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In this paper, a new methodology is formulated for solving the reduced Fokker-Planck (FP) equations in high
dimensions based on the idea that the state space of large-scale nonlinear stochastic dynamic system is split
into two subspaces. The FP equation relevant to the nonlinear stochastic dynamic system is then integrated
over one of the subspaces. The FP equation for the joint probability density function of the state variables in
another subspace is formulated with some techniques. Therefore, the FP equation in high-dimensional state
space is reduced to some FP equations in low-dimensional state spaces, which are solvable with exponential
polynomial closure method. Numerical results are presented and compared with the results from Monte
Carlo simulation and those from equivalent linearization to show the effectiveness of the presented solution
procedure. It attempts to provide an analytical tool for the probabilistic solutions of the nonlinear stochastic
dynamics systems arising from statistical mechanics and other areas of science and engineering.
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1 Introduction

Many practical problems in statistical mechanics and other areas of science and engineering are de-
scribed as multi-degree-of-freedom (MDOF) or high-dimensional nonlinear stochastic dynamic (NSD)
systems [1–13]. Hence, the investigation on the probabilistic solutions of MDOF systems attracted many
researchers in the last decades. However, obtaining the probabilistic solutions of MDOF NSD systems has
been a challenge for almost a century since the explanation on the motion of molecules by Einstein in 1905
and the formulation of Fokker-Planck (FP) equation thereafter [14–17].

It is generally difficult to obtain the exact solutions of FP equations if the system is nonlinear. Only under
restrictive conditions, some exact solutions are obtainable for one, two, or few dimensional systems [1,18,
19]. As well known, practical systems are normally multi-dimensional or high-dimensional. Therefore,
some methods were proposed for the approximate solutions of NSD systems, FP equations, or reduced FP
equations. The most frequently used approximation method is the equivalent linearization (EQL) method
[2, 9]. The advantage of EQL method is that it can be used for analyzing large-scale NSD systems, but it
is considered unsuitable when the system is not weakly nonlinear or multiplicative random excitations are
present because in either case the probability distribution of the system responses is usually far from being
Gaussian. It is easy to show with the available analytical probabilistic solutions of NSD systems, such as
the duffing oscillator excited by Gaussian white noise, that the tails of the probabilistic solution are far
from being Gaussian even if the system nonlinearity is considered as slight.

To improve the accuracy of an approximate solution, a non-Gaussian closure method was used [20].
With this method, the probability density function (PDF) of the system responses is approximated with
Gram-Charlier series. As well known, this series is not consistent with probability theory, e.g. negative
probabilities may result and it is difficult to extend for high-dimensional systems. The principle of maxi-
mum entropy was attempted for the approximate probabilistic solutions of NSD systems [21,22], but highly
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nonlinear algebraic equations must be solved in the determination of the unknown parameters and it is also
difficult to extend for higher-dimensional or MDOF systems. Stochastic average method is another method
for the PDF solutions of the response amplitudes of NSD systems, but it is only suitable for the slightly
damped systems with weak excitations and few dimensions [23]. Perturbation method was investigated for
the approximate solutions of FP equations [24–26]. It is known that perturbation method is based on the
conditions that the solutions of some given systems are known, which is suitable for the nonlinear systems
with small parameters and not suitable for high-dimensional or MDOF systems. Monte Carlo simulation
(MCS) is versatile [27,28], but the amount of computation with it is usually unacceptable for obtaining the
PDF solutions, especially for small probability problems. Exponential polynomial closure (EPC) method
was proposed which is suitable for analyzing MDOF or multidimensional systems without being limited
by multiplicative excitations and the level of system nonlinearity [29,30]. However the EPC method is only
suitable for the systems with few degrees of freedom because the number of unknown parameters in the
joint PDF of state variables can increase very fast as the number of state variables increases.

From the above discussion, it is seen that there is no effective analytical method available for obtaining
the accurate probabilistic solutions of large-scale NSD systems though practical problems are frequently
modeled as large-scale NSD systems. In this paper, a new methodology named state-space-split (SSS)
is presented for obtaining the probabilistic solutions of large-scale NSD systems. With the idea of this
method, the problem of solving the FP equation in high-dimensional state space becomes the problem of
solving some FP equations in low-dimension state spaces. Thereafter, the EPC method can be employed
to solve the FP equations in the low-dimensional state spaces. Numerical examples are presented and the
numerical results obtained with the presented methodology are compared with those from MCS and EQL
to show the effectiveness of the presented solution procedure.

2 Problem formulation

In the following discussion, the summation convention applies unless stated otherwise. The random state
variable or vector is denoted with capital letter and the corresponding deterministic state variable or vector
is denoted with the same letter in low case.

A lot of problems in science and engineering can be described with the following stochastic dynamic
system:

d

dt
Xi = bi(X) + gij(X)Wj(t) i = 1, 2, . . . , nx (1)

in Stratonovich form, where X ∈ �nx ; Xi, (i = 1, 2, . . . , nx), are components of the state vector process
X; bi(X) : �nx → �; and gij(X) : �nx → �. Function bi(X) and gij(X) are generally nonlinear,
and their functional forms are assumed to be deterministic. Here it is assumed that the nonlinearity of the
functions bi(X) and gij(X) are of polynomial type. The excitations Wj(t) are white noises with zero mean
and cross-correlation

E[Wj(t)Wk(t + τ)] = Sjkδ(τ) (2)

where δ(τ) is Dirac function and Sjk are constants, representing the cross-spectral density of Wj and Wk.
Equation (1) can also be expressed in Ito’s form as

d

dt
Xi = fi(X) + gij(X)Wj(t) i = 1, 2, . . . , nx (3)

where

fi(X) = bi(X) +
1

2

∂gij(X)

∂Xm

gmj(X). (4)
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The state vector process X is Markovian and the PDF p(x, t) of the Markov vector is governed by FP
equation. Without loss of generality, consider the case when the white noises are Gaussian. In this case, the
PDF p(x, t) of the Markov vector is governed by the following FP equation [4]:

∂p(x, t)

∂t
+

∂

∂xj

[
fj(x)p(x, t)

]
−

1

2

∂2

∂xi∂xj

[
Gij(x)p(x, t)

]
= 0 (5)

where x is the deterministic state vector and x ∈ �nx , and

Gij(x) = Slsgil(x)gjs(x). (6)

In stationary state, ∂p(x, t)/∂t = 0. Then

∂

∂xj

[
fj(x)p(x)

]
−

1

2

∂2

∂xi∂xj

[
Gij(x)p(x)

]
= 0 (7)

which is the reduced FP equation.
It is assumed that the solution p(x, t) in Eq. (5) or the solution p(x) in (7) fulfills the following condi-

tions:

lim
xi→∞

fj(x)p(x, t) = 0 and lim
xi→∞

∂[Gij(x)p(x, t)]

∂xi

= 0 i, j = 1, 2, · · · , nx (8)

which can usually be fulfilled by system responses.

3 State space split method

Separate the state vector X into two parts X1 ∈ �nx1 and X2 ∈ �nx2 , i.e., X = {X1,X2} ∈ �nx =
�nx1 ×�nx2 . For analyzing dynamic systems governed by second order stochastic differential equations,
for instance, X1 contains pairs of displacement and its first derivative or corresponding velocity.

Denote the PDF of X1 as p1(x1, t). In order to obtain the p1(x1, t), integrating Eq. (5) over �nx2 gives
∫
�

nx2

∂p(x, t)

∂t
dx2 +

∫
�

nx2

∂

∂xj

[
fj(x)p(x, t)

]
dx2

−
1

2

∫
�

nx2

∂2

∂xi∂xj

[
Gij(x)p(x, t)

]
dx2 = 0. (9)

Because of Eq. (8), we have∫
�

nx2

∂

∂xj

[
fj(x)p(x, t)

]
dx2 = 0 xj ∈ �nx2 (10)

and ∫
�

nx2

∂2

∂xi∂xj

[
Gij(x)p(x, t)

]
dx2 = 0 xi or xj ∈ �nx2 . (11)

Equation (9) can then be expressed as
∫
�

nx2

∂p(x, t)

∂t
dx2 +

∫
�

nx2

∂

∂xj

[
fj(x)p(x, t)

]
dx2

−
1

2

∫
�

nx2

∂2

∂xi∂xj

[
Gij(x)p(x, t)

]
dx2 = 0 xi, xj ∈ �nx1 (12)
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which can be further expressed as

∂

∂t

∫
�

nx2

p(x, t)dx2 +
∂

∂xj

[∫
�

nx2

fj(x)p(x, t)dx2

]

−
1

2

∂2

∂xi∂xj

[∫
�

nx2

Gij(x)p(x, t)dx2

]
= 0 xi, xj ∈ �nx1 (13)

Separate fj(x) and Gij(x) into two parts, respectively, as

fj(x) = f I
j (x1) + f II

j (x) (14)

Gij(x) = GI
ij(x1) + GII

ij (x) (15)

Substituting Eqs. (14) and (15) into Eq. (13) gives

∂p1(x1, t)

∂t
+

∂

∂xj

[
f I

j (x1)p1(x1, t) +

∫
�

nx2

f II
j (x)p(x, t)dx2

]

−
1

2

∂2

∂xi∂xj

[
GI

ij(x1)p1(x1, t) +

∫
�

nx2

GII
ij (x)p(x, t)dx2

]
= 0

(xi, xj ∈ �nx1 ) (16)

For systems, normally f II
j (x) and GII

ij (x) are functions of only few state variables. Denote f II
j (x) =

f II
j (x1, zk) in which zk ∈ �nz

k ⊂ �nx2 , and GII
ij (x) = GII

ij (x1, zr) in which zr ∈ �nzr ⊂ �nx2 . nzk

is the number of the state variables in zk and nzr
is the number of the state variables in zr. Therefore,

Eq. (16) can be expressed as

∂p1(x1, t)

∂t
+

∂

∂xj

[
f I

j (x1)p1(x1, t) +

∫
�

nz
k

f II
j (x1, zk)pk(x1, zk, t)dzk

]

−
1

2

∂2

∂xi∂xj

[
GI

ij(x1)p1(x1, t) +

∫
�

nzr

GII
ij (x1, zr)pr(x1, zr, t)dzr

]
= 0

(xi, xj ∈ �nx1 ) (17)

in which pk(x1, zk, t) denotes the joint PDF of {X1,Zk} and pr(x1, zr, t) denotes the joint PDF of
{X1,Zr}. The summation convention not applies on the indexes k and r in Eq. (17) and in the following
discussions.

From Eq. (17), it is seen that the coupling of X1 and X2 comes from f II
j (x1, zk)pk(x1, zk, t) and

GII
ij (x1, zr)pr(x1, zr, t). Express pk(x1, zk, t) as

pk(x1, zk, t) = p1(x1, t)qk(zk, t;x1) (18)

where qk(zk, t;x1) is the conditional PDF of Zk for given X1 = x1, and express pk(x1, zr, t) as

pr(x1, zr, t) = p1(x1, t)qr(zr , t;x1) (19)

where qr(zr , t;x1) is the conditional PDF of Zr for given X1 = x1.
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Substituting Eqs. (18) and (19) into Eq. (17) gives

∂p1(x1, t)

∂t
+

∂

∂xj

{[
f I

j (x1) +

∫
�

nz
k

f II
j (x1, zk)qk(zk, t;x1)dzk

]
p1(x1, t)

}

−
1

2

∂2

∂xi∂xj

{[
GI

ij(x1) +

∫
�

nzr

GII
ij (x1, zr)qr(zr, t;x1)dzr

]
p1(x1, t)

}
= 0

(xi, xj ∈ �nx1 ) (20)

Assume that the approximate probabilistic solutions of the NSD systems are obtainable with the EQL
method. Then approximately replacing the conditional PDFs qk(zk, t;x1) and qr(zr , t;x1) by those from
EQL, Eq (20) can be expressed as

∂p̃1(x1, t)

∂t
+

∂

∂xj

{[
f I

j (x1) +

∫
�

nz
k

f II
j (x1, zk)qk(zk, t;x1)dzk

]
p̃1(x1, t)

}

−
1

2

∂2

∂xi∂xj

{[
GI

ij(x1) +

∫
�

nzr

GII
ij (x1, zr)qr(zr, t;x1)dzr

]
p̃1(x1, t)

}
= 0

(xi, xj ∈ �nx1 ) (21)

where qk(zk, t;x1) is the conditional PDF of Zk from EQL for given X1 = x1, qr(zr , t;x1) is the condi-
tional PDF of Zr from EQL for given X1 = x1, and p̃1(x1, t) is the approximate PDF of X1. Denote

f̃j(x1, t) = f I
j (x1) +

∫
�

nz
k

f II
j (x1, zk)qk(zk, t;x1)dzk (22)

G̃ij(x1, t) = GI
ij(x1) +

∫
�

nzr

GII
ij (x1, zr)qr(zr, t;x1)dzr (23)

Then Eq. (21) can be expressed as

∂p̃1(x1, t)

∂t
+

∂

∂xj

[
f̃j(x1, t)p̃1(x1, t)

]
−

1

2

∂2

∂xi∂xj

[
G̃ij(x1, t)p̃1(x1, t)

]
= 0 (xi, xj ∈ �nx1 )

(24)

which is the approximate FP equation governing the approximate joint PDF of the state variables in the
sub state space �nx1 . In the stationary state, Eq. (24) is reduced to

∂

∂xj

[
f̃j(x1)p̃1(x1)

]
−

1

2

∂2

∂xi∂xj

[
G̃ij(x1)p̃1(x1)

]
= 0 (xi, xj ∈ �nx1 ) (25)

which is the approximate reduced FP equation governing the approximate joint PDF p̃1(x1) of the station-
ary state variables in the sub state space �nx1 .

If X1 only contains few state variables, the EPC method can be employed to solve Eq. (24) or (25)
[29,30]. Therefore, the whole solution procedure may be named SSS-EPC method for short in the following
discussions.

4 Examples

From the above discussion, it is seen that the SSS procedure is not limited by the number of state variables
in the NSD systems. Four systems are analyzed with the above solution procedure in the following dis-
cussions. The first example is about a 10-DOF NSD system with additive excitations. There are 20 state
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variables in this system. The second example is same as the first one except that multiplicative excitations
on displacements are added to the system. The third example is about a 8-DOF NSD system with both
additive and multiplicative excitations on velocities. The fourth example is about the nonlinear random
vibration of a flexural beam supported by nonlinear springs and excited by white noise. Only part of the
PDFs and logarithmic PDFs of the state variables are presented because the limited paper size. The results
obtained with the SSS-EPC method are compared with those from MCS and EQL to verify the effective-
ness of the presented SSS procedure. The sample size is 107 in MCS. In the presented figures, the results
corresponding to n = 4 are the results obtained from SSS-EPC when the polynomial degree equals 4 in the
EPC solution procedure, σyi

denotes the standard deviation of Yi from EQL, and σẏi
denotes the standard

deviation of Ẏi from EQL.

4.1 10-degree-of-freedom system with additive excitations

Consider the following 10-degree-of-freedom system with high nonlinearity:

Ÿ(t) + CẎ(t) + KY + H(Y, Ẏ) = F(t) (26)

in which Y(t) = {Y1, Y2, · · · , Y10}
t; H(Y, Ẏ) = {Y 3

1 + 0.3Ẏ 3
1 , Y 3

2 + 0.3Ẏ 3
2 , · · · , Y 3

10 + 0.3Ẏ 3
10}

t;
F(t) = {1, 1, · · · , 1}tW (t); W (t) is a white noise with unit power spectral density; and

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.2 −0.1 0.3 0.2 −0.2 0.1 0 0 0

0.2 1 0.2 0.3 0.2 0.1 0.3 0 0 0

−0.1 0.2 1 0.2 0.1 0.2 −0.2 0 0 0

0.3 0.3 0.2 1 0.2 0.2 0.1 0.3 0.2 0.1

0.2 0.2 0.1 0.2 1 0.1 0.3 0.2 0.2 0.2

−0.2 0.1 0.2 0.2 0.1 1 0.5 0.3 0.3 0.3

0.1 0.3 −0.2 0.1 0.3 0.5 1 0.2 −0.3 0.1

0 0 0 0.3 0.2 0.3 0.2 1 0.2 0.1

0 0 0 0.2 0.2 0.3 −0.3 0.2 1 0.3

0 0 0 0.1 0.2 0.3 0.1 0.1 0.3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.2 0.1 −0.1 0.3 0.2 0.1 0 0 0

0.2 1 0.2 0.2 0.1 0.2 0.1 0 0 0

0.1 0.2 1 0.1 0.1 0.2 0.2 0 0 0

−0.1 0.2 0.1 1 0.1 0.3 −0.2 0.4 0.2 0.2

0.3 0.1 0.1 0.1 1 0.1 −0.2 0.3 −0.4 0.1

0.2 0.2 0.2 0.3 0.1 1 0.3 0.2 0.1 0.2

0.1 0.1 0.2 −0.2 −0.2 0.3 1 0.1 0.2 0.3

0 0 0 0.4 0.3 0.2 0.1 1 0.3 0.1

0 0 0 0.2 −0.4 0.1 0.2 0.3 1 0.2

0 0 0 0.2 0.1 0.2 0.3 0.1 0.2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

The stationary PDFs obtained with the SSS-EPC method, MCS, and EQL methods are compared in
order to show the effectiveness of the SSS-EPC method in analyzing the large-scale highly nonlinear
stochastic dynamic systems with additive excitations. With the SSS-EPC method, the stationary PDFs
p1(X1i) are obtained by taking X1i = {Yi, Ẏi}. Only the PDFs and logarithmic PDFs of Y5 and Ẏ5 are
shown and compared in Figs. 1(a–d). It is seen in the figures that the PDFs and the tails of the PDFs of
Y5 and Ẏ5 obtained with SSS-EPC are close to MCS while the PDFs from EQL method deviate much
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Fig. 1 Comparison of PDFs and logarithmic PDFs in example 1: (a) PDFs of displacement Y5; (b) loga-
rithmic PDFs of displacement Y5; (c) PDFs of velocity Ẏ5; (d) Logarithmic PDFs of velocity Ẏ5.

from simulation, especially in the tail regions which play an important role in dynamic system reliability
analysis. Similar behavior of the PDFs and the tails of the PDFs of other state variables can also be observed
without being presented here.

4.2 10-degree-of-freedom system with multiplicative excitations on displacements

Consider the following 10-degree-of-freedom system with high nonlinearity and both additive and multi-
plicative excitations on displacements:

Ÿ(t) + CẎ(t) + KY + H(Y, Ẏ) = F(Y, t) (29)

This system is same as that in the above example except F(Y, t) = {W1(t) − 0.3Y1W2(t), W1(t) −
0.3Y2W2(t), · · · , W1(t) − 0.3Y10W2(t)}

t in which W1(t) and W2(t) are independent Gaussian white
noises with unit power spectral density.

The stationary PDFs obtained with the SSS-EPC, MCS, and EQL are compared in order to further show
the effectiveness of the SSS-EPC method in analyzing the large-scale NSD systems with both additive
and multiplicative excitations on displacements. Similar to the above example, the PDF solutions are also
obtained by taking X1i = {Yi, Ẏi} in obtaining the PDFs p1(x1i) with the SSS-EPC method. Only the
PDFs and logarithmic PDFs of Y5 and Ẏ5 are shown and compared in Figs. 2(a–d). It is seen from Figs. 2(a–
d) that the PDFs and the tails of the PDFs of Y5 and Ẏ5 obtained from SSS-EPC when the polynomial
order equals 4 in the EPC procedure are still close to MCS. On the other hand, the PDFs from EQL
method deviate much from simulation. Similar behavior of the PDFs and the tails of the PDFs of other
state variables can also be observed without being presented here.
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Fig. 2 Comparison of PDFs and logarithmic PDFs in example 2: (a) PDFs of displacement Y5; (b) loga-
rithmic PDFs of displacement Y5; (c) PDFs of velocity Ẏ5; (d) logarithmic PDFs of velocity Ẏ5.

4.3 8-degree-of-freedom system with multiplicative excitations on velocities

Consider the following 8-degree-of-freedom nonlinear system with additive excitations and multiplicative
excitations on velocities:

Ÿ(t) + CẎ(t) + KY + H(Y, Ẏ) = F(Ẏ, t) (30)

in which Y(t) = {Y1, Y2, · · · , Y8}
t; H(Y, Ẏ) = {Y 3

1 + 0.5Ẏ 3
1 , Y 3

2 + 0.5Ẏ 3
2 , · · · , Y 3

8 + 0.5Ẏ 3
8 }

t;
F(Ẏ, t) = {W1(t) − 0.3Ẏ1W2(t), W1(t) − 0.3Ẏ2W2(t), · · · , W1(t) − 0.3Ẏ8W2(t)}

t; W1(t) and W2(t)
are the white noises with unit power spectral density; and

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.2 −0.1 0.3 0.5 −0.2 0.1 0

0.2 1 0.2 0.3 −0.2 0.1 0.3 0

−0.1 0.2 1 0.2 0.1 0.2 −0.2 0

0.3 0.3 0.2 1 0.2 0.2 0.1 0.3

0.5 −0.2 0.1 0.2 1 0.1 0.3 0.2

−0.2 0.1 0.2 0.2 0.1 1 0.5 −0.3

0.1 0.3 −0.2 0.1 0.3 0.5 1 0.2

0 0 0 0.3 0.2 −0.3 0.2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)
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C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.2 0.4 −0.1 0.3 0.2 0 0

0.2 1 0.2 0.2 0.1 0.2 0 0

0.4 0.2 1 0.1 0.1 0.2 0.2 0

−0.1 0.2 0.1 1 0.1 0.3 −0.2 0.4

0.3 0.1 0.1 0.1 1 0.1 −0.2 0.3

0.2 0.2 0.2 0.3 0.1 1 0.3 0.2

0 0 0.2 −0.2 −0.2 0.3 1 0.1

0 0 0 0.4 0.3 0.2 0.1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)
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ẏ5/σẏ5
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Fig. 3 Comparison of PDFs and logarithmic PDFs in example 3: (a) PDFs of displacement Y5; (b) Loga-
rithmic PDFs of displacement Y5; (c) PDFs of velocity Ẏ5; (d) logarithmic PDFs of velocity Ẏ5.

The stationary PDFs obtained with the SSS-EPC, MCS, and EQL are compared in order to further show
the effectiveness of the SSS-EPC method in analyzing the large-scale NSD systems with both additive and
multiplicative excitations on velocities. With the SSS-EPC method, the PDF solutions are also obtained
by taking X1i = {Yi, Ẏi} in obtaining the PDFs p1(x1i). It is seen from Figs. 3(a–d) that the PDFs and
the tails of the PDFs of Y5 and Ẏ5 obtained from SSS-EPC when the polynomial order equals 4 in the
EPC procedure are also close to MCS in this case, specially in the tails of the PDFs as shown by the
logarithmic PDFs. On the other hand, the PDFs and the tails of the PDFs obtained from EQL deviate much
from simulation. Similar behavior of the PDFs and the tails of the PDFs of other state variables can also be
observed without being presented here.
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4.4 Random vibration of the flexural beam supported by nonlinear springs

Consider a flexural steel beam with pin support at one end and roller support at another, supported by
nonlinear springs, and excited by point loads being white noise. The mechanical model for vibrational
analysis is shown in Fig. 4.

Fig. 4 Dynamic model for the flexural beam supported by nonlinear springs.

The vertical displacement of mass mi is denoted as Yi. The beam length is 5 m, The young’s modulus
is 2.1 × 1011 Pa, The area of the cross section of the beam is 8.61 × 10−3 m2, and the moment inertia
of the cross section is 2.17 × 10−4 m4. The mass density of the beam material is 7850 kg/m2. Then the
governing equations for the vertical displacements can be obtained with flexibility method as follows.

Ÿ(t) + CẎ(t) + KY + H(Y) = F(t) (33)

in which Y(t) ={Y1, Y2, · · · , Y5}
t; H(Y)=3 × 106{Y

1
3, Y2

3, · · · , Y5
3}t; F(t)=1000{1, 1, · · · , 1}tW (t);

W (t) is a white noise with unit power spectral density; and

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

138.07 −132. 5891 .066 −15. 3484 .8711

−132. 19691 .13 −148. 6139 .937 −15.484

58.066 −148. 20039 .00 −148. 5839 .066

−15. 61484 .937 −148. 19639 .13 −132.91

3.8711 −15. 58484 .066 −132. 13891 .07

⎤
⎥⎥⎥⎥⎥⎥⎦
× 105 (34)

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0001 0

0000 1

0010 0

0100 0

1000 0

⎤
⎥⎥⎥⎥⎥⎥⎦
× 103 (35)

This system is analyzed with the above SSS-EPC procedure and Monte Carlo simulation for compar-
ison. Under the action of the excitations, the maximum vertical displacement of the beam is Y3 which is
concerned in system design. The PDF and the logarithmic PDFs of Y3 are shown in Figs. 5(a) and (b),
respectively. It is observed that the PDFs and the tails of the PDFs of Y3 obtained from SSS-EPC when
the polynomial order equals 4 in the EPC procedure are also close to MCS for this system, specially in the
tails of the PDFs as shown by the logarithmic PDFs. On the other hand, the PDFs and the tails of the PDFs
obtained from EQL deviate much from simulation. In practice, the mean up-crossing rate (MCR) of the
system response is frequently used for system reliability analysis. The MCR at Yi = yi is defined as

ν+(yi) =

∫ +∞

0

ẏip(yi, ẏi)dẏi (36)

where p(yi, ẏi) denotes the joint PDF of Yi and Ẏi, and ν+(yi) denotes the MCR at Yi = yi.
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Fig. 5 Comparison of PDFs, logarithmic PDFs, MCRs, and logarithmic MCRs in example 4: (a) PDFs of
displacement Y3; (b) logarithmic PDFs of displacement Y3; (c) MCRs at Y3 = y3; (c) logarithmic MCRs at
Y3 = y3.

The MCRs and the logarithmic MCRs of Y3 are shown and compared in Figs. 5(c) and (d), respectively.
It is still observed that the MCRs and the tails of the MCRs of Y3 obtained from SSS-EPC when the
polynomial order equals 4 in the EPC procedure are close to MCS for this system, specially in the tails of
the MCRs as shown by the logarithmic MCRs, which is important for system reliability analysis. On the
other hand, the MCRs and the tails of the MCRs obtained from EQL deviate much from simulation.

The presented solution procedure and the numerical results presented in the above four examples have
demonstrated that the SSS-EPC method is not limited by the number of the state variables in the systems,
the level of system nonlinearity, and the existence of multiplicative excitations on displacement or veloci-
ties. Because the problem of solving the FP equation in high-dimensional state space becomes the problem
of solving some FP equations in low-dimensional state spaces or even two-dimensional state space, the
required computational effort is very small.

5 Conclusions

A new methodology named state space split is presented in this paper to solve the reduced FP equation in
high-dimensional state space. With this method, the state space of NSD system is split into two subspaces.
The reduced FP equation is integrated in one of the subspaces and the reduced FP equation in another sub-
space is derived which governs the approximate joint PDF of the state variables in the subspace. Therefore,
the problem of solving the reduced FP equation in high-dimensional state space becomes the problem of
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solving some reduced FP equations in low-dimension state spaces. The EPC method can then be employed
to solve the reduced FP equation in the low-dimension state spaces. The whole solution procedure is named
SSS-EPC method. This method is not limited by the number of state variables of the systems. Therefore it
can be employed for analyzing the probabilistic solutions of large-scale NSD systems. Numerical results
have shown that the PDFs and logarithmic PDFs of the systems responses obtained with the SSS-EPC
method are close to Monte Carlo simulation. The tails of the PDFs obtained from the SSS-EPC method
also behave well. This new method is not only suitable for the large-scale NSD systems with slight non-
linearity, but also suitable for the systems with high nonlinearity. The PDF solution of large-scale NSD
system with both additive and multiplicative excitations on either displacements or velocities can also be
analyzed accurately with the SSS-EPC method. It attempts to provide an analytical tool for the accurate
probabilistic solutions of many NSD systems in statistical physics and other areas of science and engineer-
ing. It is also seen that this method only works for the systems which can be analyzed with EQL method
because the result obtained from EQL is needed in the SSS-EPC solution procedure.
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