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A B S T R A C T

As an effective approach of suppressing vibrations, the constrained layer damping (CLD) has drawn wide at-
tention from the automotive and aerospace industries. However, most of the existing investigations focus on the
beam structures with CLD and few studies have been done on the plate structures with CLD. Considering the
practical applications, this work studies the finite element (FE) modeling of plate structures with CLD by con-
sidering the shear and extension strains in all of three layers. To reduce the computational cost and ensure the
accuracy, a simplified single-layer equivalent method is originally proposed to model the plate structure with
CLD based on the equivalent material properties. In this method, the equivalent material properties are obtained
by defining a new equation which includes the equivalent bending stiffness. By nonlinear regression of these
responses at resonance frequencies, the equivalent bending stiffness can be obtained, and the plate structure with
CLD can be regarded as a regular single-layer plate for modeling. The simulation result shows that the proposed
simplified single-layer equivalent method using single-layer equivalent material properties is efficient and ac-
curate for modeling plate structures with CLD.

1. Introduction

In recent decades, the vibration control has been an active topic
with the effective solution of constrained layer damping (CLD) in both
automotive and aerospace industries [1–8]. The CLD structure consists
of three layers. The constraining layer and base layer with the elastic
material sandwich a damping layer which is made up of viscoelastic
material [9–11]. With the relative motion of the constraining layer and
base layer, a deformation of the damping layer is generated to consume
a portion of the strain energy, thus achieving the vibration damping
[12–14]. Considering the complexity and geometry properties of the
material, it is a challenge to model the CLD structure.

Recently, various researches have been done on the study of CLD
structures. Panda et al. [15] studied the performance of the active CLD
for beam structures. Özer [16] conducted the modeling and controlling
of a fully dynamic three-layer cantilever beam with active constrained
layer by using the vibrational approach. Hujare and Sahasrabudhe [17]

investigated the damping performance of different viscoelastic material
for beams experimentally using CLD treatment. Even though these re-
search facilitates the development of CLD structures, existing studies
mainly focus on beam structures, and only few attention has been paid
on the modeling of plate structures. Considering the widespread ap-
plication of plate structures in various fields of engineering, this work
tries to investigate the modeling of plate structures with CLD.

As for the numerical analysis of the structural vibrations, the finite
element modeling is a good method which has been extensively and
efficiently applied to investigate the vibrational behavior of structures
including the viscoelastic material [1,10,18,19]. When modeling this
plate structure using finite element method, the plate is meshed into
many finite elements. Meanwhile, the degrees of freedom should be
well defined with fully consideration of the shear, compression and
extensional damping. With three layers, the FE modeling of plate
structures with CLD is very complicated due to the involved over-
whelming degrees of freedom, especially for the plate structure with a
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quite thin damping layer. As a result, the FE modeling of plate struc-
tures with CLD cannot be well applied in engineering design. However,
the precise results might not be obtained when reducing the degrees of
freedom and meshed elements. To solve this problem, a simplified
method should be developed to reduce the computational cost and
ensure high accuracy. In Ref. [20], a simplified FE modeling for beam
structures with CLD is presented by using single-layer equivalent finite
element method. The equivalent material properties are calculated and
then a regular beam is constructed. Considering the simplicity and ac-
curacy, this work also attempts to develop a simplified equivalent
single-layer modeling for plate structures with CLD using single-layer
equivalent material properties.

In this research, a simplified single-layer equivalent method is
proposed to model the plate structure with CLD based on the equivalent
material properties for achieving low computational cost and high ac-
curacy. The rest of this paper is organized as follows. Section 2 presents
the FE modeling for the plate structure with CLD. Subsequently, the
simplified single-layer equivalent model of the plate structure with CLD
is described in Section 3. Finally, conclusions are given in Section 4.

2. Finite element modeling of plate structures with CLD

This section presents the FE modeling of the plate structure with
CLD. First, some assumptions are made, and then the modeling process
is presented. Finally, the model developed is evaluated by simulation
results.

2.1. Assumptions

Before introducing the finite element modeling for plate structures
with CLD, the following assumptions are made [21–24]:

(1) The transverse displacement of each layer is identical at the same
position;

(2) The longitudinal displacement caused by the shear or extension
strain is linearly distributed across the thickness of each layer;

(3) The slip does not occur among the layers.

2.2. Finite element modeling process

The plate structure is shown in Fig. 1. Layer 1, layer 2 and layer 3
are the constraining layer, damping layer and base layer, respectively.
The transverse displacement is along with the z-axis, while the long-
itudinal displacements caused by the shear and extension strain are
along with the x-axis and y-axis, respectively.

When modeling this plate structure using finite element method, the
plate is meshed into many finite elements first. When meshing these

finite elements, nx and ny nodes are used in the directions of the x-axis
and y-axis, respectively. As a result, n n( 1) ( 1)x y− × − finite elements
can be obtained for the plate structure with CLD. One finite element in
the plate structure with CLD is shown in Fig. 2 based on the Zapfe's
element in dealing with the beam structure [25]. In this plate finite
element, both the shear strain and extension strain are considered with
a high accuracy. To fully characterize the shear strain and extension
strain and clearly represent the transverse displacement at each loca-
tion of the plate, 25 degrees of freedom (DOFs) are defined for the plate
finite element with one layer. Since there are three layers, the plate
finite element with CLD has 41 DOFs. The DOF vectors can be expressed
in the following equations [26,27],
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where uji and uj i( 1)+ are the longitudinal displacements at the jth point
( j m k p q, , ,= ) of the ith layer along with the x-axis; vji and vj i( 1)+ are
the longitudinal displacements at the jth point of the ith layer along
with the y-axis; and wn is the transverse displacement at the nth point
(n m k p q, , , , 1,2,3,4,5= ). Based on the above definition of DOFs, the
DOF in the plate structure can be expressed as,

n n n n n n9 (3 2)( 1) 1.DOF x y x y x= + − − + − (2)

Given displacement field, the elastic strain energy and kinetic en-
ergy of the ith layer in the plate can be represented as [28–35],
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where Hi is the thickness of the ith layer; and Gi are the Young's mod-
ulus and shear modulus of the ith layer, respectively; Ii stands for the
second moment of area of the plate cross section; and ρi is the density of
the ith layer.

For the ith layer of the plate finite element, the proposed displace-
ment field can be organized as [30,36–39],
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where RB 3 5∈ × and RF 5 25∈ × are shape function matrices. The ma-
trices B and F can be represented as,
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(6)Fig. 1. Plate structure with CLD.
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where B B1= for the constraining layer; B B2= for the damping layer;
B B3= for the base layer; z is the transverse coordinate; ni and bi are
shape functions; n y l xy l l/ /i y x y= − , n xy l l/ x y2 = , n3 =

x l y l xy l l1 / / /x y x y− − + , n x l xy l l/ /x x y4 = − ; x and y are the longitudinal
coordinates; lx and ly are the length and width of each plate finite
element, respectively; b l lx y1 1 3= , b l lx y2 2 3= , b l lx y3 3 3= , b l lx y4 1 2= ,
b l lx y5 2 2= , b l lx y6 3 2= , b l lx y7 1 1= , b l lx y8 2 1= , b l lx y9 3 1= ,
l x l x l l2( /2)( )x x x x1

2= − − , l x x l l4 ( )x x x2
2= − − , l x x l l2 ( /2)x x x3

2= − ,
l y l y l l2( /2)( )y y y y1

2= − − , l y y l l4 ( )y y y2
2= − − , l y y l l2 ( /2)y y y3

2= −
By substituting Eq. (5) into the elastic strain energy and kinetic

energy, the stiffness matrix RKK KK( )i i
25 25∈ × and mass matrix

RMM MM( )i i
25 25∈ × of the ith layer of the plate finite element can be

obtained under certain boundary conditions. Then the stiffness matrix
RKK KK( )41 41∈ × and mass matrix RMM MM( )41 41∈ × of the plate fi-

nite element can be calculated by Refs. [40–43],
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where Ti are the matrix with values of 0 and 1, RTi
25 41∈ × .

According to the Lagrange formula, the response under a given force
vector can be obtained by setting the stiffness matrix and mass matrix
[44],

ω
MX KX F

X F K M
¨

[ ]2 1
+ =

= − − (11)

where the response matrix RX n 1DOF∈ × is the DOF vector of the plate
with meshed finite elements, which can be obtained by combining the
matrix U in each plate finite element; the stiffness matrix

RK n nDOF DOF∈ × and mass matrix RM n nDOF DOF∈ × can also be set by

integrating the stiffness matrix KK and mass matrix MM of each finite
element in the plate structure; RF n nDOF DOF∈ × stands for the given force
vector; and ω means the inherent frequency of the plate structure.

2.3. Simulation

Based on the proposed FE modeling of the plate structure with CLD,
the response characteristics can be obtained by conducting a practical
case. The plate is simply supported at two opposite edges. As a result,
the transverse displacements at two opposite edges are all zero. The
simulation parameters are given in Table 1. A unit force along with the
z-axis is excited at the center of the plate structure and three mea-
surement points are selected to calculate their transverse displace-
ments, as shown in Fig. 3 with meshed finite elements. For the plate
structure, 9 nodes are used for both longitudinal directions to divide the
plate into 64 blocks. For Point 1, its coordinate is (0.2, 0.2). The co-
ordinates are (0.2, 0.3) and (0.2, 0.4) for Points 2 and 3, respectively.
Moreover, the response at the excitation point is also calculated. Fi-
nally, the result of response is shown in Fig. 4. The result shows that

there are always resonances at about 21 Hz, 136 Hz, and 466 Hz. This is
caused by the inherent frequency of the plate structure.

3. Simplified single-layer equivalent modeling for plate structures
with CLD

This section presents the application of the simplified single-layer
equivalent method to model the plate structure with CLD. First, the
simplified single-layer equivalent equation involved in the equivalent
material properties is defined. Then the equivalent bending stiffness is
derived by using nonlinear regression. Based on the equivalent material

Fig. 2. Proposed plate finite element with analysis of
DOF.

Table 1
Simulation parameters.

Layer 1 Layer 2 Layer 3

Density (kg m 3⋅ − ) 2700 1100 2700

Young's modulu (MPa) 6.85×104 4.288×103 6.65×104

Shear modulu (MPa) 2.556×104 1.6 2.556×104

Thickness (mm) 1 1 1

Fig. 3. Plate structure with meshed finite elements.
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properties, a simplified single-layer equivalent model is developed.

3.1. Simplified single-layer equivalent equation

A new equation is defined to calculate the transverse displacement
of the plate structure with CLD to reduce the complexity of modeling.
The transverse displacement at the measurement point (x, y) can be
expressed as [45–50],
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where Pc is the point load; llx and lly are the length and width of the
plate structure with CLD; a b( , ) represents the location of the loading; D
is the flexural rigidity and is defined by,

D Eh
ν
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12(1 ) 12

3

2

3
=
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=
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where h stands for the thickness of the plate structure with CLD; v and E
represent the equivalent Poisson's ratio and the equivalent Young's
modulus of the plate structure with CLD; and A is the equivalent

bending stiffness to be found.
In Eq. (12), the superposition of sine function is from m=1 and

n=1 to infinity, which makes the calculation complex. Therefore, the
upper limits of the superposition are set as 1000 in this work.

3.2. Identification of equivalent bending stiffness

As described in Section 2, there are always resonances at some
certain frequencies (such as 21 Hz, 136 Hz and 466 Hz in the above
simulation). An equivalent bending stiffness is defined in Eq. (13). The
equivalent bending stiffness includes the equivalent Poisson's ratio and
the equivalent Young's modulus. At three resonance points, the trans-
verse displacements obtained from the proposed FE modeling of the
plate structure with CLD can be used to calculate the equivalent
bending stiffness via Eq. (12). Then the obtained three values of
equivalent bending stiffness can be fitted and connected by using a
curve, leading to an equivalent frequency-dependent bending stiffness
as shown in Fig. 5. It can be found that the equivalent frequency-de-
pendent bending stiffness almost keeps constant during the middle
frequency.

Besides, it should be noted that the equivalent bending stiffness is
not a constant value. It varies along with the frequency.

Fig. 4. Responses under finite element modeling of plate structure with CLD.

Fig. 5. New approach on calculating equivalent bending stiffness.

J. Zhao et al. Composites Part B 157 (2019) 283–288

286



3.3. Simulation results and discussion

Once the equivalent bending stiffness is obtained, the plate structure
with CLD can be simplified to a single-layer plate. As a result, a sim-
plified single-layer equivalent modeling can be conducted by using the
equivalent material properties, rather than the complex finite element
modeling. The same equations for the plate structure with CLD can be
used to model simplified single-layer plate with less DOFs, simple
structure and low computational cost. Specifically, the DOF decreases
from 41 to 25. Based on the plate finite element with 25 DOFs and
equivalent bending stiffness, the simplified finite element modeling for
plates with CLD can be conducted by using the corresponding stiffness
matrix and mass matrix in one layer.

To illustrate the accuracy of the simplified single-layer equivalent
model in dealing with the plate structures with CLD, a simulation is
carried out for the same plate used in Section 2. The responses under
simplified single-layer equivalent model and finite element model are
shown in Fig. 6. From these results, it can be found that they have the
same resonance frequencies at each node. Furthermore, the responses
are almost consistent at the same frequency. In addition, the errors of
the responses between the proposed method and the finite element
method are different. Specifically, the maximum error appears at the
location of the excitation point b0, while the minimum error appears at
the location of the measurement point b1. This reflects that a higher
accuracy for responses exists at the location far away from the excita-
tion point when the plate structure with CLD is modelled by the pro-
posed method. Therefore, the proposed simplified single layer equiva-
lent method is efficient and accurate for modeling the plate structures
with CLD.

In summary, the simplified single-layer equivalent method provides
an efficient and fast approach for modeling the complex plate structures
with CLD.

4. Conclusions

This paper proposes a new simplified single-layer equivalent
method to model the plate structure with CLD based on equivalent
material properties. First, the finite element modeling of the plate
structure with CLD is carried out, which provides a reference for the
proposed method. Then a new equation is defined to derive the
equivalent bending stiffness. With the equivalent bending stiffness, a
simplified single-layer is constructed to simplify the finite element
modeling. The numerical simulation shows that the proposed simplified
single-layer equivalent method using single-layer equivalent material
properties is efficient and accurate. In addition, the proposed method
can give guidance in the model development stage for the active vi-
bration control of high-performance lightweight smart structures, such
as wind turbine, helicopter and aircraft structures and so on. In the
future, the plates with different boundary conditions and loading modes
should be studies. Besides, experiments can be carried out to verify the
proposed finite element modeling method and simplified single-layer
equivalent method for plate structures with CLD.
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