Mandarin, Norwegian, 
Romanian, Russian, Singhala, Slovenian, Spanish and Swedish.  

Results 

The data are not conducive to presentation in full! A typical submission was like 
this (Hungarian): 
Cardinal:  
egy, kettő, három, négy, öt, hat, hét, nyolc, kilenc, tíz, tizenegy, tizenkettő, 
tizenhárom, tizennégy, tizenöt, tizenhat, tizenhét, tizennyolc, tizenkilenc, húsz 

Ordinal:  
első, második, harmadik, negyedik, ötödik, hatodik, hetedik, nyolcadik,  
kilencedik, tizedik, tizenegyedik, tizenkettedik, tizenharmadik, tizennegyedik, 
tizenötödik, tizenhatodik,tizenhetedik, tizennyolcadik, tizenkilencedik, huszadik 

Fractions:  
Fél or egy ketted, harmad, negyed, ötöd, hatod, heted, nyolcad, kilenced, tized, 
tizenegyed, tizenketted, tizenharmad, tizennegyed, tizenötöd, tizenhatod, tizenheted, 
tizennyolcad, tizenkilenced, huszad 
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I have offered this set first in part because Hungarian is a language structurally 
unlike all those that surround it geographically (it is closest to Finnish). But also 
because of a striking feature in the context of this paper: if one looks at the 
ordinals and the corresponding fraction terms, on the surface (which, as I 
mentioned, is where I am attending) either the fraction term ‘adds’ a suffix (-ik) 
to create the ordinal, or the ordinal ‘drops’ it to create the corresponding fraction 
term. Either way, this is an unusual relation between these two sets of words (as 
we shall later: see Appendix) and can serve as an initial instance of a feature of 
interest. More generally, what I have done here is to highlight a few features that 
caught my attention across the data set and I will exemplify them with instances 
from particular languages.  

From the data, it is apparent that, although ordinal and fraction words in English 
(basically, cardinal+th), French (basically, cardinal+ième) Spanish (basically, 
cardinal+avo) and Italian (basically, cardinal+esimo) are (almost everywhere) 
the same, ordinals and fraction terms more generally are not identical across the 
larger set of languages examined. Nevertheless, there was no language I looked 
at in which the cardinal, ordinal and fraction words were independent of each 
other – at least, not after the very first few items in each list (e.g., in English, 
‘second’ and ‘half’ appear to be unrelated lexical items).  

Besides Hungarian, the simplest counter-example to the initial conjecture (that 
ordinal and fraction words are always basically the same) is perhaps German, 
where a consistent suffix ‘-te’ (later ‘-ste’, due to the fact that the numbers 
between twenty and ninety-nine are written with the units digit first, e.g. sieben-
und-vierzig for forty-seven) is added to the cardinal word to form the ordinal 
and ‘-tel/stel’ to the cardinal (or, equivalently, ‘-l’ to the ordinal) to produce the 
comparable fraction word. For example, vier – vierte – viertel and zwanzig – 
zwanzigste – zwanzigstel. Similarly with Slovenian, where the fraction words are 
formed by addding ‘-na’ to the ordinal form. 

(Before moving on, there is a methodological issue even in talking of ‘dropping’ 
or ‘adding’ ‘suffixes’. And that is a presumption that the cardinal words are the 
base words from which the other forms were subsequently derived. Such a way 
of framing things might have tacit implications concerning origins and 
chronological predecessors in the development of the language. I am not making 
the claim that diachronically (i.e. historically) one form developed before 
another. And even more importantly here, just because one thing may have 
preceded another linguistically does not have necessary implications for how it 
develops within the individual: ontogeny does not always need to recapitulate 
phylogeny, in Haeckel’s memorable phrase. Nevertheless, for ease of 
description here, and purely by attending to the surface form of the language 
items, I will continue to speak of ‘suffixes’, although the case of Hungarian still 
resonates with me.)  

Asian languages are frequently referred to in terms of their regular number word 
formation (e.g. eleven is ‘one ten one’ in Mandarin). In Mandarin, too, both 
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ordinal and fractional forms involve the cardinal. My informant observed: 

For example, when you want to say ‘first, second, third, ... ’ in an ordinal sense, 
you would add a character (dì) in front of one, two, three that functions as 
‘order’. So for ordinals, you literally say ‘order one, order two, order three, ... ’. 
On the other hand, for unit fractions, ‘one half, one third, one quarter, ... ’, you 
would generate expressions that literally mean ‘two parts (fēn) take (zhī) one’, 
‘three parts take one’, ‘four parts take one’, etc.  

(This connects to Bartolini Bussi et al.’s observations concerning alternate ways 
of writing numerical fractions, either from the bottom up or from the top down, 
and its use as a pedagogic strategy in an Italian classroom.) 

When looking, for instance, at Norwegian the cardinal root is there in both 
ordinal (cardinal+ende) and fraction (cardinal+del) words also, but the endings 
are different and so the simplest was to get the fraction word from the ordinal, is 
to go back to the cardinal stem. Moreover, the suffix -del is an actual word, 
meaning ‘part’ or ‘piece’ (and its plural is delar, which features in compound 
fractions). The same word shows up in Swedish fractions: thus, in Swedish, fyra 
femtedelar literally means ‘four fifth-parts’. This connects historically to 
Menninger’s observation about Old Norse. It also indicates that is several 
languages (e.g. Norwegian, Swedish, and Mandarin), the ‘suffix’ has a meaning 
in its own right, namely ‘parts’. 

In Farsi, by contrast, ordinals are formed as cardinal+om and fractions are 
cardinal-ordinal hyphenations, e.g. noh-sizdahom which is, literally, ‘nine-
thirteenth’. In Farsi, then, fraction words are always singular. Notice this means 
that the shift in English from ‘three fifths’ seen as three of something plural (that 
Hewitt, 2001, makes so much of from a Gattegno-inspired pedagogic viewpoint 
with regard to the division of two fractions) to ‘three-fifths’ seen as singular 
name (‘three-fifths’ is larger than ‘four-ninths’) is not an option in Farsi. 

Related syntactic issues 

This last point about Farsi raises the thorny question about the grammatical 
features and functioning of number words in various languages, how stable they 
are within given categories and how their placement interacts with the 
mathematical ideas being named. Certain examples throw up the fact that certain 
categories of number words may vary in form by grammatical gender (e.g. in 
Hindi ordinals can be masculine, feminine or neuter, whereas all factions are 
neuter). Most strikingly to me, this issue of syntactic category (and movement 
across them) has particular relevance with regard to singular and plural (and 
perhaps other categories in some languages, e.g. the dual in Greek). Reverting to 
English once more, I can exemplify this with regard to multiplication. Four can 
be seen as an adjective of sorts and thus four fours looks like an adjective and a 
plural noun (a four), which would normally take a plural verb: “four fours are 
sixteen”. But given a different set of number words, as yet unmentioned in this 
piece (what Fowler, 1999, calls ratio numbers) namely once, twice, thrice, four-
times, ..., results in “four four-times is sixteen”.  
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The grammar of a given language encodes messages about the nature of number 
words (and hence to what they refer) and also the mathematics at times pushes 
back against the grammar (see Barton, Fairhall and Trinick, 1998, for instances 
of this in Maori). There are many features of languages that English does not 
mark, for instance various forms of grammatical gender and inflection of various 
types. There are curious features like in Russian number words require the 
genitive case for the consequent noun being counted and that noun is marked 
singular for 1-4 and then as plural at five: thus the Russian is, literally, four of 
house, five of houses. The Russian fraction words are the same as the feminine 
form of the ordinal (and the same is true in Hebrew). In Greek, fraction words 
are all neuter, whereas the ordinals can be any of masculine, feminine or neuter. 

Each of these features contributes to aspects of the image of a whole number or 
a fraction that is encoded in any given language: whether the singularity of 
certain number words past ten (e.g. English’s eleven and twelve, deriving from 
Old Norse einlief and twalief, meaning, respectively, ‘one-left’ and ‘two-left’, 
after taking away ten; the French base-twenty remnant of quatre-vingt for 
eighty; the German siebzehn for seventeen which goes against the written order 
of 17; and on and on). It is these cultural traces that in subtle and even 
imperceptible ways shape young children’s number worlds. Gattegno’s (1974) 
pedagogic proposal for ‘uniforming’ the English counting system makes eleven 
one-ty one. But, done systematically, it would erase some interesting cultural 
particularities and might serve to cut off parents. (There is a fascinating account 
of linguistic reaction by Maori parents when the grammar of Maori was 
perturbed by certain elements of the mathematics register: Barton et al., 1998.)  

Discussion and conclusion 

Seidenberg’s (1962) speculative paper on the origins of counting draws on the 
connected notions of myth and rite, described by Lord Raglan (1936/1975), who 
links them thus: a myth “is a narrative linked with a rite” (p. 117), where a rite is 
the corresponding enacted practice. And Bartolini Bussi et al. (2014) in their 
paper give an instance of where the rite of writing fractions (bottom up rather 
than top down) caught their attention. But the rites of arithmetic are not part of a 
language, only the myth is, what is said while a calculation is going on.  

My intention in this paper was to draw attention to instances of variation in 
number words structures across a range of languages, as part of what every 
native speaker of that language must come to grips with if they are going to 
count and compute successfully. Gattegno (1974) created his notion of ogden in 
order to provide a unit of the arbitrary that could compute what memory work 
was required to acquire a given number-word system. This paper draws attention 
to the etymology of fraction (and ordinal) names – and how these are different in 
different languages. With this awareness, we (as teachers) can be more mindful 
to emphasise aspects of fractions that are perhaps supressed or encouraged due 
to the particular history of individual languages. 
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I end with an anecdote, one that I have told elsewhere (in Sinclair and Pimm, in 
press). Four-year-old Kai is counting small chocolate Easter eggs that he has 
unearthed and carefully moves them one at a time from the distal pile of the as-
yet-uncounted to the proximal pile of the already-counted: “…, nine, ten, eleven, 
twelve, thirteen”. He holds up the next-to-be-counted and asks, “What’s this one 
called?” and is told, “Fourteen”. “And this one?” he asks, holding up his next 
selection. “Fifteen.” And then he is off again, both counting and counting eggs 
in concert all the way to twenty. At a significant level, to count is to name; to be 
able to count is to know the number names and to be able to recite them 
correctly, in order. And naming brings number into being: in English, to tell 
means both to say and to count. 
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Appendix 

In an attempt to summarise some of what I found, here are four diagrams that reflect 
different relationships among cardinal (C), ordinal (O) and fraction (F) words within a 
specific language from my data set. The arrows indicate ‘adding’ a suffix to the 
previous sets of words to form the new set. Fig. 1(a) captures, e.g., Norwegian, while 
Fig. 1(b) exemplifies one common relationship (e.g. German): 1(c) is the ‘degenerate’ 
case of 1(b) that fits some Western European languages (e.g. English, French, Italian 
and Spanish), while 1(d) reflects Hungarian.  

 
Fig. 1: (a)-(d) Various relationships among number words 
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DIFFICULTIES WITH WHOLE NUMBER LEARNING 
AND RESPECTIVE TEACHING STRATEGIES  

Thomas Rottmann, Andrea Peter-Koop,  Bielefeld University, Germany 

Abstract 

This paper and the accompanying video introduce a conceptual framework that is used 
to assist individual students that experience severe learning difficulties in whole 
number arithmetic. As well as for individual tutoring sessions, this framework can also 
be applied to classroom teaching and learning. Following a brief description of the 
organisation and central aims of the intervention programme as well as the used 
manipulatives, a Four-Phases-Model is presented to support the development of basic 
computational ideas with respect to the specific arrangement in the case of Ole, the 
second-grade student featured in the accompanying video. Furthermore, this Four-
Phases-Model can be used to document the individual learning process and offers 
opportunities for the evaluation the intervention programme in future research.  

Key words: Dyscalculic pupils, embodied cognition, use of manipulatives 

Introduction 

Within the framework of the ICMI 23 “Primary Mathematics Study on Whole 
Numbers” this paper and accompanying video relates to theme 3.3 “Aspects that 
affect whole number learning” with a focus on children experiencing severe 
difficulties in learning whole number arithmetic (quite frequently these pupils 
are labelled as “dyscalculic”) and teaching strategies that help to overcome these 
learning difficulties. We argue that our intervention strategies developed for 
students with special needs (i.e., with respect to dyscalculia) are beneficial for 
all students when learning concepts such as place value and addition/subtraction 
strategies in class. In particular, we focus on the use of manipulatives to foster 
understanding of mental operations required to solve problems such as 7 + 8 or 
15 – 8 beyond the application of counting strategies. These teaching approaches 
apply to both intervention sessions for children with dyscalculia and classroom 
teaching in order to prevent long-lasting learning difficulties with whole number 
arithmetic. 

Context of the Accompanying Video 

In this section we describe the context of the video provided for the ICMI Study 
23 that relates to two different levels: First, the video is embedded in an 
intervention programme that is part of an elective study in a mathematics teacher 
education programme. Second, the organisation, the aims and content of a 
typical intervention session are described.  
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The interface of pre-service teacher education and an intervention programme 
for children with dyscalculia   

Bielefeld University was one of the first universities in Germany (since the 
1970s) providing a “Counselling Centre for Dyscalculic Children” that offers 
support for families and teachers. Apart from advise in the form of (telephone) 
consultations and written materials, the centre offers an intervention programme 
that is free of charge. In order to integrate the centre’s work with the primary 
teacher education programme at Bielefeld University, pre-service teachers 
conduct the intervention under the supervision of university staff members who 
are associated with the centre through their research and lectures. Typically, 
after a first contact with the parents or teacher of a child who is experiencing 
severe difficulties in early number learning, the child is invited for a diagnostic 
interview conducted by one of the centre’s staff members. This interview is 
videotaped and serves as a basis for the development of an individual learning 
plan.  

A pair of pre-service teachers who are specifically trained for this task by 
previous seminars and lectures focussing on mathematical learning difficulties 
and how the use of manipulatives can help to overcome (and prevent) these 
difficulties, work with an individual child for one hour every week over a period 
of about 15 weeks (i.e. the length of a semester in Germany). All intervention 
sessions are carefully prepared in an accompanying seminar lead by one of the 
lecturers associated with the centre, i.e., the pre-service teachers write a plan 
with a detailed description of the approach and the kind of tasks they want to 
use. This plan is discussed in the seminar (and frequently revised, especially at 
the beginning of the intervention). Each intervention is video-taped and parts of 
these videos are also reflected on in the accompanying weekly seminar. These 
reflections provide the basis for further planning of the intervention.  

In total, up to 16 primary children per semester take part in the intervention 
programme. Generally, they are in grade 2 to 4 – hence, the individual approach 
that carefully considers individual needs and the content that has already been 
covered in class. The accompanying seminars for the pre-service teachers 
typically consist of four teams, i.e., eight pre-service teachers in total, which 
provides sufficient time for individual planning and reflection.  

In addition, the centre has started a support programme for parents in order to 
help them understand the problems with which their child is struggling. 
Furthermore, it fosters their understanding of the respective intervention, and 
offers them communication patterns and strategies on how to support their 
child’s learning in general and specifically in whole number arithmetic, e.g., by 
helping the child to memorise number facts. The centre’s activities also include 
professional development programmes with respect to the prevention of learning 
difficulties by appropriate use of manipulatives as well as intervention strategies 
for children with dyscalculia in a school setting. 
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Aims and foci of the intervention programme 

Children who are accepted for the intervention programme predominantly 
struggle in three areas. They have not yet managed to develop 

 (1) a deep understanding of place value (Rittle-Johnson and Siegler, 1998), 
e.g., the majority of them up to grade 4 cannot tell the difference between 
the numbers 34 und 43 and frequently claim that they are “the same”, 
because they involve the same digits, 

(2) derived-fact strategies for addition and subtraction. They solve respective 
problems with varying counting strategies, such as count all, count on and 
count down (Fuson, 1992; Gaidoschik, 2012; Geary and Hoard, 2005), 

(3) operational insight and basic ideas (“Grundvorstellungen”; vom Hofe, 
1998) that enables them to understand the concept of addition and 
subtraction (e.g., addition as taking together quantities and subtraction as 
taking away a quantity from another) including changes between different 
modes of representation. 

Hence, the intervention focuses on these three domains aiming to help the 
children understand place value, use this concept for calculations, and to offer 
calculation strategies beyond counting that are based on insights in part-whole 
schema (Resnick, 1983) and knowledge of respective number facts (i.e., 
8 = 7 + 1, 8 = 6 + 2, 8 = 5 + 3, 8 = 4 + 4), so that tasks such as 7 + 8 can be 
solved as 7 + 3 + 5. 

Depending on the individual knowledge and skills (reference point is the 
diagnostic interview that is conducted before the start of the intervention), the 
intervention seeks to address the respective content by using manipulatives that 
model the strategies to be ultimately developed on a cognitive level. Details on 
the selection of the manipulatives and the specific use of these materials over 
four distinct phases are described in the following sections. 

Suitable Manipulatives for Whole Number Arithmetic 

The intervention programme that provides the context for this paper and video 
acknowledges that all materials and manipulatives that are used to illustrate 
mathematical concepts need to be learned and understood. Otherwise they 
cannot serve the intended purpose and rather encourage low achieving children 
to apply counting activities (Rottmann and Schipper, 2002). Hence, we only use 
two specific materials that (in our understanding) relate best to the respective 
mathematical concepts and their desired mental models. 

In order to enhance children’s understanding of place value we use Multibase 
Arithmetic Blocks (MAB, see Fig. 1; also called “Dienes blocks”, Rittle-
Johnson and Siegler, 1998), which stress the cardinal understanding of number. 
The MAB allow concrete bundling activities (10 minis make a long, 10 longs 
make a flat, 10 flats make a block) and provide a suitable representation of the 
place value of a numeral and the relations between the ones, tens and hundreds. 
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mental concept which allows the child to imagine the actions required in order 
to solve an addition/subtraction problem. 

This model is based on initial ideas of Bruner and the further development of 
Bruner’s theory by the Swiss psychologist Aebli (1976). Bruner (1973) 
distinguished three types of representational systems: the inactive, the iconic and 
the symbolic representation. While the inactive representation is based upon 
actions, the iconic representation comprises both, pictures and mental images. 
The symbolic representation involves mathematical symbols (as written 
numbers or operation symbols) as well as language. Bruner strongly links 
learning processes to translations of one representational system into another. 
And Aebli in addition describes gradual internalisation processes from enactive 
to mental actions, which focus on the transition from one representation to 
another. 

With emphasis on verbal descriptions of enactive and mental actions, the Four-
Phases-Model stresses the relevance to assist the development of mental images 
by a gradual and systematic removal of the manipulatives.    

Phase 1 Concrete usage of manipulatives and verbalisation of operations 

Teacher and child actively use the material and verbally describe their operations 
and their meaning. When the child is confident in working with the material, the 
child takes over and verbalises the operation itself. 

Phase 2 Verbal description of the imaginative use of the manipulative in sight 

With the manipulative in sight, the child describes the operations on the 
manipulative to the teacher or a fellow student who performs the according 
operations following the child’s descriptions. 

Phase 3 Verbal description of the imaginative use of the covered manipulative 

With the manipulative covered by a screen/shield, the child describes the 
operations on the manipulative to the teacher or a fellow student who performs 
the according operations following the child’s descriptions. 

Phase 4 Verbal description of the mental operation 

The child verbally describes the operations without the manipulative being 
present in any form other than the child’s imagination. The tasks are given in a 
symbolic representation.  

Fig. 3: Four-Phases-Model to support the development of basic computational ideas 

It is important to understand how much time an individual child requires to get 
ready to move on to the next stage. As soon as problems occur, one would move 
back to the previous stage and continue from there. During the intervention 
programme it usually takes a minimum of 10 to 12 weeks (most frequently even 
longer) before the children attain the final stage (Phase 4). 

The Case of Ole 

The accompanying video shows key steps of the learning of derived-fact 
strategies for addition and subtraction of Ole in the context of the intervention. 
Because of his substantial problems with respect to whole number arithmetic, 
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Ole was registered for the intervention programme by his parents. The initial 
diagnostic interview was conducted in September 2012, when Ole was in grade 
2 of a primary school in Bielefeld, after he was relegated to grade 1 in January 
2012. In this first interview Ole showed difficulties with counting backwards 
and solving addition and subtraction problems with numbers up to 20. He did 
not show any use of derived-fact strategies, but used his fingers or the arithmetic 
rack for counting. 

Ole was unable to solve tasks like 15 – 14 without the use of manipulatives and 
his use of them showed that he was counting each individual element, but 
moved them in bigger units. His operations with the material did not comply 
with the conventions for using the arithmetic rack, because he set up the 
minuend or the first addend respectively on the right (not on the left) side of the 
arithmetic rack. 

The intervention started in October 2012. First, the focus of the intervention was 
on learning to use the manipulatives (in this case the arithmetic rack) and 
developing an understanding of its structure (e.g., by subitizing and displaying 
numbers by using bigger subunits). Both, the accompanying video excerpt as 
well as the overview of the different phases of the solution processes during the 
entire 13-week intervention (see Tab. 1) are focussing exclusively on addition 
and subtraction tasks of the type ‘2-digit number plus/minus 1-digit number’. 
The intervention seeks to enable the children to successfully apply the strategy 
„bridging tens“ (e.g., 28 + 6 by 28 + 2 = 30 and 30 + 4 = 34), which is a 
universally applicable – and hence appropriate strategy for those types of 
addition/ subtraction problems (Foxman and Beishuizen, 2002). 

Through the course of the intervention, Ole learned to describe his use of the 
arithmetic rack (Phase 1, week 4 of the intervention). In order to foster the 
development of mental images Ole was asked to verbally describe the use of the 
manipulative without performing the actions himself. The concrete manipulation 
was replaced by observing the pre-service teacher`s manipulations (Phase 2, 
week 5 of the intervention).  

Obstacles in the transition from one phase to the next are caused by a premature 
progress to the next phase before the current stage is sufficiently mastered. In 
the accompanying video Ole shows problems at the beginning of Phase 3, 
because he has not yet deepened his understanding of part-whole relationships 
and therefore does not subdivide the second addend into appropriate components 
in cases when the manipulative is fully covered (transition from Phase 2 to 
Phase 3, week 5 of the intervention). 

Moving backwards to Phase 2 was necessary before Ole was able to visualise 
the respective operation and to describe it without direct view of the arithmetic 
rack (Phase 3, week 5 of intervention). At the end of the intervention Ole 
successfully built up a mental model of the operation and was able to activate it 
when solving an addition/subtraction problem (Phase 4, week 13).  
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Tab. 1 provides an overview of the whole intervention. The focus was on tasks 
of the type ‘2-digit number plus/minus 1-digit number’. For each of the given 
problems it was analysed in which of the four phases this task was dealt with by 
Ole and whether he arrived at the correct answer. The analysis shows that Ole 
clearly struggled with Phase 3 (i.e., when the manipulative is shielded), only 
63% of his answers are correct. The substantially higher success rates in the first 
two phases suggest, that the use and presence of manipulatives foster his 
solution processes, while it seems irrelevant whether Ole actively uses the 
manipulatives (93% success rate in Phase 1) or rather observes them (89% 
success rate in Phase 2). Of crucial importance in this respect was obviously the 
opportunity to apply counting strategies when determining given representations 
of numbers in the first six weeks of the intervention. 
 

 Week of intervention  

 1 2 3 4 5 6 7 8 9 10 11 12 13 % 
success 
rate in 
phase 

Phase 1 3/0 2/1 2/0 4/0 1/2 13/0 12/0       93 

Phase 2    1/2 1/0 5/1 2/0 4/0 6/0 6/0    89 

Phase 3     0/2 3/2 5/5 8/2 8/3 5/5 3/5 6/1 4/0 63 

Phase 4           2/0 2/1 4/2 73 

no expla-
nation  

  0/1        4/0 1/1 2/0 80 

% success 
rate per 
week 

100 67 67 71 33 88 79 86 83 69 62 75 83  

Tab. 1: Overview of the four different phases of the solution process – provided are 
percentages with respect to the success rate within a phase as well as within an 

intervention unit 

For each of the 13 intervention units (each 60 min) Tab. 1 shows the number of 
tasks that Ole solves correctly in the respective phase (first number) and the 
number of wrong solutions or solutions with the help of the teacher (second 
number). Below the four phases derived from Fig. 4 we have included a 
category “no explanation” to record the cases Ole gave the correct answer 
without any further explanation. 

Implications for the Classroom 

The Four-Phases-Model explained in this example has been successful in 
assisting the learning of whole number arithmetic for students who experience 
severe difficulties in while number arithmetic. However, this method used in 
one-on-one sessions can easily be transferred to regular mathematics 
classrooms. This was demonstrated by longitudinal studies conducted by the 
Counselling Centre. It was found that students working in pairs provide a good 
opportunity for the students to make up computation tasks that are solved with 



ICMI Study 23                                                       Theme 3, Rottmann & Peter-Koop, WNA of Dyscalculic Pupils 

369 
 

the concrete materials first, then with covered materials and finally mental 
operations without the material. 

It is highly important that the classroom teacher acknowledges that each student 
requires an individual amount of time and practice at each phase. The teacher 
needs to make sure that each student is provided with sufficient time and 
opportunity for practice to enable deep understanding. 

Implications for Future Research 

While the Four-Phase-Model described in this paper originally provided the 
background for the planning, implementation and evaluation of an intervention 
programme for dyscalculic primary students, it also offers research perspectives 
with respect to the longitudinal evaluation of the intervention. With respect to 
the monitoring and analysis of the effect of intervention programmes based on 
the Four-Phase-Model numerous (research) questions arise, e.g., What kind of 
verbal interaction supports internalisation processes effectively? Are there 
examples for the successful skipping of single phases? More detailed analyses 
that focus on the transition from one phase to another as well as the verbalisation 
of the enactive as well as the mental use of manipulatives seem to be of crucial 
importance for the further development of intervention.  
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Abstract 

We are using a duo of artefacts, constituted by a mechanical arithmetic machine and 
its digital counterpart, to enable six-year old French students to learn about numbers. 
The experiment shows the separate conceptualisation processes involving numbers as 
sign of a quantity and number sequences on one side and recursive addition, 
computation and its effect on the decimal code for numbers on the other side. The duo 
of artefacts enabled the design of situations that required these processes to be 
connected. We observed how students and teachers used the duo and discuss the 
results concerning the conceptualisation of number. 

Key words: duo of artefacts, e-pascaline, number system, pascaline 

Teaching number decimal system and computation 

One of the aims of the first year of compulsory education for 6-year old French 
students is to learn the decimal system of writing numbers and to use it to 
perform computation. In their review of studies about whole numbers, Nunes 
and Bryant point out the key question: ‘how do children come to understand that 
any number in the counting sequence is equal to the preceding number plus 1?’ 
(2007, p. 4). We reformulate this in a more general way by asking how children 
connect what they know about numbers, number sequences and the 
manipulation of quantities with what they know about computation, performing 
addition or subtraction within the number system. The question also concerns 
the representation of number, taking into account that the number sequence is 
often learnt as an oral sequence, while the number system is a symbolic written 
system. 

In France, before they are six, students begin to learn the numbers up to 30 at 
“école maternelle”. For these children, number is used to indicate a specific 
characteristic of a collection, which is the quantity of its elements, or a position 
in a list (Margolinas and Wosniack, 2014). Comparing numbers involves going 
back to the collections and operating on their objects. The number name is a 
label that signals the number of elements. These names are ranked and can be 
recited in a given order. Children count by using the oral list of number names, 
which turns to be an action on the objects of the collection. They may even 
perform some kind of addition, which is, in fact, the union of two collections of 
objects. Once the two collections are unified, children can determine the number 
of its objects. Even if they use digits to write a representation of numbers, they 
use these as an icon and do not manipulate the decimal number system.  

When children start “elementary school”, during the first year of compulsory 
education, they have to learn the decimal number system used to represent 
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numbers up to 100. The aim is that they understand how this system is linked to 
the collections of objects they have used to count, in a more precise manner than 
just as different names for different kinds of collection, and that one can operate 
on numbers by operating on their digits. They have to build the relationship 
between successive numbers in the number sequence; for instance the fact that 
the number next in the list is the previous one plus one unit.  

We are investigating the use of a duo of artefacts, with a physical machine (the 
pascaline) and its digital counterpart (the e-pascaline), in the learning of 
numbers and computation. Following Italian research about mathematical 
machines (Maschietto and Bartolini Bussi, 2009), we assume that the physical 
machine enables the action-perception loop linking eyes and hands which is 
important for mathematical conceptualisation (Edwards, Radford and Arzarello, 
2009; Kalenine, Pinet and Gentaz, 2011). However, using only a limited range 
of physical material may also lock students into procedures that require the 
presence of the physical artefacts, even when the didactical sequence and the 
teacher try to take this possibility into account and to facilitate the transfer and 
generalisation of procedures. Therefore, we have extended the physical artefact 
by a digital version of the machine that enables students to use their procedures 
in another context (Maschietto and Soury-Lavergne, 2013). 

The aim of this paper is to describe how the duo of artefacts offers students a 
way to learn about the number system by solving problems that require 
flexibility in moving between number writing and computation. We have 
designed the e-pascaline in order to enlarge the mathematical experience of the 
students and to make complementary activities with the two kinds of artefacts. 
This paper discusses a French teaching experiment carried out in ordinary 
classrooms with voluntary teachers (Soury-Lavergne, 2014). 

Materials and methods 

A duo of artefacts: the pascaline and the e-pascaline 

The pascaline is an arithmetic machine composed of gears analogous to the 
famous machine, called Pascaline, invented by the French mathematician Blaise 
Pascal in 1642. It is a crucial tool in the history of European mathematics 
because it represents the first example of addition performed independent of the 
human intellect. When the pascaline is introduced in the classroom, the 
reference to Pascal and his motivation for the construction of the machine plays 
an important role in the vision of mathematics as a cultural product. It provides a 
symbolic representation of the whole numbers from 0 to 999 and enables 
arithmetic operations to be performed. Each of the five wheels has ten teeth. The 
digits from 0 to 9 are written on the lower yellow wheels, which display units, 
tens and hundreds from the right to the left (Fig. 1 shows the pascaline 
displaying the number 122). When the units wheel (respectively the tens wheel) 
turns a complete rotation clockwise, the right upper wheel (respectively the left 
upper wheel) makes the tens wheel (respectively the hundreds wheel) go one 
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clicks on the units wheel, is hence no longer possible. In such a way, the student 
has to look for another strategy to perform the addition.  

The e-book “Counting the e-pascaline clicks” contains a task, which consists in 
minimising the number of clicks required to write a number on the e-pascaline. 
This task appears to only concern the writing of numbers, but in fact, it requires 
the exploration of different ways of reaching a number through combinations of 
additions and subtractions. Starting with the e-pascaline displaying 0, there are 
three possible procedures to display a given number on the e-pascaline. Let’s 
consider an example. The number 17 can be written by iteration (17 clicks) or 
by decomposition (8 clicks), but the minimum of clicks is obtained by a 
computation 20-3 (5 clicks). This third strategy requires knowledge about the 
decomposition of numbers and also for the students to change their point of 
view on the problem and to move from writing the number to computing it.  

Experimental setting 

The didactical sequence has been developed within a French project gathering 
teachers, researchers and teacher educators <http://ife.ens-
lyon.fr/sciences21/ressources/sequences-et-outils/pascaline-CP>. It has been 
experimented during the last school year by a team of eight teachers who did not 
participate in the initial project. During the twelve week experiment, we were 
able to directly observe working sessions with two classes of six-year old 
students. We also collected information from the teachers through interviews 
and written reports throughout the experiment. The results refer either to direct 
observations of students’ behaviours (with teachers Stina and Nelly) or to the 
teachers’ reports and interviews (Stina and Cleo). 

Results  

In the teaching sequence, students first worked on addition with the pascaline 
alone and then used the e-book. In almost every teaching experiment with the 
pascaline, students’ initial strategies to add two terms below ten were: (i) the 
two terms were written on two separate wheels and the result was expected to 
appear on the third wheel; (ii) the addition was done by mental calculation and 
the result was written on the pascaline. With the first strategy, analogous to the 
use of a calculator, the user transferred the main part of the work to the 
pascaline. With the second one, the user performed the main part of the work. 
The iteration procedure appeared only after teacher interventions and discussion 
about the two previous strategies.  

Adding numbers with the pascaline and the e-pascaline 

In Cleo’s class, the iteration procedure appeared after she suggested using the 
units wheel alone. Then, with terms over ten, mistakes did not increase enough 
to make the students look for another strategy, even when the teacher suggested 
that they did. Only one of Cleo’s twenty-three students found the decomposition 
procedure. When Cleo first set the addition e-book to the students as an 
individual activity, they still had the possibility to use the pascaline to do 
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answer the question “Why haven’t we succeeded in obtaining ‘smileys’?”. She 
also used an intermediate task, with the pascaline, to make pupils find 
decompositions of numbers. With this intermediate situation, she introduced the 
solution by asking students to complete a partial decomposition with a 
subtraction, such as 28 = 30 – … . After this episode, most of her pupils were 
able to solve the problem. 

We directly observed the first use of the e-book in Nelly’s class and we made 
two important observations. First, students didn’t use the iteration procedure. 
They directly used decomposition, starting with the tens digit. This meant that 
they reproduced on the e-pascaline the spatial organisation of the digits in the 
written number. Moreover, two numbers, 9 and 19, provoked different 
procedures, although the successful procedure asked for computation. Students 
failed to write 9 with the minimum of clicks while they succeeded with 19, first 
writing 1 on the tens wheel and then turning the units wheel one click in the 
anticlockwise direction, after having observed that the tooth with the digit 9 was 
close to the red triangle. They finished by adjusting the tens wheel (one click) 
when they observed that it had returned to 0. Their procedure could be 
represented by the computation 19 = 10 – 1 + 10. The fact that they didn’t do this 
for 9 illustrated that they are not in the process of computing but in the process 
of writing the number (and adjusting the wheels if needed). Their procedure is 
not equivalent to 19 = 20 – 1, which could have been transferred to 9. 

Discussion and conclusion  

We have elaborated the duo of artefacts and the e-books to build didactical 
situations that require the evolution from the iteration strategy to the 
decomposition one. With the “minimum of clicks” e-book, a third strategy 
requires computing. It is worth remarking that on one hand, the addition e-book 
explicitly required computation, but, as in any process of computing, it requires 
taking into account the way numbers are written with digits and not just adding 
units one by one (Nunes and Bryant, 2007). On the other hand, the “minimum of 
clicks” e-book explicitly required writing numbers, but a successful strategy 
required the students to compute. Both situations were rather difficult for 
students and successes resulted from teachers’ interventions. They revealed that 
the concept of number, its properties and the signification of its digits code are 
not stable. They compel the students to make connections between the number 
designing a quantity and the number represented by its digits code. This 
relationship frames the fundamental conceptual understanding of whole 
numbers. Another example of this relationship is the connection between two 
successive numbers in the sequence, the operation +1 and its effect on the digits 
of the numbers codes.  

In this learning process, both artefacts of the duo played a crucial role. The 
pascaline was used to produce a sequence of clicks that can be counted. 
Meanwhile it displays numbers code and ask for operating on these codes. The 
e-pascaline provided different constraints and feedback that led students to 
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change their strategies and to deal with complementary conceptualisation of 
numbers.  

Further observations are needed to deepen our understanding of the different 
aspects of numbers that are developed by students while using the duo of 
artefacts. We have planned to conduct further experiments in France as well as 
in Italy, to record students’ strategies with the pascaline and the e-pascaline and 
to address some cultural issues.  
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USING MULTIPLICATION AND DIVISION CONTEXTS TO BUILD  
PLACE-VALUE UNDERSTANDING 

Jenny Young-Loveridge, Brenda Bicknell, University of Waikato, New Zealand 

Abstract 

The paper describes a study with five-year-old children to explore how multiplication 
and division problems helped them to develop early place-value understanding. Two 
teachers taught a series of focussed lessons over two four-week periods. The children 
solved problems using familiar materials grouped in twos, fives, and tens. By the end 
of the instructional period, virtually all children knew that two fives make ten; the 
majority could work with tens. Half of them could add tens and ones, fewer partitioned 
tens, and few could work with multi-unit processes. We propose a 5-level framework 
that describes developmental progressions in children’s awareness of groups of five 
and ten as building blocks for place-value understanding. 

Key words: division, multiplication, place-value understanding, primary/elementary 

Introduction  

Whole Number Arithmetic (WNA) continues to have a prominent place in most 
school mathematics curricula. A key aspect of WNA is the numeration system, 
where each digit in a multi-digit number has a different value according to its 
position within the numeral. Understanding place value requires students to be 
part-whole thinkers so they can partition numbers into different-sized units. 
Typically, mathematics in the early years of school focuses on counting, and this 
tends to be within the context of addition and subtraction. Place value is usually 
introduced as part of addition and subtraction with multi-digit numbers, before 
children have experienced meaningful multiplication and division. It is not until 
children have been at school for more than two years that multiplication and 
division become the focus of mathematics instruction. 

Increasingly mathematics education researchers recognise that place value is 
inherently multiplicative (Askew, 2013; Bakker and van den Heuvel-Panhuizen, 
2014; Nunes et al., 2009). Ross’s (2002) work identified four key major 
properties of place value, including: positional, base-ten, multiplicative, and 
additive. It has been suggested that experiences with multiplication and division 
may be important in helping children develop a deep and connected 
understanding of place value (e.g., Askew, 2013). 

Because place-value understanding is inherently multiplicative, it is far more 
complex than additive thinking (Clark and Kamii, 1996; Vergnaud; 1994). In 
contrast to additive thinking, where quantities of the same kind are manipulated 
(one variable), multiplicative thinking involves working with two variables 
(number of groups and number of items per group), and these are in a fixed ratio 
to each other, in a many-to-one relationship (Nunes et al., 2009). For example, a 
problem about four monkeys each with five bananas involves a 5:1 ratio 
between a monkey and its bananas. This many-to-one ratio must be strictly 
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maintained to work out that four monkeys would have 20 bananas altogether. A 
division problem such as the number of boxes needed for 30 cupcakes if each 
box holds five cupcakes, requires the decomposition of 30 into groups of five 
(quotitive division). According to Vergnaud (1994, p. 47), ‘multiplication and 
division are only the most visible part of an enormous conceptual iceberg’ (the 
multiplicative conceptual field), that includes fractions, ratios, proportions, and 
measurement – all concepts involving proportionality.  

Evidence clearly shows that quite young children are able to solve multiplication 
and division problems, although their strategies may differ from those of older 
children and adults (e.g., Bakker and van den Heuvel-Panhuizen, 2014; Blote, 
Lieffering and Ouwehand, 2006; Squire and Bryant, 2003). It makes sense for 
teachers to capitalise on that prior knowledge in the mathematics classroom. 

More recently it has been argued that the development of number sense has an 
important spatial dimension (e.g., Papic, Mulligan and Mitchelmore, 2011; 
Thomas et al, 2002; van Nes and de Lange, 2007). A spatial structure is about 
the relationship between elements of a pattern, which has regularity in terms of 
number or space, including shape, spacing, or alignment.   

Research on children’s awareness of mathematical pattern and structure (AMPS) 
has shown the importance of students developing an awareness of structural 
relationships in mathematics (e.g., Mulligan, 2011). Low level of AMPS is 
associated with poor visual and working memory. Mulligan found that students 
with low AMPS tended to “rely on superficial unitary counting by ones” (p. 36), 
and did not develop efficient and flexible strategies for solving problems. AMPS 
also impacts on the development of measurement concepts and proportional 
reasoning. Mulligan’s work on promoting awareness of pattern and structure is 
consistent with other research on the importance of helping children develop 
knowledge of place-value structure (Cobb, 2000; Fuson, Smith and Cicero, 
1997; Thomas, Mulligan and Goldin, 2002). Many of the tasks used to assess 
AMPS involve the presentation of structured groups of objects for which shape, 
spacing, and alignment are important aspects of the structure. Children are asked 
reproduce displayed patterns by drawing them on paper (Mulligan, Mitchelmore 
and Stephanou, 2015). Mulligan’s (2011) work on students’ awareness of 
mathematical pattern and structure show the importance of constructing and 
representing composite units (multiples) and unit iteration (unit of repeat). 

Recent research on so-called “groupitizing” has shown that grouped arrays can 
be quantified more quickly than ungrouped arrays because children can 
capitalise on the grouping structure to quantify objects in a display (Starkey and 
McCandliss, 2014). The advantage of structure becomes increasingly marked 
with grade level. A growing awareness of number composition in terms of part-
whole relationships among the quantities accounts for the improvements in 
performance with age. This is consistent with research showing that intervention 
focused on enhancing children’s awareness of pattern and structure leads to 
improvements in mathematics achievement (Mulligan, 2010, 2011). 
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A key feature of place-value development is the shift from a unitary (by ones) 
way of thinking about numbers to a multi-unit conception (e.g., tens & ones). 
The recent work on pattern and structure includes familiarity and use of 
structured groups of ten (ten-frames consisting of two rows of five) in the 
assessment of AMPS (Mulligan et al., 2015). Children with high AMPS 
construct multi-digit quantities quickly using structured material (ten-frames). 

Research comparing the place-value understanding of children whose languages 
vary in the transparency of their decade-based structure for the “teen” numbers 
has found that children with the most transparent language structure (e.g., 
Korean, Japanese) have better place-value understanding than those with 
irregularity (Miura et al., 1993). Most of this research has focused on children 
from Confucian-heritage countries such as Japan and Korea. However, there are 
other less well-known languages that also have transparent decade structure, 
such as the Māori language used by some indigenous New Zealanders. 

Overemphasis on counting in the context of addition and subtraction has 
detracted from an important idea of the composite unit or the notion of 
multiplicative or additive thinking (Behr et al., 1994; Lamon, 1996; Sophian, 
2007). Although many teachers encourage children to skip count by twos, fives, 
and tens, links are not always made between these number-word sequences and 
the groups they represent in meaningful multiplicative contexts. A foundational 
idea underpinning all of mathematics learning is the concept of the unit, and this 
is the focus of much research on topics such as proportional reasoning and 
measurement (Mulligan and Mitchelmore, 2013). According to Behr et al. 
(1994, p. 123), a hidden assumption underpinning primary mathematics is that 
“all quantities are represented in terms of units of one”. Thus the idea of equal 
groups or composite units leading to multiplicative thinking is not linked to that 
learning. 

The New Zealand Number Framework is embedded in the primary mathematics 
curriculum and this is linked to the expectations outlined in the Mathematics 
Standards (Ministry of Education, 2008, 2009). Expectations for the first two 
years of school are specified in terms of increasingly sophisticated counting 
strategies to join collections together. After three years, it is expected that 
children use so-called “part-whole strategies that utilise number properties. 

The Study  

This exploratory study was set in an urban school (medium SES) in New 
Zealand. The participants were 35 five-year-olds (21 girls & 14 boys) in two 
Year 1 classes. The average age of the students was 5.4 years at the start of the 
study (range 5.0 to 5.8 years). Children came from a diverse range of ethnic 
backgrounds, with about one third Māori (the indigenous people of New 
Zealand), one quarter European, one quarter Asian, and the remainder including 
African and Pasifika (Pacific Islands people). Children were assessed initially 
using an individual diagnostic task-based interview. The interview was 
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completed again after the second 4-week teaching block (six months later). 
Tasks included: word problems involving addition, subtraction, multiplication, 
and division, subitizing, known facts, counting sequences, and place value. 

Two series of 12 focused lessons were taught in May and August. Children were 
introduced to groups of two, using familiar contexts such as pairs of socks and 
shoes. Multiplication was introduced using simple word problems, such as: 

Three children each get 2 socks from the bag. How many socks do they have 
altogether? 

Once children were familiar with groups of two, fives were introduced using 
contexts such as gloves (five fingers). Tens were introduced using egg cartons 
that held exactly ten eggs. For example: 

There are 20 eggs. Each carton holds 10 eggs. How many full cartons are there?  

Later problems included numbers that were not multiples of ten, resulting in 
‘leftover’ ones (i.e., the remainder).  

There are 23 chocolates. Each tray holds 10 chocolates. How many full trays are 
there? 

Lessons began with the whole class solving a problem together. The teacher 
recorded children’s problem-solving processes (e.g., drawings and number 
sentences) in a “modelling book” (a blank scrapbook). Following whole-class 
discussion, children completed a problem in their individual project books. 
These problems used the same context and language as the class problem, with a 
range of numbers to cater for varying abilities.  

The Framework 

Tasks related to place-value understanding and groups of ten were selected for 
analysis. Individual profiles were constructed by putting tasks in descending 
order of difficulty and grouping tasks according to similarity. Students’ totals 
were then ordered to reveal a hierarchical pattern of acquisition (See Appendix – 
Tab. 1). The easiest task was knowledge of ten as two groups of five (quinary), 
while the hardest was working with multi-unit processes such as division by ten 
with remainder.  

Results 

Initially, only about half the students knew that ten is two groups of five (see 
Fig. 1). Some were starting to quantify two or three groups of ten and combine 
tens and ones.  Only three students could halve 20, and this was the extent to 
which they could partition tens within whole decades. Final assessment after 
intervention showed marked improvement on the selected tasks. 
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learn Māori as a second language, rather than being truly bilingual. The majority 
of Māori children are educated in mainstream (English) classrooms and 
experience only limited Māori language at school. This could explain why the 
Māori children in our study did not perform as well as the other two groups.  

Although some curriculum documents suggest that basic facts should initially be 
restricted to small sums, we found that the children were more successful with 5 
+ 5 and 10 + 10 than with tasks where the sum was five or smaller. This may be 
a result of the salience of five fingers, and the early emphasis on numbers to 20. 
In the final assessment, some children visualised two groups of five bananas as a 
group of ten, then added this to the other two groups, finally adding the two tens.  

The study showed that five-year-olds can work with multiplication and division 
problems using familiar contexts (e.g., fingers in gloves, eggs in a carton) and 
materials to work with fives and tens. This contrasts with Thompson’s (2000, p. 
291) claim that place value “is too sophisticated for many young children to 
grasp”. It also challenges the many curricula that introduce place value before 
multiplication and division. The study has some important implications for 
teachers who could support the place-value understanding of their students by 
providing meaningful multiplication and division. Further exploratory studies 
are needed to focus on refining the framework, and explore other ways to 
support place-value ideas.  
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Appendix 

 
Tasks Initial Final     Initial       Final   

Total Total Ma As Oth Ma As Oth 

  n=35 n=35   
n=1

3 n=9 
n=1

3   
n=1

3 n=9 
n=1

3 
1. Quinary (10=2 fives) 

Subitizes 1 full ten-frame 51 94 31 56 69 85 100 100 

 5 + 5 as a Known Fact 40 94 31 56 38 85 100 100 

Subitizes 2 dice patterns of 5 dots 34 91   31 44 31   85 100 92 

2. Decade (groups of ten)  

10 + 10 as a Known Fact 26 80 23 33 23 54 100 92 

Subitizes 2 full ten-frames 14 77 0 22 23 69 89 77 

Counts by 10s to 100 verbally 17 60 0 33 23 54 78 54 

Subitizes 3 full ten-frames 0 54 0 0 0 54 78 38 

3 rows of 10 by 10s or Known Fact  14 40   0 0 0   38 67 15 

3. Adds tens & ones 

Subitizes 1 ten-frame & 3 single dots 6 51 0 0 15 31 78 54 
Subitizes 2 ten-frames & 3 single 
dots 6 51 0 0 15 46 78 38 

20 + 7 as a Known Fact 6 46 0 0 15 23 89 38 

10 + 8 as a Known Fact 3 46 0 0 8 23 100 31 

Show 31 beads by 10s & 1s  0 26 0 0 0 0 56 31 

Get $31 by $10 notes & $1 coins 0 26 0 0 0 0 44 23 

Dot strips 5 + 10 as Known Fact 0 31   0 0 0   8 78 23 

4. Partitions into tens  

half 20  9 34 0 11 15 23 56 31 

half 100   0 20 0 0 0 15 33 15 

$10 notes for $80 0 11 0 0 0 8 22 8 

60 sticks in 10s  0 9 0 0 0 8 11 8 

4 groups of 5 = 10+10 or 2Ts  0 17   0 0 0   23 11 15 

5. Multiple units  

PV for 2 in 24 0 20 0 0 0 23 22 15 

23 eggs ÷ 10s 0 20 0 0 0 8 44 15 

42 + 30 sheep 0 3   0 0 0   0 0 8 

Tab. 1: Percentages of students who were successful on tasks at each Framework level 
for progressions in place-value development 
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THEME 4: HOW TO TEACH AND ASSESS WHOLE NUMBER 
ARITHMETIC   

Jarmila Novotná(1), Berinderjeet Kaur(2) 

(1) Charles University in Prague, Czech Republic 
(2) National Institute for Education, Singapore 

Introduction  

Theme 4 addresses general and specific approaches to teach WNA, an area that 
has been given particular attention in mathematics education research for the last 
decades. In the scientific community all over the world, we can see a great 
variety of general approaches to teach and assess WNA. This underlines the 
importance of theme 4.  

Current research in the issue of teaching and assessing whole number arithmetic 
needs to consider theoretical and methodological frameworks that can capture 
the complex relationship between whole number learning, teaching and 
assessing. The outputs from studying teacher practices have important 
consequences for (not only) primary mathematics teacher education. Research in 
this area often focuses on teacher knowledge and its development and uses 
mainly qualitative methodological approaches. While there is wide attention to 
teaching and assessment in the mathematics education field, one of the 
difficulties in relation to WNA is that while the work on teaching WNA is 
located squarely in mathematics education, the work on assessment has tended 
to be dispersed across mathematics education, studies in psychology and in 
neuro-cognitive literature. Thus, one of the aims of this theme and of the ICMI 
study conference more broadly is to bring these diverse perspectives into 
conversation. 

Attention to how teachers promote the development of pupils’ metacognitive 
strategies during the learning of WNA can be seen as the background question 
for all contributions to theme 4.  

The fourteen papers accepted for this theme address the issues of teaching and 
assessing WNA from different perspectives. The contributions by participants 
from many countries offer a unique opportunity to compare and contrast 
different approaches to teaching and assessing WNA. 

Approaches to teaching elements of WNA  

Learning of mathematics is based on inventing new solutions to new problems 
(from the student’s perspective) and not only on mere reproduction of 
algorithms. One of the manifestations of learning is the student’s ability to come 
up with original solutions to new problems (Sarrazy and Novotná, 2013). Many 
tasks that teachers use when teaching WNA require reproducing algorithms; 
they do not support pupils’ independence and creativity. Looking for effective 
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approaches to teaching mathematics at all levels, but especially at the primary 
level, is one of the crucial tasks that mathematics education faces.  

The papers focusing on approaches to teaching of WNA can be grouped around 
three sob-topics: the nature of ‘good’ teaching of specific content in different 
contexts, teachers’ interactions with and responses to learners within their 
teaching, and possibilities for working for teaching development related to 
WNA on a larger scale. 

Nature of ‘good’ teaching of specific content  

Askew’s contribution is a case study of one teaching episode dealing with place 
value in Grade 2 in South Africa. The author argues that within a context 
focused around whole class teaching it is still possible to engage learners with 
mathematics in ways that go beyond merely re-producing procedures 
demonstrated by the teacher.  

Lin focuses on teaching the structure of standard algorithms for multiplication 
with multi-digital multipliers via conjecturing. She confirms that conjecturing is 
one of effective instructional approaches to teaching multiplication with multi-
digit multipliers. Cao, Li and Zuo present the Chinese tradition of teaching 
mathematics that influences Chinese curriculum and classroom practices. They 
show the characteristics of the Chinese approach from the perspective of 
content, organisation, the arrangement of teaching, ways of presenting, and 
cognitive demand level with a special emphasis given to multiplication tables.  

Teachers’ interactions with, and responses to, learners within their teaching 

The teacher is the actor who offers pupils the opportunities to develop their 
understanding and creativity (Sullivan and McDonough, 2002). Ekdahl and 
Runesson examine shifts in the nature of responses of three South African Grade 
3 teachers to pupils’ incorrect answers when teaching the part-whole 
relationship in additive missing number problems, and discuss consequences.  

Barry, Novotná and Sarrazy show that the knowledge of variables that determine 
the difficulty of an additive problem differs considerably from one teacher to 
another. They justify that the roots of these differences are neither in the 
teaching experience nor teacher education but in the differences in pedagogical 
beliefs. 

Possibilities for working for large-scale teaching development related to WNA  

Brombacher reports on a nationally based research activity conducted in Jordan 
aimed to improve performance in early grade mathematics. He suggests that 
deliberate and structured daily focus on foundational whole number skills can 
support the development of children’s ability to do mathematics with 
understanding. 

Approaches to assessing and testing of elements of WNA  

It is documented in the literature that there are significant differences in pupils’ 
accuracy and speed in recalling basic number facts and strategies in solving 
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whole number tasks. There is diversity in approaches to test WNA not only in 
different cultural and educational settings, but even in the same environment.   

Looking at this diversity on a small-scale, Pearn’s study compares the reactions 
of the Grade 4 teachers in one school to their pupils’ results on a WNA test. This 
paper follows up Pearn’s previous work on assessment approaches published in 
2007 (SEMT 07) and 2009 (MERGA). 

Zhao, Van den Heuvel-Panhuizen and Veldhuis present an exploratory study of 
the use of classroom assessment techniques (CATs) by primary school 
mathematics teachers in China when assessing WNA. They discuss challenges 
that the participating teachers faced when they were supposed to implement 
classroom assessment techniques and assess the results. 

The challenge of meeting each pupil’s learning needs is highlighted by 
Gervasoni and Parish. They present the results of one-to-one assessment with 
nearly 2000 Australian primary school pupils and demonstrate the complexity of 
classroom teaching. 

Curriculum  

Curriculum as a guide for learning covers a range of modalities from national 
obligatory curriculum to individual school or group curriculum, from explicit to 
hidden curriculum, from a framework for teaching to a detailed description of 
prescribed teaching strategies, materials, textbooks etc. It strongly influences 
what happens in teaching. Research focusing on curriculum has a long tradition; 
see e.g. (Hamilton, 2014).  

In the context of globalisation and competition, there is substantial attention to 
seeking worthwhile curriculum practices and educational policies in order to 
establish effective school systems for K-12 schooling. Tensions between top-
down ‘adopting’ or ‘adapting’, and ‘bottom-up’ locally responsive curricula 
have a long history in curriculum studies. Wong, Jiang, Cheung and Sun argue 
that no education system can provide Macao a ready-made curriculum model. 
They introduce Macao’s 15 years of experiences of primary mathematics 
education, after the official handover of the former Portuguese enclave to China 
in 1999.  

Sensevy, Quilio and Mercier analyse the principles and rationale of a curriculum 
for WNA teaching in the first grade in France. The ways in which this 
curriculum is grounded in results of the current research in WNA are discussed. 

Kaur presents the primary school mathematics curriculum in Singapore, 
focusing on the model method, an innovation in the teaching and learning of 
primary school mathematics. The method, a tool for representing and visualizing 
relationships, is a key heuristic pupils’ use for solving whole number arithmetic 
(WNA) word problems.  
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Textbooks 

There is no doubt about the important influence of textbooks on the teachers’ 
practices at all school levels. The importance of textbooks can be documented 
by the existence of conferences specialising in this focus (e.g. International 
Conference on Mathematics Textbook Research and Development ICMT 2014, 
Jones et al., 2014). Examples of research dealing with textbooks for WNA are 
presented in the following two contributions. 

Zhang, Cheung and Cheung investigate four sets of primary mathematics 
textbooks used in Hong Kong using content analysis.   

Alafaleq, Mailizar, Wang and Fan examine how equality and inequality of 
whole numbers are introduced in primary mathematics textbooks in China, 
Indonesia and Saudi Arabia.  

Questions for discussion in the working group 

Papers in Theme 4 address part of the questions raised in the Discussion 
document as the background questions. Some questions are not explicitly 
addressed in the papers but they are related to them and will serve as a basis for 
discussions in the sessions in Theme 4, namely:  

(1) What are some desirable constituents of teacher education programmes 
that prepare competent and effective teachers to teach WNA? 

(2) How can teachers build up on the knowledge children acquire outside 
school?  

(3) How to prepare teachers for promoting the development of student’s 
metacognitive strategies during the learning of WNA? 
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HOW EQUALITY AND INEQUALITY OF WHOLE NUMBERS ARE 
INTRODUCED IN CHINA, INDONESIA AND SAUDI ARABIA 

PRIMARY SCHOOL TEXTBOOKS 

Manahel Alafaleq(1), Mailizar Mailizar,(1,2), Yi Wang(1), Lianghuo Fan(1) 

(1) University of Southampton, UK 
(2) Syiah Kuala University, Indonesia 

Abstract 

The comparison of whole numbers is an important concept that should be introduced 
to young learners in mathematics. However, studies on how this concept is presented 
in mathematics textbooks is rarely reported and discussed in research literature. This 
study is intended to examine, and document as well, how equality and inequality of 
whole numbers are introduced in primary mathematics textbooks in China, Indonesia 
and Saudi Arabia. Six textbooks were selected from these different countries, and then 
the textbooks were analysed with focus on the examples of comparison of whole 
numbers presented in the main text of these textbooks. Findings revealed a high level 
of consistency in the way of introducing the comparison of whole number in the 
textbooks across the three countries. However, differences were also found in term of 
contexts employed and grade levels of the introduction. Possible reasons for the 
similarities and differences were also discussed in the paper.  

Key words: comparison of whole numbers, mathematics textbooks, primary 
mathematics education, textbook comparison, textbook research 

Introduction  

Whole numbers is one of basic sets of numbers that includes all counting 
numbers, or positive integers, plus zero (Frobisher et al., 1999). Mathematics 
educators and researchers have maintained that number is an important and 
complex concept in the primary grades for various reasons (National Council of 
Teachers of Mathematics, 2000; National Research Council, 2001). One of these 
reasons is that children come to schools in the first year with a widely different 
mathematics skills and knowledge based on their everyday experiences. For 
instance, some children developed counting concept before getting to schools 
whereas, others come with deferent ideas about numbers.  

By the primary grades, students begin to use whole numbers in order to count 
since the whole numbers is a fundamental factor in learning mathematics to 
establish clear connections between numbers and relations (Gilmore and Bryant, 
2006). Griffin, Case and Siegler (1994) pointed out that every child could 
develop number sense when teachers succeed to develop this sense by using 
informal activities and then children will be able to succeed in early 
mathematics and beyond. According to Terezinha and Peter (2009) "It is 
considerably more difficult for children to use numbers to represent relations 
than to represent quantities. Understanding relations is crucial for their further 
development in mathematics" (p. 3). Moreover, the NCTM Standards (2000) 
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consider “equality is an important algebraic concept that students must 
encounter and begin to understand in the lower grades” (p. 94).  

The present study is intended to investigate how the equality and inequality of 
whole numbers are introduced in primary mathematics textbooks in China, 
Indonesia and Saudi Arabia. Researchers have argued that textbooks reflect 
mostly what would happen in the classrooms (e.g., Floden, 2002). In addition, 
studies about how comparison of whole numbers is presented in mathematics 
textbooks is rarely reported and discussed in research literature. By conducting 
this study, we hope it can in a sense contribute to filling the gap in research 
literature by documenting how the concept of equality and inequality about 
whole numbers in different educational systems is presented and exploring the 
possible reasons for the differences and similarities.  

Method 

Selection of Textbooks  

To investigate how China, Indonesia and Saudi Arabia textbooks introduce the 
equality and inequality of whole numbers, we have selected six textbooks at the 
primary grade level from the three counties. For Chinese and Indonesian 
textbooks there are a variety of mathematics textbook series being used in 
primary schools and we selected the latest and most popular series in both 
countries. For Saudi Arabia, we chose the national textbook, as this is the only 
series being used in Primary schools and this series is published by the Ministry 
of education of Saudi Arabia.  

Textbook Content Analysed 

In this study, the focus of our analysis is all the examples presented in the main 
text of the textbook as we believe that examples, as a key component of the 
mathematics textbook, provide most important pedagogical orientation for 
teachers’ classroom teaching.      

Coding Procedure 

According to the aim of the study, we first identified the units in the selected 
textbooks that contain the comparison of whole numbers, then we coded the 
examples according to the following five categories of methods introducing the 
concept of the equality and inequality of whole number: (1) Comparison by 
Counting (or simply counting), (2) Comparison by one-to-one correspondence, 
(3) Comparison using the number line, (4) Comparison by identifying the 
number of digits in the whole numbers, and (5) Comparison by place value. In 
addition, we also took into account the context of the examples and the grade 
level they are introduced.  

The first coding process was conducted by the authors and checked by external 
coders, in order to measure the reliability. The Inter-rater agreement according 
to the Intra-class Correlation Coefficient (ICC) on China, Indonesia and Saudi 
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Arabia textbooks coding in general was 0.92, 0.99, 0.97 respectively, which 
indicates a high agreement in coding.   

Results and Discussion 

Tab. 1 reports the total numbers of the examples of using different methods 
provided in the mathematics textbooks examined in the study.  

 Method  China Indonesia Saudi Arabia

Counting 0 7 31 

One-to-one Correspondence 8 3 20 

Number Line 3 4 13 

Number of Digit in Whole 
Numbers 

3 0 12 

Place Value 5 13 28 

Total 19 27 92 

Tab. 1: Numbers of the examples of using different methods 

From Tab. 1, we can find that overall there exists a high level of consistency in 
the three countries’ textbooks in terms of the types of methods used to compare 
whole numbers. However, Indonesian textbooks have not used the number of 
digit in whole numbers method, and it seems that Indonesian textbooks rely on 
the place value of whole numbers more than other methods. Furthermore, we 
have not found any counting method related to whole numbers comparison in 
Chinese textbooks.  We can also easily see that the numbers of examples in 
Saudi textbook are the most among the three countries and Saudi textbooks have 
paid more attention to the counting method. In addition, we can find that the 
whole series of Saudi textbooks provides the largest number of examples, which 
might to a degree reflect the desire of the textbook authors to provide teachers 
and students with useful textbooks, since all teachers adhere to use this series of 
textbook. 

An interesting result is that the three countries textbooks have started with the 
concept of equality and inequality by introducing One-to-one correspondence 
method. This result goes along with Piaget ideas about children' concept of 
number as he argued that children do not understand and realise numbers and 
the relations between them by verbal-based counting. However, children will 
agree that two sets are equal if they manage to match items in one set to the 
other and vice versa, and in the case of inequality (see Fig. 1 and 2), one-to-one 
correspondence is the basis for building the concept of number (Piaget, 1965).  
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It should also be noted that in the Indonesian textbooks, the number line is used 
to compare whole numbers in Grade 3, but this method has been used in Saudi 
and Chinese textbooks in earlier grade levels. Inhelder, Sinclair and Bovet 
(1974) suggested that children's concept of distance and length like how many 
steps have to be taken between numbers can develop their metric Euclidean 
conceptions, and they emphasised to start with non-number line task contexts 
then improve it to number line. It appears that the way Saudi textbooks 
introduce the comparison of whole numbers is consistent with the idea 
suggested by these researchers. For example: In Grade 1, the textbook started 
with non-number line examples in order to explain the meaning of "before, 
after" and "more than, less than" and from that point the textbook introduces the 
number line as a comparison method.    

Tab. 3 shows the context regarding the items that have been used to introduce 
the concept of equality and inequality. Gregory et al. (1999) defined context "as 
any information that can be used to characterise the situation of an entity, where 
an entity can be a person, place, or physical or computational object" (p. 302). 
From Tab. 3 we can see that the textbooks in all the three countries provided a 
variety of contexts to introduce the concept, and a large consistency is evident, 
although Chinese textbook appeared to offer slightly richer contexts. 

Country Context used 

China Animals; Food; Household Items; Area and Population; Measurement; 
Transportation Modes 

Indonesia Animals; Food; Transportation Modes; Household Items; School Items; 
Toys 

Saudi Arabia Animals; Food; Transportation Modes; School Items; Toys; Household 
Items.   

Tab. 3: Contexts used for introducing comparison of whole numbers in different 
countries 

The importance of providing suitable contexts for developing children’s 
understanding has been recognised for a long time. For example Dewey (1951) 
once emphasised that learning would not accrue when it takes place with 
disconnected events, and learning should be integrated with life process. From 
this point, we think that some contexts provided in the textbooks we examined 
could be improved or changed so they are more related to children's daily 
activities and social environment.  

Tab. 4 shows the grade levels in which the comparison of whole numbers up to 
different values is introduced in the textbooks in the three countries. From Tab. 
4 we can find that Chinese textbooks introduce the comparison of whole 
numbers up to 100 in Grade 1, whereas Saudi and Indonesian textbooks 
introduce the whole number comparison up to 20 and put off the comparison of 
larger numbers to Grade 2. Moreover, Chinese textbooks introduced comparison 
symbols in Grade 1 but Saudi and Indonesian textbooks introduce them in Grade 
2. Despite that, there is a gap in Chinese grade 3 textbooks as we have not found 
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any comparison and the remaining content of comparison is only introduced in 
Grade 4. Whether this gap or discontinuity in introduction of the comparison of 
whole numbers might after students’ learning is worth further attention. In 
addition, it is also noticeable that Indonesian textbooks introduced the 
comparison of whole numbers up to millions only, while in the other two 
countries, the comparison is up to billions. 

Grade Level China Indonesia Saudi Arabia 

Grade 1 Numbers 0 to 100 Numbers 0 to 20 Numbers 0 to 20 
Grade 2 Numbers up to 

thousands 
Numbers up to 500 Numbers up to 999 

Grade 3 None Numbers up to 999 Numbers up to 9999 
Grade 4 Numbers up to 

millions and 
billions 

Numbers up to  one  
million 

Numbers up to 
millions and billions  

Grade 5 None None None 
Grade 6 None None None 

Tab. 4: Grade levels where comparison of whole numbers are introduced 

Summary and Conclusion  

This study examined China, Indonesia, Saudi Arabia mathematics textbooks at 
the primary schools level in order to reveal and document how the three 
countries introduce the equality and inequality of whole numbers. The results of 
the textbook analysis showed that there are many similarities and some 
differences among the three countries’ textbooks. The results revealed a high 
level of consistency in the way of introducing the comparison of whole numbers 
in the textbooks across the three countries, which in a sense reflects the unique 
nature of mathematics, in other words, the concept of mathematics is essentially 
the same everywhere. 

On the other hand, Saudi textbooks offered the largest number of examples for 
introducing the comparison of whole numbers. Moreover, Chinese textbooks 
introduce the comparison of whole numbers in Grade 1 by using larger numbers 
than the two other countries. This result indicates that Chinese textbooks 
introduce large numbers to students at a younger age (6 to 7), while Indonesian 
textbooks only introduce the comparison of whole numbers up to one million, 
the other two countries it is up to billions. Further study is needed in order to 
understand better why there are such differences in the textbooks in the three 
countries. 
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SEEING THROUGH PLACE VALUE: AN EXAMPLE OF 
CONNECTIONIST TEACHING 

Mike Askew, University of Witswatersrand, South Africa 

Abstract 

This paper reports on a five-year longitudinal study of developing teaching in South 
African primary schools. Initial video data from 30 grade 2 classes (mainly 7- or 8-
year olds) across ten schools revealed teaching practices that were, largely, disjointed 
and lacking coherence. Three years on, video from the same schools show lessons are 
becoming more coherent. Data from one of these latter lessons, focused on place 
value, is analysed to illustrate how coherence is constituted, and that this teacher’s 
actions, examples and talk display elements of a ‘connectionist’ orientation to teaching 
and learning. Thus it is argued that within a context focused around whole class 
teaching it is still possible to engage learners with mathematics in ways that go beyond 
merely re-producing procedures demonstrated by the teacher.  

Key words: connectionist teaching, effective teaching, place value, South Africa 

Introduction 

In the context of national and international test results presenting a bleak portrait 
of mathematical performance in South Africa, the Wits Maths Connect–Primary 
(WMC–P) longitudinal research and development project, is developing and 
investigating interventions to improve mathematics teaching and learning in ten 
government primary schools. Analysis of baseline data from 2011 (observation 
and videos of lessons from each Grade 2 class in project schools) revealed 
teachers’ selection and sequencing of tasks resulted in a lack of coherence in and 
across tasks, and in task enactment (Askew, Venkat and Mathews, 2012). This 
weak teaching coherence exhibited ‘extreme localisation’ and ‘ahistoricity’ 
(Venkat and Naidoo, 2012), and thus impairing possibilities for learners to 
understand number as a connected network of ideas. 

Three years later, video data from Grade 2 classes (in the same ten schools) 
show improvements in coherence and pacing, and analysis is now examining 
nuances in how teachers bring coherence to their lessons. This paper illustrates 
this analysis by examining one lesson through the lens of a connectionist 
orientation to teaching (Askew, et al 1997). The content of the lesson is place 
value, identified in the discussion document framing ICMI study 23 as crucial 
for understanding whole number arithmetic (WNA). Hence this paper makes a 
contribution both to understanding teaching of WNA generally, and place value 
in particular. 

Theoretical Background 

A recent review of research into ‘great’ teaching identified six necessary 
components: deep pedagogical content knowledge (PCK), high quality 
instruction, a demanding yet supportive classroom climate, effective classroom 
management, teacher beliefs and professional actions (Coe, et al., 2014). Two of 
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these components were noted as having strong research evidence of impact on 
learning: PCK and quality of instruction.  

A study of effective teachers of numeracy (essentially defined as number and 
operations) in England, provided evidence supporting the importance of these 
components (Askew et al., 1997). Studying 100 teachers over a year, the 
teachers’ practices (as observed) and beliefs (as expressed in interview or 
imputed from observations) were examined in relation to mean class gains in 
pre- and post-test assessments of skill and understanding in number. Two 
archetypes of teacher ‘orientations’ - transmission and discovery - towards 
teaching and learning were identified as associated with narrower learner gains.  

In contrast, many teachers of classes showing the highest mean learning gains 
over the year displayed characteristics of what the researchers dubbed a 
connectionist’ orientation, characterised by beliefs and practices that included: 

• connecting different areas of mathematics and different concepts in the 
 same area through a variety of words, symbols and diagrams  
• using pupils’ descriptions of their methods and their reasoning to help 
 establish and emphasise connections and address misconceptions  
• discussing concepts and images to exemplify the teacher's network of 
 knowledge, thus supporting learning (adapted from Askew, et al 1997). 

In this paper, mathematical connections are viewed core to a pedagogy working 
with highly inter-related example sequences (Watson and Mason, 2006a). In 
related writing, these authors point to the need for simultaneous working with 
horizontal relationships within examples and vertical patterns between examples 
(Watson and Mason, 2006b). Concomitant with this simultaneity is a shift to 
viewing mathematics teaching and learning as a network of connections rather 
than a sequential and hierarchical enterprise (Davis, 2009). 

Materials and Methods 

The lesson focused on here was selected as a ‘telling case’ (Mitchell, 1984) of 
connectionist teaching. It is typical of lessons in South Africa in having 
extended instances of whole class talk and the tasks the teacher introduced were 
also typical of the range of tasks observed more broadly. Unusual, however, is 
the extent of the teacher’s careful connecting together of the various lesson 
elements. 

Mrs S (pseudonym) is an experienced Foundation Phase teacher, teaching one of 
five Grade 2 classes in a suburban government school working with a 
historically disadvantaged pupil cohort. She teaches a class of 38 children, 
slightly below the provincial and national mean class sizes. The language of 
instruction is English, although this is not the home language of the majority of 
the pupils. Video data on lessons on the same topic (place value) were collected 
from the other two classes whose teachers were also videotaped in 2011: early 
analysis of those two lessons suggests fewer connectionist oriented moves in the 
teaching.  
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South Africa’s national curriculum statement (DBE, 2011) prescribes that by the 
end of Grade 2 the expectation of working with numbers up to 99 and that 
learners can decompose two-digit numbers into multiples of tens and ones/units 
and identify and state the value of each digit (p. 253). Maintaining emphasis on 
the numerical ‘value’ of digits within teaching has been noted as important to 
developing pupils’ understanding of place value (Thompson, 2000). Analysis of 
vignettes from the observed lesson, presented in italics below, points to the 
foregrounding of this emphasis. 

Results: Vignette and Analysis 

Prior to the lesson, Mrs S had listed in a column on the board the numerals 13, 
19, 27, 45, 67, 93. After pupils read these out, she said she wanted learners to 
break the numbers down. A girl asked to break down thirteen replied ‘ten plus 
three’. Alongside the ‘13’ Mrs S wrote ‘= 10 + 3’. Other learners were asked to 
break each number down similarly until ‘93 = 90 + 3’ was written on the board.  

T: Very interesting, eh? 
Class: (chorus) Yes. 
T: This number [pointing to ‘13’] is now ten plus three [moves her hand along, 
tracing under ‘= 10 + 3’ written on the board]. And this? [pointing under ‘19’]? 
Class: Ten plus nine [T moves hand under ‘= 10 + 9’ along with the chorus]. 
T: Now here? [sliding her hand down to under ‘27’] 
Class: Twenty plus seven. 
Mrs S continued to run her hand down to the next numeral and along underneath 
the expanded notation in time with the class chorusing the expansion. 
T: Now there is something happening here. Look here [gestures down the column 
of tens]. Now we have two digits this side, now the remainder is one [gestures 
down the column of ones]. These are tens [points to column of tens] and here we 
have [points to the ones, rising, questioning intonation in voice] 
Class: Units 
T: Or ones 

Of note here is the teacher’s immediate making of both ‘horizontal’ and 
‘vertical’ connections (Watson and Mason, 2006b) in that her talk and gestures 
draw attention both to the horizontal expansion, and to the vertical 
commonalities across the examples. This contrasts with the sequential working 
with individual examples highlighted by Venkat and Naidoo (2012) where the 
dominant practice focused only on the horizontal level. 

T: Now we can introduce our blocks. We did this in term one remember? 
Teacher picks up a stick of ten interlocking cubes, joined to make a ‘ten-stick’ 
attaches one ten to the board, close to the left of the ‘10’ in ‘13 = 10 + 3’  
T: And here [pointing to the ‘3’] we need? 
Class: Three ones. 
T: Okay, three, am I okay? [Holding three ten sticks up next to the digit ‘3’] 
Class. Noooo. 
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T: So what can I use? 
Class: [Some say ‘three ones’, some ‘three units’] 
T: So where are the ones? [Child comes to teachers’ desk and hands over three 
single cubes.] I thought these [holding up the three ten-sticks] were the ones 
because this [holding up a single ten stick] is one. Okay, the small ones. Why? 
Because ten of them will make one ten.  I must put how many? 
Class: Three 
T: Three of them [Attaches three single cubes to the board, to the right of and 
close to the digit 3 in 10 = 3’] 

Here the teacher explicitly addresses two foci. First, her actions and talk raise 
the issue of the possible confusion between referring to a ten-stick as ‘one ten’ 
and needing three ‘ones’: her playing at getting it wrong draws attention to the 
need to be clear about the different referents of ‘three’ in the talk. Through her 
‘error’ she uses images to distinguish ‘three tens’ from ‘three units’. Second, the 
careful positioning of the artefacts near the symbols, the literal proximity of the 
concrete and symbolic, reinforces the connection of signifier and signified. 
Although we have records of other teachers using base ten blocks, the physical 
is not usually so carefully coordinated to cohere with the symbolic. 

A similar process was gone through with nineteen. First a ten stick was attached 
to the board, next to the ’10’ and then, nine single cubes attached to the right of 
the ‘9’. As these were being attached, the class count got ahead of the number of 
cubes attached. Mrs S stopped and said ‘You are counting in the air because I 
did not put it [holds up a single cube] up.’  

Here, Mrs S’ attention is not only on her actions but also on the learners’ 
involvement: the counting is not simply oral reciting, but counting to keep track 
of the number of cubes. Her attention encompasses both her production of 
examples and images and the sense that learners are making of this – a key 
attribute of a connectionist orientation.  

T: Is it okay for me to put one other down here? [Gestures adding in another 
single cube to the nine attached to the board.] 
Class: No. 
T: Okay what would happen if I put an extra one in here? What do you 
[indicating a response from a particular pupil] think would happen? 
P1: It would be ten plus ten. 
T: It would be ten [indicating the collection of single cubes] plus this one 
[pointing to the original ten-stick]. Then what would we be having in the tens? 
Class: Twenty 
T: Because if we have ten we have more than nine and we make it another ten 
[Gesturing circles around the nine and the imaginary act of picking the collection 
of cubes up and moving them to the left, to join the ten]. 

This is another example of the teacher checking in on the learners’ 
understanding, not taking for granted that they know what she knows. Once 
again, she goes beyond the ‘immediate answer’ for the ‘immediate example’ – 
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questioning what would happen in an imagined example where ‘an extra one’ is 
added. And her gesturing further attends to connecting representations. 

T: Now I am coming to this one [puts her hand below ‘27’]. It is changing now. 
There [points to the ‘10’ in ‘10 + 3’ and ’10 + 9’] it was one, one, one ten 
[gesturing to underline the ‘10’ in ‘10 + 3’], one ten [gesturing to underline  the 
‘10’ in ‘10 + 9’]. Now it is two [pointing to the ‘2’ in ‘27’], so I have twenty 
[points to the ‘20’]. So how many of these blocks [holds up a ten stick]? 
P2: Two tens. 
T: Two tens, thank you. Making what? Two tens making? 
Class: Twenty. 

Here is more horizontal and vertical connecting. The 2 in 27 entails 20, and the 
2 in 27 also marked as a change from ‘one ten’ in the previous examples. 

Seven units were attached to the board, then pupils invited to do the same for 45, 
67 and 93 (with sticks and units reused, so finally only 93 had cubes next to it). 

T: Right, now we know how to break these numbers into tens and? 
Class: Units. 
T: Now we are going to do a similar activity using the same numbers. I just want 
to see whether you have observed something. I will underline the number and 
then you will tell me the value, what does it stand for? Don't tell me that it’s tens 
or units or ones, here I want the value, how many [makes a circular cupping 
motion with hands]. Okay? 

Here the teacher draws attention to the fact that what is coming up is not 
completely new but connected to prior learning. Learners are ‘let into’ what 
interests her: whether they have observed something. Learners are expected to 
have agency – to note patterns they may have observed not simply remembered. 
Another connection is marked through the emphasis on saying the value 
designated not simply which place a digit is in, but. 

T: What is the value of that one? [Underlining ‘1’ in ‘13’.] The answer is there 
already. In breaking down we show the value in another way. Okay? Now I want 
you to tell me the value of that one [in ‘13’] 
P3: Ten. 
T: It’s a ten, that's (unclear) isn't it. So the value of that number is ten. [Writes 
‘10’ to the right of the equation.] 
T: What is the value of nine in that number? [Underlines ‘9’ in ‘19’]. A? 
A: Nineteen. 
T: She is saying nineteen. Is she correct? 
Class: No. 
T: Can somebody come here and explain? 
P4: Nine. 
T: Nine. Why is it nine? 
P4: ‘cos it’s in the unit. 
T: Just as a reminder, remember A, it is like this, tens, units [Writes T U above 
each number.] So nine is under the units, under the ones [pointing to the position 
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of ‘9’ relative to the label ‘T U’] so the value of this number [circling the ‘9’ in 
‘19’] is only nine [writes ‘9’ to the right]. There it is A [underlines the ‘9’ in ‘10 
+ 9’] Okay? There, okay? There it is. Nine, so the value of this number [Circling 
gesture around the ‘9’ in ’19’] is nine [writes over the ‘9’ to the side again] 

The teacher chains together the different representations here, whilst extending 
the representational repertoire. In her utterance ‘the answer is there already. In 
breaking down we show the value in another way’ she directs attention to 
another connection, then by reframing ‘showing the value’ as associated with  
‘breaking down’ not only are two potentially discrete ideas connected, but 
learners are also encouraged to connect with what they already know. In 
focusing on the value of the digits, not simply the place they occupy, the 
introduction of T U labels is delayed, but subsequently brought in as another 
representation to help a particular learner. Given that this notation would have 
been used before this connects back again to previous lessons. Multiple links 
between place value features are again made explicit: that these are all various 
way of signifying the same underlying idea. 

T: What is the value of this seven? [underlining ‘7’ in ‘27’]? 
P5: Seven. 
T: Why is it seven? 
P5: Because it is under the units. 
T: There it is [points to the ‘7’ in ‘20 + 7’]. What we did by breaking down, we 
are actually doing the value of the numbers, breaking them down. Okay, what is 
the value of the two in that same number? 
P6: Twenty. 
T: Why are we saying twenty? 
P6: Because it is two tens. 
T: It is two tens, so if I have two tens [picks up a ten in each hand] it means I 
have a ten [holds up one ten stick] and another ten [holds up the other ten stick] 
and if I put them together [moves hands together] I have [rising intonation] 
Class: Twenty 
T: So if I have two tens [holds the two ten sticks by the ‘2’ in ‘27’] I have 
twenty. There it is [one hand keeps the two tens sticks on the board, the other 
gestures under the ‘20’ in ‘20 + 7’]. I have twenty [points to ‘20’ in ‘20 + 7’]. So 
the value of the two is twenty. 

The teacher thus coordinates a dance between the different representations - 
there is a choreographing of the coordination of the digits, place, value, cubes, 
actions and language. The learners’ attention is repeatedly drawn to what is 
similar, how things that look different have the same underlying meaning.   

T: What is the value of the five? [Underlining the ‘5’ in ‘45’] 
Class: Five. 
T: It’s there [gesturing below the ‘5’ in ‘40 + 5’]. And the value of the four? 
Class: Forty. 
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T: Forty. There in front of you it is there.  [Points to the ‘40’ in ‘40 + 5’]. So after 
breaking the numbers down [Runs her hand up and down the column of tens] it 
becomes easy for us. 

The connection with breaking numbers down is reiterated with the teacher 
drawing attention to learners using what they already know - knowing the value 
of a digit is based in the knowledge of how to break numbers down, rather then 
deduced from the position of the digit. In addition to the directionality forward 
from past learning, there is multi-directionality in the present – breaking down 
is connected to all the elements introduced into the learning space: digits, place, 
value, cubes, actions and language. This contrasts with other lessons where the 
focus tends to have a uni-directional flow in its playing out, limited in time to the 
immediately present, and to the particular examples in isolation. 

T: The value of this six [pointing to the ‘6’ in ‘67’] 
Class: Sixty. 
T: There it is [underlining gesture to the ‘60’ in ‘60 + 7’] 
T: So How many tens do we have? 
Class: [Some say six, some sixty] 
T: How many? [Sense of confusion from the class.] 
Teacher picks up ten paper tens strips [up to now the physical artefacts have been 
cubes - card units and card ten-strips are used for the first time]. 
T: How many tens do we have? 
Teacher picks up a number of ten strips in one hand, and counts them, moving 
from one strip from one hand to the other as the class count, one, two, … , six. 
T: If we have six tens it means we have ten [removes one ten strip from the hand 
holding all six, holds it up on the count of ten. As the strips are moved back to 
the first hand one at a time, the class picks up the count, but now in tens]  
Class: Twenty, thirty, forty, fifty, sixty. 

The double count here loops back to the idea of the strips or sticks referring 
either to one ten, or ten ones. And we see the teacher varying her question: from 
what is the value of the six to how many tens – thus learners are not allowed to 
fall into a routine of thinking the answer will always be the same. 

The sequence ended with Pupil A identifying the ‘3’ in ’93’ as three ones. The 
class were given ten strips and unit squares to model numbers independently.  

Discussion 

The commentary on this case study reveals a teacher demonstrating many of the 
practices Askew and colleagues identified as associated with a connectionist 
orientation to teaching and learning. The extent of horizontal and vertical 
connections reflects a view of mathematics teaching and learning as based in a 
network of connections, which, as Davis (2009) notes, points towards ‘dwelling 
with highly connected ideas … and exploring local networks.’ (p. 263) 

In the original study, Askew et al. note that there was no association between 
particular forms of classroom organisation – pupils working individually, in 
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groups or as a whole class – and orientations to teaching. That said, at the time 
of the study there was much more individual or group work in English 
classrooms, than whole class teaching. Given the long history of whole class 
teaching in the South African context and evidence of limited moves in sub-
Saharan countries to overtly learner-centred pedagogies (Schweisfurth, 2011), it 
is encouraging to see that the tenets of connectionist teaching can be enacted in 
such an environment. Future work will include examining whether the evidence 
for such an orientation towards teaching is linked to learning outcomes.  
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Abstract 

Experience is often seen as a source that allows teachers to construct didactical or 
pedagogical knowledge. The research presented here tries to explore this common 
belief. The authors worked with 30 elementary school teachers. They show that the 
knowledge of variables that determine the difficulty of an additive problem differs 
considerably from one teacher to another. They show that neither the teaching 
experience nor teacher education can account for these differences: thus it must be the 
differences in pedagogical beliefs that enable to explain these differences in the 
didactical knowledge. 

Key words: arithmetical problem, construction of knowledge, didactical variability, 
elementary school 

“The more the student has been drilled in formal exercises, the more it 
is difficult for her, later, to restore a fruitful functioning of concepts so 
acquired. “Application” of learned, ready-made knowledge goes badly 
because the logic of the articulation of the acquisitions which compose 
it is exclusively that of the knowledge itself and because the role of 
situations has been excluded a priori.”  

 (Brousseau, 1997, 43) 

Introduction  

Learning mathematics is not restricted to learning algorithms only but it is 
manifested by identifying conditions for their use in new situations. This 
criterion allows us to state that the child has learned something. In Novotná and 
Sarrazy (2005), the effects of variability in the formulation of problem 
assignments on students’ flexibility when using the taught algorithms in new 
situations were investigated. The research described in the above mentioned 
paper was developed in the framework of the Theory of didactical situations in 
mathematics.  

The following question was investigated: How can one explain that some 
students are able to use the taught knowledge in new contexts, while others, 
although “they know” the taught algorithms, are not able to re-contextualise this 
knowledge? The research confirmed the following hypothesis: Inter-individual 
differences in the sensibility to didactical contract (which is measured by an 
index) are the effect of a teacher’s didactical variability in the environment of 
arithmetical problems.  
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The model used in Novotná and Sarrazy (2005, p. 701) is based on the following 
idea: “The more the same form of didactical organisation presents the modalities 
of different realisations, the more uncertainty attached is added to this form. To 
satisfy the teacher’s expectations, such a student has to ‘examine’ the domain of 
validity of their knowledge much more than a student who is exposed to a 
strongly ritualised (repetitive) teaching and therefore a much reduced variability. 
In other words, a strongly ritualised teaching would allow the student to know in 
advance what they have to do and thus to adopt a behaviour ad hoc (adapted). 
On the other hand, by the interruptions of introduced routines, a strong 
variability makes the following strategies futile (controversial): the students 
cannot rely only on the indicators of introduced routines (semantic indicators, 
triggers …) and therefore cannot either anticipate or master the liaison of 
sequences which allows him to discover the behaviours expected by the teacher. 
This model was not refuted by our results.”  

In this paper, the ideas from Novotná and Sarrazy (2005) are developed further, 
using the methodology first presented in Sarrazy (2002). 

Background 

The idea behind this research is a relatively simple one: under which conditions 
can teachers’ experience from their mathematical education contribute to an 
increase in their didactical knowledge? By “didactical knowledge” we 
understand the fact that the teacher knows (because he/she “does it” and not 
necessarily because “he/she tells it”) that an arithmetical problem with a 
classical structure “initial state – transformation – final state” is more difficult if 
the question concerns the initial state, and such a problem is also more difficult 
than a problem where transformations of states are combined or relative (see 
Vergnaud’s typology, 1990).  The concept of didactical variability was 
introduced by Sarrazy (2002) in order to classify a teacher’s capacity to create 
arithmetical problems of very different difficulties.   

Differences in variability: 

1) have impact on the phenomena of sensibility to contract (the higher the 
variability is, the more easily pupils adapt their knowledge to new contexts) 
(Sarrazy, id.); 

2) allow us to renounce the myth of creativity in mathematics (Novotná and 
Sarrazy, 2011). 

The paper comes out of a very recent study (Barry, 2014) and attempts to get 
insight into the origins of differences in variability among teachers: Is it linked 
to their initial teacher education (humanist, scientific, …), to their education in 
didactics of mathematics, to their experience from teaching mathematics (short, 
long), to their pedagogical beliefs (active, traditional)?  

To put this very simply, the more diverse the situations are, the more chance to 
get adapted and to verify permanency of their knowledge the pupils will have. 
The teacher will have to face potential interactions, questions, unanticipated 
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digressions, will be forced to answer and thus develop their knowledge based on 
experience. On contrast, the more closed the situation will be, the lesser the 
reactions of the teacher and the pupils to the milieu will be. Therefore we will 
test the hypothesis that a teacher’s pedagogical beliefs contribute to reveal the 
differences in variability among teachers. In other words we want to show how 
pedagogical ideologies can raise didactical phenomena, i.e. connaissances 
(isolated pieces of knowledge in the sense of the Theory of didactical situations) 
and what effect they have on savoir of the properties of milieus (in our case 
word problems) proposed to pupils.   

Materials and Methods 

Thirty elementary school teachers participated in the research. A questionnaire 
was used to collect two types of data: 12 questions focused on biographical data 
(length of teaching practice, education etc.) and 12 questions aimed at finding 
out respondents’ pedagogical beliefs independently on their mathematical 
knowledge. Semi-structured interviews were conducted, recorded and 
transcribed. The respondents were asked to pose three additive problems of 
increasing difficulty without using a textbook; the problems were used to 
determine the index of didactical variability using the method introduced by 
Sarrazy (2002).   

Description of the research sample 

Biographical variables 

 The sample consisted of 30 teachers, the majority of them were female (21 
out of 30, 70%).  

 14 teachers taught 9-year-old pupils (46.67%), 8 taught 10-year-old pupils 
(36.67%) and 8 both 9-  and 10-year-old pupils (26.67%).  

 The overall length of teaching practice was between 1 and 36 years (m = 
13). The teachers were divided into two groups: “novice” teachers with less 
than 10 years of teaching practice (16 out of 30, 53.33%) and “experienced” 
with 10 and more years of teaching practice (14 out of 30, 46.67%). 

 The length of teaching practice in the same grade was between 1 and 36 
years (m = 7). The teachers were divided into two groups: “novice” teachers 
with less than 5 years of teaching practice (18 out of 30, 60%) and 
“experienced” with 5 and more years of teaching practice (12 out of 
30.40%). 

 Bachelor level study: 11 teachers out of 30 (36.67%) have bachelor exam in 
arts, 19 out of 30 (63.33%) bachelor exam in science. 

 Finally, as to their teacher training, 14 teachers out of 30 (46.67%) 
completed their qualification at IUFM. 
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Pedagogical variables  

We focused only on the most discriminating pedagogical variables; these 
concern repetition, classroom management and relationships between 
understanding operations and their operational mechanism. For example, as far 
as the variable repetition is concerned (“repeat until the pupil has understood”) 
the teachers fell into two groups of the same size (50% “more or less agree”). 
Slightly more than one half of the teachers (53.33%) emphasised the benefits of 
repetition. A majority of the teachers (73.33%) agreed that it was important “not 
to allow pupils to intervene at their will”. A significant majority (86.67%) 
agreed on the idea that “a pupil can learn only through problems”. 66.67% of the 
teachers believe the teacher must teach the way to solve problems and that the 
pupil must then rediscover it and apply it. Finally, 43.33% of the teachers think 
that it is possible to “learn without understanding”. 

As far as the idea of distinguishing the mechanism of an operation from its 
understanding is concerned, a small majority of the teachers (56.66%) think that 
“this difference is more needful for weak pupils”; 43.33% of the teachers 
answered that “pupils do not distinguish between the two because it is not 
necessary to understand a mechanism in order to apply it correctly”; and only 
36.67% of the teachers think that “usually a pupil first learns the mechanism and 
only later starts to understand the operation”. 

Index of variability 

90 problems (30 x 3) were analysed using the same model of calculation 
introduced by Sarrazy (2002). The model consists of 12 variables divided into 
three categories: numerical, rhetorical and semantic-conceptual. For each of 
these 12 variables (summarised in Tab. 1), the number of the observed variations 
(Vo) was determined. This number was then related to the number of possible 
variations (Vp) in the set of the three problems. The index of variety is the sum 

of the observed variations divided by the possible variations: ܸܫ ൌ
∑ 
భమ
సభ

∑ 
భమ
సభ

.  

Type of variables Code Modalities assessed 
Numerical variables 

1 Type of numbers TN Authorises a procedure other 
than the classical one / does 
not authorise… 

2  Irrelevant data ID Present / absent 
Rhetorical variables 

3  Semantic indices SI Present / absent 
4  Trigger in the question DE Present / absent 
5  Syntagmatic organisation, 

temporal organisation of 
events 

SO, TO Correspond / do not 
correspond 

6  Position of the question PQ Beginning / middle / end 
7  Formulation FO Classical / narrative 
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Semantic-conceptual variables
8  Type of problem TY 6 modalities corresponding to 

the 6 additive structures 
9  Nature of the unknown NU Initial state, final state, 

transformation 
10 Order of numerical data in the 

explanation of the problem, 
operative order 

SO, OP Correspond / do not 
correspond 

11 Trigger, mathematical 
operator 

DE M Correspond / do not 
correspond 

12  Semantic index, mathematical 
operator 

SI M Correspond / do not 
correspond 

Tab. 1: Variables used to evaluate index of variability 

Let us show an example of how IV was determined for the teacher 22. 

Easy 
 

Mark has 8 marbles. He wins 8 marbles. How many marbles does he now 
have? 

Medium Mickael is 25 years old. Mark is 15 years older than Mickael. Jules is 3 years 
older than Mark. How old is Jules? 

Hard Mum is doing some shopping. She buys 3 apples for a total of 2.95€, a 
chicken for 3.75€ and a bunch of leeks which costs 4€. On her way back, she 
buys paper (1.70€) and 2 baguettes (1.80€). How much did she spend in 
total? 

Tab. 2: Teacher 22’s three additive problems 

 
Variables Vo Vp 

Type of numbers 
Irrelevant data 
Semantic indices 
Trigger in the question 
Syntagmatic / temporal organisation 
Position of the question 
Classical or narrative formulation 
Type of problem 
Nature of the unknown 
Order of numerical data in the explanation of the problem, 

operative order 
Trigger, mathematical operator 
Semantic index, mathematical operator 

1 
0 
0 
1 
0 
0 
1 
2 
2 
1 
0 
0 
 

1 
1 
1 
1 
1 
2 
1 
2 
2 
1 
0 
1 

∑ 8 14 
IV 0.57 

Tab. 3: Calculation of teacher 22’s variety index (IV) 

Legend: Vo = number of observed variations; Vp = number of possible variations; IV = index 
of variability 

We grouped the 30 IV into 7 classes: We can observe a relatively homogeneous 
discrimination (the distribution is normal). 
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Lower bound Upper bound Centre Size Relative frequency 
0.067 0.140 0.104 2 0.067 
0.140 0.214 0.177 5 0.167 
0.214 0.288 0.251 7 0.233 
0.288 0.362 0.325 4 0.133 
0.362 0.436 0.399 5 0.167 
0.436 0.510 0.473 4 0.133 
0.510 0.583 0.546 3 0.100 

Tab. 4: Distribution of variety indices in 7 groups 

Pedagogical style 

Two modalities were defined: 1) predominantly traditional pedagogy (PT) and 
predominantly active pedagogy (AP); the first modality is knowledge centred, 
the other is learner centred.  We cannot explain here the whole set of all 
variables, the scope of the paper does not allow that, we will focus on the four 
variables that proved to be significant for distinguishing among teachers in the 
perspective of their variability: 

Q1.3- REPET:   “Repeat until the pupil understands.” 
Q6.3- MECA: “The pupil learns the mechanism and understands later.” 
Q9- DIRIG3: “It is possible to learn without understanding.” 
Q14- REGL3: “The pupil can understand a rule without knowing how to apply 

it. This ability develops later.”  

Results 

Neither teacher education, nor attitude towards mathematics (the type of 
bachelor exam), nor the length of teaching practice can be the ground for 
explaining the difference in IV; the only thing that can be seen as relevant for 
these differences are pedagogical beliefs as stated by the teachers: “active” 
teachers have a slightly greater mean (IV = 0.421) than “traditional” teachers 
(IV = 0.286; Student’s t-test, s., p = 0.56). The observations confirm our 
expectations: the more open the situations proposed by the teacher are, the 
higher the probability of unexpected events is (pupils’ answers, type of thinking 
etc.); the teacher will therefore have to react to these unexpected situations (will 
have to find a counterexample, analyse a pupil’s mistake quickly, estimate the 
effect of a didactical variable etc.) These feedbacks seem to create forms of 
adaptation to these situations that are not necessarily conscious but are efficient. 
The differences in variability between the two types of teachers confirm these 
constructions of didactical knowledge. The interviews clearly show that with the 
same variability and length of practice, some teachers were not aware of 
variations they carried out, while others were able to formulate clearly a certain 
number of variables: both the more obvious like adding supplementary data, to 
the more subtle variables like the relationship between semantic indices and the 
mathematical operator or between syntagmatic organisation and operational 
order. None of the teachers was able to evoke variations of additive structures, 
let alone implement variations of this dimension.      
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Discussion and Conclusion 

The question of experience is not reduced to a simple question of time – this 
finding is similar to the findings of Chopin (2011) for didactical visibility. 
Didactical variability does not relate to the length of experience but has the form 
of a piece of knowledge emerging from the teacher’s action. 

These results show very interesting points (the role of pedagogical beliefs about 
didactical knowledge) but also invalidate interesting beliefs: it is for example 
surprising that the type of education (both initial teacher education and 
continuing professional development), general length of practice or the length of 
practice in the same grade have no impact on a teacher’s variability. Didactical 
knowledge (taught during their education) does not necessarily show as 
didactical knowledge in a situation (variability); here we find again one of the 
central questions of the theory of didactical situations: having an isolated item of 
knowledge (connaissance) may not be sufficient for development of knowing 
(savoir). Our research confirms the central idea of teacher education: one 
isolated piece of didactical knowledge is obviously insufficient for development 
of a teacher’s knowledge.    

This work allows us to start reflecting on the conditions of structuring such 
experience. The anthropo-didactical framework seems to be suitable for the 
study of this experimental knowledge, the piece of knowledge perceived as the 
product of intersection of pedagogical and didactical fields.   

The findings presented in this paper have important consequences for teacher 
education and for teaching strategies. 
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NATIONAL INTERVENTION RESEARCH ACTIVITY 
FOR EARLY GRADE MATHEMATICS IN JORDAN 

Aarnout Brombacher, RTI International, Jordan 

Abstract 

This paper reports on a national sample based intervention research activity conducted 
in Jordan to improve performance in early grade mathematics as measured using the 
Early Grade Mathematics Assessment (EGMA). The endline study demonstrated that 
the proportion of children doing mathematics with understanding in the treatment 
group increased by 72,5% (from 13,7% to 24,2%) while the proportion in the control 
group increased by 8,7% (from 16,0% to 17,9%). The impact suggests that deliberate 
and structured daily focus on foundational whole number skills can support the 
development of children’s ability to do mathematics with understanding. 

Key words: EGMA, intervention, structured support, whole number 

Introduction  

To gain insight into student facility with foundational skills and to better 
understand characteristics among Jordanian schools that are associated with 
student performance, the Jordan Ministry of Education (MoE), with support 
from USAID/Jordan, administered a national sample based survey at the end of 
the 2011/2012 school year that included the Early Grade Mathematics 
Assessment (EGMA).  This paper focuses on the EGMA results and the 
mathematics component of the intervention activity that followed.  

The EGMA is an oral assessment designed to measure a student's foundational 
skills in mathematics in the early grades. EGMA was developed based on the 
work of Baroody et al. (2006), Chard et al. (2005), Clements and Samara, 
(2007), and Foegen et al. (2007).The subtasks assess number identification, 
quantity discrimination, missing-number identification, word problem solving, 
as well as addition and subtraction all with whole numbers. There are two 
addition and subtraction subtasks. In the Level 1 (L1) subtasks children are 
asked to solve addition/subtraction problems, with sums/differences below 20, 
without the aid of paper and pencil, the items range from problems with only 
single digits to problems that involve the bridging of the ten.  In the L2 subtasks 
children are asked to solve addition/subtraction problems that involve the 
knowledge and application of the basic addition and subtraction facts assessed in 
the L1 subtask. Students are allowed to use any strategy that they want, 
including the use of paper and pencil supplied by the assessor. The problems 
extended to the addition and subtraction of two-digit numbers involving 
bridging.  

In the 2012 National Survey Brombacher et al. (2012) found that although 
students answered the more procedural addition and subtraction L1 items 
correctly and with confidence—83.6% for addition and 79.4% for subtraction in 
grade 2, and 81.6% for addition and 75.9% for subtraction in grade 3—student 
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performance dropped by 31% (in grade 2) and 27% (in grade 3) from L1 
addition to L2 addition, and by more than 47% (in grade 2) and 41% (in grade 3) 
from L1 subtraction to L2 subtraction. The 2012 National Survey also suggested 
that memorisation plays a large role in the way that children know and learn 
mathematics.  

Following on from the 2012 National Survey, an intervention focused on 
foundational skills in whole number arithmetic was implemented in 45 treatment 
schools. In this paper, I report the impact of that intervention activity as 
measured through an endline study involving the intervention schools and 110 
control schools. 

Materials and Methods 

The intervention program consisted of the introduction of deliberate, structured, 
and developmentally appropriate daily practice in foundational skills for whole 
number mathematics in Grade 1 to Grade 3 mathematics lessons. 

Teachers in treatment schools spent the first 15 minutes of every mathematics 
lesson revisiting and reinforcing foundational skills. They did so every day, so 
that the students experienced this activity as part of the classroom program—as 
a routine “warm-up” activity to the curriculum’s lesson for the day. The 15-
minute activity’s key feature was for it to become part of the daily routine using 
the same structure every day, with the rationale that as students (and teachers) 
became familiar with the routine, it would go quickly and not require a large 
amount of explanation; it would provide both the needed exposure to and the 
practice with key foundational skills. 

In addition to addressing the foundational skills that the 2012 National Survey 
had identified as being underdeveloped in grade 2 and grade 3 students, the 
different activities for each of the skills introduced teachers to more research-
based pedagogical practices than those that the 2012 National Survey had seen 
in use in early grade classrooms. However, rather than introducing these 
practices through direct instruction, the program did so through immersion. By 
conducting the different activities as part of a daily routine, teachers were 
implementing more effective pedagogies. As the teachers gained confidence in 
conducting the activities, it was hoped that they would reflect on what they were 
doing and would recognise the value of the pedagogies. 

The daily routine in mathematics was designed to support children in developing 
a more robust sense of number, defined in terms of:  

 Being able to work fluently and flexibly with numbers and number concepts; 
 Having a rich understanding of the meaning of number; and 
 Having a wide range of effective strategies for solving a variety of number 

problems. 

The daily mathematics routine in the Jordan pilot intervention involved three 
distinct but interrelated elements: counting, manipulating numbers and solving 
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the three years with the difference across the years being the number range 
within which the activities are conducted. 

 Single digit arithmetic 
 Arithmetic with multiples of ten, hundreds and thousands 
 Completing tens (hundreds and thousands) including adding and subtracting to and 

from multiples of ten 
 Bridging tens (hundreds and thousand) 
 Doubling and halving – to develop efficient division and multiplication strategies 
 Interrelated multiplication facts 

The problem solving component drew on the literature on the different problem 
types.  The kinds of problem used varied across the three years with the focus in 
the early months being on problems that develop an understanding of the basic 
operations and the problems towards the end of the three year cycle focusing on 
the development of concepts such as fractions as well as ratio, rate and 
proportion.  The problem types used included: 

 Problems that support the development of addition and subtraction including: 
o Change, combine, and compare problems 

 Problems that support the development of the division concept: 
o Sharing, and grouping 

 Problems that support the development of the multiplication concept: 
o Repeated addition, and situation with a grid or array type structure 

 Problems that support the development of the following concepts: 
o Fractions, ratio, rate and proportion including sharing in a ratio. 

The materials for the pilot intervention in Jordan consisted of three different 
publications:  The teacher manual, the daily lesson notes and a workbook with a 
daily written activity for the students. 

Each of the activities for each of the components of the routine were described 
in the teacher manual.  The teacher manual was used to convey to teachers the 
purpose of the activities in terms of their role in developing the skills they seek 
to develop as well as to describe to the teacher how to conduct each activity as 
part of the daily routine in the classroom.  The daily lesson notes indicated to the 
teacher which activity to do in each of the segments of the daily routine and 
provided some specific details for those activities for the day.  For example, if 
the activity required students to count a large pile of counters using groups, the 
lesson notes would suggest to the teacher an appropriate number of counters to 
be counted and the size of the groups to be used in counting the counters.  
Finally, there was a set of workbooks for the students.  In the workbooks there 
was a page for each day of the semester with activities that supported the whole 
number-related focus of the day. The written activities in the workbook matched 
the activities transacted by the teacher and the class during the fifteen minute 
routine of activities and, in so doing, reinforced the concepts being developed on 
the day. 
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The scope and sequence of activities that the lesson notes and workbook 
activities were based on represent a developmental trajectory.  This trajectory, as 
well as the daily lesson notes and workbook materials, were developed by the 
Ministry of Education with the technical support of the author made possible 
through USAID/Jordan. The process involved a team of individuals representing 
the Ministry’s curriculum development unit, the teacher supervisors and teachers 
from each of the grades being targeted by the programme. The development 
process for the materials for the first semester took a little over six months. 

The research questions alongside the intervention sought to establish: 

 If daily practice of foundational skills through deliberate, structured, and 
developmentally appropriate activities support children to do mathematics with 
understanding as measured by EGMA?  

 What conditions support teachers in implement the daily routine and the associated 
activities with fidelity and confidence? 

Schools for the intervention pilot were selected from the 2012 National Survey 
sample such that there were at least two, and preferably four or more, schools in 
a school district (field directorate) with at least one supervisor available to 
provide training and support to two schools. A total of 20 MoE supervisors were 
assigned to the intervention. They were responsible for training more than 300 
teachers in the 43 schools across 12 education districts. Training was conducted 
in two stages: (1) training of trainers and (2) training of teachers. The training of 
trainers (MoE supervisors) was provided by the author, while the training of 
teachers was provided by the MoE supervisors. The intervention was 
implemented during the 2013/2014 school year by more than 400 teachers in 
347 classrooms across 43 schools, reaching approximately 12,000 students.  

Results 

To measure the impact of the intervention pilot, an endline study was conducted 
in May 2014 once again using the EGMA instrument.  

Brombacher et al. (2015) found that overall, the EGMA results indicate that the 
intervention was successful in raising mathematics achievement in treatment 
schools. To gain an overall impression, composite mathematics classifications 
were developed based on the more conceptual and cognitively demanding 
subtasks of the EGMA. Students were classified as belonging to one of three 
categories: Non-mathematician or Early mathematician (cat 1) (either missing 
number and/or addition and subtraction L2 below 30%); Emergent 
mathematician (cat 2) (missing number and addition and subtraction L2 both 
above 30%); and Mathematician (cat 3) (missing number and addition and 
subtraction L2 both above 80%). 

Fig. 1 displays the changes in the proportion of students in each of the categories 
(described in the previous paragraph) in the treatment and control schools from 
2012 to 2014 both for treatment and for control schools. This figure provides 
direct evidence of the overall effectiveness of the intervention. While the 
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percentage of non-mathematicians or early mathematicians remains relatively 
consistent across years for the control group, there are large reductions in the 
proportion non-mathematicians or early mathematicians in treatment schools 
(from 30% to 22%). Additionally, while the proportion of mathematicians 
remains constant for control schools, the increase of the proportion in the 
treatment schools (14% to 24%) is statistically significant. In other words, the 
intervention did exactly what it was intended to do. While there were virtually 
no gains in control schools from 2012 to 2014, there were significant gains 
across treatment schools in terms of reducing the proportion of the lowest 
performers and increasing the proportion of the highest performers. These 
results are extremely promising, particularly because the intervention was 
implemented for only one school year. 

 
Fig. 1: Overall treatment effect for Mathematics categories 

These results suggest that it is possible to increase the number of 
mathematicians in early grade classrooms by providing deliberate, structured, 
and developmentally appropriate practice in foundational skills for reading and 
mathematics.  

This intervention set out to research whether daily practice of foundational skills 
for could increase the number of students doing mathematics with 
understanding. From the wide range of evidence collected, including in 
particular the observations of the teacher coaches, it would appear as if, in 
general, the intervention was implemented with greater fidelity than not and that 
it had the desired impact. The implication may well be that there is much to be 
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gained by an intervention that systematically addresses only those key elements 
of a teaching and learning program that have been shown to be deficient, instead 
of replacing the entire program. 

A hypothesis of this intervention was that if teachers were introduced to more 
effective pedagogies through immersion, that is, by asking teachers to 
implement a limited number of carefully structured routines on a regular (daily) 
basis, teachers would recognise the benefits of the approach and more generally 
assimilate some of that approach into their teaching. At this stage of the 
intervention, it is not possible to know to what extent teachers have actually 
incorporated the intervention practices more generally into their teaching 
(although there are some anecdotal claims that they have). Nevertheless, it is 
clear from teachers’ responses that they claim to have seen benefits from the 
intervention. Teachers claim that students enjoyed the intervention activities and 
that students benefited from the intervention because they appeared to perform 
mathematics as a result of the intervention activities. Teachers also claim that 
the intervention exposed them to new and more effective teaching approaches. 

Discussion and conclusion 

Encouraged by the positive results, it is nonetheless critical to examine the 
different components of the intervention to see what lessons can be learned—
lessons that will inform future interventions and improve their chances of 
success.  

Classroom Support Teachers in the intervention schools received both direct 
training and school-based support. It is clear from the data that school based 
support visits contributed to the impact of the intervention In particular each 
additional school-based support visit is associated with an increase of 0.8% in 
the proportion of mathematicians in the class. School- and classroom-based 
support to teachers who implemented this intervention enhanced the success. 
The more frequent the support, the more effective the implementation was.  

Teacher Training Another variable that had a significant impact on the success 
of the implementation was the proportion of the training that the teachers had 
attended. Teachers who attended more of the training had a greater proportion of 
mathematicians in their classes than teachers who attended less training.  

Fidelity of Implementation The feedback provided by supervisors about their 
classroom visits gives a range of different ways of evaluating the fidelity with 
which teachers implemented the intervention. In particular, supervisors reported 
about (1) the particular lesson (in the lesson notes) that the teacher was 
implementing; (2) the extent to which teachers were following the lesson notes 
as they should have been; (3) whether or not the teacher was actively monitoring 
student understanding during the lesson; (4) the type of student participation in 
the lesson; and (5) the extent to which students had worked in their workbooks 
and teachers had marked the workbooks. In the analysis of the data, all of these 
variables were positively associated with the intervention’s impact. Being on the 
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expected page of the lesson notes was associated with a 15% increase in the 
percentage of mathematicians in a classroom. 70% of the mathematics 
classrooms in which teachers followed the teacher guide and lesson notes were 
among the top performing classrooms. Classrooms, where teachers encouraged 
student participation, were more likely to be among the top performing 
classrooms for classrooms where students were not actively encouraged to 
participate in the lessons, not a single classroom was in the top performing 
districts.  

The results of the National Intervention Pilot for Early Grade and Mathematics 
suggest that the results of the 2012 National Survey say more about the way that 
children are learning than about their ability to learn or not.  The intervention 
results provide encouragement that through deliberately structured and focused 
attention to foundational skills in mathematics, children’s performance can be 
dramatically improved. The Intervention Pilot also provides a wealth of 
information on the role of key variables and factors that need to be considered as 
the activities of the intervention are both incorporated into national policies and 
taken to scale. 
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CHARACTERISTICS OF MULTIPLICATION TEACHING OF WHOLE 
NUMBERS IN CHINA: THE APPLICATION OF NINE TIMES TABLE 

Yiming Cao(1), Xinlian Li(1), Haode Zuo(2) 

(1)School of Mathematical Science, Beijing Normal University, China 
(2)Faculty of Education, University of Hong Kong, Hong Kong SAR 

Abstract 

A tradition of Chinese mathematics teaching is stressing on the basic knowledge and 
basic skills.  Most of the Chinese students are able to perform multiplication accurately 
in a short time. One of the key reasons is that “nine times table” is applied in 
multiplication successfully. In order to investigate how “nine times table” is taught in 
China, the primary mathematics textbook and mathematics teachers' manual published 
by People’s Education Press, and a typical classroom instruction were analysed in this 
study. There are three main findings: Firstly, “nine times table” is divided into several 
teaching plots. Teachers taught it individually at first, than taught all of them together. 
Secondly, there is a high level of teaching objects of “nine times table”. Students were 
asked to recite it proficiently. Thirdly, teachers usually take advantage of rhythmical 
image of the Table and help the students recite the Table based on having a good 
understanding of it in variety of ways. 

Key words: characteristics, mathematics curriculum China, multiplication teaching, 
nine times table  

Introduction  

Chinese mathematics teaching stresses the learning of basic knowledge and 
basic skills. Two Basic Teaching is considered to be one of  the properties of 
Chinese mathematics education (Fan, 2004). Chinese students have high-level 
calculation ability and they are able to calculate rapidly and accurately (Cai, 
1998; Silver and Kenney, 2000). They perform very well on tasks requiring 
computation and applications of formulas (Cai, 2002). There is a crucial factor 
contributing to this phenomenon: “nine times table” which is central to 
multiplication teaching.  In the early 1980's, there was an increasing public voice 
that the "times table" must continue to hold its place in a basic curriculum 
(Trivett, 1980). Kay (2014) pointed out that there is simply no way that a typical 
student can solve multiplication problems quickly without memorising the 
multiplication table. Schon, Ebner and Kothmeier (2012) mentioned that 
learning the multiplication table is a central subject of mathematics in primary 
school. To examine how “nine times table” is taught and whether teachers are 
able to help students to recite it thoroughly, the mathematics curriculum, 
mathematics textbooks and teachers’ manuals for primary school are analysed in 
this study to answer these questions. 

“Nine Times Table”  

“Nine times table” begins with one one beget one and end with nine nines beget 
eighty-one, totally 45 sentences. It benefits from words of figures in Chinese 
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Name Content Quantity 

No.1 Pithy Formulas of Five 
 

one  five beget five 
two fives beget ten 
three fives beget fifty 
four fives beget twenty 
five fives beget twenty-five; 

5 

No.2 Pithy Formulas of  
Two, Three and Four   

one two beget two 
two twos beget four; 
one three beget three 
two threes beget six 
three threes beget nine; 
one four beget four 
two fours beget eight 
three fours beget twelve 
four fours beget sixteen; 

9 

No.3 Pithy Formulas of Six 

one times six beget six 
two sixes beget twelve 
three sixes beget eighteen 
four sixes beget twenty-four 
five sixes beget thirty 
six sixes beget thirty-six； 

6 

No.4  Pithy Formulas of  
Seven 

one sevens beget seven 
two sevens beget fourteen 
three sevens beget twenty-one 
four sevens beget twenty-eighty 
five sevens beget thirty-five 
six sevens beget forty-two 
seven sevens beget  forty-nine； 

7 

No.5 Pithy Formulas of  
Eight  
 

one  eight beget eight 
two eights beget sixteen 
three eights beget twenty-four 
four eights beget thirty-two 
five eights beget forty 
six eights beget forty-eighty 
seven eights beget fifty-six 
eight eights beget sixty-four； 

8 

No.6  Pithy Formulas of  
Nine  
 

one times nine beget nine 
two nines beget eighteen 
three t nines beget twenty-seven 
four nines beget thirty-six 
five nines beget forty-four 
six nines beget fifty-four 
seven nines beget sixty-three 
eighty nines beget seventy-two 
nine nines beget eighty-one; 

9 

Tab. 2: The content and sequence of each teaching plots of the “nine times table” 
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The curriculum expects from experience of taking five as counting unit, that 
students can count five, ten, fifty,...easily, so teaching pithy formulas of five 
primarily is more suitable for student's life experience and prior knowledge base 
and is able to lay a solid foundation for further learning of the sentences of the 
rest of the numbers. 

The number of sentences increase gradually, when the students have mastered 
pithy formulas of five, they will further study pithy formulas of two, pithy 
formulas of three, pithy formulas of four and pithy formulas of six. After a unit 
of learning, students will master the six times table which contains pithy 
formulas from one to six. At this time, teachers normally require students to 
summarise what has learned so far with the goal to form a six times table 
including numbers from one to six. Until students have finished learning pithy 
formulas of seven, pithy formulas of eight and pithy formulas of nine, teachers 
will ask students to summarise what they have learned to master the whole “nine 
times table”. Then, the learning of the “nine times table” is completed. In other 
words, at this time students will be required to master the whole table other than 
pithy formulas of a single number. Through these strategies, students finally 
master the “nine times table” which further provides students the foundation to 
learn multiplication and division of the whole numbers as well as decimal in 
later grades. 

The Arrangement of Teaching Time 

Generally speaking, the “nine times table” is taught in the first term of grade two 
in primary school. Usually, the textbook spares two units to write the content of 
the “nine times table”. Before the learning of the multiplication, students learn 
the addition and subtraction of whole numbers less than 100.  Taking the 
textbook published by People's Education Press as an example, Tab. 3 
summarises how the “nine times table” is organised and how much time is 
devoted for its teaching.   

As shown in Tab. 3, students start to learn multiplication at an earlier grade and 
start to learn the “nine times table” immediately after they have some 
preliminary understanding of multiplication and the basic cognition of the 
meaning of multiplication. The learning of the “nine times table” lays the 
foundation of learning multiplication knowledge and obtaining multiplicative 
computation ability. Not only is the “nine times table” divided to two units to 
study, but also the two concerning units was separated by the content of graphics 
and geometry which is called observing objects to ease the students' 
memorisation pressure. 

In general, the total number of teaching hours in a semester are approximately 
60 hours, of which 20 hours, namely 33.3% of the total number are devoted for 
the learning of the “nine times table”. The aim of the last part of each “nine 
times table” learning unit is not only to learn new content but also to summarise 
all the contents in the unit, so it takes more time. The rest of the parts of those 
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units take two or three teaching hours. The numbers of class hours are almost 
positively correlated with the amount and difficulty of the content. The teaching 
hours in Tab. 3 are only suggested by the textbooks writers and teachers may 
alter them according to the real situation of teaching progress and students’ 
academic background and understanding. 

Grade Unit Content Recommended Lessons 

The First  
Semester  

of    
Grade  
Two  

The Fourth  
Unit 

Multiplication  
Table（1） 

A Brief Introduction of  
Multiplication 

3  

Pithy Formulas of Five 1 

Pithy Formulas of Two 
Pithy Formulas of Three 
Pithy Formulas of Four 

3  

Pithy Formulas of Six 4  

Reflection and Review 1  

The Sixth  
Unit 

Multiplication  
Table（2） 

Pithy Formulas of Seven 2  

Pithy Formulas of  Eight 3  

Pithy Formulas of Nine 4  

Reflection and Review 2  

Tab. 3:  Content organisation and arrangement of teaching times 
                               Note: Each lesson has 40 minutes. 

Teaching Objects 

As early as 1902, China had formulated a national mathematics curriculum 
standard which was used as the guideline for textbook compiling, teaching, and 
examination. The current practiced curriculum standard known as the 
Mathematics Curriculum Standard for Compulsory Education (2011 Edition) 
was formulated by the Ministry of Education and published in 2011. In this 
standard, for the “nine times table”, it is described that students should be able to 
do oral calculation of multiplication fluently. This is a high level requirement, 
on one hand, taking the learning of the “nine times table” as the foundation and 
precondition of further learning of whole numbers multiplication and division, 
and even real numbers multiplication and division. On the other hand, students 
are required to achieve the level of fluency in oral calculation. That is to say, 
students need to compute intuitively without any assist, such as pen and paper, 
or calculator. They are capable of calculating results correctly after a short while 
of consideration, and they even reached the level of automatic extraction, that is 
to say, getting the answer immediately after reading the arithmetical calculating. 

A Typical Classroom Instruction  

Although teachers' classroom teaching methods are quite different, the basic 
steps of classroom teaching of the “nine times table” are quite similar, all of 
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which include the process of the sentences formation, understanding the origin 
and significance of the sentences, memorising the sentences, and applying the 
sentences to calculate. The process of the classroom teaching of “nine times 
table” will be shown with Pithy Formulas of Seven (the first class) as an 
example below. The lesson was taught by a teacher from Chongqing and the 
mathematics textbook used by the teacher is published by People’s Education 
Press. There were five teaching steps in this lesson including reviewing pithy 
formulas of six, exploring, cognising, memorising, applying the pithy formulas 
of seven. The main activities and its teaching time used are summarised in 
Tab. 4.  

In every teaching step, the teacher played an important role in activating 
students’ enthusiasm, and arousing students’ positivity, and he arranged many 
interesting activities. Taking the step of memorising the pithy formulas of seven 
as an example, in order to help students learn the sentences through diversified 
activities, and strengthen the memorising of the sentences, the following 
activities were designed by the teacher: reading the sentences, sampling some 
students reciting, reciting the sentences between desk mates, and guessing the 
sentences in disrupted order. At the stage of memorising the pithy formulas of 
seven, the following assignments were arranged: practicing an exercise in the 
textbook, answering questions from a popular cartoon character named 
Yangyang Xi. These activities were lively and vivid, which could deepen 
students’ understanding of the pithy formulas of seven, and also could make the 
students feel the accuracy and validity of the sentences in solving problems. 

In the entire teaching activities, teachers paid attention to the understanding, 
exploration and comprehension of the sentences, and emphasised particularly on 
the firmly memorising and fluently using the sentences. At the end of this class, 
teachers demanded the students to recite the sentences to their families, which 
could make students review the sentences in time and memorise the sentences 
deeply. As for the time spent on each step, the focus of this lesson were 
exploring, understanding, and then preliminarily memorising, simply applying 
the pithy formulas of seven, which are the core of “nine times table” teaching 
stated above. 

This lesson is a typical example of the “nine times table” teaching, and the 
teaching process fully reflects the characteristics of the “nine times table” 
teaching. The teacher tried to make his students actively involved through 
designing diversified teaching activities, improve the learning requirement 
gradually to a high level of difficulty. In addition, he created a positive 
atmosphere which made students memorise the sentences gradually, pay 
attention to the comprehensively memorising. He also made his students 
participant in the process of compiling the sentences and made his students 
realise the advantages of solving the calculation problem with the sentences, and 
avoided students’ rote memorisation. 
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Teaching Steps Time 
Spent

（Min） 

Percent
age Content Main Activities 

Reviewing the 
Pithy Formulas 
of Six 

Practicing some exercises about Pithy 
Formulas of Six 

2 5% 

Exploring the 
Pithy Formulas 
of Seven 

Playing a seven-piece puzzle and sharing 
with their patterns； 
Filling the table with the help of seven- 
piece puzzle; 
Writing multiplication equations of 
number seven according to the filled table; 
Compiling Pithy Formulas of Seven with  
the help of  the written multiplication  
equations; 

17 42.5% 

Understanding 
the Pithy 
Formulas of 
Seven 

Exploring the rules of Pithy Formulas of   
Seven; 
Understanding Pithy Formulas of Seven  
from  different angles; 

7 17.5% 

Memorising the 
Pithy Formulas 
of Seven 

Reading the sentences ; 
Reciting the sentences through various 
activities ; 

8 20% 

Applying  the 
Pithy Formulas 
of Seven 

Using the sentences to calculate; 
Using the sentences to solve 
problems in real life; 

6 15% 

Tab. 4:  Time spent on each teaching steps in Pithy Formulas of Seven (the first class) 

Conclusion 

Chinese mathematics teaching emphasises the base and its training is the 
essence of Chinese mathematics education. After a long time of development, 
many educational traditions with Chinese characteristics have formed. The 
teaching of “nine times table” is one of the outstanding cases. Learning of the 
“nine times table” helps to improve students’ computational capability, which 
further lays a solid foundation for their future study and application in daily life. 

The “nine times table” is not only the basis for students’ future learning, such as 
the learning of integer multiplication, but also the foundation of learning division. 

The learning of “nine times table” not only happens in mathematics curriculum, 
but also happens in the social and cultural life frequently. For example, there is a 
famous Chinese saying, regardless whether three sevens beget twenty-one, to 
express the meaning of acting decisively and using having the “nine times table” 
in mind to describe a person who is astute. In the literary works of Journey to 
the West, there has the depicts like Tang Priest and his apprentices experienced 
nine nines beget eighty-one sufferings during the journey to the west and so on. 
What’s more, some parents require their children to memorise the “nine times 
table” as a part of family enlightenment education. Therefore, some students 
already know the “nine times table” before their formal education. The “nine 
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times table” has been a part of Chinese mathematics culture, which is integrated 
into Chinese social life. 
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TEACHERS’ RESPONSES TO INCORRECT ANSWERS ON MISSING 
NUMBER PROBLEMS IN SOUTH AFRICA 

Anna-Lena Ekdahl, Ulla Runesson, University of Jönköping, Sweden 

Abstract 

This paper examines differences in how three Grade 3 South African teachers 
responded to students’ incorrect answers in whole class teaching of the part-whole 
relationship in additive missing number problems. Nine video recorded lessons, taught 
by three teachers, were analysed, with attention paid to teaching episodes containing 
incorrect students’ answers. The variation theoretical analyses indicated differences in 
the ways teachers responded to incorrect answers. We argue that different ways of 
responding to incorrect answers may provide different learning possibilities.  

Key words: addition and subtraction, incorrect answers, part-whole relationship, 
primary mathematics, South Africa, variation theory 

Background and Theoretical Framing of the Study  

Classroom interaction has been the subject of study in several research projects. 
The common initiation-response-evaluation (IRE) interactions (Mehan, 1979) 
have been studied to analyse how teachers react to and evaluate students’ 
responses. Different, and more productive ways of reacting to students’ incorrect 
answers have also been demonstrated, involving evaluation of  incorrect answers 
by opening up for class discussion, or explicitly pointing out the incorrect 
answer, or remaining neutral and asking follow up questions (Chin, 2006). In the 
current study, our interest in teachers’ responses to incorrect answers was driven 
by wanting to understand the role of different responses in students’ learning 
possibilities. Where interaction patterns delimit students’ contribution to 
correct/incorrect answers only, the cognitive demand level tends to be low 
(Lampert, 1990). Furthermore, if interaction patterns do not allow for students’ 
arguing and reflecting upon incorrect answers, students have less opportunity to 
think reasonably. While there are studies in South Africa that have looked at 
teachers’ handling of errors (e.g. Brodie, 2010), the empirical sites for these 
studies have usually been within secondary or tertiary mathematics. At the same 
time though, several recent studies have noted problems within Whole Number 
Arithmetic (WNA) teaching in South Africa - with some notable absences in 
offers of criteria for deciding on correctness of learner offers (Hoadley, 2006), 
and others pointing to lack of support for progression in teachers’ handling of 
learner offers (Venkat, 2013). Taken together, these studies point to the 
usefulness of attention to how teachers work with learner errors in the context of 
WNA in South Africa. To examine the teachers’ responses to incorrect answers 
and relate that to learning possibilities in this study, our analysis of the data was 
framed within a variation theoretical perspective (Marton and Booth, 1997). One 
fundamental assumption within this framework is that the experience of 
difference is a necessary condition of learning to discern. We do not learn by 
experiencing similarities but by being aware of how instances differ. So, for 
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example, when it comes to generalisation, the experience of differences must 
come before the experience of sameness (Marton, 2015). Thus, possibilities to 
experience contrasts and differences are important for learning. For instance, the 
effectiveness of instruction presenting examples simultaneously and contrasting 
them was found in a comparative study of teaching and learning the equal sign 
(Hattikudur and Alibali, 2010).  

While this points to the need to plan in advance for learners’ experience of 
contrasts, incorrect answers in the lesson provide teachers with ‘on-the spot’- 
opportunities to contrast incorrect answers or answers that are not the expected, 
with alternative suggested answers. So, incorrect answers can be seen as a 
source that teachers can use to make differences discernible and thus, widening 
the space of learning. We assume that it is more likely that incorrect answers can 
become a contrast and hence, provide greater potential for learning, if the 
teacher responds to offers as ‘possible’ answers and juxtaposes and explicitly 
contrasts them. The aim of this paper is to describe the differences in teachers’ 
ways of responding to students’ incorrect answers and to discuss what that may 
imply for students’ learning of part-whole-relationship in additive missing 
number problems in the context of South Africa.  

Design and Data Analysis 

This paper draws on data from a small scale intervention project carried out in a 
government suburban primary school in Johannesburg, with Grade 3 class sizes 
of 35+ and English as the language of teaching. Three Grade 3 teachers worked 
cooperatively with a research team in a professional development project similar 
to lesson study (Yoshida, 1999), i.e. planning, enacting, observing and 
evaluating lessons. The study lasted one year and included three cycles of three 
lessons, each over a three week period. For the purposes of this paper we 
sampled nine video recorded lessons (three from each teacher) out of a total 
number of 27 lessons. Since we were also interested in seeing shift over time, 
lessons were sampled from the beginning, the middle and the end of the project. 
The dataset included one lesson in February 2013, one lesson in October 2013 
and another in February 2014. The lessons focused on a more ‘structural’ 
approach to additive relations teaching that contrasted with the more operational 
approach prevalent in South Africa (see Venkat, Ekdahl and Runesson, 2014 for 
more detailed discussion). The aim was to support learners in solving problems 
involving missing addends/ subtrahends/start numbers (e. g.		8 ⎕ ൌ 11, 11 െ
⎕ ൌ 3, 8 ൌ ⎕െ 3 ). In these nine lessons teachers mainly worked with 
problems in number sentence format but also linked to a triad diagram - a 
representation which pushes towards a more structural approach to additive 
relations. In the jointly planned lessons different activities on this theme were 
handled, some designed by the research team, some in collaboration with the 
teachers. The lessons focused on part-whole relationship tasks, for example, 
identification of parts and whole and evaluating the missing number in given 
problems transformation of missing number problems in number sentence form 
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into a triad diagram. Carefully contrasted additive relations and operations 
problems like: 11 െ⎕ ൌ 3		ܽ݊݀		3 ൌ 11 െ⎕ were used within the lessons.  

Lessons focused on these themes, including students’ incorrect answers, were 
selected for analysis. Only teacher’s reactions to incorrect answers in whole 
class teaching were analysed. To identify the different kinds of reactions to 
incorrect answers we looked at the task, the teachers’ questions, the students’ 
answers in the episode (could include both incorrect and correct answers) and 
the teacher’s responses. In our analysis we used principles from variation theory 
(Marton and Booth, 1997) as analytical tools to examine learning possibilities. 
Variation theory states that learner’s attention must be drawn to that which is 
intended to be learned by foregrounding this and opening it up as a dimension of 
variation, or by making a contrast. So, depending on what is compared to what, 
what is opened up as alternatives/variation, what is foregrounded and varied 
against a stable background, different things are made possible to learn. The 
analysis consisted of steps to identify what was foregrounded and backgrounded 
in teachers’ reactions, the incorrect or the correct answer, or both of them. 
Additionally, how different answers were simultaneously possible for the 
learners to discern and how they were juxtaposed and contrasted by the teachers. 
Finally we analysed what was made possible to learn about part-whole 
relationships and missing number problems, depending on the different ways of 
responding to incorrect answers and the variation / contrast that was made 
possible to discern. 

Results 

From the analysis three different ways in which teachers responded to students’ 
incorrect answers emerged. It is suggested that these offer different possibilities 
for learning about part-whole relationships used in missing number problems.  

1. Producing the correct answer 

The most frequent reaction from the teachers was to foreground the correct 
answer and background the incorrect. This could be seen when teachers reacted 
by ignoring the incorrect response or blamed students for not listening or 
thinking, e.g. ‘Think before your raise up your hand!’ (Teacher B, February, 
2014) or alternatively: ‘Remember we are helping each other so we can come up 
with a correct answer’ (Teacher A, Oct, 2013). Sometimes a student’s correct 
answer was praised orally by the teacher and the class: ‘Well done, well done!’ 
or with applause. Generally, students produced one or two incorrect answers 
before the correct answer was offered by another student. While the phrase ‘Is 
she/ he correct?’ – was often utilized; only ‘yes/no’ answers were taken in 
response. No contrast between the examples was made by the teachers and no 
explanation for the correct and expected answer was given or encouraged. 
Excerpt 1 illustrates an episode where the teacher reinforces the correct answer. 
The purpose was to find the missing start number in a missing number problem.  
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1 Teacher: What is the missing number? (written on the board) On the board 
2 Student writes 12 as the missing number.  ⎕െ 2 ൌ 7 
3 Class: Oh! (reactions) 12 െ 2 ൌ 7 
4 Teacher: So, she is correct?  
5 Class: No!  
6 Teacher: (rubs out 12) Someone else? ⎕െ 2 ൌ 7 
7  Another student goes to the board and writes 9. 9 െ 2 ൌ 7 
8 Teacher: Did he get it correct?  
9 Class: Yes!  
10 Teacher: (Points to the number sentence) 9 take away 2 is equal to 7. 

Excerpt 1: Teacher A, February 2013 

The excerpt shows that the teacher backgrounded the incorrect answer by 
initially asking the class to evaluate the first student’s incorrect answer without 
asking for the reason why it was incorrect (line 4-5). By rubbing out the 
incorrect answer without explanations, the teacher closed the possibility for the 
students to understand why the answer was incorrect (line 6). The reaction to the 
correct answer produced by the second student (line 7) shows how the teacher 
just focused on the correct answer (9) and the incorrect (12) was backgrounded, 
therefore no contrast between these values was made. Since only a variation of 
correct and incorrect numbers were present, it was made possible to discern that 
9 is the missing number in that specific number sentence (line 10) but not why 9 
is the correct missing number. Furthermore, since no variation of rationales 
underlying the suggested answers was espoused this was not possible to learn. 
The only thing made possible to learn in these episodes was that there are 
correct or incorrect answers to missing number problems.  

2. Focusing on either the incorrect or the correct answer 

A different way to react to students’ incorrect answers was to incorporate some 
focus on either the incorrect or the correct answer. Teachers responded to 
students’ answers by using questions and explanations, providing openings for 
students to understand why one specific answer was incorrect/correct. Most 
frequently in this category, the correct answer was foregrounded with some 
rationale and the incorrect answer was left in the background. Teachers did not 
respond to the answers as two possible answers. Infrequently, an incorrect 
answer was foregrounded, with teachers following up to find out why a learner 
had given a wrong answer. Teacher reactions opened up reasoning about the 
part-whole relationship, operations and relations between numbers, related to the 
incorrect answer. Here the correct answer was backgrounded, not compared to 
the incorrect. The teacher seemingly took for granted that the students 
understood that the other produced answer was correct. Within these episodes 
multiple answers or values were not juxtaposed or explicitly contrasted and thus, 
no reasoning about differences between produced answers was possible. In 
episodes foregrounding incorrect or correct answers, in addition to making it 
possible to learn that there were correct and incorrect answers to missing part/ 
whole number problems, it was also possible to learn why an answer was 
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In this episode the teacher opened up for contrasting correct and incorrect 
answers, when asking the class if the correct given answer was wrong (line 3). 
Noticing the students’ hesitation (line 4), the teacher encouraged another answer 
(line 5) and thereby opened up space for a variation of answers. Keeping both 
options visible and juxtaposed, both incorrect and correct answers were 
foregrounded, contrasted and compared. She then started a discussion based on 
the two simultaneously visible correct and incorrect triad diagrams (line 9) and 
invited the students to reason and argue for their answers (lines 9, 15, 21 and 23) 
and emphasised and compared different answers and utterances. Thereafter she  
revoiced offered explanations referring to relations between numbers and 
connections within and between  representations (lines 17, 19, 21 and 25) – with 
explicit contrast and comparison in line19. Rationales for students’ answers, 
made it more explicitly possible to discern part-whole relationship ideas.  

In Excerpt 3 the response to incorrect answers and the task looked a bit 
different. The students were supposed to look for similarities and differences 
between two presented missing numbers problems written on a piece of paper.  

1 Teacher: Let’s talk about the problems. There are two number 
sentences. 

On the board 

 

11 െ 6 ൌ ⎕ 

⎕ ൌ 11 െ 6 

2 Students: A whole is missing. 
3 Teacher 

: 
A whole is missing? Are we missing a whole? 

4 Class: No / Part  
5 Teacher:  What are we missing?  
6 Class: A part  
7 Teacher 

: 
A part, okay we find out! Here on these two problems, what is the 
action? 

8 Student: Take away  
9 Teacher:  We are taking away? What and what or from what? The operation is?  
10 Class: 11 minus 6  
11 Teacher: And the operation here is what? (inaudible) What is happening, the 

action? 
12 Student: 6 take away 11  
13 Teacher: Where is that? You are going to take 6 from 11, here (points) is that 

action. The action is 11 minus 6, understand? And here? (underlines the 
operation) No difference. So the answer you will get there is also the 
answer here! (Marks both number sentences). What is that answer? 

14 Student: 5  11 െ 6 ൌ 5 
15 Teacher:  (writes 5) What is the whole? 5 ൌ 11 െ 6
16 Class: 11  
17 Teacher: Yes 11. A bigger number, take away a part and left with another part.  

Here what is the answer? Look at the operation first. 

Excerpt 3: Teacher C, February 2014 

When the students presented two different answers (line 2 and 4), the incorrect 
and correct answers were foregrounded simultaneously. The teacher got an 
opportunity to make un-planned differences discernible and started with a joint 
discussion (line 7) about the mathematical idea of operation as an action. In the 
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reasoning offered, the answer itself (missing part or missing whole) is not in 
focus. Instead the differences and similarity between the two number sentences 
were made the focus (line 13). In comparing the number sentences the teacher 
underlined the operations drawing attention to the similarities. When the class 
had produced the missing number (line 14), the teacher returned to the question 
about the missing whole or missing part, connecting to the operation (line 15 
and 17). Her response made it possible to learn what answer is incorrect and 
correct in terms of the relation between the three numbers, the meaning of the 
operation in the missing problem and identification of the whole and the parts.  

These two teaching episodes involved contrast and provided simultaneity of 
discernment of incorrect and correct answers. In Excerpt 2 the teacher gave the 
learners possibility to discern and contrast both incorrect and correct answers, by 
leaving both on the board. In the other excerpt (Excerpt 3) while simultaneity 
was not as obvious in written form, in teacher’s explanations, reasoning and 
pointing out, both incorrect and correct answers were compared and contrasted. 
In this way of responding to students’ incorrect answers it is possible for 
learners to discriminate between correct and incorrect answers and also discern 
why one answer is incorrect and another correct. In the instances seen here, 
juxtaposing, and comparing and contrasting offers provided possibilities to learn 
about structural relations between numbers in missing number problems. 

Overview comments 

Based on the data gathered from the nine lessons on the different ways in which 
the teachers responded to the incorrect answers, the following categories were 
seen. Tab.1 includes the three lessons from Teacher A, B and C in February 
2013, October 2013 and February 2014, the instances of each way of respond to 
incorrect answers (I, II, III) from the total instances of incorrect answers in each 
lesson (in brackets). 

 February 2013 
(n=14) 

October 2013  
(n=19) 

February 2014 
(n=16) 

 I II III I II III I II III 

Teacher A 4(5) 1(5) 0(5) 5(8) 3(8)  0(8) 2(2) 0(2)  0(2)  

Teacher B 1(2) 1(2) 0(2) 2(7) 4(7) 1(7) 5(8) 2(8) 1(8) 

Teacher C 3(7) 3(7) 1(7) 1(4) 1(4) 2(4) 1(6) 2(6) 3(6) 

Total 8(14) 5(14) 1(14) 8(19) 8(19) 3(19) 8(16) 4(16) 4(16)

Tab. 1: Summary of the instances of different ways of responding in the nine 
lessons  

From this overview it would appear that there are some small shifts over time in 
teachers’ way of responding to missing number problems, with increased 
instances of the more productive Type II and Type III responses. Further 
analyses of this data and the other 18 lessons in the three cycles are ongoing.  
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Conclusions  

This study contributes to a discussion about the different ways in which teachers 
respond to students’ incorrect answers in additive missing number problems and 
the implications these different ways may have on students’ learning. Most 
frequently, teachers foregrounded the correct answer and left the incorrect 
answer unnoticed; a similar pattern seen in other studies (e.g. Mehan, 1979). We 
noticed that when the production of a correct answer was the focus, the students 
were just able to see if the answer was correct or incorrect. This might affect 
negatively on students’ learning since they could not see the rationales behind 
the answers. However, even if a variation of incorrect and correct answers were 
present in a majority of these episodes, they were not contrasted by the teacher. 
Explicitly contrasting different answers, which is seen as a necessary condition 
for learning from a variation theory perspective (Marton, 2015), was seen in a 
few of the episodes only. However episodes, where either the incorrect or the 
correct answer was focused, must be considered as better options for learning 
than just affirming or negating an answer. Still, from a variation theory 
perspective, this gives limited possibility to discern the logic underlying the 
different answers. One can argue that the different ways of contrasting incorrect 
and correct answers effectively can be derived from the teachers' own 
mathematical knowledge base. When the teacher is more confident with the 
content, she might be more willing to handle learners’ different offers. However 
in this study we do not specifically study how teachers’ understanding of the 
topic impacts on the way of responding to incorrect answers. Finally, the results 
of this study raise questions about how teachers’ responses to incorrect answers 
might affect students’ learning of Whole Number Arithmetic (WNA) in South 
Africa. If teachers are unwilling to direct the students’ attention to incorrect 
answers, and therefore background them, it might be a challenge to change 
teachers’ attitudes towards how to respond to incorrect answers and help them to 
see these as a source for students’ learning.  
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INSIGHTS AND IMPLICATIONS ABOUT THE WHOLE NUMBER 
KNOWLEDGE OF GRADE 1 TO GRADE 4 CHILDREN 

Ann Gervasoni, Linda Parish, Monash University, Australia 

Abstract 

This paper provides a snapshot of the whole number knowledge of nearly 2000 
Australian primary school children gained through a one-to-one assessment interview. 
The interview corresponds to a growth point framework that describes learning 
trajectories in counting, place value, addition and subtraction strategies, and 
multiplication and division strategies. The findings highlight the broad distribution of 
growth points in each domain for each grade level, and the wide distance between the 
lowest and highest growth points in each grade and domain. This demonstrates the 
complexity of classroom teaching and highlights the challenge of meeting each 
student’s learning needs. Three issues related to children’s Whole Number Arithmetic 
(WNA) emerged from the data. These suggest important themes for teacher 
professional learning and for refining mathematics curriculum and include: 
(1) interpreting 2-digit and 3-digit numbers; (2) using reasoning strategies as opposed 
to counting strategies in addition and subtraction; and (3) strategies for solving 
partially modelled and abstract problems in multiplication and division. 

Key Words: arithmetic strategies, assessment interviews, teaching strategies 

Introduction 

Education outcomes for Australian children living in low Socio-Economic 
Status (SES) communities and Aboriginal and Torres Strait Islander 
communities are lower than for children not living in these communities 
(Commonwealth of Australia, 2008). An initiative launched by the previous 
Australian Government to address this issue in mathematics was a series of 
projects focused on how to close the numeracy gap for Australian children. This 
paper draws on the findings of one project, Bridging the Numeracy Gap in low 
SES and Aboriginal Communities (Gervasoni et al., 2011) that involved 44 
schools in south-eastern Australia and Western Australia. Key approaches for 
improving mathematics learning in this study were: one-to-one interview-based 
mathematics assessments (Clarke et al., 2002; Gervasoni, Hadden and 
Turkenburg, 2007); using this data to guide instruction and curriculum 
development at individual, class and whole school levels (Gervasoni and 
Sullivan, 2007); and using the Extending Mathematical Understanding Program 
(Gervasoni, 2004) in the second year of school to provide intensive specialised 
instruction for those who were mathematically vulnerable. This paper reports on 
one aspect of this project; using the interview-based assessment and framework 
of growth points to gain insight about primary school children’s whole number 
knowledge. Based on the insights gained, implications for WNA teaching and 
teacher professional learning will be discussed with the view to enhancing 
mathematics learning for all. 
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Using Frameworks and Interviews to Explore Whole Number Knowledge 

Clinical assessment interviews are now widely used by teachers in Australia and 
New Zealand as a means of assessing children’s mathematical knowledge. This 
is due to the experience of three large scale projects that informed assessment 
and curriculum policy formation in Victoria, NSW and New Zealand: Count Me 
In Too (Gould, 2000) in NSW, the Victorian Early Numeracy Research Project 
(Clarke, et al., 2002) and the Numeracy Development Project (Higgins, Parsons, 
and Hyland, 2003) in New Zealand. A common feature of each of these projects 
was the use of a one-to-one assessment interview and an associated research-
based framework to describe progressions in mathematics learning (Bobis et al., 
2005). A feature of assessment interviews is that they enable the teacher to 
observe children as they solve problems to determine the strategies they used 
and any misconceptions (Gervasoni and Sullivan, 2007). They also enable 
teachers to probe children’s mathematical understanding through thoughtful 
questioning (Wright, Martland and Stafford, 2000) and observational listening 
(Mitchell and Horne, 2011). The insights gained through this type of assessment 
inform teachers about the particular instructional needs of each student more 
powerfully than scores from traditional pencil and paper tests, the disadvantages 
of which are well established (e.g., Clements and Ellerton, 1995). Because of the 
deep insight about children’ mathematical knowledge gained through the use of 
one-to-one assessment interviews, the Early Numeracy Interview was chosen as 
the assessment tool for the Bridging the Numeracy Gap (BTNG) project. It was 
also anticipated that the data obtained would provide a rich snapshot of 
children’s whole number knowledge. 

The Early Numeracy Interview and Growth Points 

The BTNG Project involved the assessment of primary school children’s whole 
number knowledge at the beginning of each year using the Early Numeracy 
Interview (Department of Education Employment and Training, 2001) 
developed as part of the Early Numeracy Research Project (ENRP, Clarke et al., 
2002). The data examined in this paper was drawn from this interview and the 
associated framework of growth points, so it is important that both are clearly 
understood. The principles underlying the construction and validation of the 
interview items and growth points, and the comparative achievement of children 
in the project and reference schools have been widely reported and are described 
in full in Clarke et al. (2002). A brief overview of the interview follows. 

The Early Numeracy Interview is a clinical interview with a research-based 
framework of growth points that describe key stages of learning in nine 
mathematics domains, including the four whole number domains that are 
focused on in this paper: Counting, Place value, Addition and Subtraction, and 
Multiplication and Division. To illustrate the nature of the growth points, those 
for Addition and Subtraction follow. These describe strategies children use to 
solve problems. Each growth point represents substantial expansion in 
knowledge along paths to mathematical understanding (Clarke, 2001). 
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1. Counts all to find the total of two collections. 

2. Counts on from one number to find the total of two collections. 

3. Given subtraction situations, chooses appropriately from strategies including 
count back, count-down to and count up from. 

4. Uses basic strategies for solving addition and subtraction problems (doubles, 
commutativity, adding 10, tens facts, other known facts). 

5. Uses derived strategies for solving addition and subtraction problems (near 
doubles, adding 9, build to next ten, fact families, intuitive strategies). 

6. Extending and applying. Given a range of tasks (including multi-digit 
numbers), can use basic, derived and intuitive strategies as appropriate. 

The whole number tasks in the interview take between 15-25 minutes for each 
student and are administered by the classroom teacher. There are about 40 tasks 
in total. Given success with a task, the teacher continues with the next tasks in a 
domain (e.g., Place Value) for as long as the child is successful. The interview 
was refined during the BTNG project and renamed the Mathematics Assessment 
Interview (MAI) in 2010 (Gervasoni et al., 2011). 

Gaining Insight about Children’s Whole Number Knowledge 

The data reported in this paper were collected in 44 Australian school 
communities in the States of Victoria and Western Australia. Participants 
included nearly 2000 Grade 1 to Grade 4 children (6-years to 9 years) who were 
assessed at the beginning of 2011 by their teachers using the MAI. Detailed 
interview record sheets were independently coded by research staff to determine 
the growth points children reached in each domain. This increased the validity 
and reliability of the data. The growth points for each student were entered into 
an SPSS database and analysed to determine the percentage of children on each 
growth point in each whole number domain and grade level.  

Insights about Children’s Whole Number Knowledge 

Examination of the growth point distributions for nearly 2000 children gives a 
rich picture of whole number knowledge across the first five years of school. 
The following section explores the findings for Counting, Place Value, Addition 
and Subtraction Strategies, and Multiplication and Division Strategies.  

Counting Knowledge 

The Counting growth point distributions for Grade 1 to Grade 4 children are 
shown in Fig. 1. The data highlights a wide distribution of growth points in each 
grade. This demonstrates the complexity and challenge of classroom teaching, 
and the need for activities and instruction to be customised for individuals. 
Apparent also is the growth that occurs from one grade to the next; the median 
Counting growth point increased by one growth in each grade.  
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also noteworthy that few children reached the highest growth points in each 
domain, even by Grade 4. This emphasises the importance of creating learning 
environments that enable all children to progress to the higher growth points.  

In summary, the findings discussed in this paper suggest that there is no single 
‘formula’ for describing children’s whole number knowledge or the instructional 
needs of children in a particular grade. Meeting the diverse learning needs of 
children requires teachers to be knowledgeable about how to identify each 
child’s current mathematical knowledge and customise instruction accordingly. 
This calls for rich assessment tools capable of revealing the extent of children’s 
knowledge in a range of domains, and an associated framework of growth points 
capable of guiding teachers’ curriculum and instructional decision-making. 
Assisting children to learn mathematics is complex, but teachers who are 
equipped with the pedagogical knowledge and actions necessary for responding 
to the diverse needs of individuals are able to provide children with the 
opportunities and experiences that will enable them to thrive mathematically. 
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THE MODEL METHOD – A TOOL FOR REPRESENTING AND 
VISUALISING RELATIONSHIPS  

Berinderjeet Kaur, National Institute of Education, Singapore 

Abstract 

The primary school mathematics curriculum in Singapore places emphasis on 
quantitative relationships when students learn the concepts of number and the four 
operations. The Model Method, an innovation in the teaching and learning of primary 
school mathematics, was developed by the primary school mathematics project team at 
the Curriculum Development Institute of Singapore in the 1980s. The method, a tool 
for representing and visualising relationships, is a key heuristic students’ use for 
solving whole number arithmetic (WNA) word problems. When students make 
representations, using the Part-Whole and Comparison models, the problem structure 
emerges and students are able to visualise the relationship between the known and 
unknown and determine what operation to use and solve the problem. The model 
method has proved to be effective for making number sense and solving arithmetic 
word problems in Singapore schools. 

Key words: four operations, heuristic, model method, number, Singapore 

Introduction  

In the history of education in Singapore, 1981 is a significant year as the New 
Education System (NES) (Ministry of Education, 1979) was implemented. The 
goal of the NES was to provide for every child in the system. In the late 1970s 
when low achievement in mathematics was a concern, it was decided that the 
primary mathematics curriculum (detailed syllabuses, textbooks, workbooks and 
teacher guides) would be developed by the Curriculum Development Institute of 
Singapore (CDIS). The CDIS was established in June 1980 and its main 
function was the development of curriculum and teaching materials. It was 
directly involved in the implementation of syllabuses and systematic collection 
of feedback at each stage of implementation so that subsequent revisions and 
refinements would be strategic (Ang and Yeoh, 1990).   

At the CDIS the curriculum writers, who were experienced teachers from 
schools and the Ministry of Education, together with expertise of international 
consultants produced the first primary mathematics curriculum in 1981. The 
curriculum adopted the Concrete-Pictorial-Abstract approach for the teaching 
and learning of mathematics. This approach provides students with the 
necessary learning experiences and meaningful contexts, using concrete 
manipulatives and pictorial representations to construct abstract mathematical 
knowledge. 

In 1983, the mathematics team writing the primary curriculum materials, led by 
Dr Kho, at CDIS made a breakthrough to address difficulties students were 
having with word problems. They introduced the ‘Model Method’ (Kho, 1987) 
in the curriculum for primary 5 and 6 students in the late 1980s. This method 
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Fig. 8 illustrates the solution process of Example 6. One way students may begin 
to solve this problem is by drawing the “before” part-whole model in which one 
of the rectangles represent the swordtails while the remaining three represent 
guppies. In the “after” part-whole model, since the number of swordtails has 
doubled, two rectangles represent the number of swordtails while three represent 
the number of guppies. The additional rectangle increases the number of 
rectangles to five and changes the percentage represented by each rectangle 
from 25% to 20%.  From the “after” part-whole model, a student can conclude 
that now 60% of the fish are guppies 
 

Before 

 

Swordtails 

25 % 

Guppies 

25 % 

Guppies 

25 % 

Guppies 

25 % 

 

After 

 

Swordtails 

20 % 

Swordtails 

20% 

Guppies 

20 % 

Guppies 

20 % 

Guppies 

20 % 
 

Fig. 8: Solution process of Example 6 

Example 7 

On Monday, the ratio of the number of beads Sarah had to the number of beads 
Emily had was 4:7. On Tuesday, after Emily gave 36 beads to Sarah, they both 
had the same number of beads. How many beads did Sarah have on Monday? 

Fig. 9 illustrates the solution process, step by step, of Example 7. The 
comparison model is used together with the before-after concept. Steps 1, 2 and 
3 belong to the before state while steps 4 and 5 belong to the after state. In step 
1, a representation of the ratio 4:7 is made using the comparison model. The 
number of beads that Sarah and Emily had on Monday is represented by 4 and 7 
blocks respectively. Next in step 2, the amount that needs to be shared is 
identified. As three blocks represent the amount to be shared, it is found that 1.5 
is not easy to represent and so the number of beads that Sarah and Emily have is 
now represented by 8 and 14 blocks respectively. Step 4 shows the sharing 
taking place, on Tuesday, where Sarah is given 3 blocks by Emily. The three 
blocks are equal to 36 beads and therefore one block represents 12 beads. From 
Step 5, it apparent that Sarah had 12 x 8 = 96 beads on Monday. 
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Step 1 

Before (Monday) 

 

Sarah     

 

Emily        

 

Step 2 

 

Sarah     

 

Emily        

                                                                                    [__________________] 

                                                                            amount that needs to be shared 

Step 3 

 

Sarah         

 

Emily               

                                                                                    [__________________] 

                                                                            amount that needs to be shared 

Step 4 

After (Tuesday) 

 

Sarah            

 

Emily               

                                                                                                          [______]          

                            36 beads 

Step 5 

After the beads are shared 

 

Sarah 12 12 12 12 12 12 12 12 12 12 12 

 

Emily 12 12 12 12 12 12 12 12 12 12 12 

  

Fig. 9: Solution process of Example 7 
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What Research Says about the Model Method 

A rigorous study by Ng and Lee (2009) of the model method clarified that the 
method engages students in capturing the inputs, the relationships between the 
inputs, and the output of the problem. Once students have constructed a model, 
they use it “to plan and develop a sequence of logical statements, which allows 
for the solution of the problem” (p. 291). Their study also noted that “average 
ability children’s solution of word problems involving whole numbers could be 
improved if they learn to exercise more care in the construction of related 
models” (p. 311).  

Conclusion 

This paper illustrates a heuristic that has proven to be effective for whole 
number arithmetic (WNA) in primary school mathematics in Singapore. The 
heuristic known as the model method is a tool that students use to represent and 
visualise relationships, when solving number word problems involving the four 
operations. The concrete-pictorial-abstract approach of teaching mathematics 
appears to support the development of the models used in the method.  
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TEACHING THE STRUCTURE OF STANDARD ALGORITHM OF 
MULTIPLICATION WITH 2-DIGIT MULTIPLIERS VIA CONJECTURING 

Pi-Jen Lin, National Hsinchu University of Education, Taiwan 

Abstract 

This study was designed to teach the structure of multiplication algorithm via 
conjecturing. To help students consistently use multi-unit in each partial product in the 
algorithm, (A tens ൈ B-ty1 = (AൈB) hundreds) and (A ones ൈ B-ty = (AൈB) tens) are 
two critical parts for 2-digit multipliers. 27 fourth-graders engaged in a conjecturing 
task. Pre-test, post-test, and students’ worksheets were collected. The result indicates 
that conjecturing was an effective approach of teaching with understanding the 
structure of multiplication algorithm with 2-digit multiplier.  

Key words: algorithm of multiplication, conjecturing, partial products, place value 

Introduction  

Students learn the multiplication algorithm more rapidly if they already know 
the structure and pattern of multiplication. Without this knowledge, progress is 
slow and difficult. The multiplication algorithm is usually taught sequentially, 
beginning with the simplest problems, those without requiring carrying 
(regrouping). The difficulty and complexity increase until multi-digit multiplier 
problems with carrying are presented. For example, 48ൈ23 shows multiplying 
by a two-digit number with carrying. Thus, it is important that students 
understand what happens when carrying occurs. The major issue for multi-digit 
multiplication is what to multiply by what and how the place values of the digits 
in the multiplier affect the place values of the partial products. Research 
suggests that students’ realisation of structure can be the factor of resulting into 
the differences between high and low achievers in mathematics (Mulligan, 
Prescott and Mitchelmore, 2004). Thus, helping students to understand the 
structure of the algorithm are essential of teaching multiplication. 

A variety of multi-digit multiplication algorithms are used in different countries 
(Fuson and Li, 2009). There were variations in written methods. Some of the 
methods are a little longer because they include steps that help students make 
sense of and keep track of the underlying reasoning. The standard algorithm is 
especially powerful because they make essential use of the uniformity of the 
base-ten structure. This results in a set of iterative steps that allow the algorithm 
to be used for larger numbers. Unfortunately, in many classrooms, teachers 
teaching the standard algorithm often ask students memorise the steps rather 

                                           

 

 
1 30 can be expanded as thirty (ones as counting unit) or 3 tens (tens as counting unit). B-ty 
means ones as counting unit, while B tens mean tens as counting unit. The standard algorithm 
of a two-digit multiplier 34 is always expanded as 34 = 30 + 4 instead of 34 = 3 tens + 4 ones. 
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than explain the meaning of the steps for them. For example, multiplying a 
whole number up to four digits by a two-digit number, fourth-graders do not use 
strategies based on place value and therefore cannot illustrate and explain the 
meaning of the calculation. 

Fig. 1 shows various methods for recording standard algorithm with 1-digit 
multiplier. The algorithms of 327ൈ4 are written in five methods. For the 
development of number concept, a student expanding 327 as 3 hundreds + 2 tens 
+ 7 ones has higher level of cognition than those who expand it as 300+20+7. 
Method ID and IE have slightly higher level of cognition than Method 1A and 1 
B. Each number in each row of Method 1D and 1E represents how many 
hundreds, tens, and ones rather than how many ones. 327ൈ4 would rather be 
expanded as 12 hundreds+ 8 tens + 28 ones than as 1200+80+28, since 12 
hundreds+ 8 tens + 28 ones is counted by multi-unit and 1200+80+28 is counted 
by ones.  

For the distinction of Method 1D and 1E from Method 1A and 1B,  Method 1D 
or 1E in the study is termed as standard algorithm with base-ten-units and 
Method 1A of 1B is termed as algorithm with ones-unit. The standard algorithm 
emphasises that computation is being approach on student sense-making. It is 
expected that students should be provided more opportunities to develop the 
standard algorithm of multiplication in Method 1D or IE.  

Method 1C is an abbreviation algorithm recording the carries without showing 
each partial products, so that it is not a standard algorithm. A standard algorithm 
of multiplication is characterised as showing the partial products for recording 
the steps of the algorithm and it relies on decomposing numbers into base-ten 
units (place value) and then carrying out the computations with those units. 

Method 1A and 1D proceed from left to right, while Method 1B and 1E from 
right to left. The method 1B and 1E proceeding from right to left are more 
convenient in dealing with carrying when it is needed.  

 

 

 

 

 

 

 

 

 

 

 

                               

Fig. 1: Methods for the standard algorithm of 327ൈ4 

327
ൈ 				4				
	2

1288
1308

 

Method 1C: Right to left  
recording the carries  

327
ൈ 				4				
			28
					8				
	12							
1308

 

Method 1E: Right to left 
with base-ten-units 

327
ൈ 				4				
1200
					80
					28
1308

 

Method 1A: Left to right 
with ones-unit 

327
ൈ 				4				
			28
					80		
	1200			
1308

 

Method 1B: Right to left 
with  ones-unit  

300 ൈ4 
20 ൈ4 
7ൈ4 

Method 1D: Left to right 
with base-ten-units 

.
ଷଶ

ൈ				ସ				
ଵଶ					
					଼		
					మఴ

భయబఴ

 

7 ൈ4 
20 ൈ4 
300 ൈ4 

7 ones ൈ4 
2 tens ൈ4 
3 hundreds ൈ4 

3 hundreds ൈ4 
2 tens ൈ4 
7	ones ൈ4 
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Textbooks or classroom teaching in Taiwan are expected that multiplication 
with two-digit multiplier moving from third grade where the approach of the 
standard algorithm with 1-digit multiplier is developed and explained via using 
visual models (diagrams) to the fourth grade where the approach of the SAM 
continues to be deepened and then is used fluently. Fig. 2 shows various 
methods of recording the algorithm of multiplication with 2-digit multipliers.  

All methods in Fig. 2 have been utilised from past to present textbooks in 
Taiwan. The methods include: (1) the expanded form of the multiplier: 
23=20+3, in Method  2A, 2B, 2C, 2D, and 2G, or 23=2 tens +3 ones in Method 
2E and 2F; (2) the partial products showing in the algorithm are either base-ten-
units or ones-unit: Method 2A, 2B, and 2C shows the partial products with ones-
unit, while the Method 2D, 2E, and 2F, and 2G are base-ten-unit.  

Within the methods by using base-ten-unit, the standard algorithm Method 2E 
used in a textbook of Taiwan is not consistent with the standard algorithm with 
one-digit multiplier, since 48 is expanded as 40+8 rather than 4 tens +8 ones. 
Furthermore, due to the multiplied and multiplier in Method 2E are 
simultaneously decomposed into tens and ones, it is difficult for fourth graders 
to transform 8 ones ൈ2 tens into 16 tens and 4 tens ൈ 2 tens into 8 hundreds. It 
refers too complicated to communicating with students for the teachers in their 
teaching.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                               

 48
ൈ 23				
144

									960											
1104				

 

Method 2A: multiplier 
23 =20+3 

48
ൈ 23				
2		

124			
1									

					86											
1104				

 

Method 2G: Recording 
the carries 

48
ൈ 23				
24

	120			
16
8
1104

 

Method 2F: multiplier 23 
=2 tens+3 ones 

48
ൈ 23				
24
120			

								 960
				1104

 

Method 2B: multiplier 
23 =20+3 

4 tens+ 8 ones 
2 tens+ 3 ones 
8 ones ൈ3 ones 
4 tens ൈ3 ones 
8	ones ൈ2 tens 
4 tens ൈ2 tens 

20+3 
8 ൈ3 
40ൈ3 
48ൈ20

48
ൈ 23				
24

	12						
16					

					8												
1104				

 

Method 2D: multiplier 
23 =20+3  

4 tens+ 8 ones 
20 +3  
8 ones ൈ3=24 ones 
4 tens ൈ3=12 tens 
8	ones ൈ20=16 tens 
4 tens ൈ20=8 hundreds 

48
ൈ 23				
24

	120			
160 	
800 							
1104

 

Method 2C: multiplier 23 
=20+3 

23=20+3 
8 ൈ3 
40 ൈ3 
8ൈ20 
40 ൈ20 

 
23=20+3 
48 ൈ3 
48ൈ20 

48
ൈ 23				
24

	120			
16					

					8	
1104

 

Method 2E: multiplier 
23 =2 tens+3 ones 

40 +8  
2 tens +3 ones 
8ൈ3 ones 
40 ൈ 3 ones  
8ൈ 2 tens 
40 ൈ 2 tens

Fig. 2: Methods for the standard algorithm of 36ൈ24 
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The Method 2D is performed with following steps of 
the partial products algorithm by multiplying the 
multiplier with 2-digit. The correct place value 
position in the partial products are maintained. To 
fulfil successfully, 48ൈ23 is decomposed into (4 tens 
+8	onesሻ ൈ3 and (4 tens +8	onesሻ ൈ20 as shown on 
the top of the Method 2D, marked in dash and bold 
line respectively. 

Step 1: 48= 4 tens + 8 ones , 23 = 20+3.  
Step 2: 8 ones ൈ 3= 24, is placed as the first partial product beneath the problem.  
Step 3: 4 tens ൈ 3=12 tens, is placed beneath the 24.  
Step 4: 8 ones ൈ20=16 tens, is placed beneath the 12.  
Step 5: 4 tens ൈ 20 =8 hundreds, is placed beneath the 16. 
Step 6: the partial products are added to arrive at the answer.  

The calculation in the first three steps has been learned in grade 3. For fourth 
graders, step 4 and step 5 are new experience. Two critical concepts in the two 
steps for meaningful understanding the algorithm of multiplication with 2-digit 
multipliers are 8 ones ൈ20=16 tens and 4 tens ൈ20 =8 hundreds.  

Given the analysis of difficulty in various methods and meaning-making, the 
step 4 and step 5 in Method 2D should be emphasised in teaching multiplication 
for fourth-grade students acquiring the meaning of partial products and correctly 
place the number in place value position. Thus, this study was designed to help 
students realise the structure of the standard algorithms via conjecturing.  A 
research question to be asked is: How did students engage in conjecturing task 
for constructing the critical concepts of structure of the standard algorithm, A 
ones ൈ B-ty = (AൈB) tens, (e.g. 8 ൈ 20 =16 tens) and A tens ൈ B-ty = (AൈB) 
hundreds, (e.g. 4 tens ൈ 20=8 hundreds)? 

Method  

Participants and Context 

Six teachers participated in the study to create conjecturing tasks for engaging 
students in the activity of proving. They were mutually supported in a 
professional program. We observed altogether the lessons when the tasks were 
carried out into classrooms. One of the teachers and her 27 students participating 
in the study have been engaging in the conjecturing for a year. They have 
learned the standard algorithm of multiplication with 1-digit in the third grade.  

Tasks involved in the study were designed through ADDIER cycle. Analysis 
materials of textbook was the first step, moving forward Developing and 
Designing  the tasks, Implementing the tasks into classrooms, and then 
Evaluating and Revising the  tasks. One of the conjecturing tasks related to 
multiplication algorithm was introduced in Tab. 1. 

48
ൈ 23				
24

	12						
16					
8 						
1104 			

 

Method 2D: multiplier 23 
=20+3 

4 tens+ 8 ones 
20+3 
8 ones ൈ3 
4 tens ൈ3 
8	ones ൈ20=16 tens 
4 tens ൈ20=8 hundreds

Students’ 
previous 
knowledge 

 

To be learned
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The task was designed based on the stage of conjecturing suggested by Cañadas 
and Castro (2005): observing and organising cases, searching for and 
formulating a conjecture, validating the conjecture, generalising the conjecture, 
and justifying the generalisation. The task with a set of problems was fulfilled in 
three consecutive lessons.  

Objective of the task: 
To know  A ones ൈ B-ty = (AൈB) tens, and A tens ൈ B-ty = (AൈB) hundreds  

Stages of 
Conjecturing 

T
a
s
k 

A collection activity in 7-Eleven: A card has 10 columns. If you buy foods, 
then you get a column. The price can be deduced $3 in each column.  The 
card can be used as long as you collect the 10 columns.  

① 
①  
①  

①  
①  
①  

①  
①  
①  

①  
①  
①  

①  
①  
①  

①  
①  
①  

①  
①  
①  

①  
①  
①  

①  
①  
①  

①  
①  
①  

After collecting, you can further get a prize that the number appearing in a 
dice you rolled is the amount of cards you will get. 

 

A (1) Each of you are rolling a dice once. Write down the number of cards 
you got and attached those cards on the worksheet.  

(2) How many $ 1 are deduced from the columns? Write it down with a 
number sentence. 

(3) How many $10 are deduced from each card? How many $10 you can 
deduced from in total? Write it down with a number sentence. 

(4) Check if your work is correct with your group. 
(5) Gathering each of the sheets in your group altogether. 

Establish & 
organise cases

 

 

B (1) Do the two equations you generated are the same deduced prices? 
(2) Write down the pattern that you find based on the two number 

sentences.  
(3) Sharing the patterns you found and explain to your group. 
(4) Write down the conjectures in your group. 

Observing 
pattern 
Formulate  
conjecture 

C
  

(5) Comparing and categorising the conjectures made from each group. 
(6) Explain the conjectures from your group to the whole class. 

Validating 
Conjectures 

D (1) Can the conjectures be generalised into general cases? 
(2) How do you state the conjecture in general? 

Generalising 

E (1) How do you justify the generalisation? 
(2) Are the conjectures still correct if you change the unit, 1, into 10? 

Justifying  

Tab. 1: The task for engaging in the structure of the algorithm via conjecturing 

Students were grouped heterogeneously in groups of 4 or 5. After given the task, 
the students first worked independently and jotted down their responses on B4 
paper; then they came together in groups to compare their solutions, and finally 
they shared their conjectures to the whole class. The lessons were videotaped 
and students’ written work was collected.     

To realise how the effect of teaching the structure of the algorithm of 
multiplication with 2-digit via conjecturing on students’ understanding, five 
items were conducted on the pre-test and post-test, as seen in Tab. 2.  
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Formulating a conjecture 

Task B were for providing students with the opportunity of engaging in 
formulating conjectures. In this stage, the conjecture each student formulated 
was based on his/her own case, so it has not been validated. Task B “Write down 
the pattern that you find based on the two number sentences.” was to ask 
students make a conjecture. For instance, student #13 make a conjecture is “0 in 
60 locating in ሺషሻభ ൈ=

ሺషሻ
లబ  was cancelled and then got ሺశሻభ ൈ=

ሺశሻ
ల "	based on the two 

numbers ሺషሻభ ൈ=
ሺషሻ
లబ  and	ሺశሻభ ൈ=

ሺశሻ
లబ .   

Validating the truth of a conjecture 

Validating the truth means to verify the conjecture for a new specific case but 
not in general. Task C gives students opportunity to improve their conjectures to 
be true based on new cases. For instance, the relationship of ሺషሻభ ൈ= ሺషሻ

లబ  and 
ሺశሻ
భ ൈ = ሺశሻ

ల 	 stated from group 1 was “complex changing to simple“. The 
relationship of ሺషሻయ ൈଶ=

ሺషሻ
లబ  and ሺశሻయ ൈଶ=

ሺశሻ
ల 	 from group 4 displayed in Fig. 3c was the 

unit “ones changed into the unit “tens“. The students in group 4 stated with 
meaningful understand to explain how ሺషሻయ ൈଶ=

ሺషሻ
లబ  is changed into ሺశሻయ ൈଶ=

ሺశሻ
ల 	as “in 

the collection card, ሺషሻయ ൈଶ		means $3 in each of 20 columns, but it can also be 
looked by rows, 3 tens in each card, 2 cards in total, the answer is 3 tens ൈ2=6 
tens, represented as ሺశሻయ ൈଶ=

ሺశሻ
ల . “  Thus, the conjecture made by group 4 based on 

the two number sentences was the use of different unit “ones” and “tens”, 
ሺషሻ
య ൈଶ=

ሺశሻ
య ൈଶ .  

Generalising the conjectures and justifying the generalisation 

Justifying the generalised conjecture involves giving reasons that explain the 
conjecture. Due to the limited knowledge of verification of the fourth graders, 
the interaction that took place between the students and the teacher was to 
sustain the engagement of generalising the conjectures and justifying the 
generalisation through the whole class discussion. The conjecture to be 
generalised was ሺషሻయ ൈଶ= ሺశሻ

య ൈଶ to generalise in general cases, e.g.  ሺషሻఴ ൈୀ
ሺశሻ
ఴ ൈ. 

ሺషሻ
ಲ
ൈ	ି௧௬ୀ

ሺశሻ
ಲ
ൈ	  . To help students generalising the structure of multiplication 

with 2-digit multiplier into 3-digit multiplier, the teacher asked students the 
questions: ሺషሻయ ൈଶ=ሺ		ሻ  or ሺశሻ

ಲ
ൈ	ି௨ௗௗ௦=ሺ		?	ሻ   It is readily for students to 

generalise the structure to 3-multiplier and got the answerሺషሻయ ൈଶ=
ሺೠ.ሻ

య ൈଶ, and 
the generalisation is ሺషሻ

ಲ
ൈ	ି௨ௗௗ௦=ሺೠ.ሻ

ಲ
ൈ. The reason students explain why 

ሺషሻ
య ൈଶ	is equal to ሺೠ.ሻయ ൈଶ was that "in this problem, we can think in the same 

way as previous one. If a collection card has 100 columns, each column consists 
of $3 for a deduced price. The collection cards can also be seen as ten dollars in 
each row, 6 tens dollars in total.”   

Conclusion 

The result from the percentage students performed correctly in the pre-and post-
test indicates that conjecturing is an effective approach for teaching students the 
meaning of the structure of standard algorithm of multiplication with multi-digit.  
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The task with a set of problems provided the fourth-graders to construct cases 
for observing and searching for pattern or relationships via collection card. 
Students formulated the conjectures based on their prior experience and 
knowledge. It is found that the cases to be constructed as the data for searching 
for the patterns are highly closed to the conjecture to be formulated and helped 
students to validate or justify the conjectures they made. For instance, students 
giving the reasons for explaining the truth ሺషሻయ ൈଶ=

ሺశሻ
య ൈଶ and ሺషሻయ ൈଶ=

ሺೠ.ሻ
య ୶ଶ were 

based on the cases they constructed from the collection cards. There are two 
critical concepts of computing the standard algorithm of multiplication with 
multi-digit multipliers, such as 48ൈ23 is decomposed into 48ൈ3 and 48ൈ20. 
48ൈ3 is not new for fourth grade students in Taiwan, but 48ൈ20 is to be learned. 
48ൈ20 referred to this study is decomposed into (4 tens 8 ones) ൈ 20 rather than 
(4 tens 8 ones) ൈ 2 tens. Moreover, (4 tens 8 ones) ൈ 20 is decomposed into 4 
tens ൈ 20 and 8 ones ൈ 20. Helping students to understand 4 tens ൈ 20=8 
hundreds, 8 ones ൈ20=16 tens corresponding to consistent using multi-unit in 
each partial product algorithm of multiplication became the aim of the study, as 
seen in Method 2D in Fig. 2.  

The conjectures lead to the conclusions that were the objectives of the lessons. 
The results also indicate that the nature of conjecturing is powerful, since 
generalising the conjectures to general cases involving in the study was the 
structure of 3-digit multiplier generalised by 2-digit multiplier. However, it is 
noted that the designing of task for conjecturing is a challenge for individual 
teacher if she/he is a novice of taking the conjecturing as an approach. 
Designing the task for conjecturing for students engaging in meaningful learning 
should be a focus of the teacher professional development.  
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SAME YEAR, SAME SCHOOL, SAME CURRICULUM:  DIFFERENT 
MATHEMATICS RESULTS 

Catherine Pearn, The University of Melbourne, Australia  

Abstract 

Year 4 students from a large metropolitan school in Melbourne were tested using the 
One Minute Tests of Basic Number Facts and a paper and pencil Number Screening 
Test developed by the author and colleagues. Observation of classes during the 
assessment procedures highlighted the vast difference in the students’ speed and 
accuracy when recalling basic facts and the types of strategies they used when solving 
whole number arithmetic tasks. When the results were analysed there were differences 
noted in the class results and when the results were presented to the teachers their 
reactions to these results varied considerably. This paper will focus on the comparison 
of the Year 4 class data. 

Key words: assessment, automaticity, basic number facts, word problems 

Introduction  

Many primary age students struggle to remember and reproduce basic number 
facts instantly. Hiebert and Lefevre (1986) noted that: 

manipulation rules. In general, the rules are more sensitive to syntactic 
constraints that … by the time students are in third and fourth grade, they have 
acquired a large array of symbol n to conceptual underpinnings. (pp. 20-21) 

In previous research the author found that Year 3 and 4 students struggling with 
whole number arithmetic relied on rules and procedures even when these were 
inefficient and unreliable (Pearn, 2009). In Victoria Year 3 students range in age 
from 7.7 to 8.7 years while Year 4 students range in age from 8.7 to 9.7 years. 
Westwood (2000) states:  

Without easy recall of basic number facts, students have difficulty with even 
simple mental addition and subtraction problems. (p.45) 

In March 1997, Australian state and territory education ministers agreed to a 
national goal that “every child leaving primary school should be numerate, and 
be able to read, write and spell at an appropriate level” (Masters and Forster, 
1997, p. 1). A national plan to support this goal requires education authorities to 
provide support for teachers in their task of identifying students who are not 
achieving adequate literacy and numeracy skills. National numeracy 
benchmarks, articulating minimum standards, were developed for Years 3, 5 and 
7. For example, Year 3 students are expected to remember, or work out, basic 
addition facts to 10 + 10, the matching subtraction facts and extensions of those 
facts. Year 5 students are expected to have achieved the Year 3 benchmark 
standard and also know or work out multiplication facts to 10 x 10 and use these 
to work out extensions of those facts. 

Considerable research has been conducted about students’ understanding of 
mathematical concepts and the strategies they use to solve mathematical tasks. 
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Gray and Tall (1994) have shown that students successful with mathematics use 
different types of strategies from those struggling with mathematics. Gray and 
Tall (1994) defined procedural thinking as being demonstrated when students 
are dependent on the procedure of counting and limited to the "count-all" and 
"count-back" procedures. While some students are dependent on rules and 
procedures other students give instantaneous answers. According to Gray and 
Tall (1994), the use of known facts and procedures to solve problems, along 
with the demonstration of a combination of conceptual thinking and procedural 
thinking, indicate that these students are proceptual thinkers. Gray and Tall 
(1994) defined proceptual thinking as: 

the flexible facility to ... enable(s) a symbol to be maintained in short-term 
memory in a compact form for mental manipulation or to trigger a sequence of 
actions in time to carry out a mental process. It includes both concepts to know 
and processes to do. (pp. 124-125) 

Results from state-wide testing in Victoria revealed that Year 3 and Year 5 
students from a large metropolitan primary school in the outer northern suburbs 
of Melbourne were not achieving at the level that the Principal expected and that 
there were many students not achieving the appropriate numeracy benchmarks. 
The author was employed by the Principal to provide ongoing professional 
development for the team of Year 4 teachers with teaching experience that 
ranged from two to twenty years.  

In Victoria, Six Principles of Learning and Teaching P-12 (PoLT) (DEECD, 
2007) have been designed to be used to reflect on practice and support 
professional dialogue to strengthen pedagogical practices. For example three of 
the principles state that students learn best when: 

 The learning environment is supportive and productive 

 Students’ needs, backgrounds, perspectives and interests are reflected 
in the learning program 

 Assessment practices are an integral part of teaching and learning 

The Australian Association of Mathematics Teachers (AAMT) has Standards for 
Excellence in Teaching Mathematics in Australian Schools which provide 
targets “to which all teachers of mathematics can aspire and work towards in 
their professional development” (2006, p.2). The standards include three 
domains: professional knowledge, professional attributes and professional 
practice. The domain of professional knowledge includes: knowledge of 
students, mathematics and of students’ learning of mathematics. For example: 

Excellent teachers of mathematics have a thorough knowledge of the students 
they teach. This includes knowledge of students’ social and cultural contexts, the 
mathematics they know and use, their preferred ways of learning, and how 
confident they feel about learning mathematics (AAMT, 2006, p.2). 

To provide further information about the mathematical skills and understandings 
of Year 4 students, two assessment instruments were used:  The One Minute 



ICMI Study 23                                                                                     Theme 4, Pearn, Same Year: Different Results 

466 
 

Basic Number Facts Tests (Westwood, 1995 in Westwood, 2000) and a paper 
and pencil Number Screening Test (Pearn, Doig and Hunting, in press).  

Excellent teachers of mathematics regularly assess and report student learning 
outcomes, both cognitive and affective, with respect to skills, content, processes 
and attitudes. They use a range of assessment strategies that are fair, inclusive 
and appropriate to both the students and the learning context (AAMT, 2006, p.4). 

Initial analysis of the Year 4 data highlighted the vast difference in the students’ 
speed and accuracy when recalling basic number facts and the types of strategies 
they used when solving whole number tasks (Pearn, 2009). In a large scale 
research study of early years’ teachers, Sullivan and McDonough (2002) 
reported that they attributed marked differences in achievement between classes 
to the teachers. This paper will also focus on the class analysis which also 
reveals distinct differences between Year 4 classes. These differences appear to 
reflect attitudes exhibited by teachers at the professional development sessions 
presented by the author. 

Materials and Methods 

There were 122 students from five Year 4 classes that ranged in size from 19 to 
27 students. Students had been randomly assigned to classes. The students’ ages 
ranged from 8.92 (8 years and 11 months) to 10.25 years (10 years 3 months). 
The average age of the students was approximately 9 years 7 months. 

The Assessment Instruments 

There are four One Minute Basic Number Facts Tests (Westwood, 1995 in 
Westwood, 2000). Each test has 33 items that focus on one of the four whole 
number processes: addition, subtraction, multiplication and division. These 
items are ordered randomly. The addition test items include one-digit addends 
with either one- or two-digit sums. The subtraction test items include one-digit 
minuends and subtrahends with a positive one-digit difference and some two-
digit minuends and one-digit subtrahends with a one-digit difference. The 
multiplication test contains items with one-digit multipliers and one-digit 
multiplicands while the division test has six one-digit dividends and 27 two-digit 
dividends divided by a one-digit divisor with one-digit quotients. The first three 
items from each of the One Minute Basic Facts Tests (Westwood, 2000) are 
shown in Tab. 1. 

Addition Subtraction Multiplication Division 
2 + 1 = 2 - 1 = 1 x 2 = 2 ÷ 1 = 
1 + 4 = 5 - 1 = 2 x 3 = 4 ÷ 2 = 
2 + 2 = 3 - 2 = 2 x 5 = 3 ÷ 1 = 

Tab. 1: The first three items from the One Minute Basic Number Facts Tests  

The Number Screening Tests 2A and 2B (Pearn, Doig, and Hunting, 
unpublished manuscript) were designed to identify students mathematically ‘at 
risk’ in Years 3 and 4. The tests included whole number tasks that had 
previously been found by the author to be difficult for students ‘at risk’ (see for 
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example, Pearn, 2009). Both versions of the test were deemed to be of similar 
difficulty.  

The Number Screening Tests contain 34 items that focus on whole number 
arithmetic. Eight items focus on counting, six on place value, six on addition, six 
on subtraction and one item had multiplication as the focus. There are seven 
word problems. The counting tasks include items that required students to 
complete the sequence of counting forwards by ones from a two-digit number 
(including bridging across 100), counting backwards by ones from two-and 
three-digit numbers, counting forwards by tens from multiples and non-
multiples of ten, counting forwards by fives from a multiple of five and counting 
forwards by twos from a non-multiple of two. The place value tasks include 
items that require students to write the number that is one more or less, or ten 
more or less than a given number and order two and three digit numbers. The 
addition and subtraction tasks include one-digit and two-digit addends and 
subtrahends and one task requires students to find the missing addend. The 
subtraction whole number word problem: 

Tom’s cat is 31 cm long.  

Mary’s kitten is 17 cm shorter than Tom’s cat.  

How long is Mary’s kitten? 

The author administered both assessments to ensure consistency with the 
administration. Observation of classes during the assessment procedures 
highlighted the vast difference in the students’ speed and accuracy when 
recalling basic facts and the types of strategies they used when solving 
mathematical tasks (Pearn, 2009). 

Results  

This paper will discuss the analysis of the data from the One Minute Basic 
Number Facts Tests and from the Word Problems of the Number Screening 
Tests (2A and 2B). Both these assessment instruments are testing whole number 
arithmetic knowledge. In particular, the analysis will focus on the similarities 
and differences in the class data. For the One Minute Basic Number Facts Tests 
a student’s score indicates the number correct for each of the tests. A student 
score of seven (7) indicates only that a student has correctly answered seven of 
the items correctly. This can be achieved in three different ways: 

 attempt the first seven items and answer the seven correctly 

 attempt any seven items from the test and answer the seven correctly 

 attempt more than seven items correctly and answer seven correctly 

In Tab. 2 students’ scores (to 2 decimal places) are compared for the four 
processes: addition, subtraction, multiplication and division. Normal range was 
defined by Westwood (2000) as the range of scores for 50% of the students and 
the critically low score as one standard deviation below the mean for the age 
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group. Students achieved higher scores in addition than subtraction. Subtraction 
scores are generally higher than multiplication scores which are generally better 
than scores for division. While some students were unable to correctly answer 
any items there were some students who completed the 33 items for each 
process in less than one minute.  

 Addition Subtraction Multiplication Division 

Range of scores 2 – 33 0 - 33 0 - 33 0 – 33 

Median 23 14 12 6 

Mean 22.34 15.93 13.21 8.56 

Standard Deviation 6.49 7.48 7.73 7.72 

Normal range 17.92 – 26.75 10.84 – 21.01 7.96 – 18.47 3.27 – 13.77 

Critical low score  16 8 5 1 

Tab. 2: Scores for One Minute Basic Number Facts (n = 122) 

Ten students correctly answered 33 addition facts within one minute. The mean 
for addition facts was 22.34, the median was 23, and the critically low score was 
16. Five students answered 33 subtraction facts correctly in less than one minute 
while 13 answered 8 facts or less. The mean for subtraction was 16 and the 
median was 14. The critically low score for subtraction was 8. Four students 
answered all 33 multiplication facts correctly in less than one minute. The mean 
for multiplication was 13, the median was 12 and the critically low score was 
five. Three students correctly answered 33 division facts in less than one minute 
while 12 students correctly answered one or less facts in one minute. The mean 
was nine, the median was six and the critically low score was one for division.  

All students completed a Number Screening Test. This paper will just focus on 
the results for the whole number word problems. Many students from all classes 
struggled with the word problems. There were 12 students (8%) who did not 
attempt any whole number word problem. There were 30 students (25%) who 
were only successful with one task but nine students (6%) correctly answered all 
six word problems.  

Tab. 3 shows the percentage of students who were successful with each of the 
word problems.  

Addition Subtraction Multiplication Division 
Task 1 Task 2 Task 5 Task 3 Task 4 Task 6 

78 34 25 49 57 23 

Tab. 3: Success with word problems (percentages) 

While 78% of students successfully answered the addition word problem, only 
34% of the students were successful with one of the subtraction problems, while 
only 25% were successful with the second subtraction task. Nearly half the 
students were successful with the multiplication problem and more than half 
succeeded with one of the division problems with only 23% successful with the 
second division problem. 
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Tab. 4 shows the means (to two decimal places) of the four One Minute Basic 
Number Facts (Westwood, 2000) by class. Class 2 had the lowest means for 
addition, multiplication and division and the second lowest for subtraction. Class 
4 had the highest means for all four processes. 

Class Addition Subtraction Multiplication Division 
1 (n = 25) 23.08 16.16 12.04 7.56 
2 (n = 19) 18.63 13.32 8.05 5.63 
3 ( n = 27) 21.42 13.04 12.23 6.5 
4 (n = 26) 24.54 21.46 17.54 12.96 
5 (n = 25) 22.79 14.33 14.54 8.83 

Total         22.34 15.93 13.21 8.85 

Tab. 4: Comparison of means by class 

When the results for the addition facts were compared, the medians ranged from 
20 (Class 2) to 24 (Class 4) with Classes 1, 3 and 5 having a median of 23 (see 
Tab. 5). The critically low scores for addition varied between 12 and 18. The 
median scores for subtraction ranged from 13 (Classes 2 & 3) to 20 (Class 4) 
with an overall median of 14. The critically low scores for subtraction varied 
from 9 to 14.  

Tab. 5 highlights the differences between the scores for the multiplication facts 
for each class. The medians for multiplication facts ranged from 9 for Class 2 to 
17.5 for Class 4 and the means varied from 8.05 for Class 2 to 17.81 for Class 4. 

 Class 1 Class 2 Class 3 Class 4 Class 5 
Range of scores 2 – 32 0 – 18 0 – 33 2 – 33 2 – 24 
Median 11 9 13 17.5 13 
Mean 12.04 8.05 12.41 17.81 14.4 
Standard Deviation 6.69 4.13 7.86 9.8 5.39 

Tab. 5: Scores for multiplication facts (by class) 

Results for the division facts also highlighted the differences between classes. 
The range of total scores for Classes 1 and 2 were 0 – 6 and 0 – 5 respectively, 0 
– 33 (Classes 3 and 4) and 0 – 21 (Class 5). Median scores for division facts 
ranged from one to 11 and the mean scores fell between 5.63 and 13.08.  

When the scores for the word problems were analysed the median scores varied 
between 1 (Class 2), 3 (Classes 1, 3 and 5) and a score of 4 (Class 4) while the 
mean scores varied between 1.74 for Class 2 and 3.42 for Class 4. 

Discussion and Conclusion 

The seven principles of highly effective professional learning articulated in the 
Professional Learning in Effective Schools (Department of Education and 
Training, 2005) suggest that professional learning needs to be: 

… collaborative, embedded in teacher practice and bridging the gap between what 
students are capable of doing and actual student performance (p.4). 

These assessment instruments were administered to determine the students’ 
skills with whole number basic facts and solution to word problems and to 
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determine whether students met the Year 3 numeracy benchmarks. The results 
shown in Tab. 3 highlighted the large range of whole number knowledge, and 
skills of all Year 4 students at this school (see also Pearn, 2009). The students 
had been randomly selected into their classes but the results varied considerably 
across classes as shown in Tab. 5.  

These results were also being used to focus teachers on their students’ whole 
number arithmetic knowledge and skills so that: 

… students initial conceptions then provide the foundation on which more 
formal understandings of the subject matter are built” (DE&T, 2005, p.5).  

However, when presented with their results the teachers varied in their approach 
to analysing the results. The teacher of Class 4 carefully studied his students’ 
tests and commented on individual students’ results. Some students that he 
thought to be good at mathematics had good recall of learnt facts but were 
unable to solve simple word problems. Some students who were unable to recall 
number facts instantly were able to solve the word problems. At professional 
development sessions, usually conducted by the author after school, the teacher 
from Class 4 would ask insightful questions and expressed concern as to 
whether he was doing enough for his students. This teacher exemplified many of 
the attributes described by the AAMT Standards as the knowledge, skills and 
attributes required for good teaching of mathematics (AAMT, 2006). He 
appeared to have an excellent knowledge of the students he taught and was 
actively developing a coherent knowledge of mathematics appropriate for the 
level he was teaching and a rich knowledge of how students learn mathematics. 

The Class 2 teacher flicked quickly through the tests and said that the results did 
not tell her anything she did not already know. At professional development 
sessions the Class 2 teacher would arrive late, leave early or make comments 
such as: “I already do that.” but was unable to give examples of how this was 
implemented in her classroom. 

These classes were not based on mathematical ability of the students. However 
the results from the One Minute Basic Facts Tests highlight the large diversity 
of the ability to recall basic number facts within each class and between classes. 
The One Minute Basic Number Fact Tests (Westwood, 2000) identified students 
struggling to recall basic number facts and those who had instant recall. The 
Number Screening Tests were designed to identify students mathematically ‘at 
risk’ but in this case were also able to identify Year 4 students who were already 
successful with whole number arithmetic.  

A large number of the Year 4 students assessed using these two assessment 
protocols used inefficient counting strategies for both types of assessment. 
These strategies were demonstrated when the students tapped their fingers, 
blinked or rolled their eyes, and used tally marks on both tests. Teachers need to 
ensure that students develop more flexible strategies that allow them to develop 
fluency with number facts and know when and how to use them. 
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The author had been employed by the Principal to provide ongoing professional 
development for the Year 4 teachers to ensure that their students developed 
more efficient strategies when solving whole number arithmetic tasks. However, 
quality professional development is difficult to deliver when even one teacher is 
resistant and states: “I already do that”.  
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Abstract 

This paper presents a design-based research study for which a curriculum for first 
grade arithmetic has been built and implemented for two consecutive years in 60 and 
120 experimental classes. We present the principles and rationale for this curriculum, 
which are based on the results of the current research in whole number arithmetic. 
Then we analyse some examples of the students’ written work, offering comments on 
the basis of the principles and rationale previously delineated.  

Key words: arithmetic, cooperative engineering, curriculum, first grade 

Introduction 

The paper presents a design-based research study for which a curriculum for 
first grade arithmetic has been built. This curriculum, given the name Arithmetic 
and Comprehension at Elementary School (ACE), has been developed within a 
team composed of teachers and researchers, and implemented in classrooms. 
Numerous researchers have studied elementary curricula intended for young 
schoolchildren (e.g., Brousseau, 1997; Fuson, 1990; Fyfe et al., 2014; McNeil 
and Fyfe, 2012; Bartolini-Bussi et al., 2011; Ma, 2010; Ding and Li, 2014), but 
it is difficult to find curricula especially designed to provide a practical 
synthesis of these works specifically for first grade. ACE is an attempt to build 
such a curriculum. In this paper we set two main objectives; first, to give readers 
a general understanding of the ACE project principles and rationale and second, 
to present some examples of students' work within ACE that can provide a 
window on the kind of whole number arithmetic comprehension that ACE may 
foster. For this perspective, the first part of this paper shall be dedicated to the 
description of the main features of the ACE curriculum. In the second part, we 
shall focus on materials and methods and explain how the student work that we 
present and analyse in the third part has been obtained. We conclude by 
discussing them in light of the issues concerning whole number arithmetic. 

The ACE Curriculum 

We focus first on the design aspect then on the mathematical aspect.  

The ACE curriculum: A brief description of the research design 

The ACE project experiments with the construction of number concepts in 6-
year-old students (first grade) whom we are investigating. It gathers together 
five French research teams, each of which has designed a part of the whole 
curriculum. In this paper, we focus only on the Brittany-Marseille team, which 
is in of charge a domain called “Situations.” The making of the curriculum is 
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based on the implementation of a cooperative engineering, a specific form of 
design-based research (Cobb et al., 2003) that develops particular relationships 
between teachers and researchers (Sensevy et al., 2013). 

The first year (2011-2012) of the experiment consisted of designing a 
curriculum for building of the concept of number in first grade. This design 
process was carried out in a specific way; the experimental situations were first 
carried out in four classes then redesigned online. The curriculum was 
implemented in 60 classes the second year of the experiment (2012-2013) and 
in 120 classes the third year of the experiment (2013-2014). This research was 
a quasi-experimental design. In effect, student learning in the experimental 
classes has been compared with student learning in control classes (pre-
test/post-test assessment). Although the pre-test showed no significant 
differences between control and experimental classes, it is worthy to note the 
two main results we obtained by comparing performances of the post-test 
assessment: (1) For each year of the investigation (2012-2013 and 2013-2104), 
the students in the experimental classes outperformed the students in the 
control classes, particularly for the most conceptually demanding items (e.g., 
being able to decompose a given number using an additive method); and (2) 
For each year of the study, the gap between students from underserved 
communities (priority education zones, per the French system) and students 
from middle-class communities largely widened throughout the school year in 
the control classes but stayed at the same level in the experimental classes. 
That leads us to think that the ACE curriculum is a more equitable program 
than the traditional one. The ACE curriculum has been developed through a 
specific kind of evidence-based research. 

8viewpoint, the ACE curriculum is based on the following principles: (1) 
Familiarising the students with numbers and relations within numbers by 
focusing first on “small numbers” for a long amount of time (Ma, 2011). (2) 
Giving prominent importance to the study of equivalence so that students 
become able to think of the equality sign not as a hint to produce an operation 
but as a relational sign (Brousseau, 1997; McNeil, 2014). (3) Using the 
arithmetic operations first as means to explore numbers and build significant 
relations between them; for example, in the core situation of this curriculum, the 
students are guided to refer to a number in an additive form (a sum) and to 
compare it, in particular, with other additive forms by using seminal conceptual 
strategies of relevant composition/decomposition (3 + 4 = 3 + 3 + 1= 6 + 1; 
8 + 4 = 8 + 2 + 2 = 10 + 2), decimal understanding (24 = 20 + 4 = 10 + 10 + 4), 
a topological approach to numbers. (4) Using manipulatives and representations 
in a systematic way by satisfying two criteria. The first one refers to the 
necessity of enabling the students to rely first on manipulative and concrete 
“objects” then to study iconic (analogical) representations of numbers then to 
write down equations in canonical form. This process seems very close to the 
tradition in Chinese textbooks (Bartolini-Bussi et al., 2011; Sun, 2011; Ding and 
Li, 2014) and can be thought of as “concreteness fading” (McNeil et al., 2012; 
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Fyfe et al., 2014). The second criterion lies in a “translational principle.” To 
understand various properties of numbers, students had to compare different 
representations of the same mathematical reality to become progressively able to 
recognise the differences and the similarities between these representations. (5) 
The last principle of the ACE rationale holds as follows: To acquaint the pupil 
with the historical-cultural sense of mathematics (Bartolini-Bussi and Mariotti, 
2008; Radford, 2014) and to apprehend the deep conceptual structure of 
mathematics (Richland, Stiegler, and Holyoak, 2012), students had to write 
mathematics and develop a first-hand relationship to mathematical writing. In a 
nutshell, the curriculum that we propose is characterised by a connected series 
of situations, all centred on the founding principles that we have presented 
below. The initial situation of this curriculum is the “Statements Game,” which 
has been designed by the research team on the basis of the principles we stated 
above and which can be described as follows: 

1. One die is about to be thrown. Beforehand, the students use their fingers to make a 
“statement” (for example, a student shows two fingers on her right hand, and three 
fingers on her left hand).  

2. The die is thrown. The students compare their statement with what is indicated by 
the die. If the sums are equal, the pupils have won.  

The continued complexification of the situation brings the students to make 
increasingly rich comparisons: the number of hands (students) is increased, as 
are the number and the nature of dice (1 to 10 dice are played with), etc. The 
students first play the game orally; then they write down the situations by 
utilising then conceiving the writing process as a way of designing the different 
games that they play. When students advance in their mathematical inquiry, the 
Statements Game situation gives them a concrete and basic reference, which 
they may always refer to give controlled meaning to a mathematical equation. 

Materials and Methods 

To give some examples of the students' production, we shall focus on a specific 
tool that was implemented in the ACE classroom, the “Journal of Number.” At 
the end of a particular period of time (a learning unit of 2 to 6 sessions), students 
were asked to write down in this individual journal “something they know about 
mathematics,” by following a general prompt given by the teacher, often on the 
basis of a previous student's production. The Journal of Number productions 
thus may be seen as a window on ACE’s mathematical practice. Among the 
students’ productions we have recorded, we have chosen a few that are 
representative of the average productions in most of the experimental classes. 
These are shown in Fig. 1. 
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Example 1: Using the number box. I complete the boxes and I write down the 
possible additions and subtractions. This example refers to the study of the 
relationship between addition and subtraction through a tool, “the number box,” 
which enables the students to “invent” the numbers in the box and different 
relations and calculations of their own. Each calculation is based on the 
Statements Game.  

Example 2: Translating representations. I write down three-term statements and 
represent them on the number line. In this example, students have to first refer to 
the concrete reference embodied in their fingers as it occurs in the Statement 
Game we previously described then represent the obtained statement on a line in 
an analogical way and in the usual symbolic way through an equation. The focus 
is on “small numbers.” 

Example 3: Playing a classroom game. I play writing calculations which “jump 
out.” Example: 5 + 2 – 2 + 4 – 4 = 5. In this example, students have to invent 
different writings to play an “inverse relation” (Verschaffel et al., 2012) game in 
which they improve their systemic understanding of an equation. 

Example 4: Writing pieces sums and the pieces and coins necessary to pay. In 
this example, the work in the Journal of Number enables students to build a 
strong relationship between the decimal system they are beginning to explore 
and understand and monetary “artifacts.”  

Example 5: Elaborating on the decimal system and place value. Write down an 
additive writing with 6 or 7 terms. Write down this number in tenths and units. 
This example refers to the way decimal system and place value are worked out 
in ACE classes. The ten is introduced through composing-decomposing 
techniques and first appears as a way of easily comparing “long” additive 
writings. In this example, the students invent a given writing, which needs to 
represent some well-known decompositions (for example decompositions of ten) 
to be “converted” into a “tenths and units” number.  

Example 6: A first approach on multiplicative structures. Students are simply 
engaged to build a paper rectangle and to write down a designation of this 
rectangle both in a multiplicative and an additive form. In this example, students 
elaborate the way multiplicative structures are presented in the ACE project. In 
the Statements Game, students face some “repeated dice throws” (i.e., 
3 + 3 + 3 + 3 or 4 + 4 + 4, etc.). These throws are represented with rectangles 
(i.e., 4 x 3 or 3 x 4, etc.). Then these rectangles are referred to on the basis of 
two kinds of writing, additive and multiplicative. The study example shows how 
students are asked to produce concrete paper rectangles before referring to them 
with symbolic writings. 

Examples 7 & 8: These two examples do not come directly from the Journal of 
Number, but they illustrate how the ACE curriculum (including the Journal of 
Number) makes the students able to elaborate some relevant mathematical 
strategies to compute some calculations. Each example represents a photo of the 
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classroom blackboard on which the teacher has written the strategy used as 
dictated by some of the students. This strategy was aimed to be disseminated to 
the classroom collective. For Example 7 (“Yasser’s method”): I compute 
7 + … = 15; I know that 7 + 7 = 14; thus 7 + 8 = 15; thus 15 – 7 = 8. For 
Example 8 (14 – 5, “Vincent, Zina, and Manel’s method”): I know that 14 – 7 = 
7; I add 2, 7 + 2 = 9; 14 – 5, 14 – 7 + 2 since 7 = 5 + 2). 

Example 9: Mixing different strategies and representations. In this example, the 
researchers have typed the long equation to represent in a canonical form the 
student's composing-decomposing strategy. After the box, the number line, 
which is used in an “approximation” manner, make understand the numbers both 
as “positions” and “movements” on the line. The composing-decomposing 
techniques are linked with the two systems of representation (the box and the 
number line) and enable the students to use their knowledge of doubles and 
decomposition of ten in a relevant way. It is worthy to note the inventive use of 
the sheet space necessary to display the calculation strategies. 

Discussion and Conclusion 

In this discussion, we would like to stress the most important points of this ACE 
project that we have presented in this paper. As we argue below, ACE is 
grounded in five principles (1) working out small numbers as long as necessary; 
(2) focusing on a deep understanding of mathematical equivalence; (3) engaging 
students in related arithmetical operations as a way of studying the decimal 
system through “conceptual techniques”; (4) making a systematic use of 
representations from the more concrete to the more abstract by linking them, by 
having the students able to compare them and to translate one to another; and (5) 
inciting students to write mathematics and to build a first-hand relationship to 
mathematics through this practice). Beyond these principles and their illustration 
in the Journal of Number, it could be worth stressing the following points. 

Writing mathematics 

Many scholars and researchers (e.g. Brousseau, 1997; Richland, Stiegler, and 
Holyoak, 2012; Chevallard and Sensevy, 2014) have contended that school 
mathematics need to achieve a conceptual density through an inquiry process 
that give them a kind of authenticity, a kinship with the cultural activity of 
professional mathematicians. We argue that one of the main criteria to appraise 
this kinship lies in the way mathematical writing is used in the classroom. In 
ACE, a strong hypothesis is that while learning arithmetic in first grade, students 
have to learn to write arithmetic at the same time and to invent some problems 
grounded in the concepts and techniques they are currently acquiring. In that 
way, the writing process is not confined to the sole response to usual 
mathematical questions of this grade, which may prevent students from 
understanding mathematics. Indeed, this kind of “response writing” often 
engages students to activate some routines built in the narrow arithmetical 
experience (McNeil, 2014) of the classical didactic contract (Brousseau, 1997; 
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Sensevy, 2012). On the contrary, in ACE, the “inventing process” which unfolds 
in the writing of mathematics is a way of strengthening the capabilities that 
students are building, while exploring their own new numerical relationships. 
Moreover, as we have seen in the study examples, it is very important to note 
that the mathematical writing is not only a means to foster a personal 
relationship to mathematics. In particular, through the Journal of Number 
practice, students can take other students’ work as a point of departure and so 
relate their production to the collective endeavour. In the classroom, trying to 
build a kind of kinship, as with the cultural activity of mathematicians, means 
being able to organise a thought collective (Fleck, 1979; Sensevy et al., 2008), 
such as a research community. 

Modeling 

Another point we would like to emphasise lies in the kind of mathematics the 
ACE project attempts to promote. Our approach is grounded in Brousseau's 
epistemology of mathematical knowledge (Brousseau, 1997) and meets 
Freudhenthal's contention about the necessity of having children understand that 
mathematics can be a way of mastering phenomena in reality (Gravemeijer, 
1994). In this respect, ACE can be viewed as a way of elaborating on concrete 
“systems” of the everyday life (for example, playing dice and trying to represent 
quantities on fingers) to “model” these systems through semiotic tools 
(Bartolini-Bussi and Mariotti, 2008) and the symbolic forms of the mathematical 
equations. This interest in the modelling process has brought us to develop a 
conceptual interplay between the concrete and the abstract within the classroom, 
which privileges a kind of dialogue and systematic relationship between the 
(more) concrete and the (more) abstract. Over the preference that many 
mathematics educators give to one or another of the two poles, we contend that 
this dialogue between the concrete and the abstract needs to foster a continual 
process of mutual reference (Fyfe et al., 2014), between various forms of 
representations, between systems and models. These orientations will constitute 
a main direction for future work, along with the dissemination of this new 
curriculum. 
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Abstract 

In the 21st century, around the world, many countries set a high priority seeking 
worthwhile curriculum practices and educational policies in order to establish an 
effective school system for the K-12 school-age children. However, no education 
system can provide Macao a ready-made curriculum model. If there is one such model 
available serving as an exemplar, adoption admittedly is generally difficult. This paper 
aims at introducing Macao’s 15 years of experiences of primary mathematics 
education, after the official handover of the former Portuguese enclave to China in 
1999. This study describes a model of educational practice on the topic of teaching of 
numbers, taking Macao’s reality of an amalgamation of the cultures of the East and 
West into account in the discussion. 

Key Words:  amalgamation of eastern and western cultures, K-12 mathematics 
education, Macao 

Background of Study 

Macao has a population of 631,000, residing in a small land area of 30.3 km2. 
For more than 400 years it had been governed by Portugal until 1999. With such 
a long history of 400+ years of cultural exchanges between the East and the 
West, Macao is unique in many respects regarding the fifteen years of free K-12 
education provided to the school children. Today, Macao is a Special 
Administrative Region (SAR) of the People's Republic of China. Because of the 
"One country, Two systems" policy, Macao exhibits many fascinating features 
and qualities exemplary of an amalgamation of the Chinese and Portuguese 
cultures. 

In academic year 2013/14, there are 77 schools, most of which (87%) are 
private. The 2013-2014 statistics show that there are 71,048 K-12 students, 
taught by 6,147 teachers in total. As at 2014, Macao is considered a high-income 
economy by the World Bank. The GDP is 697,502 MOP per capita, with an 
annual growth rate of 11.9%. The unemployment rate is very low (<2%), and the 
literacy rate exceeds 99%. 

In the first decade of the new century, a series of initiatives promote the rapid 
development of Macao’s basic education. For instance, in 2006, the Non-tertiary 
Education Law was promulgated which seeks to protect the right of K-12 
education by law. Within ten years, Macao government’s investment on non-
tertiary education has been increased from MOP10.07 billion in 2002 to 
MOP32.92 billion in 2012 (Xinhua News, 2014). Education development fund 
is set up to promote various kinds of educational programs and activities. 
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Though the majority of K-12 schools in Macao are private, all students enjoy 
fifteen years of free obligatory basic education. Generally speaking, quality 
education for all is achieved admirably at the start of the new century. 

Great achievements in education have been made in Macao in the past 15 years, 
particularly in mathematics education. For instance, two championships and 
three second prizes were won in five years in a row in American Regions Math 
League (ARML: International Group) since Macao first participated in 2009. 
The mathematics achievement in the latest PISA 2012 mathematics literacy 
survey has shown great progress as the ranking rose from 15th in 2009 to 6th in 
2012 (Cheung et al., 2013). Macao’s basic education is neither mediocre nor bad 
by international standard, and its experiences may be of interest to other 
economies to learn from. 

As Macao is too small a place to have established its own curriculum standards 
for adoption in the new century, Macao schools and teachers are at liberty to 
adopt school mathematics curricula from Mainland China, Taiwan, Hong Kong, 
Portugal, and abroad. In order to provide the readers an impression regarding the 
adoption of mathematics curricula for basic education in Macao, this paper will 
briefly summarise Macao’s fifteen years experiences of enhancing the quality of 
mathematics teaching and learning, as well as the measures adopted from 
initiatives learned from Mainland China, Macao’s major Chinese-speaking basic 
education counterparts. 

The Basic Mathematics Competence Requirements for Primary Schools in 
Macao: Local Curriculum Standards 

As an international city, Macao government has made great effort to improve its 
education system in order to increase its manpower capacity even before it was 
formally returned to China in 1999. The first curriculum standard was issued in 
1988, entitled “Macao Mathematics Syllabus (Trial)”. It was revised in 1999. 
Six years later, the Education and Youth Affairs Bureau of Macao SAR 
Government (also called DSEJ) initiated the development of “Basic Competence 
Requirements in Mathematics (BCRM) for Primary Schools in Macao” (小学数

学基本学力要求). BCRM was released in 2011 (DSEJ, 2011a) and was piloted 
at the lower primary level in eight schools in the 2012-2013 academic year 
(DSEJ, 2013a), and at the upper primary level in 2013-2014 academic year. The 
implementation of BCRM will have significant influence on mathematics 
curriculum and teaching practice. Note-worthy is the fact that BCRM stipulated 
the ‘bottom lines’ at various stages instead of the ‘ceilings’. Therefore, the 
development of BCRM was not intended to unify all the courses and the 
teaching materials in Macao. Instead, schools have the freedom to develop 
school-based curriculum based on their educational visions and students’ 
abilities. Like NCTM (2000), BCRM specified the learning objectives in five 
content areas: (A) Numbers and their operations; (B) Shapes and space; (C) 
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Measurement and its applications; (D) Data analysis and probability; and (E) 
Basic knowledge in algebra. The numbers of items under each area are 32, 24, 
23, 13, and 6, respectively. The teaching of numbers and their operations takes 
up one-third of the whole content covered. Below are 27 of 32 items under 
“Numbers and their operations”:      

A-1-1 Being able to represent objects in daily life using numbers;  

A-1-2 Being able to use arithmetic operations to solve related problems from daily life;  

A-1-3 Be excited to be engaged in mathematical activities; 

A-1-4 Being able to understand the meaning of cardinal and ordinal numbers;  

A-1-5 Being able to recognize, read, and write numbers within 10,000 and to compare the 
magnitude of numbers;  

A-1-6 Being able to understand the differences and relationships between digits and number 
of digits, the differences and relationships between numbers and digits, to understand the 
structure of numbers based on the understanding of counting units for different digits;  

A-1-7 Being able to understand the meaning of addition and subtraction, to do addition and 
subtraction of numbers with answers less than 10,000;  

A-1-8 Being able to understand the meaning of multiplication, and to multiply 3-digit by 1-
digit numbers, and 2-digit by 2-digit numbers;  

A-1-9 Being able to do addition and multiplication in a faster way using commutative and 
associative properties of addition and multiplication;  

A-1-10 Being able to understand the meaning of division, and to do divisions up to 3-digit by 
1-digit numbers;  

A-1-11 Being able to understand the concepts of divisibility, indivisibility, quotient, and 
remainder; 

A-1-12 Being able to conduct simple 2-step calculations.  

A-1-13 Being able to understand the relationships among speed, distance, and time.  

A-1-14 Being able to understand the process of approximation, and to do it in real contexts.  

A-1-15 Being able to master mental addition and subtraction of numbers within 100.  

A-1-16 Being able to master mental multiplication and division of numbers in tens and 
hundreds.  

A-2-1 Being able to express one’s thinking using mathematical language;  

A-2-2 Being able to respect and understand other’s approaches to solve mathematical 
problems; 

A-2-3 Being able to develop a positive attitude towards mathematical explorations;  

A-2-4 Being able to recognize numbers within one billion and to compare their magnitudes.  

A-2-5 Being able to understand odd and even numbers, prime and composite numbers;  

A-2-6 Being able to understand the meaning of factors and multiples of a number and the 
relationship between them;  

A-2-7 Being able to understand the meaning of common factors, common multiples, greatest 
common factor, and least common multiples, and to be able to find them;  

A-2-9 Being able to understand the features of numbers divisible by 2, 3 or 5;  
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solutions. Hopefully, they can eventually find all the solutions by themselves. In 
the process of searching for solutions, they develop their listing skills 
systematically. In the textbook, solution of ancient problem by the equation 
method is replaced by filling tables so as to find the answer.  

Multiple Ways to Develop In-service Teachers’ Teaching Abilities   

In a recent OECD study many countries reported shortfalls in teaching skills and 
the difficulties in updating them (OECD, 2005; 2009). In 2007, the European 
Commission noted that incentives for teachers to carry on updating their skills 
throughout their professional lives were weak. It is interesting to note that 
Macao‘s teaching culture is largely shaped by western traditions in which 
teaching is regarded as a private practice with norms and structures that favour 
individualism and autonomy. The Macao education system is decentralised and 
fragmented without a united curriculum. Under different curricula, schools, and 
grade systems, teachers often have to work alone. Each new generation of 
teachers must start from zero in building their teaching experiences in their own 
way. Their weekly heavy teaching loads (normally more than twenty classes) 
make it difficult for them to redesign lessons for improvement. Under such a 
system, experienced teachers have less opportunity to share their experiences 
with the beginning teachers.  

In short, it is reasonable to conclude that, from a system perspective, there is 
relatively little room for teacher professional development in Macao. Since 
2006, Curriculum Reform and Development Council of Macao were established 
to implement assessment of in-service teachers’ abilities and to reflect and give 
suggestions for further improvement. As a result, it has developed three 
initiatives learned from Mainland China for the professional development of 
their in-service teachers, namely: (1) Design Award Scheme for Teaching and 
Learning; (2) Pilot Scheme of the Elementary Curricula; and (3) Study Plan of 
the Leading Teachers. These initiatives may prove useful for the teacher 
education development in Macao. 

A. Award Scheme on Instructional Design (ASID) 

Award Scheme for Instructional Design (ASID) was initiated by DSEJ in 1996. 
It organises schools’ assessment procedures every academic year. The 
instructional products include lesson plans (whether designed as a teaching unit, 
or a course spanning a semester/whole academic year), action research, and 
open demonstrations. It is hoped that teachers can be involved in selecting the 
teaching materials, and their abilities will be enhanced in due course. Those 
winning design will be uploaded to the DSEJ website for other teachers to use 
(DSEJ, 2011b).       

B. Pilot Scheme of the Elementary Curricula 

To implement BCRM, the Pilot Scheme of the Elementary Curricula was 
proposed and carried out in several schools. The core subjects are mathematics 
and Chinese. In the academic year of 2012-2013, it was conducted at the lower 
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primary levels (Grades 1-3). And then it was extended to the upper primary 
levels (Grades 4-6). Specifically, the following activities were carried out:  

(1) A group of four experts was formed to provide academic support and teacher 
training programs. They visited two schools four times a year. During each 
visit, they observed teachers’ teaching activities and gave suggestions for 
further improvement. Meanwhile, they worked together with the schools’ 
mathematics teachers, and discussed how to implement BCRM and adjusted 
their teaching plans.  

(2) Selected mathematics teachers from an exchange program between Mainland 
China and Macao visited the participating schools every week so as to 
support the implementation of the scheme;  

(3) Sharing sessions and workshops of in-service training were organised, with 
the local mathematics teachers informed beforehand.  

After the scheme was completed, the products were collected and shared among 
peers on the Internet (DSEJ, 2011b).  

C. Study plan of the leading teachers 

Leading teachers play important roles in the professional development of in-
service teachers, as well as in the implementation of intended programmes of 
study at school. A study plan has been developed for the 40 leading teachers in 
Macao, including heads of mathematics department, school leaders, and 
excellent mathematics teachers (DSEJ, 2011b). The study plan includes a variety 
of units, such as topic studies, curriculum studies, workshops, school visits, and 
sharing sessions. Subject-based experts from the Greater China region were 
selected as the instructors. This study plan could have policy implications for 
solving the problem regarding the lack of coherence and continuity as in the 
European in-service teacher education (OECD, 2005; 2009).   

Making Phone Calls on Homework: A Help-Seeking System to Meet 
Individual Student Needs  

According to the PISA 2012 main survey, about 11% of 15-year-old students 
with proficiency below level 2 are low-performing students who cannot function 
productively in society, and this percentage is small by international standard 
(Cheung et al., 2013). Immediate help, especially to slow learners or students 
with learning difficulties, is important for students’ day-to-day learning. But 
how to make it come true is difficult for nowadays education systems. DSEJ 
initiated a programme called “Making Phone Calls on Homework” in 1997, 
which was actually undertaken by the Macao Association of Mathematics 
Education Research. It is now well accepted by local school children and their 
parents since they can just make a phone call, and the trained helpers will give 
some hints or guidance to help them finish their homework on time. However, 
because of the improvement of classroom teaching in schools, the number of 
calls phoned has been decreasing in recent years. 
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Implications for Mathematics Teaching and Learning in Non-Chinese 
Speaking Educational Systems 

In the new century, Mainland China, Hong Kong, and Taiwan governments 
attempted to promote their own revised school curricula, and positioned the 
curriculum decision making policies in the Chinese historical, educational, 
social and economic contexts. While the initiatives have inspired innovative 
reforms in a number of schools, and in principle met with considerable support, 
on a wider scale implementation of the concerned reforms was actually 
hampered by insufficient resources, conceptual ambiguity and conservative 
resistance (Zheng, 2014). Different from other Asian educational systems in 
terms of freedom and democracy, and from the western systems in terms of 
amalgamation of the Chinese and Portuguese cultures, Macao offers a unique 
perspective for the educational practitioners to have a new look at Chinese 
mathematics education, as Macao is the only Chinese-speaking community so 
far without any curriculum reform. Two issues deserving attention of the readers 
are elaborated below: 

Freedom and democracy 

Macao schools are endowed with undoubting right of curriculum autonomy by 
Macao Law (see 38/94/M, 39/94/M, 46/97/M for details). These laws were 
promulgated in 1994 and 1997, aiming to regulate curriculum design for basic 
education from the preschool to the high school levels. Traditionally, teaching 
materials are selected and determined by schools at the stage of basic education 
in Macao. In other words, teaching materials, teaching contents, teaching 
language, and even curriculum design and course structure are quite free. The 
course management system should have given schools enough freedom to 
develop school-based curriculum, which cater for the individual needs of the 
students.  

Internationalisation versus localisation 

The publication of NCTM’s 2000 Standards has affected the revision of 
mathematics curriculum standards in many countries in certain ways (Ma, 2013), 
which may understood as the process of internationalisation. For this, Ma (2013) 
has kindly reminded mathematics curriculum developers in Mainland China of 
maintaining their own traditions. In the process of adapting certain kind of 
practice working effectively in one culture, which may be called “localisation“, 
attention should always be paid to the local schooling contexts. In the past 15 
years, DSEJ has left the schools to decide what mathematics curriculum they 
would like to follow, but focused on the professional development of teachers 
and provision of immediate help to the students. It is widely accepted that there 
is no such a curriculum that fits all the students. Therefore, DSEJ just set up 
BCRM as the bottom-line standards to be met by all students.     

As a place of cultural exchange between the West and the East, Macao is unique 
in that it does allow some schools to maintain the tradition of Chinese 
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mathematics education, but also allow other schools to develop their own 
school-based projects. The great improvement in student achievement in PISA 
2012 indicated that Macao is successful in integrating the western and eastern 
cultures, and in maintaining a good balance between freedom and authorities. 
Macao’s 15-year experience of mathematics education can provide a mirror for 
the policy-makers and researchers from OECD countries and the Great China 
regions, and beyond (OECD, 2005; 2009). For western countries, more efforts 
should be made to the professional development of mathematics teachers, 
particularly in improving their teaching skills. For eastern countries, more 
freedom needs to be delegated to the schools so that they can provide school 
curricula that really cater for the needs of their students.  
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Abstract 

Addition and subtraction of whole numbers are the basic skills needed by students to 
solve more complex calculations. Two-digit numbers subtraction is a relatively 
challenging topic for primary school students as it involves problems concerning 
decomposition. Textbooks are the dominant tool for the teaching of mathematics in 
Hong Kong elementary schools. It is worthwhile to investigate how different textbooks 
organise their contents and what the aims and rationale are for this arrangement. Four 
sets of primary mathematics textbooks used in Hong Kong are analysed using content 
analysis. Most of these textbooks follow the arrangement suggested by the Curriculum 
Development Council. However, subtle differences exist in the teaching strategies they 
present and the design of the contents.  

Key words: primary mathematics, teaching strategies, textbook analysis, two-digit 
numbers subtraction 

Introduction 

Addition and subtraction concepts have been developed using hands-on 
experiences with countable objects or the placing of value blocks. Fuson (1992) 
has suggested that a counting method is the most basic way to help children to 
learn simple addition. In brief, addition is the "putting together" of two groups of 
objects and finding how many there are in all. Subtraction means "how many are 
left" or "how many more or less there are." In school mathematics, addition and 
subtraction of whole numbers are the first stage of the curriculum (from Grade 1 
to Grade 3). Although they are the basic skills that students need to solve other 
complex calculations, students often have difficulties in learning how to make 
these calculations, particularly in multi-digit operations (Young and O'Shea, 
1981). For instance, students simply take the difference of two digits in each 
column, irrespective of which is the larger. Doing this produces an error like 63- 
24 = 21, in which students need to borrow but do not. Or in some cases, students 
do not need to borrow but nevertheless do so, eg.96 – 42 = 34 (Young and 
O'Shea, 1981, p. 155). Underlying these calculations, there is a complex 
thinking process. Subtraction with single digit numbers is relatively simple, 
while multi-digit subtraction is relatively difficult to learn because it involves 
decomposition. Many researchers have identified effective strategies for 
developing the multi-digit addition and subtraction abilities of children (Fuson, 
1992; Fuson et al., 1997; Thornton, 1990; Torbeyns et al., 2009). However, 
there has been little focus on the influence of the curriculum material, in 
particular the textbooks, on the students’ learning of the addition and subtraction 
of whole numbers.  
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It is accepted worldwide that mathematics textbooks have a major influence on 
classroom practice (Schram, Feiman-Nemser and Ball, 1989; Valverde et al., 
2002). According to the results of the Trend in International Mathematics and 
Science Study (TIMSS), the textbook is a primary information source for 
teachers in deciding how to present the course contents (Schmidt, Mcknight and 
Raizen, 1997). 65% of grade 4 mathematics teachers in TIMSS 2007 used 
textbooks as the primary study material, and 30% used them as a supplement. In 
Hong Kong, schools may use textbooks and learning materials on the 
recommended textbook list (RTL) of the Education Bureau (EDB). These 
textbooks should be in line with the curriculum guides and assessment guides 
issued by the Curriculum Development Council (CDC). They should reflect the 
learning objectives and expected learning outcomes and also cover the core 
elements of the curriculum. Although the EDB suggests that it is not a 
compulsory requirement to use the textbooks and learning materials on the RTL, 
most teachers rely on the recommended textbooks. In TIMSS 2007, the number 
of grade 4 mathematics teachers using textbooks as the primary study material 
and as supplements are noticeably higher than the global results: 84% and 15% 
respectively (Mullis, Martin, and Foy, 2008, p. 290). In TIMSS 2011, the 
percentage of Hong Kong grades 4 and 8 mathematics teachers who used 
textbooks as a basis for instruction reached 88%, and the percentage of teachers 
who used textbooks as a supplementary resource was 11% (Mullis et al., 2012, 
p. 392-394).  

Subtraction of multi-digit numbers is a relatively challenging topic for primary 
students as it involves problems concerning decomposition. According to CDC, 
the content of the textbooks should be closely in line with the curriculum guide 
for the subject (EDB, 2009). However, publishers or designers can arrange the 
topics and the formats of textbooks in different ways. Therefore, in this study we 
focus on the topic of two-digit subtraction (including decomposition) and 
analyse the structures and contents used in different textbooks. Using content 
analysis, we try to identify the differences and common aspects, and explore the 
reasons why students and teachers have difficulties in this respect.  

Methodology 

In the Hong Kong textbook market, there are eight packages of mathematics 
textbooks for the lower primary level (Grades 1-3) and nine for the upper 
primary level (Grades 4-6). In our study, four sets of textbooks are selected for 
analysis, all of which are widely used in Hong Kong primary schools. They are 
21st Century Modern Mathematics (Lam and Chan, 2006), Primary 
Mathematics (Lo, 2005), Longman Primary Mathematics (Leung and Lau, 
2007), and Primary Mathematics in Focus (Hung, 2012), henceforth referred to 
as T1, T2, T3 and T4. In order to identify the structure and content of two-digit 
numbers subtraction the textbooks, we carried out an analysis of the content of 
the books in a systematic manner, i.e. we did content analysis (Krippendorff, 
1980). We first noted the chapters in the books that matched the mathematics 
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curriculum guide (CDC, 2002) for the topic two-digit subtraction taught in 
primary mathematics. Next we studied the arrangements of the teaching 
sequence and the teaching strategies that were demonstrated in the books.  

Results and Discussions 

According to the mathematics curriculum guide (CDC, 2002), three units related 
to two-digit numbers subtraction are to be taught in primary mathematics. These 
are Basic addition and subtraction (within 18) (1N3), Addition and subtraction 
(I) (addition within 2 places; subtraction within 2 places, excluding 
decomposition) (1N5), and Addition and subtraction (II) (addition within 3 
places; subtraction within 2 places) (2N2). These are to be covered in Primary 1 
and Primary 2. Details are shown in Tab. 1. 

It is found that most textbooks follow the arrangement of the teaching sequences 
suggested by the curriculum guide. For the teaching unit 1N3, all of the 
textbooks arrange it to be taught in the first semester of Primary 1. Three sets of 
textbooks (T1, T3 and T4) devote one chapter to the teaching of subtraction 
within 18. Only T2 covers this teaching unit in different chapters with the unit 
1N2 (Numbers to 20) rather than devoting a unique chapter to teaching 
subtraction within 18. For 1N5, all of the textbooks arrange for it to be taught in 
the second semester of Primary 1. T1 and T2 use two chapters to teach 
subtraction without decomposition. These were devoted to “2-digit number 
minus 1-digit number” and “2-digit number minus 2-digit number” respectively. 
T3 and T4 combine them and presented them in one chapter. 

Furthermore, of all the textbooks, only T4 deals with “Successive subtraction 
(excluding decomposition)” and devotes an entire chapter to introducing this 
type of questions. As for 2N2, all of the textbooks arrange this to be taught in 
the first semester of Primary 2 and use one chapter to introduce subtraction 
within 2 places (including decomposition). Before that, T1 and T2 use one 
chapter for revision of subtraction within 2 places (excluding decomposition) 
whereas T3 and T4 do not have such a revision chapter. The topic ‘Successive 
subtraction’ is also introduced in the same chapter in T1, T2 and T4, whereas T3 
introduces it in an entirely separate chapter. 

 

Textbook Grade 

Primary 1 Primary 2 

 Semester 1 Semester 2 Semester 1 

T1 Chapter 21: 
Subtraction 
within 18 
 

Chapter 14: Subtraction 
within 2 places (2-digit 
number minus 1-digit 
number, excluding 
decomposition) 

Chapter 9: 
1. The relation 

between addition 
and subtraction 

2. Subtraction within 
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Chapter 15: Subtraction 
within 2 places (2-digit 
number minus 2-digit 
number, excluding 
decomposition) 

2 places 
(excluding 
decomposition) 

Chapter 10: 
1. Subtraction within 

2 places (including 
decomposition) 

2. Successive 
subtraction 

T2 No unique 
chapter on 
Subtraction 
within 18 

Chapter 8: Subtraction 
within 2 places (2-digit 
number minus 1-digit 
number, excluding 
decomposition) 
Chapter 9: Subtraction 
within 2 places (2-digit 
number minus 2-digit 
number, excluding 
decomposition) 

Chapter 8: 
1. The relation 

between addition 
and subtraction 

2. Subtraction within 
2 places 
(excluding 
decomposition) 

Chapter 9: 
1. Subtraction within 

2 places (including 
decomposition) 

2. Successive 
subtraction 

T3 Chapter 22: 
Subtraction 
within 18 

Chapter 16: Subtraction 
within 2 places (excluding 
decomposition) 

Chapter 5: Subtraction 
within 2 places 
(including 
decomposition) 
Chapter 6: Subtraction 
within 2 places 
(Successive 
subtraction) 

T4 Chapter 16:  
Subtraction 
within 18 

Chapter 7: Subtraction (1) 
(2-digit number minus 1-
digit number, 2-digit 
number minus 2-digit 
number, excluding 
decomposition) 
Chapter 8: Subtraction (2) 
(Successive subtraction) 

Chapter 5:  
1. Subtraction 

(within 2 places, 
including 
decomposition) 

2. Successive 
subtraction 

Tab. 1: Arrangement of two-digit numbers subtraction content in the textbooks 
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Textbook Example Teaching sequence Number 
of 

examples 

Question Types 

T1 

 

- Use of 
Abacus 

- Number 
line  

- Picture 
for 
counting 

Step 1: Revision on 
subtraction within 
18 & 2-1a 

Step 2: 2-2a 

Step 3: 2-1b 

Step 4: 2-2b 

7 

 

21 

3 

15 

Word problems 

Direct 
computation 
(horizontal and 
column form) 

T2 - Use of 
Abacus 

- Number 
line 

- Picture 
for 
counting 

Step 1: Revision on 
subtraction within 
18 & 2-1a 

Step 2: 2-2a 

Step 3: 2-1b 

Step 4: 2-2b 

10 

 

10 

8 

13 

Word problems 

Direct 
computation 
(horizontal and 
column form) 

T3 - Use of 
Abacus 

- Number 
line 

Step 1: 2-2a 

Step 2: 2-1b 

Step 3: 2-2b 

 

5 

5 

17 

 

Word problems 

Direct 
computation 
(horizontal and 
column form) 

T4 - Use of 
Abacus 

 

Step 1: 2-1a 

Step 2: 2-1b 

Step 3: 2-2b 

2 

4 

13 

Word problems 

Direct 
computation 
(horizontal and 
column form) 

Tab. 2: Strategies for teaching two-digit numbers subtraction in the textbooks 

Notes: 2-1a: Subtract a 1-digit number from a 2-digit number (excluding decomposition); 2-
1b: Subtract a 1-digit number from a 2-digit number (including decomposition); 2-2a: 
Subtract a 2-digit number from a 2-digit number (excluding decomposition); 2-2b: Subtract a 
2-digit number from a 2-digit number (including decomposition). 

From Tab. 2, we can see the arrangement for teaching strategies dealing with 
two-digit numbers subtraction with decomposition. In particular, when we take a 
closer look at the use of the abacus in teaching 2-digit number minus 2-digit 
number, we find some interesting results. T2 and T4 were very similar.  Both 
had more explanations on the process of subtraction by using an abacus 
compared to T1 and T3 (See Fig. 1). They decomposed all the steps for use with 
the abacus and interpreted each step correspondingly. T1 decomposed one tens-
place bead into ten ones-place beads and at the same time circled eight beads to 
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represent the operation of subtracting eight. It also provided an estimation result. 
Only one picture of a column form shows the calculating process in T1, while in 
the other three textbooks (T2, T3, T4), every step of the process is presented in a 
column form. T3 also shows the operation of decomposing 1 ten into 10 ones. 
This was a little different from the others. Firstly, it showed the transformation 
of one tens-place bead into ten ones-place beads; secondly it showed the process 
of subtracting eight. Both steps used the same symbol (crossing out). Students 
may not completely understand that the first step represents subtracting ten. This 
misunderstanding could also arise in T4. At the first step, one tens-place bead 
(orange) was circled and transformed into ten ones-place beads (green) and a 
dotted arrow was used to demonstrate the process. At the same step, nine ones-
place beads were circled to demonstrate the process of subtracting nine. Students 
could conclude only that one tens-place bead is transformed into nine ones-place 
beads.  

Conclusion 

Through the content analysis of these four textbooks, it was found that although 
all of them followed the mathematics curriculum guide to design the teaching 
units, there still exist subtle differences in the structure and content of arranging 
subtraction within 2 places. All the textbooks use abacus to present the 
calculation of numbers together with horizontal and column form. To some 
extent, it is accord with Bruner (1960)’s stages of representation of learning 
theory. However, some textbooks give more explanations than others and 
provide detailed interpretation of the calculating process. Some symbolic 
representations of the calculating process may also lead students to 
misunderstand important elements in this topic.  

As far as the teachers are concerned, it is crucial that they clearly and 
holistically understand the algorithm of subtraction. They should also carefully 
interpret the contents (including the pictures and symbols) in the textbooks. On 
the one hand, they need to consider the risk that students could misunderstand 
the presentation. On the other hand, the teachers should not follow the 
arrangement of the textbooks blindly. They could introduce more real life 
examples and encourage students to carry our more manipulations and have 
hands-on experience which may strengthen their numeracy. Since the 
presentation of the textbooks may lead to confusion or misunderstanding among 
both students and teachers, the ways in which they use the textbooks may also 
be important and this could be a direction for future research. 
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Abstract 

This paper is about an explorative study of the use of classroom assessment techniques 
(CATs) by primary school mathematics teachers in China. Six female teachers and 216 
third-grade students from two schools in Nanjing were involved. The focus was on 
assessing whole number arithmetic. Teachers’ use of the CATs was investigated 
through lesson observations, feedback forms, interviews, and reports. In this paper we 
zoom in on one CAT in which students had to solve division problems without making 
use of the standard division algorithm, being the only procedure they had been taught. 
From the solutions teachers can infer whether their students really had deep 
understanding of the division operation. Only a few students could apply a solution 
strategy without using the standard algorithm. All teachers were initially unsure about 
what information they were supposed to find with this CAT and did not know how to 
deal with the results afterwards. 

Key words: China, classroom assessment techniques, division, student work, 
textbook, whole number arithmetic 

Introduction 

Knowledge about students’ learning is a sine qua non for educational decision 
making. Therefore, assessment – understood as the process in which students’ 
responses to specially created or spontaneously occurring stimuli are used to 
draw inferences about their knowledge and skills (Popham, 2000) – plays a 
crucial role in education. Of the many different types of assessment that can be 
distinguished, formative assessment (Cizek, 2010) has the strongest link to 
teaching. It informs teachers directly about their students’ learning processes so 
they can tailor their instruction to their students’ needs. Formative assessment 
carried out by the teacher is often called “classroom assessment” (e.g., 
Mavrommatis, 1997). In fact, classroom assessment includes all teacher 
activities meant to collect information about their students’ understanding of a 
particular topic. 

To emphasize assessment’s supporting role for teaching and learning, the 
Assessment Reform Group (1999) introduced the term “assessment for learning”. 
This term was an eye-opener for many involved in assessing students’ learning. In 
this new approach to assessment the focus shifts from a mainly test-based approach 
to one where assessment is more integrated with instruction and contains all kinds 
of informal assessment activities carried out by the teacher (Torrance, 2012). 

From the moment that Black and Wiliam (1998) brought the power of classroom 
assessment to raise students’ achievement to a larger audience, more and more 
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research has been conducted on its practical applications. An example is the two-
year project carried out with teachers in the United States (Leahy et al., 2005), in 
which eventually 50 “techniques” to improve teachers’ classroom assessment 
practice were developed. Characteristic of these techniques is that they blur the 
divide between instruction and assessment and are low-tech, low-cost, and usually 
feasible for individual teachers to implement. Another characteristic of these 
“classroom assessment techniques” (CATs), as we will call them hereafter, is that 
these are often well-known activities done by teachers that are now deployed in a 
new way with a specific assessment focus. 

Inspired by the work of Wiliam and colleagues (Leahy et al., 2005; Wiliam 2011), 
a project aiming to improve classroom assessment was started in the Netherlands. 
Recently, two consecutive small-scale studies were conducted in Dutch primary 
schools to investigate the feasibility and effectiveness of the CATs in mathematics 
education (Veldhuis and Van den Heuvel-Panhuizen, 2014). In these studies, CATs 
were used to help teachers quickly find information about students’ abilities in 
whole number arithmetic and provide indications for further instruction. Two 
different formats were used: whole-classroom response systems directly informing 
the teacher and worksheets that the teacher has to check after the lesson. Results 
from the studies showed that using CATs had a positive effect on students’ 
learning. The mathematics achievement of students who were in classes where 
CATs were used improved considerably more than that of students from a national 
norm sample. Moreover, teachers and students reported enjoying the CATs and 
finding them useful. The present paper reports on an explorative study similar to 
the Dutch studies, but carried out in China. 

In China, which has a long history of examination-oriented education, an assessment 
reform in basic education was kicked off by the Ministry of Education as part of the 
New Curriculum Reform in 2001. Therefore, during the last decade much attention 
has been given to putting assessment into the hands of teachers and help them 
perceive and practice the idea of assessment supporting teaching and learning 
(Zhang, 2009). However, despite this effort it was found that such assessment is only 
weakly relevant to teachers (Brown et al., 2011). Also, it seems that mathematics 
teachers in primary school in China tend to equate classroom assessment with their 
reactions to students’ different responses, and they do not include questions to reveal 
students’ thinking (Zhao, Van den Heuvel-Panhuizen and Veldhuis, in preparation). 

The present study explored whether Chinese primary school teachers’ classroom 
assessment practice in mathematics education can be improved by applying 
CATs. Similar to the Dutch project the focus was on CATs to be used in 
teaching whole number arithmetic in the second semester of Grade 3; in 
particular the focus was on the standard algorithm of division. For this 
mathematical topic a package of CATs meant for two and a half weeks of 
teaching was designed by the authors of this paper. The package was tried out in 
February–March 2014. In this paper only part of the study is discussed. 
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Materials and Methods 

Six female third-grade mathematics teachers (age M = 32; SD = 7.23 years) and 
216 students from two primary schools in Nanjing tried out the CATs. Both 
schools are located in an urban district. School I, of which two teachers 
(Teachers A and B) and 60 students participated, has an average reputation. 
School II, of which four teachers (Teachers C, D, E and F) and 156 students 
took part, has a good reputation for its quality of education and the facilities in 
this school are better than those in School I. All teachers used the 苏教版 
Textbook published by Jiangsu Education Publishing House. 

Because the CATs should be integrated in the teachers’ teaching practice there 
had to be a close fit between the CATs and the mathematics content provided by 
the textbook. This implied that we could not simply take over the CATs we had 
developed for the Dutch project. In the Chinese textbook, students start to learn 
multiplication and division in the first semester of Grade 2. After learning the 
basic knowledge and skills of multiplication and division (the multiplication 
tables), students already learn the algorithms for multiplication and division near 
the end of the first semester of Grade 2. This means students become familiar 
with the standard digit-based algorithmic vertical notation of multiplication and 
division from a very early age on. The teaching/learning trajectory of these 
algorithms consists of problems with a progressively increasing number of digits. 
At the beginning of the second semester in Grade 3 the students have arrived at 
solving division problems in which three-digit numbers have to be divided by 
one-digit numbers (see Tab. 1 for the content of the Chapter 1 on division that is 
dealt with in Grade 3 in February, 2014). 

Lesson Type Topic Example problems 
1 New Quotient is a three-digit number 600÷3 = 200   986÷2 = 493 
2 New Quotient is a two-digit number 312÷4 = 78  
3 Repetition of Lesson 1 and 2  
4 New 0 in dividend (and quotient) 0÷3 = 0   306÷3 = 102 
5 New 0 only in quotient 432÷4 = 108 
6 New Two-step division problem There are two bookshelves 

with four layers. When there 
are 224 books in total, how 
many books are on one layer? 

7 Repetition of Lesson 4, 5 and 6  
8 Repetition of the whole chapter  

Tab.1: Lesson plan for teaching the standard algorithm for division of three-digit 
numbers divided by one-digit numbers in Chapter 1, second semester of Grade 3 

When designing the CATs for this chapter, two requirements were taken into 
account. The CATs should be linked to the lesson objectives and they should 
provide teachers with information about their students’ learning to help them to 
reach a deeper understanding than just knowing whether or not students have 
answered a problem correctly. In total, for this chapter 13 CATs were developed. 
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The CAT of our focus in this paper is Solving division problems without standard 
algorithm. This CAT was planned for Lesson 8, when the students have had 
extensive practice in using the standard algorithm. Normally, at this stage, most 
students are able to carry out the algorithm and solve division problems without 
making mistakes. However, this does not automatically mean that they have a 
deep understanding of the division operation. It is also possible that students just 
apply the procedure in a mindless, mechanistic way. To make decisions for 
further instruction teachers need to know how stable students’ understanding is. 
When students only have superficial knowledge, they might get in trouble when 
they have to use the division algorithm with, for example, decimal numbers. 

The main idea behind this CAT is to reveal whether students have a clue on how to 
solve a division problem without using the standard algorithm. Therefore teachers 
provided the students with a worksheet containing four division problems – 
468÷2=, 594÷6=, 480÷3=, and 816÷4= – presented in horizontal number sentences. 

To help the teachers understand the purpose and procedure of the CATs, four 
meetings were organized in which the CATs were discussed. To collect data about 
the use of the CATs, all of one teacher’s lessons in which she used the CATs were 
observed and recorded, and after each lesson she was interviewed. The other five 
teachers were observed and video recorded for at least one lesson per week. In the 
end, all teachers wrote a short report about whether and why they liked or disliked 
the CATs. 

Results 

According to the teachers’ reports, the students were given at most 10 minutes 
for solving the four division problems. When the worksheets were handed to the 
teachers, they quickly scanned students’ solutions and their first conclusion was 
that the majority of the students answered most of the division problems 
correctly and that most students gave an explanation for how they solved them. 

As the teachers reported, 468÷2 was not difficult for the students. But instead of 
solving the problem without using the algorithm, as was demanded, more than 
half the students did in fact use the standard algorithm. While the students’ 
notations in horizontal number expressions suggest that they did carry out a 
number of sub-divisions based on splitting the dividend, what they really did 
was a step-by-step processing of digits, which is similar to an algorithmic 
approach (see Tab. 2a). 

Although both students whose work is shown in Tab. 2a came to the correct 
answer, one might wonder whether they really have insight in the division 
operation. In contrast to this way of working, a solution that gives a better 
guarantee for having insight is using the number values of the dividend by 
splitting 468 into 400, 60, and 8, making three divisions, and adding the results. 
This solution is shown in Tab. 2b. 

However, the real proof of having a good understanding of the division 
operation was delivered by 594÷6. 
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Tab. 3c), indicating that they have a notion of what is going on when you have 
to divide a number. Notwithstanding this, their solution was still based on the 
standard algorithm. Teachers A and B discovered that many of their students 
solved the problems in this way, which they considered as “mixing up different 
strategies and notations”. Facing these –what they called– “seemingly right but 
wrong expressions”, they felt that they did not know how to explain to their 
students what they did wrong. 

The students who split the dividend in two or more whole numbers and divided 
them each and expressed the division in a horizontal notation (see Tab. 3d) 
really applied an alternative for the standard digit-based algorithm. However, a 
few students came up with rather far-fetched splits which made the teachers 
unsure about how to react to these solutions. 

Despite this uncertainty, the teachers were quite sure that the student work that 
best revealed students’ understanding of the division operation is the use of a 
smart solution, for example related to 600 to solve 594÷6 (see Tab. 3e). 
However, only about one or two students per class came up with such a solution. 
Teacher B was surprised that in her class two students, whom she considered as 
average (or even weak) students, now used such a smart strategy. In the teacher 
report Teacher B wrote: 

“[This classroom assessment technique] expands students’ thinking. They are 
supposed to command how to use the algorithm, but that should not be their only tool. 
They need to think about the features of particular division problems in order to 
calculate flexibly, rather than immediately think about the algorithm to solve all 
problems.” (Teacher B, report) 

All six teachers found it interesting to see their students’ thinking. All of them, 
however, were also initially unsure about what information they were supposed to 
find, and three reported that even when they saw the students’ responses they were 
still doubtful. In the interviews they also made it clear that they did not know how 
to deal with the results. As the main reasons they mentioned not being accustomed 
to asking students such questions or thinking about such questions themselves. 

Conclusions 

In this study we collected Chinese primary school mathematics teachers’ first 
experiences with using CATs. Based on lesson observations, feedback forms, 
interviews, and teacher reports we can conclude that CATs can enrich Chinese 
teachers’ assessment practice. All teachers agreed that the questions asked in the 
CATs were helpful to get to know more about students’ learning, because the 
questions focus on students’ mathematics understanding rather than on their skills 
or the accuracy of their calculations.  

The CATs also gave teachers insight in what their students should learn and how 
to teach it. A first indication is that the teachers tried to redesign their instruction 
plan to assimilate the CATs into their lessons. Another sign is that some teachers 
taught their students to solve the CAT problems before using them in class; they 
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probably wanted to prevent their students’ bad performances in the CATs. 
Remarkably, some teachers even integrated parts of the characteristics of the 
CATs into their own teaching. This was, for example, illustrated by the fact that 
a teacher provided questions focusing on strategies rather than answers. In 
general, the use of CATs had a greater effect on instruction before class and in 
class, than after the class in which the CATs were used. In this sense, it looks 
more like teachers tried to merge the CATs with their previous instructional plan 
and use them as extra exercises than considering them as a turning point where 
instruction could be changed. 

Notwithstanding, the teachers’ reactions were overall positive; the teachers liked 
the CATs and considered them useful. So we think that CATs indeed can 
contribute to the improvement of Chinese teachers’ assessment practice and 
consequently maybe also of their teaching practice in mathematics education. 

Discussion 

Of course, these conclusions should be taken with prudence. Only six teachers in 
only one grade and only one mathematical topic were involved. Further research 
is necessary to come to robust findings and generalisation. Moreover, despite the 
positive reactions, one might doubt whether the teachers really grasped the 
purpose of the CATs. In the case of the CAT Solving division problems without 
standard algorithm, it was remarkable that the first thing the teachers did was to 
check the correctness of the answers. This suggests that the teachers did not 
really see the CAT as a gateway to assess students’ deep understanding of 
division. The fact that the teachers did not know how to react to their students’ 
solutions, which they mentioned clearly in the interviews, can also be 
considered an indication of this. 

What the students’ solutions and the teachers’ reactions also pointed at is how 
much mathematics education differs in different countries, even when it 
involves a rather straightforward topic such as division in the domain of whole 
number arithmetic. In this way the present study did not only give us 
information about whether classroom assessment practice in Chinese primary 
school mathematics classes can be improved by applying CATs, the study also 
brought another finding which we were not looking for at first to the fore. When 
starting this study, of course we were aware of the fact that students in China 
follow a teaching/learning trajectory for whole number arithmetic that starts 
with teaching students the digit-based algorithms from a very early age on. 
Therefore, we thought it would be helpful for the teachers to check whether their 
students can (still) solve division problems without using the standard algorithm. 
In the Netherlands, such a CAT would not be revealing for teachers because the 
Dutch trajectory for learning division is heavily grounded in whole-number-
based calculation. So Dutch students will be quite able to not use the standard 
algorithm. When trying out this CAT in China, we did not realize that it would 
be virtually impossible for Chinese students to show their understanding of the 
division operation without using the fixed recipe of the digit-based algorithm. 



ICMI Study 23                                                                        Theme 4, Zhao et al., Two-digit Number Subtraction 

503 
 

Even more surprisingly, teachers also appeared to not comprehend the point of 
letting students try to use different solution strategies than the standard 
algorithm and had trouble in identifying whether they had used a different 
solution strategy or not. 

In this way the CATs were not only an eye-opener for the teachers who were 
involved in our study, but also for us as researchers. 
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Introduction  

Broad concerns remain within mathematics education about mathematical areas 
being seen predominantly as discrete and bounded, rather than highly inter-
connected, with these viewpoints highlighted across teachers, students and 
textbooks in the literature (e.g. Sowder et al., 1998). While the focus of this 
ICMI study is on whole number arithmetic, this theme explores whole number 
in terms of its interrelationships with the broader field of mathematics.	 	 A	 range	
of	 motivations	 drives	 interest	 in	 interrelationships	 between	 topics:	
mathematicians’	 emphasis	 on	 the	 power	 of	 generality,	 and	 the	 desire	 for	
mathematical	 virtues	 such	 as	 flexibility,	 efficiency	 and	 elegance	 within	
problem	solving.	A	key	driver	 for	attention	 to	broader	connections	comes	
from	writing	within	the	 field	 of	whole	 number	 arithmetic.	Much	has	been	
written about the ways in which this field has moved beyond a sole emphasis on 
counting and arithmetic calculations (Anghileri, 2006), to emphasise attention to 
reasoning, structure and relation (Schifter, 2011).	

The papers accepted for this theme address connections in a range of ways. 
Some look at using ‘other’ mathematical contexts as a route into well-founded 
and non-limiting ways of understanding whole, and rational, number.  Others 
use work in the context of whole number to lay the ground for understandings of 
algebraic thinking, and other topics. Connections between topics also feature 
within considerations of curricula and pedagogy. In this introduction, we cluster 
the papers in these proceedings under summary headings that point to current 
areas of interest in the field, and provide brief comments on their foci. 

Whole number arithmetic and multiplicative reasoning 

An important antecedent for critiquing the traditional base of whole number 
arithmetic in counting lies in the approaches developed by Vasily Davydov and 
his colleagues. They proposed measuring activities as much more suitable bases 
for the acquisition of whole number understandings, with the benefit that both 
additive and multiplicative reasoning led naturally from situations structured in 
different ways, and rational numbers did not require the significant 
‘reconceptualisation of number’ (Schmittau, 2003) that was necessary for 
children who had been inducted into (whole) number through counting 
activities. Related to this debate, some socioculturally oriented studies also note 
issues raised by the ‘isolation’ of representations within mathematical domains – 
e.g. the number line is increasingly used for whole number representation, but is 
largely discarded in the move to rational number (Saxe, Diakow and Gearheart, 
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2013), where part/whole diagram representations which are often related to 
discrete number quantities rather than continuous notions of number, continue to 
predominate. 

A cluster of papers within this theme focused on aspects related to this issue. 
Venenciano, Slovin and Zenigami reported on a study located in Hawaii that 
drew directly on Davydov’s measurement-based approach, but with specific 
attention to the ways in which place value understandings could be developed. 
Replacing the more traditional place value-based counting activities with 
measuring activities, they share excerpts of learner working that indicate place 
value understandings developing from intial attention to comparing quantities, 
that grow into awareness of the need for intermediate ‘regrouped’ measures for 
dealing with larger multiples of the unit that form the foundations for place 
value concepts.  

Dole, Hilton, Hilton and Goos, and Larsson and Pettersson both present studies 
located in the problem of the inadequate experience that many students have in 
distinguishing between additive and multiplicative situations. Finding gaps in 
teachers’ awareness of the breadth and sequence of proportional reasoning 
related ideas, Dole et al describe a curriculum analysis undertaken in Australia 
to broaden understandings of the scope, sequence and connections among topics 
that draw on proportional reasoning across the early grades through to grade 9. 
Larsson and Pettersson discuss the features noticed by Swedish learner pairs 
working on mixed sets of additive and multiplicative co-variation problems. The 
authors note that stronger performance was associated with pairs who were able 
to infer distance relationships from information based on speed relationships. 
Weaker performance, in contrast, was associated with reliance on single 
procedures and attention to superficial contextual differences in problem settings 
rather than on distance and speed differences.  

Chen, van Dooren, Jing and Verschaffel explore relationships between task 
types and Chinese learners’ performance on learning and assessment tasks on 
multiplication and division by rational numbers, and find some unexpected 
results: associations between computation/problem-posing learning task-based 
performance and assessment task performance and lack of associations between 
problem-solving task performance and assessment task performance.  

Whole number arithmetic and early algebra 

A selection of papers focused their attention on a range of aspects related to 
connections between whole number and algebraic thinking. These aspects 
included attention to representation, structure and generalisation. Mellone and 
Ramploud discuss their mathematical analysis of a representation commonly 
used in Russian and Chinese primary schools in teaching additive relation 
structure with young learners – the pictorial equation. In taking up and adapting 
this tool for use with somewhat older primary school Italian learners, the authors 
analyse the affordances seen in children’s working through their ‘cultural tool 
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transposition’. The authors note increased visibility of structural and algebraic 
approaches to additive relation situations, contrasting with the numerical 
approaches that they describe as more traditionally predominant. Xin uses an 
approach based on modelling the ‘grammar’ of additive and multiplicative 
situations with children with learning difficulties in mathematics, through 
developing attention to the underlying algebraic structure of these situations. 
Results point to substantial improvements in performance through this 
pedagogic approach. 

Comparing 5th and 6th grade Israeli students’ working with visual-pictorial 
pattern representations and numerical pattern representations, Eraky and 
Guberman share data showing better generalisation performance when working 
with numerical forms. Noting that it appears to be ‘easier’ for children to 
generalise from numerical representations, the authors emphasise the need to 
push for more complex structural generalisations in these settings, while 
pointing also to the presence of multiple, rather than single stage, production of 
these generalisations. 

Extending the lineage of studies focused on early algebra (Lins and Kaput, 
2004), Ferrara and Ng present an approach to understanding the relationships 
amongst human, pattern and mathematics based on the idea of ‘assemblage’. 
This refers to learning as an output of a distributed notion of agency that works 
between body and material. Analysing data based on two grade 3 Italian learners 
working with a figural pattern task, the authors highlight the insights gained on 
the role of pattern settings and whole number arithmetic awareness within the 
development of algebraic thinking. 

Whole number arithmetic competence and language ability 

Moving outside mathematics altogether, Zhang, Meng, Hu, Cheung, Yang and 
Jiang present a quantitative investigation of the extent to which early language 
ability correlates with Chinese kindergarten children’s informal (e.g. counting) 
and more formal mathematical skills (e.g. addition and subtraction). While 
internationally, much attention has been focused on the ways in which language 
ability interacts with mathematical ability, this paper finds language ability more 
strongly associated with informal mathematics performance than formal 
mathematics performance. Zhang notes that this suggests nuances in the role of 
language proficiency in early number learning, with differential relationships on 
informal and formal mathematics. Findings such as these, emanating as they 
frequently do from non-English/non-western language settings, raise critical 
questions about the breadth of application of advice on inclusion of everyday 
contexts as an underpinning support for mathematical sense-making (e.g. 
Carpenter et al., 1999). 

Whole number arithmetic and teacher education 

A small cluster of papers considers issues related to teacher development 
beginning in the context of whole number arithmetic. Beckmann, Izsák and 
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Ölmert address the issue of ‘isolation’ of topics by building through from 
definitions and representations of multiplication into teachers’ working with 
proportionality. Venkat presents data indicating that representational approaches 
in the context of whole number scaling up can simultaneously support teachers’ 
mathematical learning and their mathematics teaching. Concerns with primary 
mathematics teacher development are at the fore of Baldin, Guimarães, Mattos 
and Mandarino’s paper. They share data on an in-service teacher development 
model based on pedagogic content knowledge frameworks that was used to 
develop teachers’ knowledge and practice related to whole number arithmetic. 

Questions for discussion in the working group 

The papers collated within this theme start to address a number of the guiding 
questions that were outlined in the Discussion Document that framed the work 
of this study. For example, a number of the papers outlined in this introduction 
address questions related to whether (and how) whole number understandings 
might be accessed and supported via other areas of mathematics. Avenues 
through which whole number arithmetic learning might be supported in teacher 
education are also represented in a cluster of papers in the collated set. This 
leads us to identify two broad questions that can guide the working group 
discussions, with a view to deepening and extending our collective thinking: 

(1) Can WNA understandings be accessed and supported via other areas of 
mathematics? If so, what are potentially useful approaches? 

(2) How can WNA learning be supported within teacher education across 
different countries? Are there commonalities in approaches? And what 
are the cultural specificities? 
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A BRAZILIAN PROJECT FOR TEACHERS OF PRIMARY 
EDUCATION: CASE OF WHOLE NUMBERS 

Baldin, Yuriko Y(1), Guimarães, Luiz C(2), Mattos, Francisco R(3),     
Mandarino, Monica C(4) 

(1) UFSCar, (2) UFRJ, (3) UERJ, (4) UNIRIO, Brazil 

Abstract 

During the years 2006-2009, the Ministry of Education of Brazil carried out a 
countrywide professional development project aimed at teachers of primary education, 
with focus on elementary mathematics.  The authors of this paper were instrumental in 
the development, especially of the topics that focused on the arithmetic of whole 
numbers. The design of the didactic material has stressed the use of concrete materials 
and the problem solving activities to work out the concepts of decimal and place value 
representation, as well as the meaning of the operations/algorithms in word problems. 
The activities considered the integrated dimensions of the knowledge for teaching of 
in-service teachers.  

The paper discusses the activities of the project that aimed to development of teachers’ 
capacity to improve the learning environment in their classrooms.  

Key words: decimal representation of whole numbers, interplay between positional 
abacus and place value chart, ludic approach to number line of whole numbers, 
problem solving, teachers learning through practice  

Introduction  

In Brazil, the Basic Education comprises 9 years of study for children of 6 to 14 
years old.  Although the law ensures the access to the school system for all, the 
quality of students´ achievement in mathematics, especially in arithmetic of 
whole numbers, falls far below the educational goals stated in official 
documents. One clear constraint to the improvement of the quality of students’ 
knowledge is the education system of teachers for first years of primary 
education, precisely the 1st to 5th grades (children of 6 to 10 years old). By law, 
teachers for these grades are supposed to have a degree in 3 to 4 year course in 
Pedagogy, with a curriculum that rarely offers more than 60 hours of 
mathematics content.  Worse still, many teachers of this level are not graduated. 
So, the adequate knowledge about content, didactics or training in teaching are 
not prevalent, especially in mathematics. 

Therefore, initiatives involving mathematics educators and university 
researchers have been trying to develop professional training programs for 
primary level teachers in order to improve the quality of educational results. The 
project “Pro-Letramento in Mathematics” is one of the initiatives supported by 
Ministry of Education in Brazil. The authors of this paper have been part of this 
project as main researchers during the period 2006 – 2009. 

The project grounded the design of the material for teachers on the 
reinforcement of specific content knowledge, developing it through didactical 
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materials and activities that teachers could replicate directly with their students. 
This approach to the activities considered the framework of the pedagogical 
content knowledge - PCK (Shulman, 1986), in particular the dimension of the 
“knowledge for teaching” that includes the aspects of “teachability” (p. 9). In 
other words, the project activities have aimed at the development of “knowledge 
for teaching” of in-service teachers through the integration of the categories of  
knowledge pointed by Shulman (1986, p.9): content (subject matter knowledge), 
pedagogy (knowledge of different strategies of teaching and ways of learning of 
students) and curriculum (knowledge of instructional materials and their use).  

Studies like (Stigler and Hiebert, 1999), (Ma, 1999), (Neubrand et al., 2009) 
show that the development of teachers’ knowledge for teaching through practice 
and in practice can be one strategy to diminish the gaps as faced in Brazil. Ma 
(1999) states:  

“… the improvement of teacher´s knowledge (is not regarded) as necessarily 
preceding improvement of students´ learning. … both should be addressed 
simultaneously, and that work on each should support the improvement of other” 
(p. 143) 

This paper focus one part of the project “Pro-Letramento in Mathematics” 
namely the content of whole numbers and basic operations, under the 
perspective that the professional development of teachers can be realised 
simultaneously with the use of their results, with the learning of teachers 
enhanced by the learning of their students. The paper presents examples of the 
activities, actually taken by participant teachers to their classrooms as part of 
mandatory task within the project.  

Materials and Methods  

The project  Pro-letramento  consisted in a political action of public education, 
implemented in many federation states of Brazil, in a partnership between the 
Ministry of Education and Regional Secretaries of Education. The books 
(Belfort and Mandarino, 2008) presented activities for the learning of teachers 
on the conceptual ideas of Whole Number Arithmetic together with a variety of 
instructional materials with methodological orientation about their use with their 
students. Between the course sessions, the participant teachers had the task of 
reproducing the activities in their practices. Other important task of the 
participants was the constitution of a group of study in their community, in 
which each participant would act as tutor and supervisor to local school teachers 
who would replicate the activities and lessons in their classrooms. This aspect of 
the project has had the multiplication effect to spread among the local schools 
the content, the pedagogical methodologies and the instructional materials.  

The teaching approach of whole numbers 

The primary goal of the teaching material on whole numbers was the 
understanding of the decimal representation of whole numbers. As hands-on 
activities, the teachers experimented the logic of teaching materials, acting as if 
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The interpretation of the multiplicative principle of the counting procedure in 
problems about the number of event possibilities develops the combinatorial 
thinking since 3rd grade, as part of curriculum about multiplication. Problems 
like the following were proposed using worksheets with figures in a ludic 
activity that introduced the representation of a tree of possibilities in the context 
of multiplication. The following example worked 2 x 3 as well as 3 x 2. 

“The balls of a shop A have two different sizes, Big and Small, and three 
different colors, Yellow, White and Red. How many different types of balls can I 
find in the shop A?” 

To enhance the meaningful learning of operations, the “actions” interpreted 
from the verbs and the words of the problem texts have been studied.  Some 
words often found in the context of Addition and Subtraction are: to put together 
(to join), to add, to compare, to take out, to complete, to be left, etc. However, in 
the context of a given problem, they are not to be taken blindly as key words, 
and even teachers may be caught by examples like the one shown below. 
Helping children (and teachers) to read and to interpret the word problems was 
one of advances we could observe, aggregating correct meanings to the 
algorithms to be performed as strategy of solution and to the validation of 
answers.  

Examples like “Maria has 12 toys more than Paulo. Both together have 20 toys. How many 
toys are Paulo´s?” have been investigated through the steps of Problem Solving 
Methodology, with special attention to the interpretation of the given data that 
yielded the validation of the solution. Teachers first considered this kind of word 
problem very difficult, many claiming that the word “more” in the text could be 
a distractor. A careful interpretation of the context brought confidence to 
teachers who, as tutors to their group of study, could orient their colleagues to 
work the problem with children. 

Discussions and conclusion 

We have described some ideas so to support the claim that it is possible to 
develop a course to capacitate the teachers, aiming at the learning of 
mathematics content integrated to the methodologies of teaching. Although the 
project collected some evidences of the progress in the development of teachers’ 
knowledge for teaching, the authors observed some issues that accompany 
projects of this kind.  

A critical observation concerns the methodology adopted in the project. The 
researchers must be wary of the possibility of participant teachers occasionally 
being “blind by procedure”, for instance, in the case of playing a game with a 
rope as a model of the number line, to understand the algorithm of division. To 
divide 29 by 7, we heard teacher’s complaints about “indiscipline of students” 
who would not make the full four “seven league steps”, but proceed directly to 
the position 28, recognising 4 as the quotient and 1 as the remainder! This is an 
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example of the danger of “enticement by the instructional material” by teachers 
who might feel well in conducting a lesson “about the material” through 
“procedure to manage the material”, shadowing the conceptual learning of 
mathematics.  

The fact that the project has been carried out by different teams of researchers in 
different States with diverse socio-cultural backgrounds allowed rich analysis of 
the outcome in detecting the challenges faced in different regions. Belfort and 
Guimarães (2008) have pointed out examples of possible adverse constraints: 
the choice of tutors who are in direct contact with the teachers in the chain of 
collaborations inside the schools as well as the level of commitment and good 
will of local authorities that can be crucial. On the other hand, even under 
unfavourable conditions, when the meetings of tutors with local tutees can be 
carried out with some degree of success, the changes shown in children´s 
achievement and in the professional attitude of teachers are remarkable.  

In 2005, the Ministry of Education in Brazil made a decision to test every 
student at the end of 5th, 9th grades and 3rd year (12th grade) in high school. In 
2008, the data comparing the results of 2005 and 2007 were published for each 
of the states. Among the geographic regions in Brazil, the north-eastern region 
had shown very poor results in 2005. Therefore, the Pro-Letramento started in 
2006 targeting four states of this region: Ceará, Piauí, Maranhão and Rio Grande 
do Norte. The Fig. 5, elaborated from the official data available in 
(//portal.inep.gov.br/basica-levantamentos-acessar), shows the percentual rate of 
growth between the average in mathematics test of students in 2007 compared to 
the results in 2005 of all the states of the north-eastern region. 

It is interesting that the highest growth in students’ average of 5th grade happens 
precisely in the four states that worked the project, the greatest increase rate 
being observed in Piauí. The result is compatible with a positive effect of the 
project. Although the project was not geared towards training for this test, since 
the test for 5th grade was strongly based in arithmetic, it is our feeling that the 
participant teachers of the project helped to focus their teaching strategies on 
whole number arithmetic, so the result of the test reflected their students’ results. 

It is also noteworthy that the results for 9th grade in the same states are not good, 
and even worse for the end of 12th grade of Basic Education. This analysis is 
further indication that a continuous attention to professional development of 
teachers is required. The Pro-Letramento material is currently at disposal at 
(//portal.mec.gov.br/), accessible to any educational systems, showing that the 
initial conception of the project is resilient enough to be useful in diverse 
backgrounds and circumstances, but the impact on educational results must be 
assessed continuously. 
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Fig. 5: Percentual growth of improvement in students´ average 2007 compared to 2005 

As a further indication of the basic effectiveness of the material and 
methodology adopted in teaching material, the first author implemented during 
the period 2007- 2009 strategic courses for development of in-service primary 
school teachers in Bolivia, with evidences of contribution to their professional 
demands. The Pro-Letramento material has shown itself quite adequate to be 
disseminated. Even in contexts it was not initially meant for, as in initial courses 
for prospective teachers, the materials proved to be accessible and suitable.  
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FROM MULTIPLICATION TO PROPORTIONAL RELATIONSHIPS 

Sybilla Beckmann, Andrew Izsák, I. Burak Ölmez  

University of Georgia, USA 

Abstract 

This article summarizes a recently developed mathematical analysis that connects a 
quantitative definition of multiplication to 2 quantitative perspectives on proportional 
relationships. It then uses results of that analysis to identify 4 methods for solving 
missing-value problems. Finally, it presents results from an in-class test administered 
to 26 future middle grades mathematics teachers taking a content course on algebra 
that developed the 2 quantitative perspectives on proportional relationships. Results 
demonstrate that the 4 methods can be accessible to future teachers, suggesting that 
consistent and explicit use of a quantitative definition of multiplication can support 
teachers’ developing proficiency with proportional relationships between quantities.  

Key words: definition, multiplication, proportional-relationship, ratio  

Introduction  

The web of interconnected topics that include whole-number multiplication and 
division, fractions, ratios and proportional relationships, and others form one of 
the most central strands of school mathematics. At the same time, it is well-
known that these topics present perennial challenges to many students and 
teachers (e.g., Lamon, 2007). In this paper, we offer preliminary evidence that 
future middle grades mathematics teachers can use a quantitative definition of 
multiplication as a key resource for developing multiple methods for solving 
missing-value proportion problems and for developing expressions and 
equations that relate two quantities in a proportional relationship.  

Although there is a large literature on ratios and proportional relationships (see 
Lamon, 2007, for a review), empirical research has focused primarily on 
students. The relatively small number of empirical investigations into teachers’ 
reasoning about proportional relationships suggests that their difficulties are 
often similar to students’ difficulties.  

Among other examples, teachers can have difficulty coordinating two quantities 
in a proportional relationship (e.g., Orrill and Brown, 2012) and distinguishing 
missing-value problems that describe directly proportional relationships from 
ones that do not (e.g., Cramer, Post, and Currier, 1993; Fisher, 1988). When 
solving proportion problems, teachers often rely on rote methods such as cross 
multiplying (e.g., Fisher, 1988; Harel and Behr, 1995; Orrill and Brown, 2012) 
and searching for key words (Harel and Behr, 1995).  

Materials and Methods 

The data for this paper come from a larger, on-going study in which we are 
examining the ecology of future middle grades (grades 4–8) mathematics 
teachers’ multiplicative reasoning. In fall 2014, 24 future teachers completed an 
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arithmetic course that used a quantitative definition of multiplication as a 
foundation for all subsequent topics related to multiplication, including 
fractions. In the spring semester of 2015, 23 of those future teachers and four 
additional future teachers completed an algebra course that used the same 
quantitative definition of multiplication to develop two perspectives on 
proportional relationships between two co-varying quantities. Both courses were 
taught by the first author. During class sessions, future teachers solved problems 
in small groups and then shared methods during whole-class discussion. Future 
teachers’ reasoning was intentionally scaffolded by regular reminders to use the 
quantitative meaning for multiplication and the Common Core State Standards 
(Common Core State Standards Initiative, 2010) definition for a fraction, which 
is based on iterating a unit fraction. Data for this paper include the future 
teachers’ written artefacts (e.g., homeworks and tests), lesson plans, and notes 
from the algebra course.  

We address two research questions: 

Research Question 1: What are methods for reasoning with a quantitative 
definition of multiplication to solve missing-value proportion problems? 

Research Question 2: Can future middle grades mathematics teachers use a 
quantitative definition of multiplication to construct viable arguments explaining 
solutions to missing-value proportion problems? 

Two perspectives on proportional relationships 

We follow Beckmann and Izsák (2015) in taking a quantitative definition of 
multiplication as a foundation for topics related to multiplication, including 
proportional relationships. Consider the multiplication equation 

MN = P (1) 

We interpret the multiplier, M, as a number of groups, the multiplicand, N, as 
the number of units in each/one of those groups, and the product, P, as the 
number of units in M of those groups. It is well-known (e.g., Greer, 1992) that 
the different roles played by the multiplier and multiplicand lead to two types of 
division––partitive, sharing, or how-many-units-in-each-group division and 
quotitive, measurement, or how-many-groups division. Beckmann and Izsák 
(2015) explained that the different roles played by the multiplier and 
multiplicand also lead to two distinct perspectives on proportional relationships. 
We briefly summarise these two perspectives on quantities in a fixed A to B 
ratio, where A and B are positive numbers.   

The multiple-batches perspective 

Given two quantities and measurement units for each, we view A units of the 
first quantity and B units of the second quantity as forming a composed unit 
(e.g., Lamon, 1993, 1994; Lobato and Ellis, 2010) or a “batch.” From this 
perspective, the original batch (A units of the first quantity and B units of the 
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second quantity) are fixed multiplicands, and the multiplier varies. More 
precisely, the proportional relationship consists of all pairs (rA, rB), where r 
can be any positive real number. Fig. 1 illustrates this perspective, which has 
been well-studied among children.   

 
Fig. 1: The multiple-batches perspective 

The variable-parts perspective 

Given two quantities whose size can be described with the same measurement 
unit, we view a “part” as a group that can vary in size. From this perspective, 
one quantity consists of A parts and the second consists of B parts, where all 
parts of both quantities contain the same number of measurement units. This 
time A and B are fixed multipliers and the multiplicand varies with the number 
of measurement units in each part. More precisely, the proportional relationship 
consists of all pairs (Ar, Br), where r can be any positive real number. Fig. 2 
illustrates this perspective, which has been largely overlooked in past research 
(Beckmann and Izsák, 2015).   

 
Fig. 2: The variable-parts perspective 

Solving proportion problems with a quantitative definition of multiplication 

In this section we illustrate four different methods for reasoning with a 
quantitative definition of multiplication to solve missing-value proportion 
problems. We illustrate the four methods with the following Fertilizer Problem: 

Fertilizer Problem: A type of fertilizer is made by mixing nitrogen and 
phosphate in an 8 to 3 ratio. If you use 35 kilograms of nitrogen, how many 
kilograms of phosphate will you need to make the fertilizer?  

Two of the methods we will illustrate take a multiple-batches perspective and 
two take a variable-parts perspective. For each method, we express the solution 
as a product consistent with order of the multiplier and multiplicand in equation 
1. A key point is that each method has a counterpart in the other perspective that 
reverses the factors in the product. Therefore, reasoning about proportional 
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relationships from the two perspectives allows for close quantitative reasoning 
that distinguishes between numbers of groups and their sizes in multiplication. 
In this section, we present proficient explanations. Empirical results we present 
later will demonstrate that the future teachers could use a similar range of 
methods on a written test. 

The “how many batches” method (multiple-batches perspective) 

With this method we view 8 kg nitrogen and 3 kg phosphate as making 1 batch 
of fertilizer (see Fig. 3). Because we need to use 35 kg of nitrogen, we can ask 
how many batches of 8 kg are in 35 kg, and we can formulate this question with 
equation 2: 

(? batches)(8 kg nitrogen per batch) = 35 kg nitrogen (2) 

The answer to this how-many-groups division problem is 35/8 batches (or 4 3/8 
batches). Those 35/8 batches each require 3 kg of phosphate, therefore 
multiplication equation 3 expresses the total amount of phosphate needed: 

(35/8 batches)(3 kg phosphate per batch) = (35/8)3 kg phosphate (3) 
 

 
Fig. 3: The how-many-batches method (multiple-batches perspective) 

The “how much in one part” method (variable-parts perspective) 

With this method we view the fertilizer as 8 parts nitrogen and 3 parts phosphate 
(see Fig. 4). Because we need to use 35 kg of nitrogen we can ask how much 
nitrogen will be in each of the 8 parts, and we can formulate this question with 
equation 4: 

(8 parts)(? kg nitrogen per part) = 35 kg nitrogen (4) 

The answer to this how-many-units-in-each-group division problem is 35/8 kg 
(or 4 3/8 kg). Because all parts are the same size, the 3 parts of phosphate each 
require 35/8 kg. Therefore, equation 5 expresses the total amount of phosphate 
needed: 

(3 parts)(35/8 kg phosphate per part) = 3�(35/8) kg phosphate (5) 

Note that the multiplier and multiplicand in equation 2 and equation 4 are 
reversed and that the multiplier and multiplicand in equation 3 and equation 5 
are reversed. 
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Fig. 4: The how-much-in-one-part method (variable-parts perspective)  

The “how much of a measurement unit” method (multiple-batches 
perspective) 

With this method we obtain the unit rate, 3/8 kg phosphate per 1 kg nitrogen, by 
dividing 8 kg nitrogen and 3 kg phosphate each into 8 equal parts (using how-
many-units-in-each-group division). We can view 3/8 kg phosphate and 1 kg 
nitrogen as a group (see Fig. 5). Because 1 kg is the measurement unit for 
nitrogen, we need 35 of these groups. Therefore equation 6 expresses the total 
amount of phosphate needed:   

(35 groups)(3/8 kg phosphate per group) = 35(3/8) kg phosphate (6) 

 
Fig. 5: The how-much-of-a-measurement-unit method (multiple-batches perspective) 

The “how many total amounts” method (variable-parts perspective) 

With this method we view the total amount of nitrogen as 1 group consisting of 
8 equal parts (see Fig. 6) and the total amount of phosphate as 1 group 
consisting of 3 equal parts. Each part of phosphate is the same size as each of 
the part of nitrogen.  This time we ask how many groups of 8 parts are in one 
group of 3 parts, which can we determine to be 3/8 by appealing to a definition 
of fraction or by using how-many-groups division. Because the 1 group of 
nitrogen consists of 35 kg and the amount of phosphate is 3/8 of a group of that 
size, equation 7 expresses the total amount of phosphate needed:  

(3/8 groups)(35 kg phosphate in one group) = (3/8)35 kg phosphate (7) 

Note that the multiplier and multiplicand in equation 6 and equation 7 are 
reversed. 
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Fig. 6: The how-many-total-amounts method (variable-parts perspective)  

Results  

After 5 weeks of instruction during which all four methods presented above 
were developed by future teachers in small-group and whole-class discussions 
based on guiding questions and prompts provided by the instructor, we 
administered an in-class test as part of the regular business of the algebra course. 
One item asked for two solutions to the Fertiliser Problem with additional 
requirements as follows: 

Problem 1: Explain how to reason from a multiple-batches perspective to 
describe the number of kilograms of phosphate as a product AB, where A and B 
are suitable whole numbers, fractions, or mixed numbers that you derive from 8, 
3, and 35. Attend carefully to our definition of multiplication when discussing 
AB. Use a math drawing to support your explanation.  

Problem 2: Explain how to reason from a variable-parts perspective to describe 
the number of kilograms of phosphate as a product AB, where A and B are 
suitable whole numbers, fractions, or mixed numbers that you derive from 8, 3, 
and 35. Attend carefully to our definition of multiplication when discussing AB. 
Use a math drawing to support your explanation. 

In response to Problem 1, all but one student constructed a viable argument 
using the quantitative definition of multiplication and the multiple-batches 
perspective. Just over half of the students (15 out of 26) successfully used the 
how-many-batches method and just under half (12 out of 26) successfully used 
the how-much-of-a-measurement-unit method; these counts include 2 students 
who used both multiple-batches methods. The student who did not construct a 
viable argument mixed the two multiple-batches methods.  

The statement of Problem 1 did not require students to identify the use of 
division. Some students discussed division explicitly, whereas others described a 
number of batches without explaining that number as the result of division, as in 
the example of student work in Fig. 7. This student explained 4 3/8 batches as 
follows: “We see in the double # line that 32 kg makes 4 batches + 40 makes 5, 
so there are 8 “parts” that make up one batch. … you see we have 4 total batches 
and 3 parts of one more batch. So we have 4 3/8 batches.”  



ICMI Stud

 

In resp
the qu
Ninete
and 5 
studen
constru
diagram
35 kg a
batche
method

Althou
Proble

Problem
Suppose
are unsp

Use the 
form (f
carefull

In resp
argume
argume
multip
clarity 
studen
multip

These 
develo
future 
accessi
and wa

Discus

In this
disting
quantit

dy 23                

ponse to P
uantitative 
een of the

used the
t who use
uct a viab
m but view
and used t
s perspec
d but conf

ugh most 
m 2, Prob

m 3: A type
e you will u
pecified num

variable pa
fraction)P 
y to our def

ponse to 
ent explai
ent but d
lication. A
in some 

ts produc
lication as

data sug
op appropr

middle gr
ible altho
as mastere

ssion and 

s paper w
guishes be
tative per

                 The

Problem 2,
definition

e students 
e how-ma
ed both va
ble argum
wed the 8
the how-m
ctive. The
fused the n

Fig. 

students 
blem 3 on 

e of fertilise
use N kilog
mbers of kil

arts perspec
= N, wher

finition of m

Problem 
ining the 
did not ad
Another 6
detail, su
ed viable 
s well as o

ggest that 
riate reaso
rades mat

ough the h
ed by only

conclusio

we review
etween m
rspectives 

eme 5, Beckm

, all but 2 
n of multi

successfu
any-total-a
ariable-par
ent using 
 parts of n

much-of-a-
e other st
number an

7: Determi

did not u
the same t

er is made b
rams of nitr
lograms, wh

tive and a m
re “fraction

multiplicatio

3, all bu
equation 
dequately 
6 student

uch as om
argument

other detai

using a 
oning abo
thematics 
how-many
y about hal

on 

wed a qu
multiplier 

on propo

mann et al., F

524 

students c
iplication 
ully used 
amounts m
rts method
the varia

nitrogen a
-measurem
tudent att
nd size of 

ining a num

use the ho
test was d

by mixing n
rogen and P
hich could v

math drawin
n” is a sui
on when dis

ut 2 of th
(8/3)P =

connect 
ts produce

mitting me
ts that atte
ils. 

quantitati
out propor

teachers. 
y-total-am
lf of the cl

uantitative
and mult
ortional r

From Multipl

constructe
and the v
the how-

method; t
ds. Of the 
able-parts 
as making 
ment-unit 
tempted t
the parts. 

mber of ba

ow-many-
designed to

nitrogen and
P kilograms
vary. 

ng to derive
table fracti

scussing (fra

he 26 stu
= N. Six s

the equa
ed a viab
asurement
ended car

ive defini
rtional rela
All four m

mounts me
lass. 

e definitio
tiplicand 
relationshi

ication to Pro

ed a viable
variable-p
-much-in-o
these cou
two stude
method, o
a total of 
method fr
the how-m
 

tches 

-total-amo
o elicit tha

d phosphate
s of phosph

and explain
ion or mixe
action)P.  

udents pro
tudents pr

ation to th
ble argum
t units. Th
refully to 

ition of m
ationships
methods w
thod is th

on of mu
and we s
ips that d

oportional R

e argumen
parts persp
one-part m

unts inclu
ents who 
one drew 
f 1 kg rath
rom the m
much-in-o

 

ounts meth
at method:

e in an 8 to
hate, where 

n an equatio
ed number
    

oduced a 
roduced a
the defini
ment that 
he remain
the defini

multiplica
s is access
we presen
he most d

ultiplicatio
summarise
derive fro

easoning 

nt using 
pective. 
method 
de one 
did not 
a strip 

her than 
multiple-
one-part 

hod on 
: 

o 3 ratio. 
N and P 

on of the 
. Attend 

viable 
a viable 
tion of 
lacked 

ning 12 
ition of 

ation to 
sible to 
nted are 
difficult 

on that 
ed two 

om this 



ICMI Study 23                                 Theme 5, Beckmann et al., From Multiplication to Proportional Reasoning 

525 
 

definition. We discussed four methods for reasoning with the definition to solve 
missing-value proportion problems and offered evidence that future middle 
grades mathematics teachers can use these methods.   
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Abstract 

In this study, two subsequent tasks (i.e., a learning and an assessment task) about 
rational number rules were administered to 172 fifth-graders from Liaoning province 
in China. The learning task, consisting of 8 items, was administered in one of three 
different formats (i.e., computation, problem solving, or problem posing), and, 
afterwards, all students were given the same assessment task, consisting of 16 items. 
Firstly, results revealed that the students did very well in the computation and the 
problem solving version of the learning task, whereas their performance on the 
problem posing version was rather weak. Secondly, the kind of the learning task being 
performed (i.e., computation, problem solving, or problem posing) did not produce 
significant differences in students’ performance on the assessment task. Thirdly, there 
was a significant relationship between students’ performance on the problem posing 
version of the learning task and the assessment task, and between their performance on 
the computation version of the learning task and the assessment task, but not between 
their performance on the problem solving version of the learning task and the 
assessment task.  

Key words: arithmetic operations, learning context, natural number bias, problem 
posing 

Introduction 

In the 1990s, several researchers found that the type of number in multiplication 
and division problems is an important determinant of their difficulty level (De 
Corte and Verschaffel, 1996; Fischbein, Deri, Nello and Marino, 1985). To 
account for this finding, Fischbein et al. (1985) proposed a theory of primitive 
models of arithmetic operations that specified every arithmetic operation is 
associated with an intuitive or implicit model (e.g., multiplication is viewed as 
repeated addition), which intervenes in the process of selecting the operation 
needed to solve a problem. According to that theory, problems with a decimal 
multiplier/divisor smaller than 1 were more difficult than those with a decimal 
multiplier/divisor larger than 1; likewise, problems with a dividend smaller than 
the divisor were more difficult than those with a dividend larger than the divisor. 
As a further test of Fischbein et al.’s (1985) theory, De Corte and Verschaffel 
(1996) carried out a study to unravel the effect of arithmetic operations on 
rational numbers based on the problem-posing (instead of the problem-solving) 
methodology. That study used a paper-and-pencil test consisting of 12 
multiplicative number sentences, 6 multiplications and 6 divisions, for example, 
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7.4  3.81 and 6  4.8. Three different groups of students (upper elementary 
school, secondary school, and teacher trainees) were asked to generate for each 
number sentence a word problem that could be solved with the given operation. 
Generally in line with the results of Fischbein et al. (1985), it was revealed that 
students from the three groups tended to generate significantly more appropriate 
word problems for number sentences that are congruent with the primitive 
models of arithmetic operations than for the incongruent ones. 

Recently, students’ cognitive difficulties in the transition from natural numbers 
to rational numbers have been explained from a more general “conceptual 
change” perspective (Vamvakoussi, Van Dooren and Verschaffel, 2012; Van 
Hoof, Lijnen, Verschaffel and Van Dooren, 2013). It is argued that children 
create beliefs about what numbers are and how they should behave as a result of 
their experience with natural numbers in daily life and at the beginning of 
schooling. When rational numbers are introduced later on, the features of the 
rational numbers do not fit with the concept of numbers that children have 
developed so far. This inconsistency leads to children’s inappropriate use of 
natural number knowledge in tasks with rational numbers, which is called 
“natural number bias” (Ni and Zhou, 2005). This “natural number bias” may be 
partly due to the nature of the concept of number itself, and partly to the 
didactical situations where the concept developed. In Brousseau’s (1997) 
terminology, difficulties rooted from the inherent nature and development of the 
concept of number itself and that thus arise regardless of the instructional 
approach, can be considered as an “epistemological obstacle”, whereas students’ 
incorrect ways of thinking and misbeliefs about natural numbers that arise as a 
result of instructional choices, and therefore, are avoidable through the 
development of alternative instructional approaches, are considered as 
“didactical obstacles”. In the research on the natural number bias, the effect of 
arithmetic operations on rational numbers also receives a lot of attention. 
Underlying the research is the claim that in the first years of elementary 
education, students acquire a lot of knowledge about arithmetic operations on 
natural numbers. They construct, among others, the rules that addition and 
multiplication will always lead to a larger outcome, while subtraction and 
division will always result in a smaller outcome. In the domain of rational 
numbers, these primitive models and their accompanying rules are no longer 
necessarily valid. However, students may still rely on them, which results in 
many mistakes, such as thinking that 0.39  5 is larger than 5 (Vamvakoussi et 
al., 2012; Van Hoof, et al., 2013).  
                                           

 

 
1 In the Flemish educational setting, 7.4 and 3.8 respectively play the role of multiplier and 
multiplicand. However, in Chinese elementary schools, 7.4 and 3.8 respectively play the role 
of multiplicand and multiplier before the New Curriculum Reform happened in 2001. Since 
2001, the role of the multiplier and multiplicand is not differentiated in multiplication. 
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As explained above, De Corte and Verschaffel (1996) explored students’ 
behaviours in understanding the multiplication and division rules on rational 
numbers (i.e., multiplication makes larger when the operator is larger than 1 but 
smaller when operator is smaller than 1; division makes smaller when the 
operator is larger than 1 but larger when operator is smaller than 1 in the domain 
of positive numbers) by letting students pose word problems from multiplication 
and division number sentences. However, that study still leaves some open 
questions. Firstly, it did not provide any information on the effect of the 
contextualised activity on understanding the multiplication and division rules on 
rational numbers. Constructivist and situated cognition theories suggest that 
cognition is situated in, rather than isolated from, context, and that learning is 
optimised when students are engaged in a complex, realistic instructional 
context (Bednar, Cunningham, Duffy and Perry, 1991; Collins, Brown and 
Newman, 1989). Secondly, De Corte and Verschaffel’s (1996) study did not 
address the effect of problem posing activities on students’ later understanding 
of the multiplication and division rules on rational numbers. However, Silver 
(1994) and De Corte and Verschaffel (1996) suggest that problem posing may 
be a valuable vehicle for the improvement of students’ mathematical 
understanding, especially their understanding of the mathematical meanings of 
number sentences. Based on this research, we argue that not only providing a 
proper context (i.e., giving students a word problem to solve), but also finding a 
context for a given operation (i.e., asking students to pose a problem starting 
from a given operation) might help students to better understand the 
multiplication and division rules on rational numbers compared to a 
decontextualised routine activity (i.e., merely computing the answers for given 
number sentences involving multiplication or division with rational numbers). 
So, the present study aimed to explore, in a group of Chinese students, the effect 
of three different learning experiences (i.e., computation, problem solving, or 
problem posing) on students’ understanding of the above-mentioned 
multiplication and division rules on rational numbers, both during the learning 
task itself and during a subsequent assessment task. 

Research questions and hypotheses 

Firstly, we hypothesised that students will perform best on the computation 
version of the learning task, since Chinese teachers typically pay more attention 
to the development of students’ computation skills, whereas they will perform 
worst on the problem posing version of the learning task given the relatively 
scarce attention being paid to this type of mathematical activity in a typical 
Chinese mathematics class (Chen, Van Dooren, and Verschaffel, 2011). 
Secondly, it was expected that posing problems starting from given number 
sentences, rather than merely computing the answers for given numbers 
sentences or even solving word problems, will help students to understand the 
multiplication and division rules on rational numbers better as evidenced by 
their performance on a later common assessment task. In other words, students 
who pose word problems from given number sentences in the learning task will 
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perform best on the assessment task, whereas those who only solve the number 
sentences will perform worst, and those who solve word problems wherein the 
number sentence are hidden will perform in between. Thirdly, we hypothesised 
that there will be significant relationships between the three different versions of 
the learning task and the assessment task. 

Method 

In the present study, the learning and assessment tasks were administered to 172 
fifth-graders. At the moment of participating in this study, the students had 
substantial experience with multiplication and division problems involving 
decimals (e.g., The price for the Chinese cabbage is 0.8 Yuan/kg. How much is 
2 kilos of Chinese cabbage?), and had already some occasional experience in 
problem posing activities. Students were randomly assigned to one of the three 
learning task formats: computation (57 students), problem solving (57 students) 
and problem posing (58 students). In the computation task, students were 
required to compute 8 number sentences represented in different combinations 
of number types (i.e., combining a multiplier/divisor and multiplicand/dividend 
smaller and larger than 1): 4 decimal multiplications (i.e., 1.3  2.7, 2.4  0.9, 
0.8  3.6, and 0.6  0.7) and 4 decimal divisions (i.e., 3.6  1.2, 5.4  0.9, 0.8  
1.6, and 0.6  0.2). In the problem solving task, students had to solve 8 word 
problems on decimal multiplication and division containing the number 
sentences from the computation task (e.g., A kilo of bananas costs 1.3 Yuan. I 
buy 2.7 kilo. How much do I pay?). In the problem posing version, students 
were required to pose problems according to the same 8 number sentences as in 
the computation task. For example, students were required to pose problems 
according to the number sentence “1.3  2.7”. Shortly after the learning task, the 
same assessment task was administered to all students. In the assessment task, 
all students were asked to apply their learning experience from the learning task 
to select “”, “”, “<”, “>” to make 16 number sentences valid. They were 
requested to do so without performing actual computations. These number 
sentences were also represented in different combinations of number types. For 
half of these 16 items, students were required to fill in blanks in statements such 
as “0.5 __ 4.1 < 0.5” with “” or “”; for the other half they had to fill in blanks 
in statements like “0.9  0.38 __ 0.9” with “>” or “<” (see Tab. 1).  

Data analysis 

For the computation version of the learning task, a numerical problem was 
awarded 1 point if it was scored as correct or 0 point if scored as wrong, which 
results in the total score was from 0 point to 8 points. For the problem solving 
version, each answer was awarded 1 point only with a correct arithmetic 
operation and the execution of the correct arithmetic operation; otherwise it was 
awarded 0 point. This also resulted in a total score from 0 to 8 points. For the 
problem posing version, to be considered correct, a problem, first, should satisfy 
the given numerical sentences, i.e., the numbers in parentheses should be 
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computed by means of the given mathematical operations with the given 
numbers. Secondly, the problem should be stated in a word problem format 
(e.g., a pseudo word problem like “Mother had to divide 0.6 by 0.2. Can you 
help her?” was scored as wrong). Thirdly, the problem should accord with real 
world constraints (e.g., a problem like “If 5 watermelons are divided among 0.9 
students, how many watermelons does one student get?” was scored as wrong 
because the number of students can’t realistically be a decimal. A posed 
problem was awarded 1 point if it was scored as completely correct or 0 point as 
soon as it was scored as wrong on one of the above three criteria, which resulted 
in the total score from 0 point to 8 points. In the assessment task, if a correct 
operation symbol “” or “” or relation symbols “>” or “<” was provided in the 
number sentence, the number sentence was scored as correct and awarded 1 
point, otherwise it was scored as wrong and awarded 0 point, which resulted in 
the total score for the dimension of correctness was from 0 point to 16 points. 

Results 

As for students’ performance on the three versions of the learning task, first, 
results revealed that the fifth-graders did very well in the computation version, 
which yielded a mean score of 7.4. Because the computation item “0.8  1.6” 
violated the constraint that the divisor must be smaller than the dividend found  
by Fischbein et al. (1985), quite a few students (7%) gave a wrong answer “2” 
for that item. Second, students did quite well in the problem solving version, the 
mean score of which was 6.9. Similar with the result of the computation item 
“0.8  1.6”, in the problem solving item “1.6 kilos of carrot is 0.8 Yuan. How 
much is the carrot per kilo?”, many students (33%) provided a wrong answer 
“1.6  0.8 = 2”. Third, students’ performance on the problem posing version was 
much weaker, with a mean score of 5.2. Again, a substantial number of students 
(28%) provided a wrong answer such as “Xiao Hua bought 0.8 kg banana, and 
she spent 1.6 Yuan. How much is the banana per kilo?” in response to the 
number sentence “0.8  1.6 = 0.5”. In line with the result found by De Corte and 
Verschaffel (1996), some students posed non-realistic word problems from the 
given number sentences, such as the problem “If 5.4 watermelons are divided 
among 0.9 students, how many watermelons does one student get?” in response 
to the number sentence “5.4  0.9 = 6”.  

As for the students’ performance on the assessment task, the overall mean score 
was 12.7. The mean of each item of the assessment task is provided in Tab. 1. 
From Tab. 1, we can conclude that students did relatively well in the assessment 
task. In the task filling in blanks with “>” or “<”, the items “0.9  4.7 __ 0.9 and 
0.6  0.49 __ 0.6” among the 4 multiplicative items seem to had lower 
frequency of correct answers, the items “0.7  4.6 __ 0.7 and 0.9  0.38 __ 0.9” 
among the 4 division items had lower correct frequency. These observations 
seem to indicate that the multiplicative items with first number a decimal 
smaller than 1 are considerably more difficult. In the task filling in blanks with 
“” or “”, we found three results. First, it seems that the 4 items wherein 
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students had to find the operation that leads to a number that is larger than the 
dividend were generally easier than those 4 wherein they had to find the 
operation that leads to a number that is smaller than that dividend. Second, both 
among the 4 items wherein one has to find a number larger than the dividend 
and among the 4 items asking for a number smaller than the dividend, the item 
consisting of two decimal numbers larger than 1 was by far the easiest one. 
Third, also in both cases, the item consisting of two decimals smaller than 1 
tended to be the most difficult one, although the difference with the items 
involving one decimal smaller than 1 was much smaller (or, in one case, even 
non-existent). These results are generally in line with the results found in the 
Fischbein et al.’s (1985) study. 

 

Filling in blanks 
with “>” or “<” 

Correct 
frequency 

Filling in blanks 
with “” or “” 

Correct 
frequency 

2.6  1.4 __ 2.6 95.9% 9.2 __ 3.6 > 9.2 95.3% 

1.8  0.7 __ 1.8 90.7% 0.8 __ 2.4 > 0.8  79.7% 

0.9  4.7 __ 0.9 82% 5.2 __ 0.3 > 5.2 78.5% 

0.6  0.49 __ 0.6 81.4% 0.9 __ 0.34 > 0.9 72.7% 

7.2  3.4 __ 7.2 86% 3.4 __ 2.5 < 3.4 79.1% 

6.2  0.3 __ 6.2 79.7 % 0.5 __ 4.1 < 0.5 64.5% 

0.7  4.6 __ 0.7 77.9% 1.6 __ 0.3 < 1.6  68 % 

0.9  0.38 __ 0.9 72.1% 0.7 __ 0.3 < 0.7  64.5% 

Tab. 1: Presentation and Correct Frequency of Each Item of the Assessment Task 

As for the impact of the learning task on students’ performance on the 
assessment task, students’ overall mean score on the assessment task was 12.5  
after the treatment of the computation, 13.1 after the treatment of the problem 
solving, and 12.4 after the treatment of the problem posing. So, contrary to our 
expectation, the three treatments (i.e., computation, problem solving, or problem 
posing) did not produce significant difference in students’ performance on the 
assessment task, F(2, 169) = 0.76, p = 0.47.  

We also analysed whether there were significant relationships between the three 
different versions of the learning and assessment task. As expected, there was a 
significant relationship between students’ performance on the computation 
version of the learning task and the assessment task (ρ = 0.40, p = .01), and 
between their performance on the problem posing version of the learning task 
and the assessment task (ρ = 0.48, p = .00). However, no significant relationship 
was found between students’ performance on the problem solving version of the 
learning task and their performance on the assessment task (ρ = 0.27, p = .09).  
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Discussion and conclusion 

The present study revealed (a) students’ good performance in computation and 
problem solving, but not in problem posing in the domain of arithmetic, (b) no 
significant differences produced by the kind of the learning task in students’ 
performance on the assessment task, and (c) a significant relationship between 
students’ performance on the problem posing or computation and the assessment 
task, but not between their performance on the problem solving and the 
assessment task.  

We end this contribution with some theoretical, methodological, and educational 
considerations. First, why did the kind of the learning task being performed (i.e., 
computation, problem solving, or problem posing) not produce the expected 
difference in students’ performance on the assessment task? The main reason for 
this result might be that the treatment provided in the learning task was too short 
to produce a significant difference in students’ performance on the assessment 
task. Moreover, the fact that students already had educational experiences with 
the learning and assessment materials may have jeopardised the possibility to 
find differential impact of the distinct learning formats on their performance on 
the assessment task. So, in future research, we will provide the three versions of 
learning task as more substantial forms of training at the moment that students 
actually start to learn the multiplication and division on decimals. Secondly, as 
far as the relationship between problem posing and problem solving is 
concerned (Chen et al., 2011), we found a significant relationship between 
students’ performance on the problem posing version of the learning task and 
the assessment task, but not between their performance on the problem solving 
version and the assessment task, so in future research we will investigate why 
we did not find the expected correlation for the children from the problem 
solving condition. Thirdly, in the problem posing version of the learning task, 
we found that several students used the outcome in the parentheses in their 
posed word problems, even if they were told that that number in parentheses was 
the one that had to be asked for in the question. So, in future research, we will 
provide number sentences without outcomes in the parentheses in the problem 
posing version of the learning task. 
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Abstract 

Proportional reasoning is widely acknowledged as a key to success in school 
mathematics, yet students’ continual difficulties with proportion-related tasks are well 
documented. This paper draws on a large research study that aimed to support 4th to 9th 
grade teachers to design and implement tasks to foster students’ proportional 
reasoning. Classroom data revealed limited initial teacher knowledge and awareness of 
the pervasive nature of proportional reasoning required in the mathematics curriculum. 
Teacher capacity to seize teachable moments for building students’ proportional 
reasoning skills increased throughout the project. From this background, this paper 
presents an analysis of the proportional reasoning demands and opportunities of topics 
within the school mathematics curriculum in Australia. Implications for the study of 
whole number arithmetic (WNA) and other topics to promote proportional reasoning 
throughout the curriculum are discussed. 

Key words: curriculum analysis, multiplicative thinking, proportional reasoning 

Introduction  

Proportional reasoning has been repeatedly identified as one of the most 
important goals of the school mathematics curriculum (e.g., Lamon, 2007; 
NCTM, 1989; Sowder 2007), encapsulated in the oft-cited words of Lesh, Post 
and Behr (1988) that “[P]proportional reasoning is the capstone of children’s 
elementary school arithmetic and the cornerstone of all that is to follow” (pp. 
93-94). Proportional reasoning is an understanding of the covariation that is 
inherent in the multiplicative relationship between two quantities (Lamon, 
2007). Proportional reasoning is developed through the study of ratio and 
proportion typically in the middle years of schooling, but earlier through the 
study of fractions, decimals, and multiplication and division (e.g., English and 
Halford, 1995; Lamon, 2005; Sowder, 2007). It would seem reasonable to 
expect that, as students operate in the domain of whole number, there are 
opportunities for promoting students’ proportional reasoning capacity. However, 
because students’ difficulties with proportion and proportion-related tasks and 
applications are well documented (e.g., Behr et al., 1992; Misailidou and 
Williams, 2003; Dole et al., 2012), it would seem that this is not the case. In this 
paper, we address Theme 5 of whole number and connections with other parts of 
mathematics, exploring whole number arithmetic (WNA) teaching and learning 
and connections between other Mathematics topics in the curriculum. 

The theoretical framework of our research draws on Lamon (2007) who 
described central core ideas for proportional reasoning as rational number 
interpretation, measurement, quantities and covariation, relative thinking, 
unitising, sharing and comparing, reasoning up and down. She emphasised how 



ICMI Study 23                                                                                    Theme 5, Dole et al., Proportional Reasoning 

535 
 

these are “recurrent, recursive and of increasing complexity across mathematical 
and scientific domains” (p. 9).  

The essence of proportional reasoning is multiplicative thinking (Behr et al., 
1992; Lamon, 2007). This involves the ability to determine situations of 
comparison multiplicatively rather than additively. The difference between 
multiplicative thinking and additive thinking can be seen by comparing two 
numbers, for example, 10 and 2. Multiplicatively, 10 is 5 times 2; additively, 10 
is 8 more than 2. In situations of proportion, two quantities are related 
multiplicatively, and therefore additive thinking is inappropriate. The common 
application of incorrect additive thinking to proportional situations is well 
documented in the literature (e.g., Hilton et al., in press; Misailidou and 
Williams, 2003; Hart, 1981). Dole et al. (2012) highlighted students’ ready-
abandonment of multiplicative thinking through analysis of a large cohort of 
students’ (approximately 700) responses on two proportional reasoning test 
items. The first item asked students to determine the amount of nectar required 
to feed 12 butterflies when every 2 butterflies require 5 drops of nectar. Fifty-
three percent of respondents gave a correct solution based on multiplicative 
thinking. A second item asked students to determine the amount of flour 
required for a recipe consisting of 4 cups of sugar and 6 cups of flour when the 
sugar had been increased to 10 cups. A dramatic shift to additive thinking was 
evident as 66% of students stated that 12 cups would be required for the new 
mixture. The percentage of students who demonstrated multiplicative thinking 
for this item was only 14%, which is a considerable change from the 53% of 
students who adequately applied multiplicative thinking in the first item. The 
issue of ‘awkward’ numbers is also well-documented in relation to students’ 
errors on proportional reasoning tasks (Lamon, 2007), but research by Dole et 
al. (2012) shows the power of additive thinking upon students who can reason 
proportionally, underscoring the need for greater examination of number 
relationships during whole number study. 

Students’ repeated failure to apply multiplicative thinking to proportional 
situations has been attributed to the limited capacity of primary school curricula 
to promote multiplicative structures, where multiplication and division are 
typically taught as extensions of addition and subtraction (Behr et al., 1992; 
Sowder et al., 1998). This criticism squarely lays the blame on a curriculum that 
does not adequately highlight the distinction between additive and multiplicative 
situations. School textbooks also may further compound the situation in their 
tendency to treat topics as isolated units with little connection to other units 
(Sowder et al., 1998). An analysis of middle school mathematics textbooks has 
shown the algorithmic way that topics requiring proportional reasoning are 
addressed with little or no connection made to related topics, such as decimals, 
ratio, proportion, percent, scale, and trigonometry (Shield and Dole, 2013). 
Clearly, curriculum documents do not make explicit mention of proportional 
reasoning, and are deficient in their capacity to support teachers in developing 
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and strengthening multiplicative thinking, a necessity for success in so many 
topics in the school curriculum and the real world. 

This paper draws on research conducted by the authors in this field working 
with teachers to support students’ proportional reasoning in their classrooms. It 
also presents part of our analysis of the school mathematics curriculum in 
Australia, identifying a scope and sequence for the development of proportional 
reasoning. The aim of this paper is to consider how opportunities for promoting 
proportional reasoning are inherent in whole number study and throughout other 
topics within the mathematics curriculum, and mathematical ideas are connected 
through proportional reasoning. This paper addresses the following questions:  

1. What is the impact on teachers’ practice in building awareness of the 
pervasiveness of proportional reasoning throughout the curriculum? 

2. To what extent are connections between WNA (whole number arithmetic) and 
other mathematics topics made explicit in the curriculum? 

3. What are the implications of this research for teacher education and 
professional development? 

Materials and Methods 

This project involved approximately 90 middle school (Grades 4 to 9) teachers 
from five school clusters in geographical proximity. Each of the five clusters 
operated as separate entities but followed the same professional development 
seminars. Over the two years of the project, clusters met eight times, once per 
school term (four) per year. The program of workshops was informed by 
research for effective professional learning (e.g., Loucks-Horsley et al., 2010; 
Sowder, 2007). In between professional learning seminars, the researchers 
visited teachers in their classrooms, offering support and advice. The study 
aimed to investigate changes in teachers’ knowledge and teaching associated 
with the development of students’ proportional reasoning, as well as students’ 
learning outcomes. It adopted a design-research approach (Cobb et al., 2003) for 
its ability to account for the complexity of naturalistic classroom settings. A 
large corpus of data was collected, with detailed analysis including statistical 
scrutiny of pre- and post-tests (see Hilton et al., in press), coding and 
classification of classroom observations, teacher and student interviews (see 
Hilton et al, 2013). Case studies of individual teachers were also developed. To 
answer the research questions for this paper, we present classroom vignettes of 
practice, teacher comments and curriculum document analysis. 

Results  

At the first project meeting, the presenters provided numerous examples of 
proportional reasoning both in the curriculum, in other subject areas, and in real 
life. The difference between multiplicative and additive thinking was explained. 
The teachers participated in a variety of activities designed to promote 
proportional reasoning suitable for middle school students.  
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Through informal discussions with teachers during classroom visits, the 
researchers gained insight into teachers’ perceptions of the workshops and the 
effectiveness of the professional development programme. In all conversations 
with teachers, there was ready acknowledgement that they had limited 
understanding of the term proportional reasoning prior to commencing in the 
project: “Before I started in this project, I had no idea what it was at all. How ignorant 
was that?” (5th grade teacher of 28 years classroom teaching experience). 

Some teachers said that they thought that the term proportional reasoning related 
most specifically to the topics of ratio and proportion and thus was something 
that teachers of eighth and ninth grade would be most familiar. However, 
teachers of those grades admitted that they had not considered the broader 
meaning of proportional reasoning before this project. As we made return visits 
to classrooms, there was general consensus of the impact of the project and 
increasing awareness of opportunities for proportional reasoning. “Absolutely, 
the project has made a huge difference. The practical things that you can do that 
make the children aware” (7th grade teacher of 15 years teaching experience). 
This teacher recounted an incidental teaching moment when a team of 
footballers visited the classroom and the students immediately started making 
comparisons to their own heights, to which the teacher commented: “Yes, you 
are using proportional reasoning”. Another teacher echoed a similar sentiment: 
“I keep noticing more and more situations where I can emphasise proportional 
reasoning, and the children now also start noticing where they are using 
proportional reasoning” (4th grade teacher of 10 years teaching experience). A 
further example of the teacher drawing students’ attention to proportional 
reasoning was through a whole class e-newsletter project with students resizing 
images to insert in the magazine. “The students had a lot of trouble reducing and 
enlarging photographs, because they would make the pictures very large or frog-
faced, until we all discovered dragging at the corner. This was a moment to 
discuss proportional reasoning” (4th grade teacher of 33 years teaching 
experience). 

Numerous examples of classroom activities and incidental teaching of 
proportional reasoning were observed. A fifth grade teacher gave her class 
individual, small packets of “Tiny Teddies” biscuits (small biscuits in the shape 
of a teddy bear) and asked them to create a cuboid box to hold the contents of 
the packet. She then asked them to scale up their cuboid to hold two packets of 
Tiny Teddies. The students all doubled the dimensions of their original cuboid 
and quickly came to realise that their new cuboid was much too big to hold two 
packets of Tiny Teddies. This led to intense discussion and exploration of scale 
in three dimensions. In another example, the teacher posed a question to her 
fourth grade students about the number of cabbages in a garden planted in a 3 x 
2 array, which students readily determined as 6 cabbages in total. The teacher 
then asked how many cabbages would be planted if both sides of the garden bed 
were doubled. The immediate response was 12 cabbages. The teacher asked 
students to ‘act out’ the situation, with 6 students sitting on the floor as 
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cabbages, and then other students sitting on the floor to model the doubling of 
each side. This was a powerful lesson in scale in two dimensions. A ninth grade 
teacher challenged his class to determine the area required to accommodate the 
world’s population (7 billion) if they were all standing shoulder to shoulder. 
After making suggestions of what they thought the case might be, the students 
were astonished to realise that the population of the earth could easily fit within 
their state. In a third grade class, students were making fruit kebabs. They were 
challenged to thread apple and banana pieces in the ratio of 1 : ½ without further 
cutting any pieces of fruit. After some initial hesitation and much discussion and 
trial and error, the students realised that by doubling both numbers in the ratio to 
obtain whole numbers (i.e., 2 : 1), they were able to proceed.  

Analysis of the curriculum 

To respond to teachers’ calls for a scope and sequence across the grades for 
proportional reasoning, we analysed the national mathematics curriculum from 
the Foundation Year (first year of formal schooling in Australia) through to 
Grade 10. Here, we present our analysis only of the 4th grade curriculum to 
provide a glimpse of how proportional reasoning may serve to connect 
mathematical ideas. In the summary below, we have embellished the intended 
curriculum through italicising our suggestions for promoting proportional 
reasoning in given topics. 

Following from the 3rd grade, the 4th Grade curriculum continues to have a major 
focus on building place value knowledge as students work with numbers to 10 
000. Consolidate place value: opportunity to build proportional reasoning 
associated with base 10 relationships with 10 000 being 10 times 1000, and the 
two place value periods of Ones (ones, tens, hundreds) and Thousands 
(thousands, tens of thousands, hundreds of thousands). Place value extended to 
tenths and hundredths and the multiplicative relationship between the places in 
the numeration system can be further emphasised. Solve problems for 
multiplication and division with numbers to 10 000. Study number sequences 
from multiplication (multiples) of 3, 4, 6, 7, 8, 9. This provides opportunity to 
move from repeated addition of skip counting to multiplicative thinking, e.g., 3, 
6, 9, 12 skip counting arrives at the same number as 3×4. Recall of 
multiplication and division facts for 2, 3, 4, 5, 6, 7, 8, 9, 10 for problem solving 
further builds multiplicative thinking. Basic fact exploration can serve to build 
fractional thinking, e.g., 4 × 3 = 12; 12 ÷	 3	 =	 4;	 1/3	 	×	 12	 =	 4;	 1/4	×	 12	 =	 3. 
Fractional thinking is extended to equivalent fractions, which are inherently 
proportional. Equivalent fractions are based on fractional and multiplicative 
thinking and also ratio, e.g., cutting an object into thirds, then halving again 
results in twice as many pieces (1/3 is equivalent to 2/6), and each piece (one-
sixth) will be half the size of the each original parts (thirds). Locating fractions, 
their equivalent fractions and decimals on the number line requires scaling. 
Developing money and financial mathematics provides opportunity to 
consolidate fluency in money equivalences in dollars and cents, e.g., $1.25 is 
125c; 2360 cents is $23.60; etc. This representation can be linked to decimal 
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number representation: $0.25 is 2 tenths and 5 hundredths or 25 hundredths. 
Link back to fractions and that 25 cents is out of one hundred cents, and 100 
cents is one dollar, which is represented as $1.00. Recognising that Australian 
currency is decimal, can be extended to currency in other countries further 
emphasising the multiplicative relationship. In measurement, metric units of 
measure for length, mass, capacity, temperature are extended and consolidated 
which includes the relationship between conversions, and the capacity to read 
scales of measuring instruments. Use a variety of measuring jugs to investigate 
scales – do they show 100mL intervals up to 1 litre, or just four intervals: 
250mL, 500mL, 750mL, 1L? Determine what marked intervals represent and 
consider the part/whole relationship. Create number lines for measures with 
students determining the measures within intervals. Compare objects using 
metric units: area and volume: opportunity to draw out the 2D and 3D nature of 
these objects. Investigate what happens when we change one, two or three 
dimensions. Convert between units of time: opportunity to extend and apply 
multiplicative thinking to non-base 10 conversions e.g., 7 days in a week, 10 
days is 1 week 3days, etc. Simple scales for maps: reading scales and converting 
to actual distances is an opportunity to extend multiplicative thinking, .e.g., 
explore a variety of maps and consider different scales; compare how many 
times bigger one country is to another; concepts of ratio can be addressed, e.g., 
for every 1cm on the map there is 5m in reality and vice versa. Expressions of 
chance activities are extended from verbal to numeric requiring fractional 
thinking (one in two chance; fifty-fifty chance; even chance). Data in picture 
graphs explored, where one picture can represent more than one: an important 
step in proportional thinking, involving basic ratio; e.g., for every four cars in a 
survey represented by one picture on the graph; what would 2 ½ cars represent? 

Discussion and conclusion 

Early in this project, it was apparent that teachers’ understanding and awareness 
of proportional reasoning as an essential skill for mathematics and beyond was 
limited. The small but representative selection of interview and classroom 
vignettes provide evidence of increasing teacher capacity to extend students’ 
proportional reasoning as their own awareness of proportional reasoning 
throughout the curriculum developed. The teachers were noticing and creating 
varied experiences for their students to reason multiplicatively, as suggested in 
the research literature as important for building students’ proportional reasoning 
(Thompson and Bush, 2003). Teachers were engaging their students in activities 
of measurement, sharing and comparing, scale (reasoning up and down), 
unitising, exploring quantities and covariation, whilst developing rational 
number interpretation; all of which are key to proportional reasoning (Lamon, 
2007). Building teacher awareness of the pervasiveness of proportional 
reasoning resulted in considerable change of practice, thus answering the first 
research question. 
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The analysis of the 4th grade curriculum presented here shows that building 
proportional reasoning is not explicit, but opportunities for enhancing 
proportional reasoning abound. Our classroom data shows that teachers from 
third through to ninth grade increasingly were using planned and incidental 
moments to explicitly teach proportional reasoning. Analysis of the 4th grade 
curriculum shows that topics can be revisited in other grades to continue to 
promote proportional reasoning. For example, the ‘tiny teddies’ box activity 
(volume) in the fifth grade aligns the fourth grade topic of compare objects 
using metric units – area and volume; as does the ‘cabbages’ activity (area) in 
the fourth grade. The ‘world population’ activity in the ninth grade aligns the 
topic of [simple] scales and maps, but at a higher level than that of the fourth 
grade, where it is located in our analysis here (this topic is also part of the ninth 
grade curriculum). Proportional reason threads, “recurs” and is “recursive” 
(Lamon, 2007) throughout the curriculum.  

Our second research question asks: to what extent are connections between 
WNA (whole number arithmetic) and other mathematics topics made explicit in 
the curriculum? From our analysis of the fourth grade curriculum presented 
here, we can see that students continue whole number arithmetic working with 
numbers to 10 000 in this grade level. They continue to build place value 
knowledge and attain fluency in basic multiplication and division fact recall 
which they apply to problem solving involving multiplication and division. 
However, the curriculum makes no connection to proportional reasoning or 
emphasising the importance of multiplicative thinking. 

Our work here is the beginning of the identification of connections between 
WNA and other mathematics topics in the curriculum, but also provides a 
glimpse of proportional reasoning as not only having its beginnings in WNA, as 
topics of measurement, data, and probability also require proportional reasoning. 
It is noted, however, that not every situation is proportional and being able to 
distinguish proportional from non-proportional situations is also an important 
part of proportional reasoning (Van Dooren et al., 2005).  

Considering the third research question in relation to implications for teacher 
professional development, this research presents a model for promoting teacher 
knowledge and awareness of proportional reasoning. Explicit teaching and 
teachable moments can support strong foundations for proportional reasoning as 
the “capstone” of primary school arithmetic and the “cornerstone” of all that is 
to follow, as emphasised by Lesh et al. (1988). Commencing with whole number 
arithmetic associated with multiplication and division, the basis for developing 
multiplicative thinking and proportional reasoning presents itself, and continued 
emphasis throughout other topics may serve to enable students to make 
connections between WNA and other mathematical topics. 
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Abstract 

The aim of the current study is to identify any difference between the generalisations 
students give when dealing with whole number patterns represented both numerically 
and visually-pictorially. The study participants were 91 students in 5th and 6th grade in 
schools in the centre of Israel. Analysis of the generalisations showed that students 
used more than one stage to reach the generalisation. The study shows significant 
differences in the correctness of task solutions in favour of numerical representation. 
From this we may conclude that dealing with numerically presented patterns requires 
less intervention on the part of the teacher as opposed to tasks presented pictorially: 
here the teacher should go deeper into the rules of building a sequence and also show 
tools to understand and analyse it.  

Key words:  algebraic generalisation, early algebra, number sense, patterns  

Introduction  

Natural numbers, their properties and operations on them are one of the key 
topics of elementary school arithmetic studies. Research examining various 
aspects of the study of the arithmetic of natural numbers and the curricula 
emerging in the wake such research refer to the need for computational 
proficiency alongside the cultivation of number sense. Number sense is a 
developed understanding of the meaning of numbers that enables the use of 
mathematical judgment of a given task in different ways, and the development 
of useful strategies for dealing with numbers and operations on them (McIntosh, 
Reys and Reys, 1992). The cultivation of number sense is not something 
attained or not by a student at a particular point in time, but rather a process that 
develops and matures with the acquisition of experience and knowledge 
(Veraschaffel, Greer and De Corte, 2007). One way to develop number sense is 
to investigate patterns of different kinds, starting from the pattern of building 
natural numbers, through to investigating sequences of different kinds in order 
to find properties shared by the numbers in the sequences or the regularity for 
building the sequences, using different arithmetic operations (Anghileri, 2000). 
One component of number sense is 'algebraic arithmetic': a type of activity that 
builds on “bridging arithmetic and algebra” (Pittalis, Pitta-Pantazi and Christou, 
2014, p. 434). There are different definitions of this ‘bridge’ between arithmetic 
and algebra known as ‘early algebra’, but there is consensus among scholars on 
the following components (Blanton and Kaput, 2005; Cai and Knuth, 2011 
;Carraher and Schliemann, 2007;  Pittalis et al., 2014): 

 Thinking about the relations between unknown quantities, including solution 
of verbal problems using letters and equations; 
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 Generalisation of arithmetic patterns into algebraic expressions and 
understanding these patterns as a shortcut to calculations; 

 Recognition of identities (including rules for arithmetic operations) as 
general properties in a given group of numbers; 

 Use of a variety of representations of algebraic symbols to reach, formulate 
and justify generalisations.  

Recent research on mathematics education has discussed the introduction of 
algebraic notions in the study of arithmetic in elementary level classes (e.g. Cai 
and Knuth, 2011; Stacey, Chick and Kendal, 2004). Supporters of this approach 
claim that the study of algebra has its roots in lower grades, when children 
notice the regularity of the behaviour of numbers in general, and natural 
numbers in particular. Moreover, observation of regularity enables learners to 
develop awareness of mechanisms of connection between numbers and 
arithmetic operations. Sequences of shapes presenting change (increase or 
decrease with a specific regularity) are suitable tasks for investigating regularity. 
They summon mathematical experience at different levels for each student 
(Smith, Hillen and Catania, 2007). The advantage of these tasks is that they may 
serve as a "bridge" from the physical world (i.e. cubes, toothpicks etc.) and prior 
mathematical experiences to formal algebra. This transition from concrete to 
abstract must be accompanied by the development of children’s ability to 
generalise and reason. Blanton and Kaput describe it thus:  

…a process in which students generalise mathematical ideas from a set of 
particular instances, establish those generalisations through the discourse of 
argumentation, and express them in increasingly formal and age-appropriate 
ways (Blanton and Kaput, 2005, p. 413). 

Research shows that dealing with patterns affects several aspects of students’ 
mathematical abilities: it enables them to develop a mathematical language 
regarding positing hypotheses and providing justification or refutation of those 
hypotheses (Moss and Beatty, 2006); it supports understanding of the relations 
between quantities (Carraher, Schliemann and Schwartz, 2008); it is a way to 
construct mathematical generalisations (Kieran, 1992; Carraher and Schliemann, 
2007). 

Scholars distinguish between different types of patterns: linear patterns, patterns 
in computational procedures, repeating patterns and so forth (Zazkis and 
Liljedahl, 2002). The current study deals with patterns that can be given two 
representations: numerical representation and visual-pictorial representation 2 . 
There are different kinds of tasks relating to these patterns. For this study we 

                                           

 

 
2  Of course, there are other representations such as verbal representations (Carraher, 
Schliemann and Schwartz, 2007). 
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asked students to formulate a generalisation: what is the number (or number of 
circles) that will appear instead of n in the series? (Moss and Beatty, 2006). 
These generalisations may be expressed either in words or in symbols, according 
to the student’s ability. An example of such a pattern is shown in Fig. 1. 

Radford (2010) suggests relating to generalisation of patterns as both a result 
and a process; in other words, focusing both on the generalisation itself and on 
how the student reaches it. Harel (2001) mentions that dealing with patterns in 
each representation requires different strategies for reaching the generalisation, 
according to the pattern in question: for a numerical pattern, the student must 
identify the relations between two variables while for the visual-pictorial pattern 
the student must compare two adjacent elements, create an element that repeats 
itself in several initial elements and then identify the relations between the 
earlier shape and the next one. Harel claims that in both cases students must 
apply inductive thinking. The difference lies in the relations emphasised in these 
thinking processes: inductive thinking for numerical patterns uses algebraic 
concepts, whereas inductive thinking for visual-pictorial patterns relies on the 
relations that can be inferred visually from a given set of specific instances 
(Billings, Tiedt and Slater, 2008).  

The next step is to identify whether there is a difference in the level of 
generalisation students reach for numerical and for visual-pictorial patterns.  The 
aim of the current study is to identify any difference between the generalisations 
students give when dealing with whole number patterns represented both 
numerically and visually-pictorially. In particular, this study seeks to 
characterise the similarities and differences in elementary school students’ 
abilities to generalise the regularity according to which sequences of natural 
numbers are built, where these sequences are presented either numerical or 
visually-pictorially. 

Materials and Methods 

The study participants were 91 students in 5th and 6th grade in schools in the 
centre of Israel. In regular math lessons they were given worksheets with tasks 
requiring recognition and generalisation of the regularity of a sequence. Each 
worksheet had two tasks – one for each form of representation.  

Among these worksheets there were two in which the same sequence was given 
– once in one format and once in the other (see Fig. 1). In this article, we relate 
to these two worksheets. The completion of each worksheet and the discussion 
about solution strategies took an entire lesson (45-50 minutes).  

The two sequences on the worksheets are different in terms of their 
mathematical nature: the first is an arithmetic progression and the second is a 
sequence of triangular numbers. The rule for building the arithmetic progression 
is that the numbers are divisible by 4 with a remainder of 1. The other sequence 
is of triangular numbers, i.e. in which each element may be represented as a 
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group of objects that can be arranged in the shape of an equilateral triangle. 
These worksheets were collected and analysed in two stages. First there was 
direct content analysis: the stages through which students progressed in order to 
reach the generalisation were classified according to the framework proposed by 
Radford (2010). The principle of this classification is the encoding of each stage 
of solution according to the typology of the forms of algebraic thinking 
following the level of generalisation students provided in their work. The details 
of the typology can be seen in Tab. 1 below. The second stage, involved 
statistical analysis of the data to compare the students’ generalisation ability for 
the both: numerical and visual-pictorial representation (t-tests). 
 

Worksheet 2 Worksheet 1 

Task 1: 

Look at the following sequence: 

a. How many dots will there be in element 6? 
Explain. 

b.   Describe the sequence in your own words. 

Task 1: 

Look at the following sequence: 

 

 

 

a. How many dots will there be in element 6? 
Explain. 

b. Describe the sequence in your own words. 

Task 2 

Look at the following series: 5; 9; 13; 17… 

a. What is the fifth element in the series? 
Explain. 

b.   Describe the sequence in your own words. 

Task 2 

Look at the following series: 1; 3; 6; 10… 

a. What is the fifth element in the series? Explain. 

b.   Describe the sequence in your own words. 

Fig. 1: Worksheets given to the students 

Results  

We will relate to the method of generalisation for each sequence by presenting 
examples from the students’ work (see Tab. 1 below). Analysis of the 
generalisations showed that students used more than one stage to reach the 
generalization. In other words, in order to formulate the generalisation, students 
underwent a process beginning with factual algebraic thinking and for some 
students this continued to contextual algebraic thinking.   

Initially, the students examined the elements in each sequence in order to 
understand the nature of their construction. Here it is important to note that for 
numerical representation the students first looked for a connection between one 
element and the one either preceding or following it. In contrast, for the visual-
pictorial representation analysis, students related to its “pictorial” structure:  

 

Element 1 Element 3  Element 2 

Element 1  Element 2      Element 3          Element 4         
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Numerical representation Visual-pictorial representation  

Yuval: Here it is bigger by 1, here by 2, 
and then 4 and then 4. That’s how we 
got to 10 (triangular numbers series). 

Alon: This shape has a pattern, everything 
here is equal and that’s like the letter W 
that just grows ‘from one generation to 
the next” by the addition of the circles 
(arithmetic progression). 

In other words, in the first stage, students objectified the regularity for both 
sequences and both representations. The difference is in how the objects were 
related to in each case: for numerical representation, students related to the 
difference between two adjacent elements, while for visual-pictorial 
representation they related to the external appearance of each element (the letter 
W, the triangles) and did not translate this into a numerical representation. As 
Tab. 1 shows, some students remained at this level of generalisation, with 
similar numbers for each sequence, but different numbers for each 
representation: for numerical representation, about two-thirds of the students 
went on to construct an ‘in-action’ formula, as opposed to about one half who 
went on to the next stage with the visual-pictorial representation.  

The second stage of constructing the generalisation is to create an in-action 
formula. In this case, students gave an operative description how to construct the 
next element from its predecessor, a kind of ‘recursive’ description of the 
sequence, using words and not letters: 

Numerical representation Visual-pictorial representation  

Daniel: Each time the sequences grows 
by two, then by three and then by four 
consecutively (triangular numbers 
series). 

Chen: It begins with 1 and then jumps by 
two to three and then by three to six 
(triangular numbers series). 

Some two-thirds of the students in each case (type of series and type of 
representation) remained at this level of generalisation, and only one third 
progressed to creating a formula with a generic example - building a formula 
based on a specific example that may be considered as a general case: 

Numerical representation Visual-pictorial representation  

Noa: The number 73, for example, does 
not belong to this sequence because it is 
divisible by 1 and by itself and you can’t 
take it as something multiplied by 4 plus 
1(arithmetic progression). 

Daniel: if I need to know the number in 
12th place, I will multiply 12 by 4 and add 
1, because it is actually numbers with a 
reminder of 1 (arithmetic progression). 

The highest level of generalisation observed was a description in general terms, 
reached by about 12% when working on the task of the arithmetic progression in 
numerical representation. No students reached this level of generalisation for the 
triangular number sequence in numerical representation. Nor did any of them 
reach this level of generalisation for either of the two sequences in visual-
pictorial representation.  



ICMI Study 23                                                                         Theme 5, Eraky & Guberman, Generalisation Ability  

547 
 

Numerical representation Visual-pictorial representation  

Daniel: Element number X 4 and then I 
add 1 (arithmetic progression) 
Noa: 4 × ሕ + 1 (arithmetic progression).  

No students reached this level of 
generalisation for this representation. 

The statistical examination of the results obtained show that for the arithmetic 
progression there are no significant differences in the process of applying 
algebraic thinking between the two representations. In other words, the solution 
process undergoes the sane stages, with the same degree of success on the 
students’ part. In contrast, the statistical examination of the other sequence 
shows significant differences: the correctness of the generalisation for numerical 
representation is higher for numerical representation (t(91) = 2.12, p <.05); 
recognition of the regularity is easier for numerical representation ሺtሺ91ሻ ൌ
2.24, p ൏ .05ሻ;  writing an in-action formula is easier for numerical 
representation (t(91) = 4.03, p < .001). 

Tab. 1: Level of generalisation identified among students participating in the study 

 

Number of students 
reaching this level of 
generalisation of the 

sequence 

1; 3; 6; 10… 

Number of students 
reaching this level 
of generalisation of 

the sequence 

5; 9; 13; 17… 
Sub-Level Description 

Level of 
generalisation 

Visual-
pictorial 

Numeric
al 

Visual-
pictorial 

Numeric
al 

78 83 91 85 

Objectification of 
regularity: Recognizing the 
connection between the 
number of the given form 
in a sequence and the 
number (or number of 
circles) in it.  

Factual 
algebraic 
thinking 

56 66 43 61 
In-action formula: Building 
a ‘recursive’ formula/ no 
use of letters  

34 37 29 36 

Generic example: Student’s 
formula is based on a 
particular case which can 
be related to as a general 
case. Contextual 

algebraic 
thinking 

0 0 0 10 

Description in general 
terms: Description of the 
regularity of building a 
series in words or symbols 
in general without relying 
on a specific example. 
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Discussion and conclusion 

This study examined how students cope with tasks requiring generalisation of 
sequences. These sequences were presented both as numerical patterns and 
visual-pictorial patterns. The first conclusion of the study is that students are 
able to handle tasks dealing with patterns as early as elementary school. 
However, dealing with sequences students are familiar with (such as a sequences 
of numbers giving the same remainder when divided by a certain number) 
enables reaching a higher level of generalisation than dealing with patterns that 
most students are not familiar with (triangular numbers). This leads to the 
conclusion that dealing with patterns unfamiliar to students does not enable a 
high level of generalisation, but does oblige students to look at the pattern given 
very closely in order to identify different connections between the elements of 
the sequence. This method seems more reasonable for cultivating flexibility in 
“games with numbers”.  

The other finding emerging from the study is students’ preferred form of 
representation: numerical or visual-pictorial. The study shows significant 
differences in the correctness of task solutions in favour of numerical 
representation. Tasks in numerical presentation are easier for students to solve 
and show higher rates of success. The qualitative analysis of the difference 
between the representations shows that students are busier with the visual 
properties of the patterns (looks like the letter W) as opposed to the more 
intensive focus on the arithmetic properties of the sequence presented 
numerically. From this we may conclude that dealing with numerically 
presented patterns requires less intervention on the part of the teacher as 
opposed to tasks presented pictorially: here the teacher should go deeper into the 
rules of building a sequence and also show tools to understand and analyse it.  

The final point of note is the cultivation of number sense. As the study reveals, 
dealing with patterns is the right way to judge the data in the task: whether it is 
important to identify connections between two adjacent elements in a sequence, 
or to generalise the method for finding the element in a higher position (e.g. 
100th place), or to create an 'in-action' formula suitable to generalise the 
sequence and so on. Analysis of the generalisations obtained together with the 
students, alongside discussing the efficacy of each one will enable a teacher to 
deepen the students’ understanding of the relations between the numbers and the 
flexibility of working with them.  

In addition to all of the above, the study results support Radford’s claim that 
algebraic thinking linked to the ability to generalise the patterns develops in 
stages. This claim seems correct not only in the case of the development of 
algebraic thinking over time, but also for a specific task, as emerged in this 
study. 
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Abstract 

This paper discusses an exploratory approach to understanding the relationship 
between Whole Number Arithmetic (WNA) and early algebraic thinking. In particular, 
the inclusive materialist framework offered by de Freitas and Sinclair (2014) is used to 
reconceptualise learning as occurring in the relations amongst human, pattern and 
mathematics. We examine a mathematical activity where children interacted with 
patterns in a classroom setting. We show that focussing on the relations amongst 
human, pattern and mathematics provides insights on the role of pattern and WNA for 
developing early algebraic thinking. In so doing, we call attention on the embodied 
nature of mathematical thinking and learning as well as its relationship with the 
learners’ material surrounding.  

Key words: early algebraic thinking, embodiment, inclusive materialism, material 
agency, pattern, Whole Number Arithmetic 

Introduction 

The development of early algebraic thinking has been widely studied in 
mathematics education (e.g. Carraher et al., 2008; Radford, 2014; Rivera, 2011). 
Traditionally, these studies focus on children’s discourse when they engage in 
mathematical activities with patterns. From a theoretical standpoint, these 
studies tend to place children at the centre of the mathematical activities; hence, 
the pattern itself is taken as inert material that “represents” mathematics. Taking 
on a non-dualistic and materialist view, this paper conceptualises algebraic 
thinking as inseparable with engaging with the material surrounding. Within this 
exploratory approach, we aim to offer insights into children’s experience as they 
engage with patterns, and their development from Whole Number Arithmetic 
(WNA) to algebraic thinking. 

Interactions with patterns are necessarily embodied: at the very least, it is 
necessary for human perception and the body to coordinate with the pattern. 
These bodily experiences, such as pointing to a particular term in a sequence 
with one finger, also seem important in the learning process in that they are 
shaped by material encounters such as the design of the pattern in a figural and 
numerical sense. In other words, a child’s interactions with the pattern are not 
merely initiated by the child, but are compromised between the child’s body and 
his/her surrounding material world. This compromised intra-action between 
human and material is a move beyond the embodied cognition tradition (Lakoff 
and Núñez, 2000; Wilson, 2002), in which the centre of the activity is given to 
the learner, towards distributing agency across the learning situation (Rotman, 
2008; de Freitas and Sinclair, 2013). In this paper, it is argued that this approach 
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for understanding the body and materiality may better equip us for addressing 
the development of algebraic thinking through children’s interaction with 
patterns. 

In their book chapter: “When does a body become a body?”, de Freitas and 
Sinclair (2014) offer a theoretical approach of unbinding the body from its skin 
to shed new lights on the ontologies of body and of mathematics. They redefine 
the boundaries of the body by considering the interactionist view that materials 
are not inert but are constantly interacting with each other and with the human 
body. Boundaries are re-created and assemblages emerge as the body and as the 
unit of analysis in the learning experience of a person working with a tool or a 
pattern. This approach rejects the conceptualist idea that materials have confined 
properties of their own; hence, agency is redistributed across the situation. 
Distributing agency could help theorise the role of materials in learning 
mathematics in ways that the traditional cognitivist could not. In particular, this 
approach argues that the functions and properties of a given pattern can only be 
captured in the human-pattern-mathematics assemblage. Assemblages possess 
emergent properties. De Freitas and Sinclair show how the material world—the 
chips, the goblets, and the limited surface of the desk—is implicated in an 
episode where children work with patterns: “The surface on which the students 
work are thereby also part of the material practice; it enables the visual 
sequentialising of actions. […] But had the students placed the chips differently, 
the assembling of matter and meaning would have changed” (pp. 28-30). The 
same chips and the goblets are seen as useful representations by the researchers, 
but students engage with them differently as part of their material assemblages. 

Moreover, diagramming and gesturing are important mathematical processes in 
emerging assemblages. De Freitas and Sinclair call these “boundary-drawing 
apparatus”, devices that reconfigure the world rather than representing it or 
coding it. “The boundary that it draws conjoins and separates the ‘real’ from the 
mathematical, the matter from the meaning. In Barad’s terms, this is a discursive 
practice that actively engages with the matter-meaning nexus while enacting a 
cut or divide that also separates” (p. 51). Therefore, diagrams and gestures are 
not only iconic representations of the “real”, they also effect its individuation. 
As a gesture is performed, its meaning becomes increasingly mathematical 
through a series of boundary-drawing. Located in the physical world, these 
movements potentially evoke mathematical meanings: “Does mathematics really 
just stand there, silently waiting for the breakthrough insight or shift in 
attention? Or might it somehow be much more implicated in the moving hands 
and the configuration of chips? If so, what do we mean when we say that the 
actions are concrete and the mathematical expression abstract?” (p. 30). 

Materials and Methods 

The data discussed in this paper is part of a larger classroom intervention study 
concerning the development of early algebraic thinking in grade 1-5 (age 6-10) 
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The passages above show that the children perceived the first structural relations 
in the sequence, between the numerosity of the circles and the number of terms. 
This required more than noticing the overall spatial configuration of the circles 
and the recursive “always add 6” that the children already noticed in the 
previous grade. What Filippo and Lara were noticing here was of a very 
different nature. It introduced reasoning on the figural sequence in terms of 
whole numbers (number of circles), and even though the reasoning was related 
to one row at a time, it was no longer strictly related to the spatial disposition of 
circles. So, operations came to the fore as necessary means to manage relations 
between numbers, like the number of circles in a row and the term number (its 
position). This is interesting from the mathematical point of view, since it 
pointed out a property of the sequence and a functional way of looking at it.  

When Filippo and Lara were in the process of writing down their discoveries, 
the written production required a slow elaboration of their thinking. At a certain 
point, the teacher asked what they were doing, and Filippo responded as follows. 

Filippo: Twenty-five times two, it gives fifty, then you put <Points to term 3 of 
the sequence> fifty circles below <Mimes with right index finger the arranging 
of circles on the bottom row of term 25 starting from the bottom row of term 3 
and moving outside of the paper towards the desk side>, fifty circles in that 
[row] above <Repeats the gesture in correspondence with the middle row of term 
3>, and here you leave <Points to the first block of white circles>, in the row of 
white <Points to the block with both hands> you leave two empty [spaces] and 
you make forty-eight <Repeats the gesture with both hands miming the top row 
on the desk, and then running away> 

In the previous passages, Filippo recalled the operation twenty-five times two as 
an operative means to solve the task. Instead, here he talked about position 25, 
directly using the number of circles, through the result of the operation. He was 
giving a precise explanation for the shape in term 25, which were two rows with 
fifty circles and one with forty-eight circles. The numerosity of elements and the 
numerical relationships were more and more emerging from the spatial structure 
of the sequence. Similarly, the children were more and more distancing from the 
four given terms of the sequence, as they started to reason with more generality 
on its characteristics. 

The children were almost finished writing down their discoveries, when the 
researcher intervened to ask whether the previous relationship was applicable in 
a different case, prompting them to think algebraically.  

R: But what if it were… you made the case of the twenty-five, of position 
twenty-five, didn’t you? But, what if it were position… 
Lara: One hundred? 
R: One hundred, or position Pippo, what, what would you do? 
Filippo: I would do, oh, I do… but, position Pippo? 
R: Ah ah. <in affirmative sense>  
Filippo: I do Pippo times two! 
R: And what do you find? 
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not matter what the term number was, therefore inviting the children to focus on 
the operations on Pippo rather than the numerical results upon the operations. In 
response, Filippo talked of the algebraic expression “Pippo times two” and 
referred its result to “Two Pippos”—an interesting plural use of Pippo that also 
evidenced Filippo’s way of how to perform operations on Pippo. 

When asked to explain what the operation of “Pippo times two” meant for the 
second time, Filippo took much time to think about the question and was not 
successful in his first attempt. Some tension can be observed between Filippo 
and Pippo when Filippo tried to communicate the meaning of Pippo in an 
arbitrary figure. Having mixed up Pippo with the number of circles on the 
bottom row, he was reminded that Pippo was the “position” by the researcher, 
after which he clearly explained the meaning of Pippo by using it as a parameter 
to formulate algebraic expressions in the form of 2p and 2p-2 for the number of 
circles in the respective rows in the “Pippo” position. 

Discussion 

The inclusive materialist framework highlights the emerging relations between 
the children, pattern, and mathematics as Filippo and Lara engaged in the task. It 
shifts the centre of the mathematical activity from the children to the children’s 
body-material assemblage. After noticing the relationship between the term 
number and the number of circles on the bottom row, Filippo and Lara’s 
discourse shifted from a recursive one, to one that involves the structural 
relations in the figure. We note that this discourse was only possible because of 
the way the pattern was arranged. Namely, the figural sequence was arranged in 
such a way that when the term number is multiplied by 2, it yields the number of 
circles on the bottom row. Had the pattern been arranged differently, the 
children’s discourse would have developed differently. Hence, the arrangement 
of the figural pattern was a part of the children’s material-body assemblage and 
their emerging conception. The thinking of “multiplying and dividing by 2” 
emerged in the assemblage, which allowed them to consider any one term 
independently from its previous term and moved their discourse from a 
recursive to a functional one.  

As much as the task of “position 25” was significant, the opportunities for the 
children to work within WNA were also crucial for developing the children’s 
algebraic thinking. We could say that WNA helped move the assemblage 
forward to the 25th term of the sequence. However, this does not mean that the 
children moved from concrete to abstract thinking. For the children, there was 
nothing abstract about the 25th term in the figural sequence; they could have 
found it by repeated addition. Their algebraic thinking began to develop as they 
engaged in finding a generic way to solve for the number of circles in a remote 
term like 25. WNA was instrumental in this process because it enabled the 
children to work with the relationship between the number of circles and the 
term number as well as verify that their method worked for the first several 
figures. Hence, this meant that they could use the relationship that they found 
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and verified, and generalise it for any term. At the same time, the children’s 
discourse of using WNA was increasingly developed and their confidence of 
working with the figural and numerical structure strengthened having interacted 
with the pattern for quite some time. Their emotional state, the specific 
arrangement of the pattern, their experience of applying WNA to the pattern, 
and the teacher’s questioning were all part of the assemblage when Filippo made 
the generalisation of “twenty-five times two” to obtain the number of circles on 
the bottom row and to reason about the other two rows. In saying “twenty-five 
times two”, the whole number operation was also becoming an algebraic 
operation because Filippo seemed to be talking about it not only in its 
particularity (the 25th term) but also in general sense (for other remote terms). 

By unbinding the “body” of mathematics as an assemblage of the children, 
pattern, and mathematics, we see that Filippo’s gestures were an essential part of 
his learning. Through his gestures, Filippo mobilised what was a static figure, 
and this allowed the creation of new mathematics as new terms were gestured 
figuratively. He did so without the reference of terms like the fifth or sixth term, 
but he used his hands and fingers to enact the exact shape in the 25th position as 
well as in the “Pippo” position.  

When Filippo got stuck on the “Pippo” task, he was reminded of what he did in 
the “term 25” task. He then gestured near term 4 on his paper to explain what he 
did as if the fourth term was the 25th term. At other times, he would gesture 
outside of the paper to talk about a term that should appear after the sequence. 
According to de Freitas and Sinclair, these gestures were mobile boundary-
drawing devices that conjoin and separated the “real” with the mathematical. 
Once the children found the logical and structural relations that existed in the 
figure, they created new mathematics. Filippo’s hand gestures of running the 
three rows and his other gestures were not merely iconic representations of the 
figure. Rather, they were a part of the children’s emerging body-material 
assemblage that gave rise to both WNA and algebraic thinking. In the study, the 
observation about Filippo and Lara’s development of generalising a structural 
relationship was not unique to them but was consistent with other children in the 
classroom. This suggests that assemblages as well as the body of mathematics 
were located within a broader classroom setting.  

In this paper, we offered an approach to understanding the relationship between 
WNA and algebraic thinking within the material entanglement of children, 
pattern, and mathematics. In so doing, we called attention on the embodied 
nature of learning mathematics in relation to the learners’ material surrounding.  
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DISCERNING MULTIPLICATIVE AND ADDITIVE REASONING         
IN CO-VARIATION PROBLEMS 

Kerstin Larsson and Kerstin Pettersson, Stockholm University 

Abstract 

In this study of arithmetical reasoning, which extends earlier work, we explore what 
properties students, when working in pairs, discern in additive and multiplicative co-
variation problems that help them to distinguish between problem types. Results 
showed that pairs who solved each problem appropriately discerned mathematically 
significant properties such as speed, starting time and distance. Pairs who over-used 
additive reasoning focused on the distance difference without considering speed. 
While speed is considered to be a difficult quantity, here it seems to help students 
distinguish between multiplicative and additive situations. 

Key words: additive reasoning, co-variation problems, multiplicative reasoning 

Introduction 

The study presented in this paper extends work undertaken by Van Dooren and 
colleagues at the University of Leuven on students’ reasoning when solving 
multiplicative and additive co-variation problems. Co-variation problems deal 
with two phenomena that change at the same time. An example of a 
multiplicative co-variation problem is two persons starting at the same time and 
running laps at different (but constant) speeds. If they run at the same speed but 
one person has started before the other it is an additive co-variation problem. 
The Leuven group has undertaken several studies on the ways in which students 
understand and exploit multiplicative reasoning showing that students have 
difficulties determining when multiplicative reasoning is appropriate (e.g Van 
Dooren et al., 2008; Van Dooren et al, 2010a, 2010b). We extend this line of 
research by investigating those features that students discern when solving co-
variation problems that underpin the forms of reasoning they adopt. What 
problem features are discerned by those who reason correctly and how do these 
differ from the features discerned by students who over-use multiplicative or 
additive reasoning, i.e. employ multiplicative reasoning to problems where 
additive reasoning is appropriate and vice versa? 

Multiplicative reasoning, which typically develops slowly (Clark and Kamii, 
1996; Van Dooren et al., 2010a), underpins many topics in mathematics such as 
fractions, ratio and functions (Vergnaud, 1994), emphasising the importance of 
distinguishing between additive and multiplicative reasoning. Proportional 
problems, such as calculating how many marbles Tina has if she has 3 times as 
many marbles as Ann, who has 5, are typically employed to distinguish additive 
and multiplicative reasoning. A child who reasons additively will sum the 
numbers and declare that Tina has 8 marbles, while a child who reasons 
multiplicatively would multiply 5 by 3 and answer 15 marbles (e.g. Clark and 
Kamii, 1996). When students receive instruction about proportionality they tend 
to over-use not only multiplicative reasoning but also additive reasoning 
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simultaneously (Van Dooren et al., 2010a). Explanations for such inappropriate 
reasoning processes are many and frequently draw on students’ tendency to 
notice superficial features, such as numbers and formulations, rather than the 
deep-level properties of a problem (Verschaffel et al., 2000). 

In problems employed to assess multiplicative reasoning the numbers as well as 
the quantity need to be carefully considered to avoid other sources of 
inappropriate reasoning. For example, numbers in word problems usually 
represent two different types of quantities, extensive and intensive. Extensive 
quantities, such as mass, can be measured and magnitudes sensibly added; the 
weight of two boxes of apples is the sum of each box’s weight. Intensive 
quantities are usually ratios between two extensive quantities, such as meter per 
second, and have been defined as quantities “not susceptible to actual addition“ 
(Piaget, 1952, p. 244). Thus, it is nonsensical to say that two persons’ running 
speed is the sum of each person’s speed. Extensive quantities generally pose 
fewer problems than intensive (Nunes, Desli and Bell, 2003). However, 
familiarity is important as well-known quantities like price per item are easier to 
manage than weight per unit volume. Speed is also considered to be an 
accessible intensive quantity (Van Dooren, et al., 2010a) due to the perceptual 
experience students have of the concept of speed (Nunes et al., 2003). 

Two studies by the Leuven group are of special interest to this paper. In one 
study written tests, involving both additive and multiplicative co-variation 
problems, were given to 325 students to investigate the development with age of 
their ability to interpret additive and multiplicative problems (Van Dooren et al., 
2010a). From this study we learn that numbers have greater influence than the 
mathematical situation. Integer ratios and differences tended to be handled as 
multiplicative problems while non-integer ratios and differences more often 
were treated additively (Van Dooren et al., 2010a). In the second study, 75 
students were set two tasks. The first involved their categorising but not solving 
word problems, while the second involved their solving a set of similar word 
problems (Van Dooren et al., 2010b). The problems reflected additive and 
multiplicative co-variation problems. Students who worked on the categorisation 
before solving problems were significantly more successful in distinguishing 
between additive and multiplicative problems than students who solved 
problems before categorising. These studies show that many students cannot 
discern additive from multiplicative co-variation problems and that the act of 
categorising may help in the process of distinguishing additive from 
multiplicative problems. However, since the studies exploited written tests 
students’ reasoning processes were difficult to identify. 

Our aim was to extend our knowledge with respect to students’ multiplicative 
and additive reasoning through our addressing the following research question; 
what features do students discern in additive and multiplicative co-variation 
problems that help them to distinguish the two problem types? 
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Materials and Methods 

In order to study what features of a problem students discern we invited ten pairs 
of 6th grade students to solve problems in pairs, allowing us to follow students’ 
problem solving discussions in a natural setting. We constructed two co-
variation problems, one multiplicative and one additive, using the same context, 
children swimming lengths in a swimming pool. Problem 1 was a multiplicative 
problem, (MP), and problem 2 was an additive problem, (AP). 

Gustav, Martin, Sofia and Elin are swimming in a pool. 

1. Martin swims faster than Gustav. 
Martin and Gustav start swimming at the same time. 
When Martin has swum 6 lengths, Gustav has swum 2 lengths. 
How many lengths has Martin swum when Gustav has swum 10 lengths? 

2. Sofia and Elin swim equally fast. 
Sofia starts swimming before Elin. 
When Sofia has swum 12 lengths, Elin has only swum 6 lengths. 
How many lengths has Sofia swum when Elin has swum 10 lengths? 

We chose numbers in both problems to make it easy to apply both additive and 
multiplicative reasoning. All differences and ratios were integers, each question 
was posed using the same number of lengths (10) for the child who had swum 
the fewest and focused on the child who had swum the most. Such an approach 
might prompt an over-use of multiplicative reasoning (Van Dooren et al., 
2010a), but our main reason was to ensure that all computations were simple and 
did not draw attention from student’s understanding of the problems. The choice 
of context, swimming lengths in a pool, is well-known to Swedish students and 
hence would make it easy to grasp the meaning of the described situations. The 
problems’ formulations were similar to those found in the two Leuven studies 
that we intended to extend (Van Dooren et al., 2010a, 2010b). 

The students who participated were already enrolled in a research project and 
had been interviewed several times about different aspects of multiplication. 
They were paired according to information concerning their multiplicative 
reasoning from individual interviews earlier the same term. We paired students 
who had shown similar reasoning in order to form as homogeneous pairs as 
possible. The interviews took place in a room adjacent to their normal classroom 
and were video and audio recorded. Afterwards, any written materials were 
collected and full transcriptions were made. Students were instructed to 
collaborate on an agreed solution to each problem. The order in which the two 
problems were presented was decided arbitrarily and then used consistently for 
all pairs - there were too few pairs to warrant investigating whether the order 
made a difference. The problems were written on a card, which was presented to 
the students, before the interviewer read the problems aloud. After they had 
solved both problems students were asked to describe what was similar and what 
was different about the problems. 
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An iterative process, involving both authors, of reading and comparing students’ 
arguments yielded qualitatively different categories of reasoning processes 
relating to the features students discerned. These categories referred to speed, 
starting time, distance, context and numbers. Context and numbers were 
considered to be superficial features, while speed, starting time and distance are 
features of mathematical significance in these two problems. 

Results 

Six pairs solved each problem with appropriate reasoning (i.e. the MP with 
multiplicative reasoning and the AP with additive reasoning). Four pairs over-
used additive or multiplicative reasoning (i.e. used the same type of reasoning to 
both problems), three by additive and one by multiplicative reasoning. 

All six pairs who solved each problem with appropriate reasoning discerned 
mathematically significant differences, which they discussed with each other as 
they were working on the solutions. All six pairs discerned that the speeds were 
different in the MP and the same in the AP, as exemplified by Anna’s statement. 

Anna: Here one swims faster [pointing at the MP] and here they swim equally 
fast [pointing at the AP]. 

Four of the six pairs explicitly concluded that the difference in speed led to an 
increased distance in the MP or that the same speed led to a fixed distance in the 
AP, as exemplified by Jonathan’s and Marcus’ statements. 

Jonathan: Because he swims faster [Jonathan moved two fingers simultaneously 
along the table with one finger moving faster] 

Marcus: If they are equally fast then of course she keeps that distance. [Marcus 
holds his hands on a fixed distance from each other and moves them forward at 
the same pace.] 

The importance of the speed was also repeated when they were explicitly asked 
to describe the similarities and differences they had discerned in the two 
problems. While speed is an intensive quantity, it is familiar to students and all 
six pairs were able to see how speed affected the distance between swimmers. 

One of the six pairs with appropriate reasoning, Jonathan and Hugo, first solved 
the MP by additive reasoning but then, having started on the second problem, 
stopped and returned to the first problem and changed their solution to 
multiplicative reasoning. 

Hugo: I think about the first [problem] as well, how that was. He had the same 
distance ahead [of the other swimmer] all the time.  

Jonathan: He was four lengths… 

Hugo: He was four lengths ahead all the time, and here it is, here they start. 
When Sofia has swum twelve, and then six, then she is six ahead. Six lengths 
ahead. 

[…] 
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Jonathan: Martin swims faster. […] Then Martin must have kind of much more 
[lengths]. For two lengths Gustav have swum, six times, must on four [lengths] 
then twelve. 

The four pairs who over-used additive or multiplicative reasoning found a 
procedure when they solved the first problem, which they reused with the 
second. The pair who used multiplicative reasoning to both problems discerned 
the speed difference when solving the MP then reused the procedure they had 
developed with the AP, as presented in the excerpts below. 

Sebastian (on MP): Because for each length he does […] he does, six [divided 
by], two [is], three lengths. 

Sebastian (on AP): Because each time she swims one length, she swims two 
lengths. 

This pair’s discussion on the MP is similar to the six pairs who reasoned 
appropriately to both problems; they discerned the speed difference and 
concluded that it led to an increasing difference in distance. 

The three pairs that reasoned additively focussed on and calculated the distance 
between the two swimmers and then added the distance to the ten lengths 
mentioned in the question, as exemplified by Alva’s statement. 

Alva (on MP): Because ten, he is four [lengths ahead], then it is fourteen. 

None of these three pairs discerned speed while solving the first problem (MP); 
they all discussed the distance in lengths, which prompted a correct solution to 
the AP, but not to the MP. 

When explicitly asked to describe differences all four pairs that over-used 
additive or multiplicative reasoning described contextual and numerical 
differences, as exemplified by the excerpts below. 

Felicia: It is girls there and boys there, that is different. 

Sebastian: The numbers are different but the way to calculate is the same. 

In the end of the interview Hanna and Matilda, as well as Julia and Alva, also 
pinpointed significant mathematical differences; speed and starting times. We 
exemplify this by presenting what Matilda and Hanna said. 

Matilda: They start at the same time and they do not start at the same time. 

Hanna: And those two do not swim equally fast and those two swim equally fast. 

However this did not lead any of them to revise their solutions or reasoning. 

In summary, students who solved the problems by appropriate reasoning 
discerned and used the information about speed being different or the same and 
sometimes also that starting time being different or the same and inferred that 
this had implications for the distance between the swimmers. When these 
students were asked to explicitly describe differences and similarities they talked 
about these mathematically significant features. Some of these pairs also noted 
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superficial differences such as boys in MP and girls in AP, but this was said with 
laughter and gestures indicating that it was not of importance. 

In contrast the students who over-used additive or multiplicative reasoning 
found a procedure for the first problem, which they applied to the second. The 
additive procedure was based on differences in distance and the multiplicative 
on differences in speed. When they described the ways in which the problems 
differed they talked about numbers and other superficial contextual differences. 
Two of the pairs noticed not only that the speeds were different in the MP but 
the same in the AP but also that the start times were the same time in the MP but 
different in the AP without reflecting that these differences had any influence on 
how to solve the problems. 

Discussion and conclusion 

In this study we find evidence that when students discern significant features in 
a problem they can reason appropriately. That is, what students discern as 
significant determines what they do. Students, who discerned the significance of 
the swimmers’ speed were able to infer that the distance between the two 
swimmers was relational in the MP and absolute in the AP. This can be 
construed as the nature of their discernment also determines their reasoning 
process. Hugo and Jonathan’s reasoning bore evidence of this when they reacted 
to having used the same reasoning to both problems even though they discerned 
significant different features and went back to revise their solutions. They used 
the speed difference as grounds for thinking more about how to solve the 
multiplicative problem. Even though speed is considered to be difficult to handle 
for young students (Nunes et al., 2003) the notion of speed as being different or 
the same was discerned by all successful pairs and led them to appropriate 
reasoning. This can be explained by the familiarity of the situation as well as the 
fact that the students did not work with any quantities in the two problems; the 
speed was expressed as being different or the same and measured by the number 
of lengths the swimmers had swum at two points of time (i.e. extensive 
quantity). The appropriately reasoning pairs could infer that the speed being 
different lead to increased difference between the swimmers while the same 
speed lead to a fixed difference. This might be an important clue for how to 
design instruction to help all students to make such inferences. 

We also confirmed earlier findings (Van Dooren et al., 2010b) that to ask 
students, after solving problems, to describe what is different did not help them 
to discern significant differences. If students have not discerned the difference in 
swimming speed, it is of course not possible for them to describe that. But two 
pairs, when questioned after solving the problems, identified both speed and 
start time differences without realising their significance with respect to the 
solution processes. Perhaps asking them to first read both problems and then 
discuss what was similar and different before solving them might have had an 
impact on their solutions. However, this was not the intention with our study, we 
wanted to see what features that students pay attention to and act upon when 
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they solve co-variation problems of multiplicative and additive nature. This 
confirmation of the findings from Van Dooren et al. (2010b) has implications 
for instruction; comparing and categorising word problems before solving them 
enhances students’ ability to discern mathematically significant features in them. 

With respect to the first problem, all pairs engaged with the context of children 
swimming without suspension of meaning, extracted numbers and applied an 
arithmetical operation, as has found regularly in many different contents and 
cultures (e.g. Verschaffel et al., 2000). This may be due to the familiarity of the 
context, as swimming lengths in a pool is meaningful for these particular 
students. However, after finding a procedure (correct or incorrect) for solving 
the first problem four pairs re-used that procedure with the second problem 
without further discussion or reflection. In particular, Ebba and Sebastian, the 
only students who over-used multiplicative reasoning, worked collaboratively 
on the MP until they had an agreed solution they thought was appropriate. When 
they worked on the AP they did not discuss but immediately applied the 
procedure they had employed on the MP. One simple explanation may be that 
they just did not pay sufficient attention to the presentation of the problem. 
Another, more significant explanation, may be that in the game of school 
mathematics instruction typically addresses one category of problem at a time 
(Verschaffel et al., 2000). Such matters also call for instruction, inspired by the 
study where students had to categorise problems rather than solve them (Van 
Dooren et al., 2010b), inviting students to discuss with both peers and teachers 
rationales for their categorisations. 

The most important part of the results is that the students who discerned the 
significance of speed being different or the same were able to reason 
appropriately to both the multiplicative and the additive co-variation problem. 
Even though speed is considered to be a difficult quantity it might be the key to 
grasp this type of situations and more research is needed in this area. 

We believe that the methodology of our study, where we had student pairs 
discussing and solving problems together, as well as discussing the similarities 
and differences of the problems, might be useful in shedding light on how to 
move students’ focus from superficial features to significant mathematical 
features. The study reported in this paper could be used as a pilot for a larger 
study, involving more students, focussed on generalisation. In such a study the 
order of problems could be random for students pairs to rule out any differences 
from starting with a MP or an AP as well as giving the question about 
similarities and differences about the problems before asking them to solve the 
problems. 
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ADDITIVE STRUCTURE:  
AN EDUCATIONAL EXPERIENCE OF CULTURAL TRANSPOSITION  

Maria Mellone(1), Alessandro Ramploud(2)  
(1) University of Naples, (2) University of Modena and Reggio Emilia, Italy 

Abstract 

In this article we present a “western” reflection on a particular graphical representation 
of the additive structure, the pictorial equation, used in Chinese and Russian primary 
school educational practices. We will discuss the possibility of using the same 
representation also in Italian primary schools by presenting an educational experience 
of cultural transposition. Looking at educational practice in another culture is seen, in 
this perspective, as an opportunity to rethink our own.  

Key words: educational cultural transposition, pictorial equation 

Introduction  

The unstoppable phenomenon of globalisation is permeating social and cultural 
spheres bringing both positive and negative effects. The numerous international 
assessment projects (such as PISA and TIMSS) are among the most visible 
promoters of this process in the world of education, particularly in the field of 
Mathematics. This growing opportunity to share and reflect not only on the 
results of these tests, but also on the educational practices affecting these results, 
creates new space for reflection in the educators debate. Transposing 
educational practices between countries, or even continents, is becoming a 
reality involving several issues. For example, it is increasingly acknowledged 
that the different educational choices and tools are inseparable from the history 
and the culture of the places where they were born and developed: each time that 
an educational path is looked at from the “outside” its rationale and nature risk 
being misunderstood if the whole cultural context is not taken into consideration 
(Bartolini Bussi and Martignone, 2013). Furthermore we think that whilst 
comparing two or more cultural-educational backgrounds, it is crucial to 
maintain their differences without “translating” them from one culture to 
another, but rather highlighting these very differences in order to review their 
meaning processes and daily use. We call this process cultural transposition of 
educational tools and we will define it better the further ahead in this paper 
trying to show how it can be a powerful tool to review our own educational 
practices. In particular, in this study we will present an example of cultural 
transposition of the pictorial equations approach of the Chinese curriculum3 
(Cai and Knuth, 2011; Sun, 2011). Our “western” viewpoint allows us to link 
                                           

 

 
3  Due to space limits, in this study we don’t deal with the use of pictorial equation in 
the Singaporean curriculum (Cai et al., 2011). 
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Russian and Chinese primary schools, gave us the opportunity to explore its use 
in a more conscious way in an Italian fifth grade class. Indeed, even if it is not 
present in the tradition of the Italian school curricula, in the experience 
presented we recognised in it the opportunity to develop an approach towards 
Arithmetic with primary pupils which pays more attention to the structural 
features than to the numerical ones. Indeed we observed pupils’ natural and 
flexible recourse to algebraic language in a context built on the pictorial 
equation. Moreover, we recall that algebraic thinking is recommended as one of 
the primary mathematics education goals by the most recent Italian national 
curricula (MIUR, 2012). In this sense the didactic choices for teaching mathematics 
favouring the structural aspects of Arithmetic rather than the numerical ones, as 
embodied in the Chinese “ways of seeing” and used in Russia since the last century, 
seem more timely than ever also in Italian primary school practice. 

References 
Bartolini Bussi, M.G., & Mariotti, M.A. (2008). Semiotic mediation in the mathematics 

classroom. Artifacts and signs after a Vygotskian perspective. In English, L., Bartolini, 
M., Jones, G., Lesh, R., Sriraman, B., & Tirosh, D. (Eds.),  Handbook of International 
research in Mathematics education (pp. 746-783). New York: Routledge Taylor & 
Francis Group. 

Bartolini Bussi, M.G., & Martignone, F. (2013). Cultural issues in the communication of 
research on Mathematics Education. For the Learning of Mathematics, 33,    2-8.  

Bartolini Bussi, M.G., Sun, X., & Ramploud, A. (2013). A dialogue between cultures about 
task design for primary school. In Margolinas, C. (Ed.), Proceedings of ICMI Study 22, 
Task Design in Mathematics Education (Vol. 1, pp. 551-559). Oxford.  

Bateson, G. (1972), Steps to an Ecology of Mind. New York: Ballantine. 

Boroditsky, L. (2011). How language shapes thought. Scientific America, 63-65. 

Cai, J., & Knuth, D. (Eds.) (2011). Early algebraization: A global dialogue from multiple 
perspectives. Springer. 

Davydov, V. V. (1982). The psychological characteristics of the formation of elementary 
mathematical operations in children. In Carpenter, T.P. et al. (Eds.) Addition and 
Subtraction: A cognitive perspective (pp.  224-238). Hillsdale, NJ: Lawrence Erlbaum. 

Iannece, D., Mellone, M., & Tortora, R. (2010). Early multiplicative thought: a kindergarten 
path. In Pinto, M. F., & Kawasaki, T. F. (Eds.), Proceedings of PME 34 (Vol. 3, pp. 
121-128). Belo Horizonte: PME. 

Jullien, F. (2006). Si parler va sans dire. Du logos et d'âtres ressources. Paris: Edition du Seuil. 

MIUR, (2012). Indicazioni nazionali per il curricolo della scuola dell’infanzia e del primo 
ciclo d’istruzione. Retrieved in January 2013 at: http://hubmiur.pubblica.istruzione.it/ 

Ramploud, A., & Di Paola, B. (2013). The Chinese perspective of variation to rethink the 
Italian approach to word-problems from a pre-algebraic point of view. In Fazio, C. 
(Ed.), Proceedings of  CIEAEM 65. Torino.  

Sun, X. (2011). An insider’s perspective: “Variation problems” and their cultural grounds in 
Chinese Curriculum Practice. Journal of Mathematics Education, 4(1), 101-114. 

Slovin, H., & Dougherty, B. J. (2004). Children’s conceptual understanding of counting. In 
Høines, M. J., & Fuglestad, A. B. (Eds.), Proceedings of PME 28 (Vol. 4, pp. 209-216). 
Bergen: PME. 



ICMI Study 23                                                            Theme 5,  Venenciano et al., Place Value via Measurement 

575 
 

LEARNING PLACE VALUE THROUGH A MEASUREMENT CONTEXT 

Linda Venenciano, Hannah Slovin, Fay Zenigami 

University of Hawai‘i, Mānoa  

Abstract 

Children’s everyday measurement experiences serve as the basis for developing 
mathematical properties about number. In the Measure Up program, this context is 
applied to first develop foundational properties about mathematical relationships, and 
later to place value and number magnitude. The mathematical concepts are introduced 
through learning activities in a measurement context. Measuring activities with 
nonnumeric quantities are designed to embody the magnitude associated with the place 
value. We argue that this approach develops understanding of the structure of multi-
digit numbers. This curricular approach contributes to the discourse laying 
foundational ideas about number in the primary mathematics curriculum. In this paper 
we describe how number structure is developed from measurement contexts using 
everyday experiences to define unit and number relationships in different bases. We 
share student works and discuss how these give evidence for this curricular approach. 

Key words: Davydov, Measure Up, number systems, place value, unit 

Introduction 

The concept of place value has a critical impact on young students’ mastery of 
arithmetic and the comprehension and production of multi-digit numbers. 
Studies have shown that one’s language and the names for multi-digit numbers 
can affect the acquisition of the number system (i.e., Ng and Rao, 2010; Van 
Luit and Van der Molen, 2011). Yet simply training children to have good 
number naming skills does not necessarily lead to understanding place value and 
the base-ten system (Cheng and Chan, 2005).  

Beyond a semantic issue, the ability to compare the magnitudes of multi-digit 
numbers has been found to be strongly related to mathematical achievement 
(Fazio et al., 2014). Thus it follows that if early misconceptions about place 
value are allowed to perpetuate throughout children’s mathematics education, 
these could contribute to common errors in later work with algebraic 
expressions. Students’ incorrect transfer of arithmetic representations of verbal 
text can affect the use of algebraic notation. For example, students may learn 
that “5 more than 20” can be combined to create 25 and then respond to “10 
more than h” in a similar manner, 10h (Weinberg et al., 2004). Developing a 
rigorous understanding of place-value in the early years could have long-
reaching effects on later mathematical learning. 

Prior studies on the development of number skills have focused on students 
working solely in base ten. In addition to number naming strategies, other 
indicators of place-value understanding have focused on the application of 
strategic counting skills (i.e., Chan, Au, and Tang, 2014; Ho and Cheng, 1997) 
and the ability to compare magnitude differences between number pairs 
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(Moeller et al., 2011). Rather than focus on base-ten counting to teach place 
value, we propose a conceptual basis for instruction of place-value 
understanding. We describe the development of number as it emerges from 
carefully designed experiences with continuous quantities. We argue that 
children learn whole number by first recognising and articulating the theoretical 
basis that defines the mathematics. This is verbalised and demonstrated by the 
children through instructional supports in classroom learning activities. 
Measurement serves as the context to develop place value as a consequence of 
the base while maintaining the developed mathematical properties. We maintain 
that this approach, as proposed by Davydov (1975a, 1975b), promotes a robust 
understanding of place value and enables children to carry out and justify 
quantitative comparisons.  

In this paper we present a foundational topic of the Measure Up (MU) 
curriculum (Curriculum Research and Development Group, 2006), the 
development of place value. MU introduces place value as a way to record the 
measure of quantities and make comparisons among those measures. Students 
construct a set of units such that the relationships among those units are powers 
of the base. The numeration system provides a structure to record each unit in a 
manner that can be extended to include larger and smaller supplementary units. 
Following this development, the decimal system is accepted as a particular 
instance of this numeration system.  

Our objective in this study is to describe a measurement approach to number 
structure and place value and share evidence about the effectiveness of this 
approach. We conclude by discussing how later topics, such as rational number 
and algebraic expressions, are introduced in ways that maintain the integrity of 
the mathematical properties developed in these critical first experiences. We 
investigate the following question, How does a measurement context support 
student understanding of place value?  

Background  

The MU Grades 1–5 program uses a measurement context to develop critical 
mathematical topics. This curriculum, developed in the U.S. by the Curriculum 
Research and Development Group, is built from the experimental curriculum 
derived by the El’konin-Davydov team (Davydov et al., 1999). MU is grounded 
in the premise that mathematical structures constitute the foundation for 
mathematical knowledge. Knowledge is developed through everyday 
experiences with common measureable quantities of area, length, volume, and 
mass. The Grade 1 work begins with generalised ideas (e.g., describing how one 
quantity compares to another) and progresses toward an application of the 
generalised ideas in specific cases (e.g., using number values to solve a 
problem). This is in contrast with the more typical U.S. counting approach to 
school mathematics (Devlin, 2009) that begins with a focus on specific cases 
(e.g., number facts) and builds toward an understanding of generalised cases 
(e.g., properties of mathematics described with variables). MU presents this in 
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reverse, properties before the number facts. This reversal becomes accessible to 
young children in the study of equality, for example, as they trace, cut, tape, 
pour, and weigh continuous quantities. When prompted to determine a specific 
characterisation of a difference, a unit is used to measure and determine a count. 
This focus on quantities provides an appropriate means to consider the 
theoretical foundation of the mathematics and gives relevance to the work with 
whole number.  

The concept of place value develops when measuring a large quantity requires 
using the unit a number of times greater than the base number. Once the count 
reaches the base number, students are prompted to create a supplementary unit 
in order to numerically represent that quantity. For example, in order to measure 
a large volume of liquid in base six, students start with a small container, name 
its capacity unit E, and iterate E six times to create a supplementary unit, 
referred to as a place II or EII unit. This new unit can then be used to measure the 
quantity beyond 5 E units. For larger volumes, students can extend the process 
by iterating the EII unit six times to create a place III or EIII unit. By using the 
different units, students have the physical tools to measure and record a given 
quantity. In this context, whole numbers are not viewed as merely counting 
numbers but as the representation of a measured quantity. This approach 
develops a perspective of place value as measurements structured by the base.  

Multiple experiences of such regrouping in different bases provide students with 
opportunities for considering the notation, “10,” (read “one–zero”) as a 
representation that can be generalised to quantities in any base, thus, 
representing quantities other than “ten.” 

Study the table.  

 dm cm  

Peter 4 1 A 

Nick 3 11 A 

Mary 2 21 A 

Who do you think was able to measure length A quickest? Explain in words 
why you think so. 

Fig. 1: Learning task about relative magnitude using “cm” and “dm” units 

The learning task shown in Fig. 1 is characteristic of an introductory task where 
students are asked to think about the relative magnitude of length units and the 
efficiency afforded when using the longer unit, “dm,” to measure length A. 
Given three different measurement recordings, students are asked to decide 
which was the “quickest.” One student decided Peter would be the quickest, 
explaining that “dm” takes more space (i.e., length) than the shorter “cm” unit, 
and that this would therefore take less time. The efficiency afforded by the 
longer unit helps to justify the need for place value. The design of this activity 
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reinforces the property of equality (i.e., equivalent measurement results obtained 
for Peter, Nick and Mary) while leading students to attend to numeric structure 
(i.e., regrouping units).  

Materials and methods  

For this study we are interested in identifying indicators of Grade 2 students’ 
generalised understanding of place value. In MU, place value learning activities 
are structured in a measurement context using different base systems where only 
a certain number of digits are available. For example, in a base-three system 
only digits 0, 1, and 2 are used to record a quantity. In this case, when children 
measure a quantity larger in magnitude than two units, a new supplementary unit 
is required.  

Data were collected from 2002–2008, where ultimately thirty students’ work 
were analysed for this study. The students were ages 7–8 years, and they were 
grouped in cohort classes of ten. They had 40–45 minutes of daily instruction in 
MU mathematics. The students attended an urban research laboratory school, 
where the population at the school reflects the state’s public school population 
with respect to ethnic diversity, socioeconomic background, and standardised 
achievement scores. Although different teachers were involved in this multi-year 
study, they employed a consistent pedagogy in the MU instruction. The lessons 
and assessment described in this study were used approximately halfway 
through the second year of the curriculum. The data sources for this study are 
student written responses on assignments and assessments.  

Responses to two problems from a five-problem assessment used to assess 
student understanding of the number system are described here as indicators of 
student understanding about place value. These problems provide students with 
the opportunity to show place-value understanding from a non-counting 
approach. Problem 1 (see Fig. 2) is a performance assessment, similar to 
learning activities in the MU lessons. This problem provides students with 
information about the composition of an area. In this task, a generalised unit 
(i.e., unit E) is used to create supplementary units (i.e., EII and EIII) in order to 
construct area J.  

Use your units and the information from the table to draw area J. 

III II I  

1 3 2 (four) 
 

Fig. 2: Assessment problem 1, composing an area in base four with different units 

In Problem 2 (see Fig. 3), students compare similar numbers with different bases 

and explain how they decided on their response. The task, 45 ☐ 47, invites 
students to write a relational symbol to show how the two quantities compare. 
The task, 216 > 21☐ invites students to select a base for the second two-digit 
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Discussion and conclusion 

The ability to compare the magnitude of numbers based on their digits has been 
studied extensively in terms of a unit-decade perspective. Such studies (e.g., 
Mann et al., 2011) examine the way students interpret individual digits 
regardless of their place value, assumed in a base-ten number system. Our study 
helps to reveal students’ perceptions of magnitude as influenced by a 
measurement approach, first with generalised quantities and later using numbers 
in multiple bases.  

Prior research about the role of syntax in the learning of numbers has shown that 
ease with number naming does not ensure understanding of the relevant number 
system. For instance, students often learn to count beyond 9 without pausing to 
consider the system of base-ten counting or the magnitude of the unit in each 
place. In MU, the physical actions of creating and measuring with units provide 
quantitative context for the structure of the written number representation. The 
concrete activities are designed to provide a quantitative context for the structure 
of the numeric representation.  

The data reported here indicate how place-value understanding is supported 
through learning experiences in a measurement context. This has serious 
implications for later learning, such as in Grade 4 where the understanding of 
number structure expands to include rational number. The unit of measure 
continues to serve as a critical tool for both the conceptual and the physical 
development of partial units (e.g., thirds in base three or tenths in base ten) and 
partial-partial units (e.g., ninths in base three or hundredths in base ten). 

The MU approach to place-value introduces students to a robust perspective for 
learning mathematics as sensible and coherent. Furthermore, mathematical 
modelling with concrete, iconic, and abstract representations provides students 
with multiple opportunities for making connections. Evidence for this is noted 
when students are introduced to algebra and interpret an expression (e.g., 2a 
+5b) as in its simplest form because these are a-units and b-units that cannot be 
combined (Venenciano and Dougherty, 2014). 

We suspect that MU students develop the capacity to focus on the 
supplementary measures, (e.g., EII and EIII) as units themselves rather than as 
counted collections of discrete pieces. We believe this notion is particularly 
developed when students work with quantities such as volume where the 
distinction of E units is no longer obvious. Based on our work with the later 
grades of the MU curriculum, we hypothesise that students who develop this 
understanding can transfer this perspective, an inherently multiplicative one, to 
other topics such as ratios, exponents, and work with variables. 
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REPRESENTATIONAL APPROACHES TO PRIMARY TEACHER 
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Abstract 

While representational flexibility and efficiency in mathematical learning are widely 
accepted as important, some formulations of professional knowledge locate work with 
representations within the pedagogic content knowledge domain rather than within 
disciplinary learning per se. In South Africa, broad evidence points to significant 
mathematical content knowledge gaps among primary teachers at, or close to, the level 
of teaching. This situation suggests the need to simultaneously direct attention to 
representations as pedagogic objects and mathematical tools, in order to support 
teachers’ mathematical learning and their mathematics teaching within teacher 
education. Findings from a South African in-service primary mathematics for teaching 
course incorporating this simultaneous orientation are reported in this paper. Analysis 
based on teacher responses to an integer-scaling item suggests that emphasis on 
representation can potentially be simultaneously productive for both mathematical 
learning and teaching. 

Key words: primary mathematics, representations, teacher development, South Africa 

Background 

The importance of representational flexibility and efficiency in mathematical 
working and learning is widely accepted. Within some formulations of 
professional knowledge though, the need to work with representations has 
tended to be located within the pedagogic content knowledge domain rather than 
within disciplinary learning per se, with Shulman’s (1987) oft-cited reference to 
‘the most useful ways of representing and formulating the subject that make it 
comprehensible to others’ providing a key point of departure for this view. The 
shift here is from mathematical problem-solving for oneself through the use of 
representations to supporting the mathematical learning of others through 
providing representations that bring mathematical objects into being. One 
consequence of this view in teacher education is the potential for representations 
as object being the focus in methodology courses, while content courses focus 
on mathematical content with representations as tools within problem-solving. 

In South Africa, broad evidence continues to point to significant gaps among 
primary teachers in relation to mathematical content knowledge at, or close to, 
the level of teaching (Taylor, 2011; Venkat and Spaull, 2015). This situation 
suggests the need to simultaneously direct attention to representations as object 
and tool, in order to support teachers’ mathematical learning and their 
mathematics teaching within teacher education, beginning in the context of 
whole number arithmetic. This simultaneous orientation to representations was 
at the forefront of the 20-day in-service primary mathematics for teaching 
course, set within the broader Wits Maths Connect – Primary (WMC-P) 
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competence, suggest that an approach based on emphasising representations and 
explanations may be productive for bringing these two endeavours together. 
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CONCEPTUAL MODEL-BASED PROBLEM SOLVING  

Yan Ping Xin, Purdue University, USA  

Abstract 

This paper will introduce a Conceptual Model-based Problem Solving (COMPS) 
approach that aims to promote elementary students’ generalised word problem-solving 
skills. With the emphasis on algebraic representation of mathematical relations in 
cohesive mathematical models, the COMPS program makes connections among 
mathematical ideas; it offers elementary school teachers a way to bridge the gap 
between algebraic and arithmetic teaching and learning. The COMPS program may be 
especially helpful for students with learning disabilities/difficulties who are likely to 
experience disadvantages in working memory and information organisation. Findings 
from an empirical research study are presented and implications for elementary 
mathematics education are discussed.  

Key words: conceptual model-based problem solving, elementary mathematics, 
students with learning disabilities/difficulties, whole number arithmetic, word problem 
solving.  

Introduction 

About five to ten percent of school-age children have been identified as having 
mathematics disabilities (Fuchs, Fuchs and Hollenbeck, 2007) and students 
whose math performance was ranked at or below the 35 percentile are often 
considered at risk for learning disabilities or having learning difficulties in 
mathematics (LDM) (Bryant et al., 2011). Students with LDM lag behind their 
peers very early on in their educational trajectory. According to the most recent 
National Assessment of Educational Progress (NAEP) results, from 2011 to 
2013 mathematics achievement score gains were seen only for higher 
performing students at the 75th and 90th percentiles, but there were no 
significant changes over the same period for lower performing students at the 
10th and 25th percentiles (NAEP, 2013). 

In conjunction with this lack of growth in mathematics learning among students 
with disabilities, expectations for all students, including those with LDM, have 
been elevated in today’s educational climate. In particular, the Common Core 
State Standards for Mathematics (CCSSM, Common Core State Standards 
Initiative [CCSSI], 2012) emphasise conceptual understanding of ideas and the 
connections between mathematical ideas. The CCSSM also emphasises 
mathematical modeling and algebra readiness throughout elementary 
mathematics. There is a need to explore potential intervention support that 
addresses this new emphasis to facilitate all students’ access to higher-order 
thinking and meeting the Common Core Standards.  

Traditional instructional practice 

One of the distinctive features of traditional instruction (TDI) is its focus on the 
choice of operation when dealing with problem solving. To determine the choice 
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of operation, it is not uncommon to see that students rely on the “key word” 
strategy (e.g., the word “altogether” in the problem would cue an operation of 
addition) for making a decision on the choice of operation. The key word 
strategy, which has been the practice in the United States for generations 
(Sowder, 1988), directs students’ attention toward isolated “cue” words in the 
problem. The key word strategy might be a “quick and dirty” way to “fix” word 
problem solving; however, it is at odds with contemporary approaches to word 
problem solving that stress conceptual understanding of mathematical relations 
in a problem before attempting to solve it with an operation (Jonassen, 2003). In 
particular, the key word strategy does not orient students’ attention to a 
problem’s underlying mathematical structure and relations or encourage 
mathematical modeling that is emphasised by the CCSSM. Further, applying the 
key word strategy might contribute to students being prone to “reversal 
operation” errors when encountering the so-called “inconsistent language” 
problems (e.g., “Tara solved 21 problems. She solved 3 times as many problems 
as Pat. How many problems did Pat solve?”), where students might mistakenly 
multiply, when they need to divide, for solution due to the key word “times” 
(Xin, 2007). Other strategies commonly used in teaching word problem solving 
include “draw a picture,” “guess and check,” etc. It should be noted that when 
the numbers in the problem are small, it might be manageable to correctly solve 
the problem using the “guess and check” or “draw a picture” strategy. However, 
when the numbers become large, such problem-solving processes may become 
cumbersome or inefficient.  

COMPS Program 

The conceptual model-based problem solving (COMPS) approach (Xin, 2012) 
focuses on prealgebraic conceptualisation of mathematical relations in model 
equations. The COMPS program represents a pedagogical shift from traditional 
problem-solving instruction that focuses on the choice of operation for a 
solution, to a mathematical model-based problem-solving approach that 
emphasises an understanding and representation of mathematical relations in 
mathematical model equations. Findings from empirical studies involving 
elementary students with LDM (e.g., Xin, Wiles and Lin, 2008; Xin and Zhang, 
2009; Xin et al., 2011) indicate that COMPS has shown promise in improving 
students’ problem-solving skills as well as pre-algebra concept and skills. The 
objective of this paper is to present one of the empirical studies (Xin et al., 
2008) that support the effects of the COMPS program on additive and 
multiplicative word problem-solving performance of elementary students with 
LDM.  

Materials and Methods 

In Xin et al. (2008) study, I designed a set of word problem (WP) story grammar 
self-questioning prompts to facilitate conceptual understanding of mathematical 
relations in word problems and represent such relations in mathematical model 
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equations. Fig. 1a and 1b present conceptual models for additive word problems 
and Fig. 2 presents conceptual models for multiplicative word problems. The 
word problem (WP) story grammar facilitates comprehension of the story 
problems.  Students’ mapping of the numbers onto the diagram is on the basis of 
their conceptual understanding of the mathematical relations in the problem, 
rather than a mindless exercise or random procedure.  

Although story grammar has been substantially researched in reading 
comprehension (Boulineau et al., 2004), WP story grammar has never been 
explored in math word-problem understanding and solving. By definition, story 
grammar in reading comprehension literature refers to a typical structure shared 
by most narrative stories. Similarly, a word problem story structure that is 
common across a group of word problem situations can be defined as WP story 
grammar. Borrowing the concept of story grammar from reading comprehension 
literature, I developed a set of WP story grammar questions (see Fig. 1 and 2) to 
guide students’ extracting of mathematical relations from the problem and 
symbolic representation of the relations for solution.  

Part‐Part‐Whole (PPW) 

A PPW problem describes multiple parts that make up the whole   

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

PPW WP Story Grammar Questions 

Which  sentence  (or  question)  tells  about  the  “whole”  or  “combined”  amount? 
Write that quantity in the big box on one side of the equation by itself.   

Which sentence (or question) tells about one of the parts that makes up the whole? 
Write that quantity in the first small box on the other side of the equation. 

Which sentence (or question) tells about the other part that makes up the whole? 
Write that quantity in the 2nd small box (next to the first small box). 

Fig. 1a: Conceptual Model of Part-Part-Whole Word Problems (Xin, 2012, p. 47) 

Additive Compare (AC) 

An AC problem describes one quantity as “more” or “less” than  the other quantity 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 
AC WP Story Grammar Questions 
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Which sentence (or question) describes one quantity as “more” or “less” than the 
other?  Write the difference amount in the diagram.  

Who has more, or which quantity is the bigger one?  

Who  has  less,  or  which  quantity  is  the  smaller  one?  Name  the  bigger  box  and 
smaller box. 

Which sentence (or question) tells about the bigger quantity? Write that quantity in 
the bigger box on one side of the equation by itself. 

Which sentence (or question) tells about the smaller quantity? Write that quantity 
in the smaller box next to the difference amount.

Fig. 1b:  Conceptual Model of Additive Compare Word Problems (Xin, 2012, p. 67) 

Equal Group (EG) 

An EG  problem describes number of equal sets or units 

 
EG WP Story Grammar Questions 

Which sentence or question tells about a Unit Rate (# of  items  in each unit)? Find 
the unit rate and write it in the Unit Rate box. 

Which sentence or question tells about the # of Units or sets (i.e., quantity)? Write 
that quantity in the circle next to the unit rate. 

Which sentence or question  tells about  the Total  (# of  items) or ending product? 
Write that number in the triangle on the other side of the equation.  

Fig. 2a:  Conceptual Model of Equal Groups Word Problems (Xin, 2012, p. 105) 

 

Multiplicative Compare (MC) 

A MC problem describes one quantity as a multiple or part of the other quantity 

 
MC WP Story Grammar Questions 

Which sentence (or question) describes one quantity as a multiple or part of the 
other?  Detect the two things (people) being compared and who (the compared) is 
compared to whom (the referent UNIT). Name “whom” and “who” in the diagram. 
Fill in the relation (e.g., “2 times”) in the circle. 
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What is the referent UNIT? Write that quantity in the referent unit box. 

What is the compared quantity or product?  Write that quantity in the triangle on 
one side of the equation by itself.

Fig. 2b: Conceptual Model of Multiplicative Compare Word Problems (Xin, 2012, p. 123) 

Design and Participants 

An adapted multiple probe design (Horner and Baer, 1978) across participants 
was employed to evaluate the functional relationship between the intervention 
and students’ word problem-solving performance. Single-subject research 
design was chosen because the design provides a methodological approach well 
suited to the investigation of single cases or groups (Kazdin, 1982). In 
particular, with the multiple probe design, intervention effects can be 
demonstrated by introducing the intervention to different participants at different 
points in time. “If each baseline changed when the intervention is introduced, 
the effects can be attributed to the intervention rather than to extraneous events” 
such as history, maturation, testing, etc. (Kazdin, 1982, p. 126). Participants 
were five 4th and 5th grade students with LDM. On the basis of students pre-
tests’ performance, three students were identified as needing intervention in 
additive word problem solving and were engaged in solving part-part-whole 
(PPW) and additive compare (AC) problems; two students were identified as 
needing intervention in multiplicative word problem solving and were instructed 
to solve equal groups (EG) and multiplicative compare (MC) problems. 

Intervention Procedure 

Participating students received intervention in COMPS three times a week, with 
each session lasting for approximately 20-35 minutes. Each student received 
three to six sessions of instruction on PPW or EG, two to three sessions on AC 
or MC problem instruction, and one to two sessions on solving mixed word 
problems including both PPW and AC or EG and MC types.  

Students were assessed on either an additive problem-solving criterion test, 
which involved 14 variously constructed addition and subtraction word 
problems; or a multiplicative problem-solving criterion test, which involved 12 
variously constructed multiplication and division problems. Calculators were 
allowed throughout the study to accommodate participants’ skill deficit in 
calculation.  

Results  

As for additive word problem solving, during baseline condition (prior to the 
intervention), each of the three participants performed at an average of 21%, 
28%, and 28% correct respectively on the criterion test. Following the 
intervention, the two students who completed COMPS instruction on additive 
word problem solving performed 79% correct during post-intervention 
assessment (a 58% point increase from the baseline performance of 21% 
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correct) and 86% correct (a 58% point increase from the baseline of 28% 
correct) respectively.  

As for multiplicative word problem solving, during the baseline, each of the two 
participants performed at an average 3% correct and 0% correct respectively.  
After the intervention, both participants’ performed at 100% correct, which 
indicates a 97% and 100% point increase, respectively, from the baseline.  

As for the effect on prealgebra concept and skills, two pre-algebra probes were 
used to assess potential improvement of students’ performance. The solve 
equations probe required students to find the value of an unknown quantity (i.e., 
letter a) that makes the equation true (e.g., 93 = 79 + a; 196 = a x 28). Positions 
of the unknown were systematically varied across three terms in the equation 
(i.e., the augend, addend, and sum; or the multiplicand, multiplier, and product). 
Six items were included in either the addition/subtraction probe or 
multiplication/division probe. In addition, the algebraic model expression probe 
was designed to test students’ algebraic expression of mathematical relations or 
ideas. Twelve items (e.g., “Write an expression or equation. Choose a variable 
for the unknown. Shanti had some stamps. She gave 23 to Penny. Shanti has 71 
stamps left”) were included in the addition/subtraction probe; five items (e.g., 
“Antoni has collected 84 autographs. He filled 14 pages in his news autograph 
album. Each page holds an equal number of autographs. Write an equation with 
a variable to model this problem”) were included in the multiplication/division 
probe. These items were directly taken from commercially published 
mathematics textbooks that had been adopted by the participating schools 
(Maletsky, et al., 2004). 

Findings from this study indicated that (a) on the solve equations probe, from 
pre- to post-intervention, the two participants who completed the additive 
problem-solving intervention improved from 33% to 67% correct and 0 to 100% 
correct, respectively. The two participants who completed the multiplicative 
problem-solving intervention improved their performance  from 0 to 67% 
correct and from 0 to 100% correct, respectively; (b) on the algebraic model 
expression probe, the participants of this study had no knowledge of what they 
were asked to do and made no attempts during the pretest. After the 
intervention, the two participants who completed the additive problem-solving 
intervention scored 71% and 83% correct, respectively, on the corresponding 
algebraic model expression probe. The two participants who completed the 
multiplicative problem-solving intervention both scored 100% correct on the 
corresponding algebraic model expression probe.  

Discussion and conclusion 

The word problems included in this study represent “the most common form of 
problem solving” (Jonassen, 2003, p. 267) in elementary school mathematics 
curricula.  Learning to solve variations of these word problems is the basis for 
solving more complex real-world problems (Van de Walle, 2004). It should be 
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noted that the way word problems are classified in the COMPS program is 
directly linked to the underlying mathematical models. It is different from other 
classifications that are on the basis of semantic analyses of the story situations 
(e.g., Cognitively Guided Instruction). 

Given the generalised mathematical models for the additive and multiplicative 
problem structure (see Fig. 1 and 2), a range of arithmetic word problems 
involving four basic operations can be represented and modeled. In addition, the 
COMPS (with the assistance of WP story grammar in representation) 
emphasises symbolic or algebraic expressions of mathematical relations in 
model equations that directly links problem representation to solution; it has the 
potential to innovatively bridge the gap between learning arithmetic and algebra.   
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Abstract 

This study investigated the role of early language ability in the development of math 
skills among Chinese kindergarteners. The participants were 2012 6-year-old children 
from 60 kindergartens in South China. They were tested on both informal and formal 
math skills. The informal math testing focused on basic number concepts such as 
object counting, while the formal math testing involved numerical calculations such as 
addition and subtraction. The children’s language and non-verbal reasoning abilities 
were also assessed. Correlational analysis showed that the children’s language ability 
was more strongly associated with informal than formal math skills. Hierarchical 
regression analyses revealed that the children’s language ability could uniquely predict 
both informal and formal math skills, with age, gender, and non-verbal intelligence 
statistically controlled. However, language ability predicted more variance of informal 
math skills than of formal math skills. The findings indicate that children’s language 
ability may have different roles on the development of formal and informal math 
skills. 

Key words: formal math, informal math, language ability 

Introduction  

Increasing attention is being paid to the development of academic skills of 
children at an early age, including knowledge of letters and numbers, 
understanding of magnitude, and counting, because these skills form the 
cornerstones of children’s future learning (Geary, Hoard and Hamsun, 1999; 
Miller et al., 2013). To date, researchers have consistently found that children’s 
early academic skills are not only predictive of their academic achievement in 
later school years (Duncan et al., 2007; Early et al., 2007) but are also important 
for the children’s adaptation to school (Blair, 2003). Of these academic skills, 
mathematics and language are the most important domains. Both skills have 
been found to be associated with and predictive of each other, concurrently and 
longitudinally (Duncan et al., 2007; McClelland et al., 2007; Purpura et al., 
2011). A more important and intriguing finding of Duncan et al. (2007) was that 
children’s math skills in kindergarten could better predict their language 
development longitudinally than could their language ability itself. As math 
development is stable over time, undeveloped early math skills could hinder 
children from learning more advanced math and other skills. It has been found 
that children who perform poorly in kindergartens usually continue to fall 
behind their peers (Aunola et al., 2004). It is thus important to theoretically and 
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practically explore the cognitive factors that may influence children’s early math 
development, in particular language ability.  

Although substantial research has been carried out in this field, most focuses on 
the math skills of children speaking alphabetic languages. To the best of our 
knowledge, few or no studies have explored the predictive factors in the early 
math development of Chinese children. Studying Chinese children is important 
for the following reasons. First, Chinese culture is different from Western 
culture in that Chinese society places high value on students’ academic 
achievements (Ho, 1986; Tseng and Wu, 1985). Second, many Chinese 
preschoolers devote more effort to math and reading because of the expectations 
of their parents and of society. As a result, Chinese students have been found to 
perform better academically than their age-matched American counterparts, 
especially in math tests (Chen and Stevenson, 1995; Stevenson, et al., 1990). For 
example, the excellent performance of Chinese students in the OECD’s most 
recent PISA math literacy test has attracted much attention from researchers and 
educators. Finally, the Chinese language is different from alphabetic languages 
such as English in many ways. The relationship between language and math 
skill may thus be different from those found for children speaking alphabetic 
languages. 

This study aimed to fill the abovementioned research gaps by exploring the 
influence of Chinese children’s early language ability on their math skills. 

The current study 

We investigated the role of early language ability on the math skills of Chinese 
children at kindergarten. Following Purpura and Ganley (2014), we 
conceptualised early math as two components: informal math and formal math. 
Informal math is related to numerical concepts such as comparison of 
magnitudes and counting of objects. Formal math involves numerical 
calculations or whole-number arithmetic such as addition and subtraction. As 
informal math is more closely related to the concept-based knowledge of whole 
numbers while formal math involves more manipulation/calculation of numbers, 
we expected language ability to be more highly correlated with informal than 
with formal math. 

Materials and Methods 

Participants 

The participants were 2012 K3 children (958 girls and 1054 boys, mean age = 
6.65 years, SD = .14) recruited from 60 kindergartens in three cities in the 
Guangdong province of China. All of the children were assessed for math skills, 
language ability and non-verbal intelligence.  
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Measures 

Math 

The following eight tasks were designed to test early math skills. The first six 
tested informal math skill and the last two tapped formal math skill.  

Object counting. In each trial of the task, the children were instructed to count 
the animals presented within a circle on the test paper and write the number 
down.  

Forward counting. In each trial, three numbers were presented in ascending 
order with one number being absent. The children were asked to write down the 
missing number. 

Comparison of numerical magnitudes. In each trial, two numbers were presented 
visually and the children were asked to judge which number was the larger. 

Backward counting. This task was similar to the forward counting task, except 
that all of the numbers were presented in descending order. 

Pattern. In each trial, a series of regular figures (e.g. star, square) were presented 
in an open-ended row and following a certain rule or pattern. The children were 
asked to discover the pattern and choose one of several figures to best fit the end 
position in the row.    

Missing number. Three numbers were presented in ascending order with one of 
them missing. The children were instructed to write down the missing number. 

Addition. The children were asked to do some simple arithmetic additions of 
whole numbers and write down the answers. 

Subtraction. The children were asked to do some simple arithmetic subtractions 
of whole numbers and write down the answers. 

Language  

Language ability was tested from both the receptive and the productive 
perspective, through listening comprehension and Chinese character dictation 
tasks respectively.  

Listening comprehension. In each trial, a simple sentence was aurally presented 
and the children were asked to choose from five pictures the one that best 
depicted the sentence. 

Chinese character dictation. In each trial of the task, the children were asked to 
write down a certain character in a multi-character word.  

Non-verbal Intelligence 

Raven’s Progressive Matrix (Set A and Set B) was used to measure the 
children’s non-verbal reasoning ability (Raven et al., 1994). 

Procedure 

The children completed all of the tasks in their kindergarten classrooms under 
the instruction of experimenters who were master students at the University of 
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Macau. The testing was carried out in three sessions, with each session lasting 
about 30 minutes. 

Results 

Preliminary analysis 

Tab. 1 shows the correlations for all of the tasks. The averaged scores of the first 
six and the last two math tasks were used to index informal and formal math, 
respectively. The addition of listening comprehension and character dictation 
was used as an index of overall language ability. 

As shown in Tab. 1, overall language ability was significantly associated with 
both informal and formal math at a high level (r = .75 and .67 for informal and 
formal math, respectively). Further statistical analysis revealed a significant 
difference between the two correlations, t = 8.33, p < 0.001, suggesting that 
language is more closely related to informal than to formal math.  

Task 1 2 3 4 5 6 7 8 9 10 11 12 

OC -            

2. FC 0.39 -           

3. MC 0.25 0.53 -          

4. BC .34 .67 .54 -         

5. P .29 .48 .51 .50 -        

6. MN .38 .66 .56 .68 .51 -       

7. A .37 .60 .54 .62 .47 .64 -      

8. S .31 .55 .49 .60 .44 .62 .69 -     

9. IMS .46 .87 .71 .90 .69 .82 .71 .67 -    

10. FMS .37 .63 .56 .67 .50 .69 .91 .92 .75 -   

11. LC .30 .52 .56 .55 .57 .53 .53 .50 .66 .56 -  

12. D .39 .58 .44 .53 .43 .57 .55 .55 .64 .59 .46 - 

13. OLA .41 .64 .57 .63 .57 .64 .62 .61 .75 .67 .79 .89 
Legend: OC- object counting; FC – forward counting; MC – magnitude comparison; BC – backward 
counting; P – pattern; MN – missing number; A – addition; S – subtraction; IMS – informal math 
skills; FMS – formal math skills; LC – listening comprehension; D – dictation; OLA – overall 
language ability 

Note: N = 2012. All of the correlations were significant at p ＜ 0.001. 

Tab. 1: Correlations among variables 

Hierarchical regression analysis 

To test the unique contribution of overall language to informal and formal math 
skills, hierarchical regression analysis were conducted. The results are shown in 
Tab. 2 and Tab. 3 for informal and formal math skills, respectively. Gender, age 
and non-verbal intelligence were entered in step 1 as control variables and the 
overall language score was entered in step 2. Tab. 2 shows that overall language 
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ability significantly predicted a 31% unique variance of informal math skill 
(β = 0.66, t = 37.69, p < .001) when gender, age and non-verbal intelligence 
were controlled for, with the model as a whole accounting for 61% variance. A 
similar analysis was conducted for formal math. As shown in Tab. 3, language 
ability uniquely accounted for a 26% variance in formal math skill when the 
same variables were controlled (β = 0.61, t = 29.80, p < .001), with the model as 
a whole accounting for a 47% variance in formal math. In other words, language 
ability is more predictive of informal math skill than of formal math skill. 

Variable  B SE (B) β ΔR2 
Step 1 
Gender 
Age 
Raven test 

 
-.14 
-.02 
1.25 

 
.45 
.04 
.04 

 
.01 
-.01 
.55*** 

0.30*** 

Step 2 
Gender 
Age 
Raven test 
Language ability 

 
1.45 
-.03 
.45 
0.66 

 
.34 
.03 
.04 
0.02 

 
.06*** 
-.01 
.20*** 
.66*** 

0.31*** 

Note: ***p<.001     

Tab. 2: Hierarchical regression predicting informal math skill from overall language 
ability 

Variable  B SE (B) β ΔR2 
Step 1 
Gender 
Age 
Raven test 

 
-.01 
-.004 
.28 

 
.13 
.01 
.01 

 
-.002 
-.01 
.41*** 

0.21*** 

Step 2 
Gender 
Age 
Raven test 
Language ability 

 
.37 
-.01 
.08 
0.16 

 
.11 
.01 
.01 
0.01 

 
.06*** 
-.01 
.14*** 
.61*** 

0.26*** 

Note: ***p<.001     

Tab. 3: Hierarchical regression predicting formal math skill from overall language 
ability 

Discussion and conclusion 

The study generated two main findings. First, language is important for 
developing math skills in Chinese children. Specifically, language ability is able 
to significantly predict both formal and informal math skills. Second, language 
ability is linked differently to different math skills, being more closely 
associated with informal math than with formal math. Future studies should 
explore the mechanisms underlying these findings, which may lead to effective 
interventions for improving children’s math skills through enhancing their 
language ability. 
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THE ICMI STUDY 23 PANELS 

Maria G. (Mariolina) Bartolini Bussi  

University of Modena and Reggio Emilia, Italy  
 

Since the meeting of the International Program Committee in Berlin (January 
2014) the issue of panels was addressed: How many panels? Which themes? 
Which participants? The IPC agreed already in that meeting on three themes that 
were timely to be addressed for different reasons. 

Traditions in whole number arithmetic was considered important. The ICMI 
Study n. 10 on History in Mathematics education contained some examples of 
the ways of representing whole numbers in different ages and regions, but about 
15 years had passed since the publication of the Discussion Document and 
updating was timely. In most cases secondary school subjects only were 
addressed and, moreover, the discussion had not yet considered the recent 
development of cultural anthropology, cultural psychology and neuroscience. 
The comparison / contrast between Eastern and Western traditions was 
addressed by the ICMI study 13 on Mathematics education in different cultural 
traditions: a comparative study of East Asia and the West, but we had different 
ambitions and aimed at involving also regions like Africa and Central America, 
with the limited focus on whole number arithmetic. 

Teacher education too was considered very important, as the deepest and most 
significant findings about whole number arithmetic in the literature on 
mathematics education may be thwarted by the scarce preparation of teachers. 
We regretted that the volume of the ICMI study 15 on The professional 
education and development of teachers of mathematics did not pay much 
attention to primary school teachers: as we wrote in the Discussion Documents 
in many countries they are generalists and, in the general opinion, because of the 
weak nature of their training/expertise, are not considered as true professionals, 
as if every layperson could teach children the basic arithmetic. 

Last but not least, special education. This issue might have deserved a study on 
its own, to address, for instance, specific teaching approaches for students who 
are sensually impaired (e.g. blind students and deaf students). The literature 
about specific learning disorders (e. g. dyscalculia) is growing, but the presence 
of mathematics educators in the field is still limited, at least at the research level. 
On the contrary, it is the mathematics teacher who first comes in touch with 
learning difficulties which sometimes are mistaken for learning disorders. 
Collecting and analysing supportive learning environments which could reduce 
learning problems might help also to reduce the diagnoses of apparent learning 
disorders that are, on the contrary, the effect of not effective teaching. 

The rationale for the three panels has been explained above. What is interesting 
to highlight is that the whole IPC felt strongly involved in the panels, offering 
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their expertise to start the discussion with the audience. The three chairs 
(Fedinando Arzarello, Jarmila Novotná, Lieven Verschaffel) worked in strong 
cooperation with the other members of the IPC. Some plenary speakers were 
willing to accept to serve as discussants. Some other panellists were chosen 
among the participants who have submitted papers potentially addressing the 
above issues. 

In this chapter only the introductory documents are offered to the participants of 
the conference, in order to help them to focus on the chosen issues. It is our hope 
that the panels may develop in full chapters in the volume, exploiting also other 
suggestions that might come from the audience. 
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PANEL ON TRADITION 

Ferdinando Arzarello  

Dipartimento di Matematica “G. Peano”, Università di Torino, Italy  

Abstract 

The main topics to be discussed in the panel are introduced with some bibliographic 
references and pointing out consequent questions to answer. They concern tradition 
with respect to the following issues: verbal and non verbal representations of numbers; 
numbers and artefacts for arithmetic; the role of nowadays technological devices when 
emulating traditional abaci or allowing a direct interaction between fingers and the 
screen of multi touch devices in counting activities.  

Key words: artefacts, culture, linguistics, neuroscience, semiotic representations, 
tradition  

Introduction 

Encyclopaedia Britannica defines tradition as:  

“a :  an inherited, established, or customary pattern of thought, action, or 
behaviour (as a religious practice or a social custom); 
 b :  a belief or story or a body of beliefs or stories relating to the past that are 
commonly accepted as historical though not verifiable”. 

Moreover it points out that tradition concerns the “handing down of information, 
beliefs, and customs by word of mouth or by example from one generation to 
another without written instruction” and represents a “cultural continuity in 
social attitudes, customs, and institutions”. 

It is apparent from this definition that the way whole numbers are spoken, 
written, thought, taught, and learnt sums up in what we can address as (part of) 
tradition. Hence researchers and teachers must consider them under many 
different instances and perspectives, which entail tradition in its multifaceted 
aspects: cultural, epistemological, psychological, and neurological.  

Some of these components have a more or less strong “local” connotation, 
linked as they are to the different cultures and traditions of peoples. Others are 
more general and seem to have universal traits. Hence the so-called Near-
Universal Conventional mathematics (NUC: the definition is by Bill Barton, 
2008, p. 10) may be in more or less deep conflicts with such local instances. 
This possible contrast can indeed represent a main problem for teachers: a 
reasonable learning trajectory for whole numbers (and possibly for the whole 
mathematics) from the one side cannot avoid their traditional roots, but from the 
other side its main goal must address the NUC.  

This general background should shape the discussions in the panel: its aims are 
to scientifically deepen the analysis of some of these different roots, considering 
old and new findings from research and practice, and making explicit the main 
consequences for possible concrete didactical trajectories. 
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I will sketch here some items to focus in the panel, with some questions I think 
relevant. The members of the panel are asked to possibly extend this list and to 
deepen the analysis of its items.  

Different semiotic representations of numbers  

Whole numbers representations across space and time encompass a large variety 
of semiotic systems, including language of course, but not only it.  

Numbers and words  

The way numbers are said in different languages raise a complex issue, faced in 
many old and new researches: from the pioneering book of Menninger (1934) to 
more recent works (Zaslavsky, 1973; Ifrah, 1981), all these show what Bishop 
called the mathematical enculturation (Bishop, 1991) of numbers: see also  
Asher (1991), Selin and D’Ambrosio (2000), and Barwell et al. (2015). 

From the one side, the way whole numbers are spoken and written is one of their 
most important features, which can reveal their different cultural aspects, and 
this issue must be considered in teaching early arithmetic. I list here some well 
know examples. 

In many languages, numbers from 11 to 20 are spelled according to different 
rules and words than the next ones, e.g. from 20 to 30, and this may keep hidden 
the mathematical structure of those numbers [12 Vs/ “twelve”; 14 Vs 
“quattordici” (~ four-ten), but 17 Vs “diciassette (~ten-seven)”]; French 
numbers from 60 to 99 are spelled according to an old base 20 root, typical of 
some Celtic languages; for example to say 97 a French girl/boy must learn to say 
“quatre-vingt-dix-sept”, that is “four (times) – twenty – ten - seven”, while a 
German child must learn  “Siebenundneunzig” (seven and ninety), an Italian 
child must say “novantasette” (ninety-seven), and so on. On the contrary, in 
Chinese language the grammar of numbers is more regular, and this may be an 
advantage in learning numbers: an Italian teacher, Bruna Villa, has made a nice 
learning design for her children in grade one to teach them how to enter into the 
machinery of whole numbers. She based her teaching on what, following a 
proposal of Brissiaud, Clerc and Ouzoulias (2002), she called the method of the 
“small Chinese dragon” (Villa, 2006), where numbers are said with a uniform 
Chinese-like structure (e.g. 11 is “ten-one” and not “undici”; 21 is two (times)- 
ten- one and not “ventuno”), and passing to the Italian system only afterwards. 
In such a way she has been able to shorten times necessary to kids for mastering 
whole numbers from 1 to 100 (in Italian words and standard arithmetic 
representations), and doing the first arithmetic with them.   

A further fascinating example, which shows strong differences between the way 
numbers are spelled in a language and their mathematical structure is illustrated 
in Barton (2008), where he discusses the way numbers are said in Maori 
language. Before the contacts with Europeans, numbers in Maori language were 
like verbs: they expressed actions, e.g. saying that “there were two persons” was 
something similar to say that “those persons two-ed”. This difference was even 
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more dramatic when the negation was involved: “To negate a verb in Maori the 
word kaore is used. […] Unlike English, where negating both verbs and 
adjectives requires the word ‘not’, in Maori, to negate an adjective a different 
word is used, ehara”. Hence, when this verbal feature of Maori numbers was 
ignored, the mathematics vocabulary process, translated from English, acted 
against the original ethos of the Maori language. 

Other researches point out possible interferences of the ways numbers are used 
in everyday language with respect to the mathematical meaning of numbers. In a 
nice book, unfortunately available only in Italian, a researcher in linguistics, 
Carla Bazzanella, points out that numbers in everyday language can assume also 
an indeterminate, more or less vague meaning and not the canonical cardinal 
denotation: for example in Italian we can say “that tie may have costed 100 
euro” (“quella cravatta sarà costata 100 euro”) to express an approximate value, 
or “would you like to eat 2 spaghetti?” (“vuoi mangiare 2 spaghetti?”) to mean 
“would you like to eat some spaghetti?” (Bazzanella, 2011). I will face this issue 
from another point of view below.  

Non-verbal representations of numbers  

From the other side, many researches have pointed out the way numbers are 
represented in different non linguistic ways in different cultures all over the 
world (Gheverghese, 2011), e.g. using parts of the body (typically digits, but not 
only: see Saxe, 2014) or spatial arrangements in complex arithmetical 
calculations when number words are lacking.  

Many researches have pointed out some typical steps in the way children 
progress in building up numbers intertwining language and gestures, e.g. using 
digits, and how they use them for counting and for adding. For example, 
Vergnaud uses an adaptation of the Piagetian notion of schème [he defines it in 
this way: “A scheme is the invariant organization of behaviour for a certain class 
of situations” (Vergnaud, 1997, p. 12)]. He talks about how, when a child uses a 
counting scheme, there may be a cognitive shift, related to gestures, that occurs:  

Another characteristic of schemes concerns the way cardinalisation is marked in 
speech: the last number pronounced represents the cardinality of the whole 
collection and not just the last object. This marking with speech comprises not 
only the repetition (1, 2, 3, 4, 5,.. 5) but also the accentuation (1, 2 3, 4…5). One 
can clearly see from this example that language is closely associated with the 
functioning of a scheme, and that it plays a role in producing perceptual-motor 
gestures whose organisation depends on both the nature and arrangement of the 
objects, and the problem to solve; associating an invariant number to a given 
collection. (Vergnaud, 1991, p. 80; my translation from French) 

Basing more on neurological stances, a similar multi-step process is pointed out 
by Butterworth, Reeve and Reynolds for addition strategies: 

“Where two numbers or two disjoint sets, say 3 and 5, are to be added together, 
in the earliest stage the learner counts all members of the union of the two sets – 
that is, will count 1, 2, 3, and continue 4, 5, 6, 7, 8, keeping the number of the 
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second set in mind. In a later stage, the learner will ‘count-on’ from the number 
of the first set, starting with 3 and counting just 4, 5, 6, 7, 8. At a still later stage, 
the child will count on from the larger of the two numbers, now starting at 5, and 
counting just 6, 7, 8. It is probably at this stage that addition facts are laid down 
in long term memory”. (Butterworth, Reeve and Reynolds, 2011, p. 631) 

Some recent researches both from the side of Ethno-mathematics and from that 
of Neurology seem to introduce a fresh and wider point of view about the issue 
of language and its role as a resource for arithmetic activities: for a survey from 
the point of view of neuroscience see Dehaene and Brannon (2011). A very 
intriguing example is given in the research of Butterworth, Reeve and Reynolds 
(2011), who point out how the word counting strategies are not the only ones 
that people can use for developing arithmetic competencies:  

“We tested speakers of Warlpiri and Anindilyakwa aged between 4 and 7 years 
old at two remote sites in the Northern Territory of Australia. These children 
used spatial strategies extensively, and were significantly more accurate when 
they did so. English-speaking children used spatial strategies very infrequently, 
but relied an enumeration strategy supported by counting words to do the 
addition task. The main spatial strategy exploited the known visual memory 
strengths of Indigenous Australians, and involved matching the spatial pattern of 
the augend set and the addend. These findings suggest that counting words, far 
from being necessary for exact arithmetic, offer one strategy among others. They 
also suggest that spatial models for number do not need to be one-dimensional 
vectors, as in a mental number line, but can be at least two dimensional.” (op. 
cit., p. 630) 

Further researches from the side of neurology support such claims also for wider 
aspects of mathematics. For example a research of Varley et al. (2005) shows 
that: 

“once these resources [mathematical ones] are in place, mathematics can be 
sustained without the grammatical and lexical resources of the language faculty. 
As in the case of the relation between grammar and performance on “theory-of-
mind” reasoning tasks (42), grammar may thus be seen as a co-opted system that 
can support the expression of mathematical reasoning, but the possession of 
grammar neither guarantees nor jeopardizes successful performance on 
calculation problems.” (op. cit., p. 470) 

As well, Monti et al. point out that: 

“Our findings indicate that processing the syntax of language elicits the known 
substrate of linguistic competence, whereas algebraic operations recruit bilateral 
parietal brain regions previously implicated in the representation of magnitude. 
This double dissociation argues against the view that language provides the 
structure of thought across all cognitive domains.” (Monti, Parsons and 
Osherson, 2012, p. 914) 

Finally, some researches point out that the sense of numbers does not only base 
on a discrete approach, where it is crucial the one-one correspondence between 
external symbols and numerical representations, but also on an approximate 
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number system, where for example estimation of numbers of two sets, when 
subitizing is not possible, are based on the ratio between their cardinality and not 
on their difference: see Gallistel and Gelman (2000). According to such 
researches, this continuous, analogic system during our evolution was encoded 
in our brains previously to the discrete one, and it is still active in us.   

All such findings introduce a fresh perspective to the issue of tradition and of 
language, and of their role as a resource for arithmetic activities: an intriguing 
issue to be discussed in the panel. In particular some major questions are:  

- How teachers can concretely base their task design for arithmetic on the 
linguistic and cultural roots of numbers?  

- Is the embodied traditional approach to arithmetic, to be modified/extended by 
the findings of neurological researches on numbers?   

Representing numbers in artefacts 

Within the stream of semiotic representations of numbers, a specific analysis 
concerns the calculation tools, typically (but not only) abaci, which incorporate 
both specific representations of numbers and practices for doing arithmetical 
operations with them (for a survey see: Ifrah, 2001). They deeply intertwine 
with language and can be part of interesting didactical designs in primary 
school. Many teachers sometimes accompany them with modern technology 
introducing in the classroom both the concrete artefact and its simulation in a 
virtual technological environment.  For a first example, N. Sinclair and her 
collaborators are integrating such embodied and traditional representations 
within tablets (Sinclair and Metzuyanim, 2014). They base on the hypothesis 
that the touch-screen devices enable an intuitive, embodied interface for 
arithmetic, which is suitable for young learners, allowing them to use their 
fingers and gestures to explore mathematics ideas and express mathematical 
understandings. For another example, Maschietto and Soury-Lavergne (this 
study, 2015) are using the old Pascal machine both in a concrete and in a virtual 
way to approach arithmetic in primary school. 

These types of researches pose interesting questions for our panel:  

 How the traditional instances are embodied in nowadays technology?  
 Does the possible integration of cultural roots within the technological 

environments allow to bridge the gap between the “old fashioned” 
tradition and the NUC? 

The panel consists of four scholars representing different parts of the world, 
complemented with one discussant. All of them have rich experience with 
mathematics teacher education in their countries/regions. 

 Nadia Azrou is a mathematics university teacher at the university of Yahia 
Fares in Medea, Algeria and a PhD student. Her thesis subject is about 
proof at the university level. She is interested in teaching and learning 
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mathematics at the undergraduate level, but also at the primary level in a 
multicultural context like the case of Algeria. As a YERME Network 
Group member, she is at the service of young researchers in mathematics 
education for providing information.  

 Maria G. Bartolini Bussi is a Full Professor in Mathematics Education at 
the University of Modena and Reggio Emilia (Italy). She is the director of 
the University program for pre-primary and primary teacher education. 
She was a member of the ICMI Exectutive Committee (2007/2012). She 
is now the co-chair of the ICMI Study 23. 

 Sarah Gonzalez is a Full Professor in Mathematics Education at Pontificia 
Universidad Católica Madre y Maestra (Dominican Republic).  She is 
Vice Rector for Research and Innovation at the same university and has 
coordinated Professional Development Programs in Mathematics for 
Teachers, has worked in the development on the National Curriculum in 
Mathematics for Elementary and Middle school in Dominican Republic 
and is the Caribbean representative in the Interamerican Committee for 
Mathematics Education (IACME). 

 Xuhua Sun is an Assistant Professor in Education at University of Macau, 
China, specialising in mathematics education from early childhood to 
secondary level. She conducts a range of research projects focused on 
children's mathematical development, curriculum and teacher professional 
development, with a special interest in Chinese history, culture and 
tradition in mathematics education. She is now the co-chair of the ICMI 
Study 23. 

 The discussant is Man Keung Siu (The University of Hong Kong). 

Abstracts  

Spoken and written numbers in a post – colonial country: the case of Algeria 
(Nadia Azrou) 

The aim of the presentation is to present some initial steps of a long-term study 
aimed at intervening in teacher education in a situation of encounter of different 
cultural influences in a post - colonial country: Algeria. Some preliminary 
analyses will be reported on how natural numbers are orally represented (spoken 
numbers) in different ways according to different languages. The long term 
perspective is to take profit from the existing differences to develop 
competencies concerning written numbers, and at the same time to enhance 
students' awareness about the roots of those differences, thus contributing to 
promote their cultural identities. 

The number line: a “Western” teaching aid (Maria G. Bartolini Bussi) 

This presentation aims at discussing a very popular teaching aid, the so-called 
number line, where whole numbers are introduced as labels on unit marks by 
means of a measuring process and where additions and subtractions can be 
realised, as operators, with jumps forwards and backwards. Traces of this early 
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approach can be found in the teaching practices of most Western countries, but, 
surprisingly, not in the most popular Chinese textbooks. In the presentation, 
some Western literature is reviewed to sketch out the analysis of the number line 
as a teaching aid, from the historic-epistemological, cognitive and didactical 
perspectives.  

Native American cultures tradition to whole number arithmetic (Sarah Gonzáles 
and Juana Caraballo) 

In Latin America there are more than 23,000,000 natives that even today speak 
their own language and many are marginalised because they do not speak the 
Spanish language.  They have their own conceptualisation of whole numbers.  
Many studies have been conducted on the Mathematics of these cultures.  It is 
highly important for teachers to be able to understand their Mathematical 
approach of whole number arithmetic (WNA) to be able to teach these children.  
In this paper, a summary of some of the WNA of Incas are presented, and how 
an Ethnomathematics approach, as the theoretical base to teach Mathematics in 
this context, is used in order to diminish the exclusion in the mathematics 
education of native children of these cultures. 

Chinese core tradition to whole number arithmetic (Xuhua Sun) 

This presentation aims to discuss the ancient Chinese tradition to whole number 
arithmetic (WNA) and its influence on the current curriculum practices. From 
the linguistic and historic-epistemological perspectives, I reviewed some of the 
previous studies in literature to examine ancient traditions. Based on the Chinese 
linguistic habit, the early Chinese invented the most advanced number name and 
the most advanced calculation tools (counting rod and Suanpan or Chinese 
abacus), in which place value is the most overarching principle as the spirit of 
WNA. Traces of this influence can be found in current curriculum practices. 
Knowing number and calculation of addition/subtraction are closely connected. 
Place value is the most overarching principle. The composition and 
decomposition of a number and problem variation are the central approaches; 
their implications are discussed. 
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PANEL ON TEACHER EDUCATION 

Jarmila Novotná  

Charles University in Prague, Faculty of Education, Czech Republic 

Abstract 

The goal of the panel is to explore and discuss teacher education in different parts of 
the world and to emphasise the commonalities and differences not only in the 
panellists' countries but in a broad perspective. Different cultures have their own 
advantages and disadvantages, but rather than seeing these differences in opposition, 
we may view them as complementary and interrelated. Therefore, by looking at 
differences in the parts and processes of our different educational systems, we can 
learn from each other and develop a more integrated perspective on teacher education. 

Two key issues frame these questions in our panellists’ presentations. Firstly, there are 
shared imperatives in many countries and contexts for WNA primary-level teacher 
education to provide access to deepening teachers’ mathematical understandings as 
well as developing tools that support their mathematics teaching. Panellists present 
different ways in which this might occur. Secondly, the panel presentations note 
structures, formats and content within primary maths teacher education programmes 
and the ways in which they feature within different contexts. 

Key words: mathematics teacher education, teacher knowledge  

Introduction 

In the last decades, there are no doubts about the importance of teacher 
education for all domains of mathematics education (Adler et al., 2005). And 
there are no doubts about the great influence of social, political as well as family 
traditions, history, economic situation etc. on the organisation of teacher 
education in individual countries or regions. The main focus of the panel on 
teacher education is therefore teachers’ professional education in different parts 
of the world.  

As noted by Even and Ball (2009): “all countries face challenges in preparing 
and maintaining a high-quality teaching force of professionals who can teach 
mathematics effectively and who can help prepare young people for successful 
adult lives and for participation in the development and progress of society” 
(p. 1). But these challenges are not the same in all countries and/or regions. The 
necessity of cross-cultural comparison is one of the most urgent issues in 
mathematics education. Its importance is reflected in many projects, 
publications, events etc. While models and programmes of teacher education are 
researched and discussed, attention is paid also to their methods, contents, 
differences based on pupils’ age levels and the influence of all of these on the 
mathematical education in schools. When speaking about teacher education we 
do not restrict our considerations to teachers at schools. In Novotná, Margolinas 
and Sarrazy’s (2013) work, several categories of mathematics educators are 
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characterised and their roles in mathematics education and professional 
development are discussed. 

Further evidence of the worldwide recognition of the importance of primary 
mathematics teacher education is seen in international events. Examples of 
conferences paying significate attention to primary mathematics teaching and 
corresponding teacher training include the Symposia on Elementary Maths 
Teaching (www.semt.cz) focus on the teaching of mathematics to children 
within the age-range 5–12 years and the corresponding teacher education. At 
ICME congresses (http://www.mathunion.org/icmi/conferences/icme-
international-congress-on-mathematical-education/introduction/), there are 
always Topic Study Groups focusing on primary mathematics. Substantial 
attention to primary mathematics is paid at CERME 
(http://www.mathematik.uni-dortmund.de/~erme/index.php?slab=conferences) 
conferences. The whole third volume of CERME 1 Proceedings (Krainer, 
Gofree and Berger, 1999) was devoted to teacher education. In the scientific 
programme of each of the CERME conferences, at least one Thematic Working 
Group (TWG) focusing on teacher education has been included.  

There are several international projects focusing on primary mathematics 
teaching and teacher education. Two large studies where primary level pays a 
substantial role are: The IEA Teacher Education and Development Study in 
Mathematics (TEDS-M) that examined how different countries have prepared 
their teachers to teach mathematics in primary and lower-secondary school 
(http://www.iea.nl/teds-m.html); the FIRSTMATH study explores the 
connections between what teachers bring with them when they enter teaching 
and what is learned on the job as it concerns knowledge, beliefs, skills, and 
curricular content (http://firstmath.educ.msu.edu/).  

Most research studies in the field of primary mathematics teacher education at 
the international level focus on curricula within teacher education and on the 
knowledge a primary teacher needs for teaching well. The most studied issues 
cover the structure of teacher training, admission of students into teacher 
education and their prospective career in the field, curricula for pre-service 
mathematics teachers, conditions of novice teachers, preparation of teachers for 
overcoming obstacles they will come across in their practice, history and 
development of systems of education in various countries, and international 
comparative studies of teacher education.  

The areas in the spotlight of the panel are: How do traditions, familial and 
cultural differences, and historical development of primary mathematics 
education influence teacher education in different parts of the world? What are 
the similarities and differences in teacher education in different parts of the 
world? What are the strength and weaknesses of different systems of teacher 
education? What are the main concerns and questions in the field of primary 
teacher education? What are the differences from secondary teacher education? 
Do we address the difference? 



ICMI Study 23                                                                Novotná, Panel on Teacher Education 

615 
 

One crucial question for teacher education is: Under which conditions can 
teachers’ experiences from their mathematical education contribute to an 
increase in their didactical knowledge? It frames most studies about teacher 
education. Different teacher education systems deal with it in different ways, 
with more or less success. In their paper published in Theme 4, Barry, Novotná 
and Sarrazy look for reasons for the differences in pupils’ approaches to 
applying the taught knowledge in new contexts. They argue that the type of 
education, general length of practice and school level have limited influence; the 
most influential variable is the teacher’s pedagogical beliefs about didactical 
knowledge. The open question is how different teacher education models used in 
different historical, geographical areas with different educational and familial 
traditions cope with the request for increasing “teacher variability” (Sarrazy, 
2002), which has been shown to crucially influence teachers’ behaviour. 

In the individual contributions to the panel, examples from teacher education 
models from different parts of the world will be presented by panellists and 
discussants coming from different parts of the world. The main goal of the panel 
is to explore and discuss teacher education in different parts of the world and to 
emphasize the commonalities and differences not only in the panellists’ 
countries, but in a broad perspective.  

Panellists and discussants 

The panel consists of six scholars representing different parts of the world, 
complemented with two discussants. All of them have rich experience with 
mathematics teacher education in their countries/regions. The panellists, 
members of the IPC of the study:  

 Maria G. Bartolini Bussi is a Full Professor in Mathematics Education at the 
University of Modena and Reggio Emilia (Italy). She is the director of the 
University program for pre-primary and primary teacher education. She was 
a member of the ICMI Executive Committee (2007/2012). She is now the co-
chair of the ICMI Study 23. 

 Sybilla Beckmann is Josiah Meigs Distinguished Teaching Professor of 
Mathematics at the University of Georgia, USA. She has developed and 
teaches mathematics courses for future elementary and middle grades 
teachers and has written a textbook for such courses. Her current research is 
on pre-service teachers’ reasoning about multiplication, division, fractions, 
ratio, and proportional relationships. 

 Maitree Inprasitha is a Head of Doctoral Program in Mathematics Education, 
Faculty of Education, Khon Kaen University and the President of the Society 
of Mathematics Education (TSMEd). He was a member of International 
Program Committee of EARCOME 4, EARCOME 5 and chair of an 
International Program Committee of EARCOME 6 to be held in Thailand in 
2013. He also attended the CNAP project in Cambodia in 2013. He has been 
a Project Overseer of APEC- Lesson Study Project of APEC HRDWG since 
2006 to present. 
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 Berinderjeet Kaur is a Full Professor in Mathematics Education at the 
National Institute for Education in Singapore. She was the mathematics 
consultant of TIMSS 2011 and is a member of the mathematics 
expert group for PISA 2015. Her primary research interests are in the area of 
classroom pedagogy of mathematics teachers and comparative studies in 
mathematics education. She is also actively involved in the professional 
development of mathematics teachers in Singapore and is the founding 
chairperson of conferences for mathematics teachers that started in 2005 and 
the founding editor of the Association of Mathematics Educators (AME) 
Yearbook series that started in 2009.  

 Xuhua Sun is an Assistant Professor in Education at University of Macau, 
China, specializing in mathematics education from early childhood to 
secondary level. She conducts a range of research projects focused on 
children's mathematical development, curriculum and teacher professional 
development, with a special interest in applying Chinese open-class model to 
teacher education context in Macao. She is now the co-chair of the ICMI 
Study 23. 

 Hamsa Venkat is a Full Professor and holds the SA Numeracy Chair at Wits  
focused on a 5-year research and development project in primary 
mathematics. The Numeracy Chair work involves the trialling and 
development of research-based interventions across ten government primary 
schools in one South African school district. Prior to this, Hamsa worked as a 
high school mathematics teacher and lecturer in London. She was awarded 
the 2005 British Educational Research Association dissertation award for 
making the most significant doctoral contribution to research in education in 
2004. 

The discussants are 

 Deborah Loewenberg Ball (University of Michigan, USA) and Mike Askew 
(Wits School of Education, University of the Witwatersrand, Johannesburg, 
South Africa). 

Abstracts  

Constructing mathematical arguments using definitions with precision in 
middle-grades teacher education in the USA (Sybilla Beckmann) 

One concern in the mathematical education of middle-grades teachers is that, in 
the limited time available, teachers should have adequate opportunities to learn 
mathematical forms of argumentation while also studying middle grades 
mathematics in depth, from the perspective of a teacher. We often look to 
geometry and to mathematics that is more advanced than teachers will teach to 
provide experiences in the careful use of definitions and in constructing 
mathematical arguments. Using evidence from a study of future grades 4 – 8 
mathematics teachers, Beckmann will discuss how the multiplicative conceptual 
field, which encompasses multiplication, division, fraction, ratio, and 
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proportional relationships, is a rich area for mathematical argumentation, 
including using definitions with precision. The multiplicative conceptual field is 
also a foundation for critical topics in secondary mathematics, including linear 
functions, rates of change, and slope, which makes it a prime candidate for 
middle-grades and secondary teachers to study in depth.  

Traditional and contemporary approaches to teaching primary mathematics in 
Thailand (Maitree Inprasitha) 

This contribution will focus on the traditional Thai approach to teaching primary 
mathematics and the unsatisfactory results that have thus far resulted from this 
traditional approach. It will include an analysis of the differences between Thai and 
Japanese mathematics textbook, which the latter is featured as a kind of ‘problem-
solving based textbook.’ It will also discuss an idea on how to adapt the Japanese 
‘lesson study and structured problem-solving teaching approach’, as an innovative for 
teaching primary mathematics. Finally, it provides an exemplar illustrated how 1st 
grade students learned to gain meaningful understanding of whole number arithmetic 
via mathematics activities in the actual class taught by fifth year intern students during 
the mid-semester of 2013 and 2014 academic years at two lesson study project 
schools. 

Primary school curriculum in Singapore – Model Method (Berinderjeet Kaur) 

The primary school mathematics curriculum in Singapore places emphasis on 
quantitative relationships when students learn the concepts of number and the 
four operations. The Model Method, an innovation in the teaching and learning 
of primary school mathematics, was developed by the primary school 
mathematics project team at the Curriculum Development Institute of Singapore 
in the 1980s. The method, a tool for representing and visualizing relationships, 
is a key heuristic students’ use for solving whole number arithmetic word 
problems. When students make representations, using the Part-Whole and 
Comparison models, the problem structure emerges and students are able to 
visualise the relationship between the known and unknown and determine what 
operation to use and solve the problem. The model method has proved to be 
effective for making number sense and solving arithmetic word problems in 
Singapore schools. Prospective primary school mathematics teachers are 
introduced to the method as part of their curriculum studies (Mathematics) 
during their pre-service teacher education at the National Institute of Education 
in Singapore. 

Exploring relationships between mathematical and pedagogical content 
knowledge of primary teachers in South Africa (Hamsa Venkat) 

The importance of representational flexibility and efficiency in mathematical 
working and learning is widely accepted. Within some formulations of 
professional knowledge though, the need to work with representations has 
tended to be located within the pedagogic content knowledge domain rather than 
within disciplinary learning per se. In South Africa, broad evidence continues to 
point to significant gaps among primary teachers in relation to mathematical 
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content knowledge at, or close to, the level of teaching. This situation suggests 
the need to simultaneously direct attention to representations as object and tool, 
in order to support teachers' mathematical learning and their mathematics 
teaching within teacher education, beginning in the context of whole number 
arithmetic. This simultaneous orientation to representations was at the forefront 
of an in-service primary mathematics for teaching course where connecting 
between representations formed a central pillar of the work alongside the need to 
'explain' choices and steps. In this presentation, I present a small slice of data 
illustrating shifts that suggest that emphasis on representation and explanation 
can potentially be simultaneously productive for both mathematical learning and 
teaching.  

The goal, roles, and transposition: Chinese open-class approach and 
transposition to Macau and Italy (Xuhua Sun and Maria G. (Mariolina) 
Bartolini Bussi) 

The open-class approach was established in the early 1950s by the Chinese 
Ministry of Education with the primary purpose of organising teacher study 
groups in schools. It is a more flexible professional development tool than the 
Japanese lesson study in terms of organization, budgeting, and timetabling. How 
this underrepresented tool plays critical and different roles in teacher 
recruitment, professional assessment, and professional research and 
development in primary teacher education to meet the goals of specialists (not 
generalists) and how this tool has been transposed and applied in Macao and 
Italy will be presented in the panel. 

The discussants will react to the presentations, comment on them, bring 
additional information, and pose questions.  
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PANEL ON SPECIAL NEEDS  

Lieven Verschaffel  

Centre for Instructional Psychology and Technology, KU Leuven, Belgium 

Abstract 

Although the last decades have witnessed a serious growth in research onto the 
diagnosis, remediation and prevention of MLD, much work remains to be done. 
Longitudinal research is needed to identify developmental precursors and to delineate 
developmental trajectories of MLD. The neural basis of these difficulties and their 
association with classroom performance certainly need to be further explored. 
Understanding the different characteristics of MLD at different levels, the behavioural, 
the cognitive and the neurobiological, will inform appropriate educational 
interventions. The design and evaluation of these remedial interventions needs to be a 
priority on the agenda for future research. The goal of the panel is to explore and 
discuss the above issues and challenges, with an emphasis on the last issue, namely 
instructional goals and interventions for children with MLD. 

Key words: dyscalculia, mathematical learning disabilities, special needs, whole 
number arithmetic 

Introduction 

Many children have difficulties or problems with learning mathematics. While 
these difficulties or problems may occur at any stage in learners’ mathematical 
development, by far most attention of researchers and practitioners goes to the 
domain of early and elementary mathematics, and, more specifically, to the 
domain of whole number arithmetic (WNA). Even though the issues of 
diagnosis of and instruction to children with special mathematical learning needs 
is getting increasing research attention, research in this area is still lagging 
behind compared to other academic subjects such as reading. Hereafter we list 
some major open questions for research and practice. 

First, there is the terminological issue. Defining mathematical learning 
difficulties, problems or disabilities (hereafter abbreviated as MLD) is not an 
easy task (Berch and Mazzocco, 2007). Despite the solid knowledge base that 
has been achieved in this field, more substantial progress in understanding and 
addressing MLD would be facilitated by establishing agreement on consistently 
used terminology and use of standardised criteria concerning the nature and 
seriousness of the disability. While certain definitions explicitly refer to a 
biologically based disorder, others emphasise the discrepancy between the 
child’s mathematical achievement and his/her general intelligence as the main 
criteria, and still others capitalise on the response to intervention. But the field 
of MLD also lacks coherence and consensus about what constitutes 
“mathematics” in MLD.  Within MLD research there is a history of 
predominance to focus on memorisation of arithmetic facts and automatisation 
of arithmetic procedures. A less (neuro)psychologically dominated and more  
interdisciplinary approach might bring a broader, more coherent and balanced 
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perspective that takes into account both the views about mathematics learning as 
arithmetic and other equally important perspectives such as spatial and 
geometrical reasoning, mathematical relations and patterns, and other forms of 
mathematical thinking with more potential towards abstraction and 
generalisation (Hord and Xin, 2014; Mulligan, 2011). Evidently, besides 
children with MLD there are also other children requiring special mathematics 
educational support, but they are not diagnosed as MLD , such as children with 
intellectual  disabilities, children with auditory, visual or motoric impairments, 
children with serious emotional and/or behavioural problems, or, finally, 
children with longstanding inappropriate instruction or environmental 
deprivation (De Smedt et al., 2012).  

A second major concern of researchers in the field is to characterize the various 
cognitive  mechanisms that are implicated in the development of MLD. Several 
cognitive explanations for the presence of MLD have been put forward. Most of 
the available research on MLD has dealt with domain-general cognitive factors, 
such as poor working memory and difficulties with the retrieval of phonological 
information of long-term memory. More recently (and against the background of 
findings from neuroimaging research), it has been proposed that MLD arises as 
a consequence of domain-specific impairments in number sense or the ability to 
represent and manipulate numerical magnitudes (Landerl et al., 2004). For 
example, children with MLD have particular difficulties in comparing two 
numerical magnitudes and in putting numbers on a number line, both of which 
are thought to measure one’s understanding of numerical magnitude. Although 
various cognitive candidates have been put forward to explain the MLD, the 
existing body of data is still in its infancy. According to Karagiannakis et al. 
(2014), although the field has witnessed the development of many 
classifications, no single framework or model can be used for a comprehensive 
and fine interpretation of students’ mathematical difficulties, not only for 
research purposes but also for informing mathematics educators. Starting from a 
multi-deficit neurocognitive approach and building on the available literature, 
these authors have recently proposed a classification model for MLD describing 
four cognitive domains within which specific deficits may reside. 

Third, initial accounts of MLD in the 1970s suggested that MLD was due to 
brain abnormalities. With the advent of modern neuroimaging techniques, 
researchers have begun to address this issue. There is converging evidence for 
the existence of a frontoparietal network that is active during number processing 
and arithmetic (Ansari, 2008). Studies that examine this network in children 
with MLD are currently slowly but steadily emerging. These few studies 
consistently indicate that children with MLD have both structural and functional 
alterations in the abovementioned frontoparietal network, particularly in the 
intraparietal sulcus, which is the brain circuitry that supports the processing of 
numerical magnitudes, and (pre)frontal cortex, which is assumed to have an 
auxiliary role in the maintenance of intermediate mental operations in working 
memory. Furthermore, it has been suggested that these brain abnormalities in 
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children with MLD are probably of a genetic origin, yet the genetic basis of 
MLD remains largely unknown and no genes responsible for mathematics 
(dis)abilities have been identified. Studies in the field of medical genetics have 
revealed that some disorders of a known genetic origin, such as Turner 
Syndrome and 22q11 Deletion Syndrome, show a consistent pattern of MLD. 
Furthermore, there is some early evidence of links to autism spectrum disorder 
and  Asperger.   

A fourth and final issue relates to the question: What are appropriate educational 
interventions for children with MLD? Originally, general perceptual-motor 
training was the dominant way of remediating learning disorders, but the effects 
of this type of training have been discounted. Interventions that target those 
specific components of mathematics with which a child with MLD has difficulty 
appear to be the most effective (Dowker, 2008). Such intervention involves the 
assessment of a child’s strengths and weaknesses in mathematics and this profile 
is taken as an input to remediate specific components of mathematical skill. 
However, there remain a large number of major questions, such as: What is the 
appropriate moment to diagnose MLD and to start specific interventions? Do 
MLD children profit more individualized interventions organized out of the 
regular mathematics class or do they profit more from being integral part of the 
regular mathematics class? Do these children need a special kind of intervention 
or do they profit most from the same kind of instruction as children without 
MLD? More specifically, are conceptually-based and constructivist-oriented 
mathematics instruction also suitable for children with learning disabilities (Xin 
& Hord, 2013; Xin, Liu, Jones, Tzur, and Si, in press). Another issue is whether 
we do not have a blind spot when making assumptions about what children with 
MLD can do, rather than what they cannot do  (Peltenburg et al., 2012). Finally, 
does the remedial instruction of children with MLD pay enough attention to 
other aspects of mathematics than whole number sense, such as on conceptual 
relationships that may develop from spatial reasoning.  Clearly, it may not be 
productive to try to answer these major educational questions for all categories 
of children who have serious trouble with learning mathematics. 

So, although the last decades have witnessed a serious growth in research onto 
the diagnosis, remediation and prevention of MLD, much work remains to be 
done. Longitudinal research is needed to identify developmental precursors and 
to delineate developmental trajectories of MLD. The neural basis of these 
difficulties and their association with classroom performance certainly need to 
be further explored. Understanding the different characteristics of MLD at 
different levels, the behavioural, the cognitive and the neurobiological, will 
inform appropriate educational interventions. The design and evaluation of these 
remedial interventions needs to be a priority on the agenda for future research. 
These interventions may not only treat the difficulties, but also prevent them.  

The goal of the panel is to explore and discuss the above issues and challenges, 
with an emphasis on the last issue, namely instructional goals and interventions 
for children with MLD.  



ICMI Study 23                                                                                                        Verschaffel, Panel on Special Needs 

622 
 

The panel consists of four scholars with complementary specializations in the 
domain of children with MLD and other special needs in the curricular domain 
of whole number arithmetic, complemented with one of the key-note speakers of 
the ICMI 23 conference, Professor Brian Butterworth (University College, 
London, UK), who is a world-leading scholar is the domain of the 
(neuro)cognitive roots of dyscalculia and its treatment, and who will act as a 
discussant in this panel. 

 Anna Baccaglini-Frank is working as a post-doc at the University of Modena 
and Reggio Emilia (Italy). She has worked on several projects on low 
achievement and dyscalulia trying to construct a bridge between cognitive 
psychology and mathematics education for students with special needs, and 
was involved recently in the construction of a classification of MLD 
subtypes.  

 Joanne Mulligan is an Associate Professor in Education at Macquarie 
University, Australia, specializing in mathematics education from early 
childhood to secondary level. She conducts a range of research projects 
focused on children's mathematical development, curriculum and assessment 
and teacher professional development, with a special interest in MLD. 

 Marja Van den Heuvel-Panhuizen is professor in mathematics education at 
Utrecht University in The Netherlands. As a representative of the 
Freudenthal-oriented approach to teaching and learning mathematics,  one of 
her research interest is investigating the mathematical potential of students 
with MLD. 

 Yan Ping Xin is professor in special education at Purdue University, West 
Lafayette, Indiana, U.S.A. Dr. Xin's research includes effective instructional 
strategies in mathematics problem solving with students with learning 
disabilities or problems, computer-assisted differentiated instructional 
systems, and cross-cultural comparisons of mathematical learning practices 
and outcomes. 

Abstracts  

Does “dyscalculia” depend on initial primary school instruction? (Anna 
Baccaglini-Frank) 

In Italy, “dyscalculic” students – and students with any other learning 
disabilities or handicaps – are typically included in the regular classrooms and 
receive instruction from the same teacher as the other students. During a 3-year 
project we designed didactical materials that provide all students (in first and 
second grade) with “hands on” (kinaesthetic-tactile) experiences involving 
manipulation of physical artefacts to develop mathematical meanings (including 
procedures) from these experiences and from consequent mathematical 
discussions. Persistent use of these materials shows to significantly reduce the 
number of children who can be classified as “dyscalculic” by third grade. In 
particular the children in the experimental classes develop a variety of strategies 
for addressing different mathematical situations. When assessed on calculation 
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and compared to children in control classes, the children in the experimental 
classes show slower (by a few months) automatization of numerical facts, while 
their accuracy and variety of strategies used is consistently greater.   

If the percentage of “dyscalculics” significantly depends (among other factors) 
on students’ initial mathematical experiences in school, does it make sense to 
keep on searching for who these children are, instead of investigating why some 
children fail to overcome difficulties in mathematical learning that others 
overcome? 

Are MLD linked to a lack of underlying awareness of mathematical patterns and 
relationships that are more linked to spatial ability than development of 
number? (Joanne Mulligan) 

Mathematics Learning Difficulties (MLD) may be traced to a lack of Awareness 
of Mathematical Pattern and Structure (AMPS) that is considered critical to the 
development of generalisation and relational thinking.  Given the increasing 
influence of cognitive and neurocognitive sciences this perspective provides a 
much broader approach to both the research of MLD and the ways in which 
intervention programs can be developed.  One of the key questions arising from 
the focus on AMPS is the study of conceptual connectivity within and between 
domains of knowledge (or disciplines). This may require mathematics to be 
reconceptualised as a coherent subject domain that develops from human 
interaction and that is reliant on conceptual relationships that develop from 
spatial sense and spatial reasoning. A lens on conceptual connectivity of spatial 
concepts, such as Awareness of Pattern and Structure, therefore, may offer a 
more complete picture of the learning that underpins WNA within mathematics. 

It is time to reveal what children with MLD can do, rather than what they 
cannot (Marja Van den Heuvel) 

Good teaching starts with getting to know what students know. Although this 
applies for all students, it is particularly true for weak learners. The problem 
with these learners is that they have low scores at mathematics tests, which may 
automatically lead to conclusions about their inability to solve demanding 
mathematics problems and coming up with their own solution methods. 
Unmasking such preconceived ideas is of vital importance for these students, 
and may open up new chances for their learning of mathematics. But how can 
we reveal what they know? 

Conceptual Model-based Problem Solving: An integration of constructivist 
mathematics pedagogy and explicit strategy instruction (Yan Ping Xin) 

This presentation will introduce a Conceptual Model-based Problem Solving 
(COMPS) approach that integrates constructivist mathematics pedagogy and 
explicit strategy instruction to promote concept development and mathematics 
problem-solving ability of students with learning disabilities or difficulties. 
Through nurturing fundamental mathematical ideas such as the concept of the 
composite unit, the COMPS program makes explicit the reasoning behind 
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mathematics and therefore, students were able to make sense of abstract 
mathematical models.  The COMPS program may be especially helpful for 
students with learning disabilities or difficulties who are likely to experience 
disadvantages in working memory and information organization. 

References 
Ansari, D. (2008). Effects of development and enculturation on number representation in the 

brain. Nature Reviews. Neuroscience, 9, 278–291. 

Berch, D. B., & Mazzocco, M. M. M. (2007). Why is math so hard for some children? The 
nature and origins of mathematical learning difficulties and disabilities. Baltimore, 
MA: Paul H. Brookes Publishing.  

De Smedt, B., Verschaffel, L., & Ghesquière, P. (2012). Mathematics learning disability. In  
Seel, N. (Ed.), Encyclopedia of the sciences of learning (pp. 2121-2123). New York: 
Springer. 

Dowker, A. (2008). Mathematical difficulties: Psychology and intervention. Amsterdam: 
Elsevier/Academic.  

Hord, C., & Xin, Y. P. (2014). Teaching area and volume to students with mild intellectual 
disability. The Journal of Special Education, online first, April 9. DOI: 
10.1177/0022466914527826 

Karagiannakis, G., Baccaglini-Frank, A. E., & Papadatos, Y. (2014). Mathematical learning 
difficulties subtypes classification. Frontiers in Human Neuroscience, 8(57). 

Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic 
numerical capacities: a study of 8–9-year-old students. Cognition, 93, 99-125. 

Mulligan, J. T. (2011). Towards understanding of the origins of children's difficulties in 
mathematics learning. Australian Journal of Learning Difficulties (Special Issue), 16(1), 
19-39. 

Peltenburg, M.C., van den Heuvel-Panhuizen, M.H.A.M, & Robitzsch, A. (2012). Special 
education students’ use of indirect addition for solving subtraction problems up to 100. 
Educational Studies in Mathematics, 79(3), 351-369. 

Xin, Y. P., & Hord, C. (2013). Conceptual model based teaching to facilitate geometry 
learning of students who struggle in mathematics.  Journal of Scholastic Inquiry: 
Education, 1(1), 147-160. 

Xin, Y. P., Liu, J., Jones, S., Tzur, R., & Si, L. (in press). A preliminary discourse analysis of 
constructivist-oriented math Instruction for a student with learning disabilities. The 
Journal of Educational Research. 

 
 



ICMI Study 23                                                                                                                                      Discussion Document	

625	
	

The Twenty-third ICMI Study: 
Primary Mathematics Study on Whole Numbers 

DISCUSSION DOCUMENT 

1. Introduction and Rationale for ICMI Study 23  

This document announces a new Study to be conducted by the International 
Commission on Mathematical Instruction. This Study, the twentythird led by 
ICMI, addresses for the first time mathematics teaching and learning in the 
primary school (and pre-school), taking into account international perspectives, 
socio-cultural diversity and institutional constraints.  One of the challenges of 
designing the first ICMI primary school Study of this kind is the complex nature 
of mathematics at the early level. For this reason a focus area has been chosen, 
as central to the discussion, with a number of questions connected to it. The 
broad area of Whole Number Arithmetic (WNA) including operations and 
relations and arithmetic word problems form the core content of all primary 
mathematics curricula. The Study of this core content area is often regarded as 
foundational for later mathematics learning. However, the principles and main 
goals of instruction in the foundational concepts and skills in WNA are far from 
universally agreed upon, and practice varies substantially from country to 
country. An ICMI Study that provides a meta-level analysis and synthesis of 
what is known about WNA would provide a useful base from which to gauge 
gaps and silences and an opportunity to learn from the practice of different 
countries and contexts.  

Whole numbers are part of everyday language in most cultures, but there are 
different views on the most appropriate age at which to introduce whole 
numbers in the school context. Whole numbers, in some countries, are 
introduced in the pre-school, where the majority of children attend before the 
age of 6 years. In some countries, primary schooling includes Grades 1-6; in 
others it includes Grades 1-5. Thus the entrance age of students for primary 
school may vary from country to country. For these reasons, this Study 
addresses teaching and learning WNA from the early grades, i.e., the periods in 
which WNA is systematically approached in the formal school, and in some 
contexts this includes the pre-school. 

In January 2014, the International Programme Committee (IPC) for ICMI Study 
23 met at the International Mathematical Union Secretariat, Berlin, and agreed 
upon four principles.  

First it was decided that cultural diversity and how this diversity impinges on 
the early introduction of whole numbers would be one major focus. The IPC 
agreed that the Study will seek contributions from authors representative of as 
many countries as possible, especially those where cultural characteristics are 
less known but where these influence what is taught and learned. In order to 
foster an understanding of the different contexts where potential authors have 
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developed their studies, each applicant for the Conference will be required to 
provide background information about this context.  

Second, it was decided to find better ways to involve policy makers who have 
the responsibility to offer to every child the opportunity to go to school and to 
learn WNA.  In connection with this aim, the IPC will also solicit contributions 
in the form of annotated video-clips about practical examples of WNA with 
potentially strong impact. 

Third, it was decided to collect examples of experiences about inclusive 
teaching and learning, including students with special needs, considering that in 
some countries the education system provides special schools, classrooms and 
teachers whilst in others students are enrolled in mainstream classes. 

Fourth, it was decided to focus on teacher education and professional 
development, considering that in order to teach elementary mathematics 
effectively there is a need for sound professional knowledge, both in 
mathematics and in pedagogy. 

In order to meet this complex set of principles, the IPC delineated a set of 
themes to serve as the organizing framework for the Study Conference.  

This discussion document presents the background of the Study, together with 
its challenges and aims and provides a description of the five organising themes. 
Because the Study Conference will be organized around discussion within each 
theme (with some overarching sessions) each proposed contribution to the Study 
should address the theme that it is most aligned with, and identify a second 
theme that it may also be related to. Finally the discussion document outlines the 
organisation, timing and location of the Study Conference and the timetable of 
the milestones leading up to the Study Conference and to ICMI publication. 

1.1. Background of the Study 

Countries differ enormously in providing pre-school programs (UNESCO, 
2010) which are especially important for children from disadvantaged families: 
actually the OECD (2011) has reported that, in general, participation in pre-
school produces better learning outcomes in later years such as for fifteen-year-
old students. Primary schooling is compulsory in most countries (in all Western 
countries), although there is considerable variation in the facilities, resources 
and opportunities for students. This is the uneven context where mathematics 
teaching and learning takes place. 

Mathematics is a central feature of early education and the content, quality and 
delivery of the curriculum is of critical importance in view of the kinds of 
citizens each country seeks to produce.   

In the international literature there are many contributions about primary school 
mathematics. In many cases, especially in the West, early processes of 
mathematical thinking, often observed in early childhood (i.e., 3-8 year-old 
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children), are also investigated by cognitive and developmental psychologists. 
They sometimes study the emergence of these processes in clinical settings, 
where children are stimulated by suitable models so as to observe the emergence 
of aspects such as one-to-one correspondences, counting, measuring and other 
processes). In several countries, Piaget’s theory has been very influential despite 
criticism. Neuroscientists have also been studying for some years the emergence 
of “number sense”. However, recent perspectives highlight that what is still 
needed is serious and deep interdisciplinary work with experts in mathematics 
education (UNESCO, 2013). 

1.2. Key Challenges for ICMI Study 23 

A recent document prepared by ICMI’s Past President Michéle Artigue and 
commissioned by UNESCO (2012) discusses, from a political perspective, the 
main challenges in fundamental mathematics education. It reads: 

We live in a world profoundly shaped by science and technology. Scientific and 
technological development has never been faster, has never had an impact as 
important and as immediate on our societies, whatever their level of 
development. The major challenges that the world has to face today, health, 
environment, energy, development, are both scientific and human challenges. In 
order to take up these challenges, the world needs scientists able to imagine 
futures that we barely see and able to make these possible, but it also needs that 
the understanding of these challenges, the debate on the proposed changes, are 
not reserved for a necessarily limited scientific elite, but are very widely shared. 
Nobody can now doubt that positive, sustainable and equitable evolutions cannot 
be achieved without the support and contribution of the great majority of the 
population. Nobody should thus doubt that the gamble of shared intelligence, 
that of quality education for all, and especially science education for all, 
including mathematics and technology education, are the only gambles we can 
take. This is even more the case in the current context of crisis. Without such an 
education, it is futile to speak of debate and citizens’ participation. 

Drawing on these ideas, ICMI has acknowledged that it is timely to launch, for 
the first time in its history, an international Study that especially focuses on 
early mathematics education, which is both basic and fundamental 
mathematically. Primary school mathematics education has been present in 
other ICMI studies, but, in most cases, secondary school mathematics education 
was predominant. When foundational processes are concerned, a strong 
epistemological basis is needed. This is where the involvement of ICMI adds 
value with respect to analyses carried out in other fields. Such epistemological 
analysis was part of classical works of professional mathematicians (e.g., Klein, 
Smith, and Freudenthal) who played a major role in the history of ICMI and 
considered mathematics teaching as a whole (ICMI, 2008). It is pertinent to 
mention here a short quote by Felix Klein, the first President of ICMI, used as 
an epigraph in the website on the history of ICMI (ICMI, 2008). 
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I believe that the whole sector of Mathematics teaching, from its very beginnings 
at elementary school right through to the most advanced level research, should 
be organised as an organic whole. It grew ever clearer to me that, without this 
general perspective, even the purest scientific research would suffer, inasmuch 
as, by alienating itself from the various and lively cultural developments going 
on, it would be condemned to the dryness which afflicts a plant shut up in a 
cellar without sunlight (Felix Klein, 1923). 

One cannot study school mathematics teaching without focusing also on the 
teacher’s role and responsibility. The attention on mathematics teacher 
education and professional development has been a constant preoccupation of 
ICMI. The primary school and (more generally) early education deserve a 
special attention. The complex nature of arithmetic and its foundational 
importance for mathematics are well known by mathematicians and 
mathematics educators. However, primary school teachers work within systems 
which may or may not support a rigorous professional environment in which 
they are knowledgable and respected experts on both the mathematics and the 
pedagogy of what they teach.  In some systems, teaching WNA may be treated 
as something that virtually any educated adult can do with little specific 
training; WNA may be viewed by some as straightforward and intuitive, and 
involving no more than showing children how to cope with everyday life and to 
carry out algorithms. 

There are systems where primary mathematics teachers are specialists and other 
where they are generalists.  It is not within the aims of this Study to enter deeply 
into the pedagogical debate about specialist vs generalist teachers in early 
education, as both models show advantages and disadvantages. What is 
important to highlight is that much is already known from research about 
productive ways to teach WNA, yet this knowledge cannot be enacted in 
systems in which teachers are not proficient in elementary mathematics and 
particular pedagogical approaches. Effective teacher education may require the 
development of a culture in which teachers are expected to be highly educated 
professionals. 

2. Aims of the ICMI Study 23 

This Study aims to produce and share knowledge about sustainable ways of 
promoting effective pedagogy in teaching and learning WNA for all, taking 
account of the large body of theory and research already existent, socio-cultural 
diversity and institutional constraints. In particular the following specific aims 
were acknowledged by the IPC, for the early teaching and learning of WNA: 

 bring together communities of international scholars representative of 
ICMI’s diverse membership across regions and nationalities in addressing 
the theme of WNA for the production of a Study volume; 

 provide a state-of-the-art expert reference group on the theme of WNA; 
 contribute to knowledge, better understanding and resolution of the 

challenges that teaching and learning WNA faces in diverse contexts; 
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 collectively represent the wide variety of concerns in the field of WNA and 
reflect upon it; 

 facilitate multi- and interdisciplinary approaches (including cooperation 
with other bodies and scientific communities) to advance research and 
development in WNA; 

 disseminate scholarship in mathematics education — research; 
methodologies, theories, findings and results, practices, and curricula — in 
the theme of WNA; 

 pave the way to the future by identifying and anticipating new research and 
development of WNA;   

 act as a resource for researchers, teacher educators, policy and curriculum 
developers and analysts and the broad range of practitioners in 
mathematics and education; 

 promote and assist discussion and action at the international, regional or 
institutional level.   

3. The Themes of the ICMI Study 23 

The ICMI Study will be organised around five themes that provide 
complementary perspectives on approaches to early WNA in mathematics 
teaching and learning. Contributions to the separate themes will be distinguished 
by the theme’s specific foci and questions, although it is expected that 
interconnections between themes will emerge and warrant attention. 

The five themes are:  

1. The why and what of WNA  
2. Whole number thinking, learning, and development 
3. Aspects that affect whole number learning 
4. How to teach and assess WNA 
5. Whole numbers and connections with other parts of mathematics. 

Themes 1 and 2 address foundational aspects from the cultural-historic-
epistemological perspective and from the (neuro) cognitive perspective. What is 
especially needed are reports about the impact of foundational aspects on 
practices (both at the micro-level of students and classrooms and at the macro-
level of curricular choices). 

Themes 3 and 4 address learning and teaching respectively, although it is quite 
difficult, sometimes, to separate the two aspects, because for example in some 
languages and cultures (eg. Chinese, Japanese, Russian) the two words collapse 
into only one. 

Theme 5 addresses the usefulness (or the need) to consider WNA in connection 
with (or as the basis for) the transition to other kinds of numbers (e.g., rational 
numbers) or with other areas of mathematics, traditionally separated from 
arithmetic (e.g., algebra, geometry, modelling).  
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Each theme is outlined briefly and followed by exemplary questions that could 
be addressed in the submitted contributions. An overarching question which cuts 
across all the themes concerns teacher education and development: 

 How can each of the themes be effectively addressed in teacher education 
and professional development? 

3.1. The why and what of WNA 

This theme will address cultural-historic-epistemological issues in WNA and 
their relation to traditional, present and possible future practices.  

A sense of number is constructed through everyday experience, where culture 
and language play a major role, hence ethnomathematics has paid attention to 
the different grammatical constructions used in everyday talk (e.g., Maori 
numbers as actions; Aboriginal Australians’ spatial approach to numbers). Ways 
of representing whole numbers and making simple calculations (e.g., with 
fingers or other body parts; with words; with tools, including mechanical and 
electronic calculators; with written algorithms) have enriched the meaning of 
whole numbers through the ages.  

The base ten system is critical for our current sophisticated understanding of 
WNA. The long and difficult development of place value systems is well 
documented in the history of mathematics (the introduction of place value in 
China and India; the migration to Europe through the Arabic culture; the 
invention of zero; the strategies for mental calculation) and indicates the need to 
study place value and the base ten system deeply for understanding.  

The above issues (and others) have been considered in different ways by 
different cultures throughout history. Besides the use of numbers in practical 
activities, there is evidence (in the history and in educational research) that the 
exploration of the properties of whole numbers, relations and operations paves 
the way towards the introduction, with young students too, of typical 
mathematical processes, such as generalizing, defining, arguing and proving.  

Some references may be found in the ICMI Studies 10, 13, 16, 19. 
 

The following possible questions will help to illuminate this theme further:  

 What goals underlie the teaching and learning of WNA?   
 Taking a mathematical perspective (as practised by the current community 

of mathematicians) combined with an educational perspective, what are 
core mathematical ideas in developing pathways to WNA? 

 What are distinctive features concerning whole number representation and 
arithmetic in your culture? What is the grammar of number? In what ways 
does language or ways of representing and using numbers influence 
approaches to calculation or problem solving? How do these features 
interact with the decimal place value system? 
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 What is the role of mathematical practices and habits of mind in teaching 
and learning WNA? How can teaching and learning WNA support the 
development of mathematical practices and habits of mind? 

 How much is the base ten place value emphasized in your curriculum? 
 How much computational facility is important for later mathematics 

learning, and learning in other areas? What about mental calculation? 
What about speed of calculation? 

 How do policies and the educational environment and system support or 
not support a culture in which teaching WNA is seen as requiring detailed, 
specific professional knowledge?  

 What were the main historic features and their origins of WNA in (ancient) 
west / east? What were some factors that led to such historic features? 
What were the effects on the development of mathematics curriculum? 

 How does your curriculum develop understanding of the structural features 
of WNA and its extensions? 

3.2. Whole number thinking, learning, and development 

This theme will address the relationships between cognitive and neurocognitive 
issues and traditional, present and possible future practices in the early teaching 
and learning of WNA.  

The idea of number sense was in use for decades in the mathematics education 
literature before entering into the cognitive and neurocognitive literature, with 
some similarities and differences. (Neuro)cognitive scientists have investigated 
children’s spontaneous tendency to focus on numerosity in their environment; 
the development of rapid and accurate perception of small numerosities 
(subitizing) in connection with visualization and structuring processes; the 
ability to compare numerical magnitudes; and the ability to locate numbers on a 
(mental) number line. There are models for children’s informal knowledge of 
counting principles and informal counting strategies and their development into 
more formal and abstract arithmetic notions and procedures.  

A recent focus concerns developmental dyscalculia, as a difficulty in 
mathematical performance resulting from impairment to those parts of the brain 
that are involved in arithmetical processing, without a concurrent impairment in 
general mental function.  

Recent debates concern the embodied cognition thesis resulting in the evidence, 
shared by many researchers, that, although mathematics may be socially 
constructed, this construction is rooted in, and shaped by, the body and bodily 
experiences.  

Some references may be found in OECD (2010), UNESCO (2013). 
 

The following possible questions will help to illuminate this theme further:  
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 To what extent is basic number sense inborn and to what extent is it 
affected by socio-cultural and educational influences? How is the 
relationship between these precursors/foundations of WNA, on the one 
hand, and children’s WNA development? 

 What can we learn from the (neuro-)cognitive studies in WNA? Do their 
findings essentially confirm insights that are present (and were already 
present for a long time) in the mathematics education community or do 
they point to truly new insights and recommendations about the kind of 
tasks and instructional approaches children need? How can we integrate 
different perspectives about the foundations and development of WNA 
concepts and skills? 

 What are specific effects of the structure of the individual finger counting 
system on mental and linguistic quantity representation and arithmetic 
abilities in children, and even in older learners and adults? 

 How can an embodiment framework be used to analyse and/or design 
educational approaches based on suitable representations, (e.g., through 
the number line) or on-line manipulatives and modern technological 
devices (touchscreens)? 

 What are appropriate ways of analyzing the multimodal nature of 
mathematical thinking (e.g., the role of bodily motion and gesture)?  

 What is the relationship between the embodied cognitive approach and 
traditional approaches, for example Montessori, Piaget, which had a 
strong influence of elementary school mathematics worldwide? 

 How can the tools of the embodiment framework/analysis be 
integrated/combined with socio-cultural perspectives to compare/contrast 
approaches where embodiment is exploited or hindered?  

 How can teachers be educated in order to exploit the (neuro-)cognitive 
foundations for WNA? 

3.3. Aspects that affect whole number learning 

This theme will address some aspects affecting learning of WNA in both 
positive and negative ways.  

Socio-cultural aspects influence enumeration practices, algorithms and 
representations as well as metaphors or models (e.g., the number line). Hence 
students’ language and culture may help or hinder the construction of WNA not 
only in schools but also in informal settings. On the one hand, the recourse to 
tools from the history of mathematics (e.g. counting sticks; different kind of 
abaci; reproduction of ancient mechanical calculators) may be effective to foster 
learning  of WNA with explicit reference to the local culture. On the other hand, 
intentionally designed tools may address the effective learning processes 
evidenced in the literature (e.g., technological tools including the multitouch 
ones).  
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Low achievement in WNA is a major focus in debates at all levels, from school 
practice to international studies. Literature shows that it may depend on very 
different aspects: context variables (e.g., marginalized students; migrant and 
refugee students; education in fragile democracies), institutional variables (e.g. 
different languages in school and out of school context),  learning disabilities 
(dyscalculia; sensual impairment for deaf and blind students);  affect factors 
(e.g., self-beliefs, anxiety, motivation, gender issues); didactical obstacles (e.g., 
a too limited approach as in the case of teaching addition separate from 
subtraction or multiplication as a repeated addition only); or epistemological 
obstacles (related to the historical process of constructing WNA by mankind).  

Some references may be found in the ICMI Studies 17, 22 and, for general 
issues concerning the contexts, UNESCO (2010). 

 

The following possible questions will help to illuminate this theme further:  

 What are the features of your language related to whole numbers, 
operations and word problems that could affect learning in a positive or 
negative way?  How these features are mirrored in formal or informal 
settings?  

 What main challenges for learning WNA are faced by marginalized 
students or, in general, in difficult contexts?  

 What main challenges are faced for learning WNA by students with sensual 
impairments (blind and deaf)?  

 What main challenges are faced for learning WNA by dyscalculic students 
?  

 In your country are students with special needs enrolled in mainstream 
classes (inclusive systems) or in special education classes? To what extent 
may the strategies for learning WNA especially developed for students with 
special needs be useful for all students? 

 In your country is there evidence that the literature on either didactical or 
epistemological obstacles has impact on classroom practice? 

 Which tools (from the ancient or new technologies) are useful to enrich 
classroom activity for all or to help low achievers in WNA? Is there 
evidence on effective use of traditional manipulatives (including the ones 
rooted in local cultures), virtual manipulatives, technologies (including the 
recently developed multi touch technologies)? Are there classroom studies 
on the comparison of different kinds of tools? 

 What strategies may be implemented by teachers in relation to the above 
issues? 

3.4. How to teach and assess WNA 

This theme will address general and specific approaches to the teaching, 
assessing and learning of WNA. WNA appears in standards documents for 
mathematics of every country (see http://www.mathunion.org/icmi/other-
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activities/database-project/introduction/), and in specific international studies 
(e.g. the Learner’s perspective Study, with sixteen country teams). In some 
countries independent research communities have also developed projects on 
teaching and assessing WNA, which, in some cases, are internationally 
acknowledged (e.g. Realistic Mathematics Education in the Netherlands; NCTM 
Curriculum and Evaluation Standards in US; Davydov’s math curriculum in 
Russia; the Theory of Didactical Situations in France). In the ethnomathematics 
trend, projects sensitive to the local cultures and traditions have been developed 
(e.g. in Australia, Latin America, USA and Canada). A specialized Symposium 
on Elementary Mathematics Teaching (SEMT) has been held every second year 
in Prague since 1991. 

Some other focus issues may be the following: the role of textbooks and future 
teaching aids (e.g., multimedia; e-books) for WNA; tools to approach specific 
elements of WNA (e.g., manipulatives, technologies); specific strategies for 
some fields (e.g., for word problems, the Chinese tradition of problems with 
variation; Singapore’s model method; the extended literature on word problems 
and relations with real life situations); examples of practices rooted in local 
culture; metacognitive aspects in national curricula (e.g. early approaches to 
mathematical thinking processes).  

In recent years the assessment debate at the local and school level has been very 
much biased by the results of international studies (e.g. OECD PISA, TIMSS), 
which are likely to produce assessment driven curricula. An ICMI Study on 
assessment was produced in the early 90s (ICMI Study 6), but updating might 
be necessary to establish current relevance and the impact of the international 
studies.  

Some references for this theme may be found in the proceedings of ICMI 
Congress and Regional Conferences 
http://www.mathunion.org/icmi/Conferences/introduction/. 
 

The following possible questions will help to illuminate this theme further: 

 What are the consequences of policy decision making related to evidence-
based WNA teaching in comparison with policy decision making based on 
opinion? 

 How is the intended curriculum reflected in textbooks and other teaching 
aids? 

 What are the changes (if any) that have resulted from the use of technology 
in the teaching of WNA?  

 How complety is our understanding of the development of the place value 
system, and at what points in the/your curriculum are key features of place 
value explored in greater depth? 
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 How does the/your curriculum foster the transition from a counting or 
additive view of number to a ratio/multiplicative/measurement view of 
number? 

 How do children acquire WNA concepts and procedures outside of school? 
How can teachers build upon the knowledge children acquire outside 
school? 

 What are the approaches that have proven to be effective in your school 
setting to teach elements of WNA, for example number sense, cardinality, 
ordering, operations (subtraction with re-grouping, etc.), problem solving, 
estimation, representing, mental computation…? 

 Problem-solving contexst: should they be realistic? Should they be 
authentic? Always? What is the place (if any) of traditional word 
problems? What is the role of (real world) context in WNA? Are they 
always necessary? 

 How can we develop positive attitudes toward mathematics while teaching 
WNA? 

 How can teachers promote the development of student’s metacognitive 
strategies during the learning of WNA? 

 What main challenges are faced by teachers when teaching and assessing 
WNA? 

 What innovative assessment approaches are used to evaluate the learning 
outcomes of WNA? What are the changes (if any) in assessment of WNA 
that have resulted from the media appeal of international studies like PISA 
or TIMSS? 

3.5. Whole numbers and connections with other parts of mathematics  

This theme will address WNA in terms of its interrelationships with the broader 
field of mathematics.  

Some connections are of central concern: pre-algebra and algebraic thinking 
(e.g. looking for patterns; schemes for the solution of world problems); 
geometry or spatial thinking (e.g., triangular or square numbers and similar; 
number lines); rational numbers and measurement (e.g. Davydov’s curriculum 
for arithmetic); statistical literacy (e.g. mean, median and mode, interval, scale, 
and graphical representation).  

Evidence suggests that the earliest formation of WNA can support the learning 
of mathematics as a connected network of concepts and, viceversa, embedding 
WNA in the broad field of mathematics can foster a better understanding. 

Some references for this theme may be found in the ICMI Studies 9,12,14,18. 
 

The following possible questions will help to illuminate this theme further: 
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 How can WNA teaching and learning contribute to understanding other 
interconnected mathematical ideas and build on one another to make 
students view mathematics as a coherent body of knowledge? 

 In your country, to what extent are connections between WNA and other 
Mathematics topics pointed out in the curriculum syllabus and textbooks, 
and how are they approached? i.e WNA and measurement, WNA and 
elementary statistics? Pre-algebra patterns, WNA and algebra?  

 In your system/country are symbolic and non-symbolic approaches to word 
problems compared? To what extent are connections made between base 
ten arithmetic and polynomial arithmetic? To what extent are the rules of 
arithmetic/properties of operations used as a guide in learning 
manipulation of algebraic expressions? 

 In your country/system to what extent are connections between WNA and 
other Mathematics topics stressed in the teachers’ education programs? 

 In what ways does the connection between WNA and specific themes in 
other areas of Mathematics contribute to students’ understanding of these 
themes? 

 What learning conditions enable students to make connections between 
WNA and other mathematics topics? 

 In which ways do the practice of connecting WNA to other areas of 
mathematics contribute to the development of mathematical thinking? 

 How does the connection of WNA with other areas of mathematics improve 
communication of mathematical ideas? 

 How can technology be used to make connections between WNA and other 
mathematics topics? 

 How does the use of representations in WNA teaching and learning 
contribute to building connections with other mathematical areas? For 
example, to what extent is the number line used to exhibit the connections 
between WNA and arithmetic of fractions? 

4. The Study Conference 

ICMI Study 23 is designed to enable teachers, teacher educators, researchers and 
policy makers around the world to share research, practices, projects and 
analyses. Although reports will form part of the program, substantial time will 
also be allocated for collective work on significant problems in the field, that 
will eventually form part of the Study volume. As in every ICMI Study, the 
ICMI Study 23 is built around an International Conference and directed towards 
the preparation of a published volume. 

The Conference will be organized around working groups on the themes: these 
groups will meet in parallel during the time of the Conference. In each working 
group, the IPC will organise the discussion starting from the contributions, 
assuming that each participant has carefully reviewed the contributions of their 
working group. Some special sessions presenting video-clips of practice will be 
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organized, to share meaningful examples of WNA. Thus, there will be plenty of 
time for discussion of submitted papers, as well as possible plans for future 
collaborative activity. 

The Conference language is English. However, native speakers and more expert 
participants will do every effort to ensure that every participant may take active 
part in the discussion. 

4.1. Location and dates 

The Study Conference will take place in Macau, China and will be hosted by the 
University of Macau (June 3-7, 2015), with an opening on June 3 at 9AM and 
closing on June 7 at 2PM. Arrival day is June 2; departure may be scheduled as 
from the night of June 7. 

Every effort will be made to assist participants with visa applications, if needed. 

4.2. Participation 

As is the usual practice for ICMI studies, participation in the Study Conference 
will be by invitation only for the authors of submitted contributions which are 
accepted. Proposed contributions will be reviewed and a selection will be made 
according to the quality of the work, the potential to contribute to the 
advancement of the Study, with explicit links to the themes contained in the 
Discussion Document and the need to ensure diversity among the perspectives. 
The number of invited participants will be limited to approximately 100 people. 

Unfortunately, an invitation to participate in the Conference does not imply 
financial support from the organizers, and participants should finance their own 
attendance at the Conference. Funds are being sought to provide partial support 
to enable participants from non-affluent countries to attend the Conference, but 
it is unlikely that more than a few such grants will be available. Further 
information about the access to such grants will be available in the ICMI Study 
23 website 

http://www.umac.mo/fed/ICMI23/ 

4.3. ICMI Study 23 Products 

The first product of the ICMI Study 23 is an electronic volume of Proceedings, 
to be made available first on the Conference website and later in the ICMI 
website: it will contain all the accepted papers as reviewed papers in a 
Conference Proceedings (with ISBN number). 

The second product is a gallery of commented videoclips about practices in 
WNA, to be hosted in the Conference website and, possibly, later, in the ICMI 
website. 

The third product is the ICMI Study volume. The volume will be informed by 
the papers, the videoclips and the discussions at the Study Conference as well as 
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its outcomes, but it must be appreciated that there will be no guarantee that any 
of the papers accepted for the Study Conference will appear in the book. The 
Study book will be an edited volume published by Springer as part of the New 
ICMI Study Series. The editors and the editing process and content will be the 
subject of discussion among the IPC considering also the framework prepared 
for the Study Conference. It is expected that the organization of the volume will 
follow the organization and themes of this Discussion Document, although some 
changes might be introduced to exploit the impact of the discussion raised 
during the Conference. A report on the Study and its outcomes will be presented 
at the 13th International Congress on Mathematical Education, to be held in 
Hamburg, Germany (24-31 July 2016). It is hoped that the Study volume will 
also be published in 2016. 

5. Call for Contribution to ICMI Study 23 

The IPC for ICMI Study 23 invites submissions of contributions of several 
kinds: theoretical or cultural-historic-epistemological-essays (with deep 
connection with classroom practice, curricula or teacher education programs); 
position papers discussing policy and practice issues; discussion papers related 
to curriculum issues; reports on empirical studies; video-clips on explicit 
classroom or teacher professional education practice. The possibility of 
submitting short video-clips is a novelty of the ICMI Study 23. Video-clips 
show in a visual way examples of non-verbal communication, dynamic 
moments of significance or oddity, impressive performances or crucial incidents 
about teaching and learning WNA (including teacher professional education and 
development). Hence, in addition to usual reports, video-clips with 
accompanying short paper (see below) are welcome. 

To ensure a rich and varied discussion, participation from countries with 
different economic capacity or with different cultural heritage and practices is 
encouraged. 

The IPC encourages people who are not familiar with such Conferences to 
submit early (see the deadlines below) in order to receive assistance for 
finalizing their contribution (this assistance concerns the choice of the topic of 
the contribution and the structure of the paper, not the editing of English 
language). In this way the IPC inaugurates a new tradition of helping 
newcomers (including practitioners) to the international mathematics education 
community. This implies a process of supporting the writing of a contribution 
which the IPC judges as having the potential to contribute to the Study (see 
below).  

An invitation to the Conference does not imply that a formal presentation of the 
submitted contribution will be made during the Conference or that the paper will 
appear in the Study volume published after the Conference.  
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5.1. Submissions 

The ICMI Study 23 website is opened at the address: 

http://www.umac.mo/fed/ICMI23/ 

The website will be regularly updated with information about the Study and the 
Study Conference and will be used for sharing the contributions of those invited 
to the Conference in the form of Conference pre-proceedings. 

Two kinds of submissions are welcome: 

Papers prepared in English (the language of the Conference) according to a 
template (max 8 pages).  

Video-clips (5-8 minutes) with English subtitles together with an 
accompanying paper prepared according to a template (max 6 pages) together 
with the author’s declaration of having collected informed consent forms 
signed by the participants. The English subtitles are required also in the videos 
with English speakers, in order to help the understanding of the interaction for 
non native speakers. Blurring faces of participants for privacy reasons, when 
needed, must be ensured by the applicants before sending the videos.  

The files are to be saved with the name: 

Familyname_name 

Accepted file extensions are the following: 

Papers: .doc; .docx; .odt together with a .pdf copy. 

Videos: .mp4; 3gp. 

In both cases, the indication of the working group - theme (1st and 2nd choice) 
where the paper or the video-clip is expected to be discussed must be included. 

In both cases, also the context form has to be filled out by all the author(s) as 
completely as possible to help readers to understand the context of the 
contribution and interpret the contribution accordingly. 

The template, the context form and the informed consent form will be available 
in the ICMI Study 23 website. 

It is not allowed to submit two papers with the same first author. 

Information about the technical way of submitting a paper or a 
video+paper will be available soon in the ICMI Study 23 website. 

http://www.umac.mo/fed/ICMI23/ 

5.2. Deadlines 

August 31, 2014: People who believe they need assistance for finalizing their 
contribution must submit a tentative copy with an appropriate form (assistance 
form) for requiring assistance no later than August 31, 2014. Their submissions 
will be examined immediately. The author will receive by September 30 the 
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information of the decision (rejected, accepted pending revision, accepted in the 
present form). In the second case an IPC member will act as “tutor” to help the 
final preparation of the paper.  Then the final paper will undergo the standard 
review process. The assistance form will be available in the  ICMI Study 23 
website. 

October 15, 2014:  Submissions by people who do not require assistance must 
be sent no later than October 15, 2014, but earlier if possible. 

February 2015: Proposals will be reviewed, decisions made about invitations 
for the Conference (to be held in June 2015) and notification of these decisions 
sent by the end of February. 

Information about visa, costs and details of accomodation will be available on 
the ICMI Study 23 website: 

http://www.umac.mo/fed/ICMI23/ 

Further information may be asked at the following address: 

icmiStudy23@gmail.com 
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