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ABSTRACT
Multimodal sentiment analysis has been studied under the assump-
tion that all modalities are available. However, such a strong as-
sumption does not always hold in practice, and most of multimodal
fusion models may fail when partial modalities are missing. Several
works have addressed the missing modality problem; but most of
them only considered the single modality missing case, and ignored
the practically more general cases of multiple modalities missing. To
this end, in this paper, we propose a Tag-Assisted Transformer En-
coder (TATE) network to handle the problem of missing uncertain
modalities. Specifically, we design a tag encoding module to cover
both the single modality and multiple modalities missing cases, so
as to guide the network’s attention to those missing modalities.
Besides, we adopt a new space projection pattern to align common
vectors. Then, a Transformer encoder-decoder network is utilized
to learn the missing modality features. At last, the outputs of the
Transformer encoder are used for the final sentiment classification.
Extensive experiments are conducted on CMU-MOSI and IEMO-
CAP datasets, showing that our method can achieve significant
improvements compared with several baselines.
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Modality Content Reasons

Visual Facial block
Non-coverage of camera

Acoustic
Low voice

Ambient noise

Textual The action is really really well directed. Text missing
Privacy issue

Figure 1: Examples of missing modalities.

1 INTRODUCTION
Nowadays, sentiment analysis has attracted intensive interest in
extracting human’s emotion and opinion [36, 47], among which
multimodal sentiment analysis is becoming an especially popular
research direction with the massive amounts of online content.
Besides, it has been shown that combining different modalities
can learn complementary features, resulting in better joint multi-
modal representations [30, 31]. Most prior works on multimodal
fusion [6, 38, 39] assumed that all modalities are always available
when training and testing. However, in real life, we often encounter
scenarios that partial modalities could be missing. For example, as
shown in Fig. 1, the visual features may be blocked due to the non-
coverage of camera; the acoustic information may be unavailable
due to the enormous ambient noise; and the textual information
may be absent due to the privacy issue. Therefore, how to handle
missing modalities is emerging as a hot topic in the multimodal
area.

Previous works [23, 25, 29] simply discarded missing modalities
or utilized matrix completion methods to impute missing modali-
ties, and somewhat degraded overall performance. Zhao et al. [29]
completed the kernel matrices of the modality using the common
instances in different modalities. In [25], the visual modality was
ablated when training with missing data. Owing to the strong learn-
ing ability of deep learning, recent works have employed neural
networks to learn latent relationships among available modalities.
To tackle the missing modality problem, Tran et al. [33] first identi-
fied the general problem of missing modality in multimodal data,
and proposed a Cascaded Residual Auto-encoder (CRA) network
to learn complex relationship from different modalities. More re-
cently, Zhao et al. [49] adopted cycle consistency learning with
CRA to recover missing modalities. Yuan et al. [44] designed a
Transformer-based feature reconstruction network to guide the
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extractor in obtaining the semantics of missing modality features.
However, most of the above works all assumed that there is only
one missing modality, and ignored the practically more general
cases of multiple modalities missing. That is, they require train-
ing a new model to fit each missing modality case, which is both
costly and inconvenient. In reality, the pattern of missing modalities
could be uncertain, e.g., one or two modalities are randomly absent.
To tackle the above issues, two challenges should be addressed:
1) will the model still work when multiple modalities are absent?
and 2) how to learn robust joint representations when the missing
modalities are uncertain?

In this paper, we propose a Tag-Assisted Transformer Encoder
(TATE) network to learn complementary features amongmodalities.
For the first challenge, we design a tag encoding module to mark
missing modalities, aiming to direct the network’s attention to
absent modalities. As will be shown later, the attached tag not only
can cover both the single modality and multiple modalities absent
situations, but also can assist in joint representation learning. For
the second challenge, we first adopt the Transformer [34] as the
extractor to capture intra-modal features, and then apply a two-by-
two projection pattern to map them into a common space. After
that, the pre-trained network trained with full modalities is utilized
to supervise the encoded vectors. At last, the outputs generated
by a Transformer encoder are fed into a classifier for sentiment
prediction. Our contributions are summarized as follows:

• We propose the TATE network to handle the multiple modali-
ties missing problem for multimodal sentiment analysis. The
code is publicly available1.

• We design a tag encoding module to cover both the sin-
gle modality and multiple modalities absent situations, and
adopt a new common space projection module to learn joint
representations.

• Our proposed model TATE achieves significant improve-
ments compared with several benchmarks on CMU-MOSI
and IEMOCAP datasets, validating the superiority of our
model.

2 RELATEDWORKS
In this section, we first introduce the concept of multimodal sen-
timent analysis, and then review the related methods of handing
missing modalities.

2.1 Multimodal Sentiment Analysis
As a core branch of sentiment analysis [11, 50], multimodal senti-
ment analysis has attracted significant attention in recent years [21,
27, 32, 41]. Compared to a single modality case, multimodal senti-
ment analysis is more challenging due to the complexity of handling
and analyzing data from different modalities.

To learn joint representations of multimodal, three multimodal
fusion strategies are applied: 1) early fusion directly combines fea-
tures of different modalities before the classification. Majumder
et al. [22] proposed a hierarchical fusion strategy to fuse acoustic,
visual and textual modalities, and proved the effectiveness of two-
by-two fusion pattern; 2) late fusion adopts the average score of
each modality as the final weights. Guo et al. [13] adopted an online
1https://github.com/JaydenZeng/TATE

early-late fusion scheme to explore complementary relationship for
the sign language recognition, where late fusion further aggregated
features combined by the early fusion; and 3) intermediate fusion
utilizes a shared layer to fuse features. Xu et al. [40] constructed the
decomposition and relation networks to represent the commonality
and discrepancy among modalities. Hazarika et al. [14] designed a
multimodal learning framework that can learn modality-invariant
and modality-specific representations by projecting each modality
into two distinct sub-spaces. However, few of the above multimodal
fusion models can handle the cases when partial modalities are
missing.

2.2 Missing Modalities Methods
In recent years, many works focused on handing the missing modal-
ity problem, and they can be generally categorized into two groups:
1) generative methods [2, 10, 28, 33, 48]; and 2) joint learning meth-
ods [26, 37, 44, 49].

Generative methods learn to generate new data with similar
distributions to obey the distribution of the observed data. With the
ability to learn latent representations, the auto-encoder (AE) [2] is
widely used. Vincent et al. [35] extracted features with AE based
on the idea of making the learned representations robust to par-
tial corruption of the input data. Kingma et al. [18] designed a
Variational Auto-Encoder (VAE) to infer and learn features with
simple ancestral sampling. Besides, inspired by the residual connec-
tion network [15], Tran et al. [33] proposed a Cascaded Residual
Auto-encoder (CRA) to impute data with missing modality, which
combined a series of residual AEs into a cascaded architecture to
learn relationships among different modalities. As for the Gener-
ative Adversarial Networks (GAN) [12], Shang et al. [28] treated
each view as a separate domain, and identified domain-to-domain
mappings via a GAN using randomly-sampled data from each view.
Besides, the domain mapping technique is also considered to im-
pute missing data. Cai et al. [5] formulated the missing modality
problem as a conditional image generation task, and designed a 3D
encoder-decoder network to capture modality relations. They also
incorporated the available category information during training
to enhance the robustness of the model. Moreover, Zhao et al. [48]
developed a cross partial multi-view network to model complex
correlations among different views, where multiple discriminators
are used to generate missing data.

Joint learning methods try to learn joint representations based
on the relations among different modalities [1, 16, 26]. Based on the
idea that the cycle consistency loss can retain maximal information
from all modalities, Pham et al. [26] investigated learning robust
representations via cyclic translations from source to target modal-
ities. Zhao et al. [49] also applied cycle consistency learning for
missing modality imputation, where the CRA-based cross-modality
imagination module is designed based on paired multimodal data.
More recently, Yuan et al. [44] utilized the Transformer to extract
intra-modal and inter-modal relations, and designed a Transformer-
based feature reconstruction network to reproduce the semantics
of missing modality.

However, most of the above works can only handle the scenarios
of missing a single modality, and cannot satisfactorily deal with
multiple modalities missing cases since they need to train a new
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Figure 2:Workflow of the proposed framework. The information flow goes two branches: 1) one goes the pre-trained network,
which is trained with full modality data; and 2) another goes to the left multihead attetion module for further encoding.

model for each case. As will be clear soon, our works differs the
above works in several ways: 1) a tag encoding module is designed
to cover all uncertain missing cases; and 2) a new mapping method
is applied to learn joint representations in the common space pro-
jection module.

3 METHODOLOGY
In this section, we first give the problem definition and associated
notations. Then, we present the overall workflow of the proposed
architecture and the detailed modules.

3.1 Problem Definition and Notations
Given a multimodal video segment that contains three modalities:
𝑆 = [𝑋𝑣, 𝑋𝑎, 𝑋𝑡 ], where 𝑋𝑣 , 𝑋𝑎 and 𝑋𝑡 denote visual, acoustic and
textual modalities respectively. Without loss of generality, we use
𝑋 ′
𝑚 to represent the missing modality, where 𝑚 ∈ {𝑣, 𝑎, 𝑡}. For

instance, assuming that the visual modality and acoustic modality
are absent, and the multimodal representation can be denoted as
[𝑋 ′
𝑣, 𝑋

′
𝑎, 𝑋𝑡 ]. The primary task is to classify the overall sentiment

(positive, neutral, or negative) under uncertain missing modalities.

3.2 Overall Framework
As can be seen in Fig. 2, the main workflow is as follows: for a
given video segment, assuming that the visual modality and acous-
tic modality are missing, we first mask these missing modalities
as 0, and then extract the remaining raw features. Afterwards, the
masked multimodal representation goes through two branches:
1) one is encoded by a pre-trained model, which is trained with
all full modality data, and 2) another goes through the tag encod-
ing module and the common space projection module to acquire

aligned feature vectors. Then, the updated representations are pro-
cessed by a Transformer encoder, and we calculate the forward
similarity loss between the pre-trained vectors and the encoder
outputs. Meanwhile, the encoded outputs are fed into a classifier
for the sentiment prediction. At last, we compute the backward
reconstruction loss and the tag recovery loss to supervise the joint
representation learning. Each module will be introduced clearly in
following sub-sections.

3.3 Multi-Head Attention
Transformer [34] not only plays a great role in the Natural Language
Processing (NLP) community, but also shows excellent representa-
tional capabilities in other areas, such as Computer Vision (CV) [7].
Instead of using an RNN based structure to capture the sequential
information, we employ the Transformer to generate the contex-
tual representation of each modality respectively, where the key
component of multi-head dot-product attention can be formalized
as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑

)𝑉 , (1)

where𝑄 , 𝐾 and𝑉 are the query, the key, and the value respectively,
and 𝑑 is the dimension of the input.

Instead of utilizing the single attention, the multi-head atten-
tion is applied to obtain more information from different semantic
spaces:

𝐸𝑀 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉 )
= 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ..., ℎ𝑒𝑎𝑑ℎ)𝑊 𝑜 ,

(2)
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Figure 3: Examples of modality tags. (a) modality tag with
one missing modality. (b) modality tag with two missing
modalities.

where𝑊 𝑜 ∈ R𝑑×𝑑 is a weight matrix, ℎ is the head number. Given
the input 𝐸, the 𝑖-th ℎ𝑒𝑎𝑑𝑖 is calculated as follow:

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐸𝑊𝑄

𝑖
, 𝐸𝑊𝐾

𝑖 , 𝐸𝑊
𝑉
𝑖 ) (3)

where𝑊𝑄

𝑖
∈ R

𝑑
ℎ
×𝑑

ℎ ,𝑊𝐾
𝑖

∈ R
𝑑
ℎ
×𝑑

ℎ and𝑊𝑉
𝑖

∈ R
𝑑
ℎ
×𝑑

ℎ are the 𝑖-th
weight matrices of the query, the key and the value.

Therefore, the updated modality representations can be formu-
lated as follows:

𝐸𝑣 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑋 ′
𝑣, 𝑋

′
𝑣, 𝑋

′
𝑣),

𝐸𝑎 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑋 ′
𝑎, 𝑋

′
𝑎, 𝑋

′
𝑎),

𝐸𝑡 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑋𝑡 , 𝑋𝑡 , 𝑋𝑡 ) .
(4)

3.4 Tag Encoding
To specify uncertain missing modalities, we employ a tag encod-
ing module to mark them, and direct network’s attention to these
disabled modalities. In our settings, we adopt 4 digits (“0” or “1”)
to label missing modalities. If partial modalities of the input are
missing, we set the first digit as “0”, otherwise “1”. Besides, the
last three digits are used to mark the corresponding visual, acous-
tic and textual modalities. As can be seen in Fig. 3, we give two
examples about modality tags: in Fig. 3a, the acoustic modality is
missing, and the tag is set as “0010"; for multiple modalities missing
cases (Fig. 3b), we set the tag as “0110" to mark visual and acoustic
modalities. The benefits are twofold: 1) the tag encoding module
can cover both single and multiple modalities missing conditions;
and 2) the encoded tags can complementarily assist in the learning
of the joint representations. To simplify mathematical expression,
we denote all tags as 𝐸𝑡𝑎𝑔 .

3.5 Common Space Projection
After the tag encodingmodule, we now project three modalities into
the common space. Previous works [14, 40] that directly utilized
simple feed-forward neural layers with same parameters for the
projection, which may be failed when there are more than two
modalities. To tackle the issue, we adopt a two-by-two projection
pattern to acquire a more general space. As shown in Fig. 4, for
each single modality, we first obtain the self-related common space

Concatenation

𝑬𝒕
𝑬𝒂

𝑬𝒗

Figure 4: Illustration of the common space projection.

based on the following linear transformation:

𝐶𝑣 = [𝑊𝑣𝑎𝐸𝑣 | |𝑊𝑣𝑡𝐸𝑣],
𝐶𝑎 = [𝑊𝑣𝑎𝐸𝑎 | |𝑊𝑡𝑎𝐸𝑎],
𝐶𝑡 = [𝑊𝑣𝑡𝐸𝑡 | |𝑊𝑡𝑎𝐸𝑡 ],

(5)

where𝑊𝑣𝑎 ,𝑊𝑣𝑡 and𝑊𝑡𝑎 are all weight matrices, and | | denotes the
vertical concatenating operation. Then, we concatenate all common
vectors and the encoded tag to eventually obtain the common joint
representations 𝐸𝑎𝑙𝑙 :

𝐸𝑎𝑙𝑙 = [𝐶𝑣 | |𝐶𝑎 | |𝐶𝑡 | |𝐸𝑡𝑎𝑔] . (6)

3.6 Transformer Encoder-Decoder
To effectively model the long-term dependency of the intra-modal
and the inter-modal information, we employ one sub-layer in Trans-
former [34] to manage the information flow. As illustrated in Sec-
tion 3.3, the encoded outputs 𝐸𝑜𝑢𝑡 can be accessed by themulti-head
attention and feed-forward networks:

𝐸𝑜𝑢𝑡 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝐸𝑎𝑙𝑙 , 𝐸𝑎𝑙𝑙 , 𝐸𝑎𝑙𝑙 ),
𝐸𝑜𝑢𝑡 = 𝑟𝑒𝑙𝑢 (𝐸𝑜𝑢𝑡𝑊 1

𝑒 + 𝑏1𝑒 )𝑊 2
𝑒 + 𝑏2𝑒 ,

(7)

where the query, the key, and the value are the same input 𝐸𝑎𝑙𝑙 ,
𝑊 1
𝑒 , and𝑊 2

𝑒 are two weight matrices, 𝑏1𝑒 and 𝑏2𝑒 are two learnable
biases.

Similarly, the decoded outputs 𝐷𝑜𝑢𝑡 are formulated as follows:

𝐷𝑜𝑢𝑡 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝐸𝑜𝑢𝑡 , 𝐸𝑜𝑢𝑡 , 𝐸𝑜𝑢𝑡 ),
𝐷𝑜𝑢𝑡 = 𝑟𝑒𝑙𝑢 (𝐷𝑜𝑢𝑡𝑊 1

𝑜 + 𝑏1𝑜 )𝑊 2
𝑜 + 𝑏2𝑜 ,

(8)

where𝑊 1
𝑜 ,𝑊 2

𝑜 , 𝑏1𝑜 , and 𝑏2𝑜 are parameters.

3.7 Training Objective
The overall training objective (L𝑡𝑜𝑡𝑎𝑙 ) is expressed as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑐𝑙𝑠 + 𝜆1L𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 + 𝜆2L𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 + 𝜆3L𝑡𝑎𝑔, (9)

where L𝑐𝑙𝑠 is the classification loss, L𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 is the forward dif-
ferential loss, L𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 is the backward reconstruction loss, L𝑡𝑎𝑔
is the tag recovery loss, and 𝜆1, 𝜆2 and 𝜆3 are the corresponding
weights. We now introduce the loss terms in details.



3.7.1 Forward Differential Loss (L𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 ). As illustrated in Fig. 2,
the forward loss is calculated by the difference between the pre-
trained output (𝐸𝑝𝑟𝑒 ) and the Transformer encoder output (𝐸𝑜𝑢𝑡 ).
Simiar to [49], the pre-trained model is trained with full modality
data, where features from three modalities are directly concatenated
for classification. Thus, we employ the differential loss to guide the
learning process for missing modalities. Specifically, the Kullback
Leibler (KL) divergence loss is used:

𝐷𝐾𝐿 (𝑝 | |𝑞) =
𝑁∑︁
𝑖=1

𝑝 (𝑥𝑖 ) ·
𝑝 (𝑥𝑖 )
𝑞(𝑥𝑖 )

, (10)

where 𝑝 and𝑞 are two probability distributions. Since KL divergence
is asymmetric, we adopt the Jensen-Shannon (JS) divergence loss
instead:

L𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 = 𝐽𝑆 (𝐸𝑜𝑢𝑡 | |𝐸𝑝𝑟𝑒 )

=
1

2
(𝐷𝐾𝐿 (𝐸𝑜𝑢𝑡 | |𝐸𝑝𝑟𝑒 ) + 𝐷𝐾𝐿 (𝐸𝑝𝑟𝑒 | |𝐸𝑜𝑢𝑡 )) .

(11)

3.7.2 Backward Reconstruction Loss (L𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 ). For the back-
ward loss, we aim to supervise the joint common vector reconstruc-
tion. Therefore, similar to the forward differential loss, we calculate
the JS divergence loss between the Transformer decoder output
(𝐷𝑜𝑢𝑡 ) and the updated common joint representations (𝐸𝑎𝑙𝑙 ):

L𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝐽𝑆 (𝐷𝑜𝑢𝑡 | |𝐸𝑎𝑙𝑙 )

=
1

2
(𝐷𝐾𝐿 (𝐷𝑜𝑢𝑡 | |𝐸𝑎𝑙𝑙 ) + 𝐷𝐾𝐿 (𝐸𝑎𝑙𝑙 | |𝐷𝑜𝑢𝑡 )).

(12)

3.7.3 Tag Recovery Loss (L𝑡𝑎𝑔). In our settings, the tag is attached
to mark missing modalities, and we expect our network can pay
more attention to them. To better guide the reconstruction of the
attached tag, we design a tag recovery loss to direct the process.
The reason why we choose the Mean Absolute Error(MAE) loss is
that MAE is less sensitive to outliers with the absolute function.
Thus, MAE is adopted to calculate the loss between 𝐸𝑡𝑎𝑔 and the
last four digits of 𝐷𝑜𝑢𝑡 :

L𝑡𝑎𝑔 =
1

𝑁

𝑁∑︁
𝑖=1

|𝐸𝑖𝑡𝑎𝑔 − 𝐷𝑖𝑡𝑎𝑔 |,

𝐷𝑡𝑎𝑔 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐷𝑜𝑢𝑡 [−4 :]).
(13)

3.7.4 Classification Loss (L𝑐𝑙𝑠 ). For the final classification module,
we feed 𝐸𝑜𝑢𝑡 into a fully connected network with the softmax
activation function:

𝑃𝑐 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑐𝐸𝑜𝑢𝑡 + 𝑏𝑐 ), (14)

where𝑊𝑐 and 𝑏𝑐 are the learned weights and bias. In detail, we
employ the standard cross-entropy loss for this task, that is:

L𝑐𝑙𝑠 = − 1

𝑁

𝑁∑︁
𝑛=1

𝑦𝑛𝑙𝑜𝑔𝑦𝑛, (15)

where 𝑁 is the number of samples, 𝑦𝑛 is the true label of the 𝑛-th
sample, and 𝑦𝑛 is the predicted label.

4 EXPERIMENTS

All experiments are carried out on a Linux server (Ubuntu 18.04.1)
with a Intel(R) Xeon(R) Gold 5120 CPU, 8 Nvidia 2080TI GPUs and

Table 1: Detailed parameter settings in all experiments.

Description Symbol Value
Batch size 𝑏 32
Epoch number 𝑒 20
Dropout rate 𝑝 0.3
Hidden size 𝑑 300
Missing rate 𝜂 [0, 0.5]
Learning rate 𝑙𝑟 0.001
Maximum textual length 𝑛𝑡 25
Maximum visual length 𝑛𝑣 100
Maximum acoustic length 𝑛𝑎 150
Loss weights 𝜆1, 𝜆2, 𝜆3 0.1

128G RAM. Datasets and experimental settings are described as
follows:

Datasets: We conduct several experiments on CMU-MOSI [45]
and IEMOCAP [4] datasets. Both datasets are multimodal bench-
marks for sentiment recognition, including visual, textual, and
acoustic modalities. For the CMU-MOSI dataset, it contains 2199
segments from 93 opinion videos on YouTube. The label of each
sample is annotated with a sentiment score in [-3, 3]. Following Yu
et al. [43], we transform the score into negative, neutral and positive
labels. For the IEMOCAP dataset, it contains 5 sessions, and each
session contains about 30 videos, where each video contains at least
24 utterances. The annotated labels are: neutral, frustration, anger,
sad, happy, excited, surprise, fear, disappointing, and other. Specifi-
cally, we report three-classes (negative: [-3,0), neutral:[0], positive:
(0,3]) results on CMU-MOSI, and two-classes (negative:[frustration,
angry, sad, fear, disappointing], positive:[happy, excited]) on IEMO-
CAP.

Parameters: Following standard methods, we tune our model
using five-fold validation and grid-searching on the training set. The
learning rate 𝑙𝑟 is selected from {0.1, 0.001, 0.0005, 0.0001}, the
batch size 𝑏 ∈ {32, 64, 128}, and the hidden size 𝑑 ∈ {64, 128, 300,
768}. Adam [17] is adopted to minimize the total loss given in
Eq. (9). The epoch number is 20, the batch size is 32, the loss weight
is set to 0.1, and the parameters are summarized in Table 1.

Evaluation Metric:𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and𝑀𝑎𝑐𝑟𝑜 − 𝐹1 are used to mea-
sure the performance of the models, which are defined as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑡𝑟𝑢𝑒

𝑁
,

𝐹1 =
2𝑃𝑅

𝑃 + 𝑅 ,
(16)

where 𝑇𝑡𝑟𝑢𝑒 is the number of correctly predicted samples, 𝑁 is the
total number of samples, 𝑃 is the positive predictive value, and 𝑅 is
the recall value.

4.1 Feature Extraction
Visual Representations: The CMU-MOSI [45] and IEMOCAP [4]
datasets mainly consist of human conversations, where visual fea-
tures are mainly composed of human faces. Following [42, 46],
we also adopt OpenFace2.0 toolkit [3] to extract facial features.



Table 2: Results of all baselines of missing a single modality, where the best results are in bold.

Datasets Models 0 0.1 0.2 0.3 0.4 0.5
M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC

CMU-MOSI

AE 56.78 79.69 54.07 79.17 53.40 78.13 51.28 72.53 50.75 73.48 44.99 69.32
CRA 56.85 79.73 54.37 79.38 53.57 78.24 51.67 72.84 51.02 73.79 45.38 69.45
MCTN 57.32 79.75 55.48 79.87 53.99 77.49 52.31 71.59 51.64 73.81 45.76 68.11
TransM 57.84 80.21 57.53 79.69 55.21 78.42 52.87 72.92 52.49 72.40 45.86 68.23
MMIN 60.41 82.29 57.75 81.86 55.38 80.20 53.65 79.24 52.55 76.33 48.95 70.76
Ours 58.32 84.90 58.21 84.46 55.46 81.25 55.11 80.73 54.11 80.21 51.71 74.04

IEMOCAP

AE 76.15 82.09 75.24 80.26 75.02 78.01 73.92 77.43 70.19 76.01 67.27 76.43
CRA 77.05 82.13 75.95 80.97 75.13 78.09 74.02 78.11 70.69 76.12 67.75 76.49
MCTN 78.57 82.27 77.74 81.02 75.37 78.27 74.69 78.52 71.75 76.29 68.17 76.63
TransM 79.57 82.64 78.03 81.86 76.33 80.43 75.83 78.64 72.01 77.27 68.57 76.65
MMIN 80.83 83.43 78.85 82.58 77.09 81.27 76.63 80.43 72.81 78.43 70.58 77.45
Ours 81.15 85.39 79.99 85.09 79.10 84.07 78.45 83.25 76.74 82.75 74.43 82.43

Table 3: Results of all baselines of missing multiple modalities, where the best results are in bold.

Datasets Models 0 0.1 0.2 0.3 0.4 0.5
M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC

CMU-MOSI

AE 56.78 79.69 52.80 75.65 50.84 74.18 46.23 69.18 44.40 69.05 40.29 66.01
CRA 56.81 79.72 52.85 75.68 51.02 74.73 46.87 69.23 45.17 69.48 41.77 66.82
MCTN 56.85 79.73 52.97 75.89 51.75 74.16 46.98 69.29 45.73 69.55 42.98 67.02
TransM 57.84 80.21 53.49 77.08 51.97 74.24 48.23 70.51 47.02 70.38 43.28 67.74
MMIN 60.41 82.29 55.49 80.12 52.79 76.26 48.97 73.27 47.39 74.28 44.63 68.92
Ours 58.32 84.90 56.38 81.77 54.87 81.07 52.12 77.60 51.19 76.56 51.15 73.23

IEMOCAP

AE 76.15 82.09 75.07 79.84 74.20 76.91 71.55 76.07 69.73 75.16 67.15 75.22
CRA 77.05 82.13 75.21 79.95 74.22 77.03 71.86 76.41 70.13 75.29 67.31 75.42
MCTN 78.57 82.27 76.83 80.56 74.77 77.89 72.27 77.03 71.02 75.84 67.51 75.88
TransM 79.57 82.64 77.21 81.13 75.87 79.01 72.36 78.15 71.38 76.88 68.02 76.04
MMIN 80.83 83.43 78.02 82.32 76.38 79.53 73.05 79.02 71.22 77.27 69.39 77.01
Ours 81.15 85.39 78.37 83.63 77.55 82.33 76.14 82.21 74.09 81.94 72.49 80.57

Except for the first to the fifth columns data, we finally obtain 709-
dimensional visual representations, where the face, the head, and
the eye movement are included.
Textual Representations: For each textual utterance, the pre-
trained Bert [9] is utilized to extract textual features. Eventually,
we adopt the pre-trained uncased BERT-base model (12-layer, 768-
hidden, 12-heads) to acquire 768-dimensional word vectors.
AcousticRepresentations:As an audio analysis toolkit, Librosa [24]
shows an excellent ability to extract acoustic features. For CMU-
MOSI and IEMOCAP datasets, each audio is mixed to the mono and
is re-sampled to 16000 Hz. Besides, each frame is separated by 512
samples, and we choose the zero crossing rate, the mel-frequency
cepstral coefficients (MFCC) and the Constant-Q Togram (CQT)
features to represent audio segments. Finally, we concatenate three
features to yield 33-dimensional acoustic features.

4.2 Baselines
To evaluate the performance of our approach, the following base-
lines are chosen for comparison:

AE [2]: An efficient data encoding network trained to copy its
input to its output. In our implementation, we employ 5 AEs with
each layer of the size [512, 256, 128, 64].

CRA [33]: A missing modality reconstruction framework that
employed the residual connection mechanism to approximate the
difference between the input data. In our implementation, we add
a residual connection for the input with the same layer setting in
AE [2].

MCTN2 [26]: A method to learn robust joint representations
by translating among modalities, claiming that translating from a
source modality to a target modality can capture joint information
among modalities.

TransM [37]: An end-to-end translation based multimodal fu-
sion method that utilized Transformer to translate among modali-
ties and encoded multimodal features. In our implementation, we
concatenate 6 MAE losses between two modalities transformation.

MMIN3 [49]: A unified multimodal emotion recognition model
that adopted the cascade residual auto-encoder and cycle consis-
tency learning to recover missing modalities.

2https://github.com/hainow/MCTN
3https://github.com/AIM3-RUC/MMIN/tree/master



Table 4: Comparison of all modules in TATE.

Modules 0 0.1 0.2 0.3 0.4 0.5
M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC

V 37.84 56.25 - - - - - - - - - -
A 39.82 59.90 - - - - - - - - - -
T 55.63 76.17 - - - - - - - - - -

V+A 40.71 61.26 38.93 59.10 38.07 56.94 37.42 56.18 36.98 55.43 36.66 54.17
V+T 56.98 79.13 56.41 78.67 55.07 76.29 54.83 74.90 52.86 74.15 50.32 72.92
A+T 57.69 80.65 57.01 79.47 55.23 77.44 55.02 75.39 53.92 74.37 51.25 73.13

V+A+T 58.32 84.90 58.21 84.46 55.46 81.25 55.11 80.73 54.11 80.21 51.71 74.04
-w/o tag 57.95 80.21 57.86 80.99 54.83 79.90 53.71 79.89 52.59 76.75 49.17 72.05

-w/o tag loss 58.04 82.81 57.92 81.98 55.32 80.77 53.95 80.28 52.83 77.01 49.41 72.92
-w/o forward loss 52.39 76.21 51.83 75.52 50.16 73.39 49.87 72.15 48.26 71.12 47.29 70.35
-w/o backward loss 53.85 77.43 52.88 77.08 51.85 74.09 51.07 74.21 49.01 71.92 48.53 71.08
-w/o common space 54.03 79.76 53.20 77.59 52.97 75.99 51.23 75.01 49.83 72.37 49.05 71.85

TATE: Our proposed model.

4.3 Overall Results
For the single modality missing case, the experimental results are
shown in Table 2, where the missing ratio is set from 0 to 0.5.
Specifically, we report triple classification results on CMU-MOSI
and two classification results on IEMOCAP. With the increment
of missing rate, the overall results present a descending trend. Ex-
cept for the M-F1 value under the full modality condition is lower
about 2.02% than MMIN on the CMU-MOSI dataset, our proposed
method achieves the best results on other settings, validating the
effectiveness of our model. As can be seen in the table, compared to
auto-encoder based methods (AE, CRA), translation-based methods
(MCTN, TransM) achieve better performance, probably due to the
fact that end-to-end translation among modalities can better fuse
the multimodal information. Besides, the comparative experiments
suggest that the backward decoder can assist the forward encoder,
so as to further improve the overall performance.

For multiple modalities missing cases, we also present related
findings in Table 3. In this setting, one or two modalities are ran-
domly discarded. It can be seen that our proposed model still im-
proves about 0.89% to 3.10% on M-F1 and about 1.31% to 4.81%
on ACC compared to other baselines, demonstrating the robust-
ness of the network. Owing to the forward differential loss and
the assistance of tag, our model can still capture semantic-relevant
information. More comparison will be given in Section 4.5.

4.4 Ablation Study
To explore the effects of different modules in TATE, we evaluate our
model with several settings: 1) using only one modality; 2) using
two modalities; 3) removing the tag encoding module; 4) removing
the common space projection module; 5) removing the tag recovery
loss; 6) removing the forward differential loss; and 7) removing the
backward reconstruction loss.

According to Table 4, one interesting finding is that the perfor-
mance drops sharply when the textual modality is missing, validat-
ing that textual information dominates in the multimodal sentiment
analysis. A possible explanation for these results is that textual in-
formation is the manual transcription. However, similar reductions

are not observed when removing the visual modality. We conjecture
that the visual information is not well extracted due to the minor
changes to the face. Besides, the top half of the table shows that
the combination of two modalities provides better performance
than single modality, indicating that two modalities can learn com-
plementary features. As for the effects of different modules, the
performance of the forward differential module decreases about
4.52% to 6.38% on M-F1 and about 3.69% to 9.09% on ACC compared
to the whole model, demonstrating the importance of the forward
guidance. Since we employ full modality to pre-train the guidance
network, the forward JS divergence loss serves as a good supervi-
sion. One striking result to emerge from this table is that the tag
encoding module slightly improves the performance as expected.
To further validate the effectiveness of the tag encoding module,
we conduct several experiments in the following sub-section.

4.5 Effects of the Tag Encoding

Table 5: Improvements of the Tag Encoding.

Model Basic +Tag
M-F1 ACC M-F1 ACC

AE 51.28 72.53 53.25 (3.69% ↑) 75.21 (3.56% ↑)
TransM 52.87 72.92 54.79 (3.50% ↑) 76.02 (4.08% ↑)
Ours 53.71 79.89 55.11 (2.54% ↑) 80.73 (1.04% ↑)

We incorporate the tag encoding module with two basic models:
AE and TransM. The reason why we choose the above two models
is that AE and TransM are two different kinds of encoders: AE is
the auto-encoder based method, and TransM is the Transformer
based method. For the above two models, we add tags after the
feature extraction module. Table 5 presents the detailed results on
the CMU-MOSI dataset with a 30% missing rate. It can be seen
that models with the tag encoding module improves about 2.54%
to 3.69% on M-F1 and about 1.04% to 4.08% on ACC compared to
basic models, showing the effectiveness of the tag encoding module.
Owing to the added tag, the network can be better guided, and can
further focus on missing modalities.
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Figure 5: Comparison of full modalities and incomplete
modalities during testing. (a) M-F1 values. (b) Accuracy val-
ues.

4.6 Effects of the complete modality
To see the difference between the complete and incomplete modali-
ties of the test data, we first train the model with incomplete data,
and then test the model with both full modality data and different
missing rates of incomplete data. All experiments share the same
parameters on the IEMOCAP dataset for a fair comparison. As can
be seen in Fig. 5, the gaps between two settings on M-F1 and ACC
reach the minimum when the missing rate is 0.3. As the number
of missing samples in the training data increases, the correlation
among modalities becomes harder to capture, resulting in weaker
test performance. However, the gap increases when the missing rate
is bigger than 0.3. One possible explanation for the above results is
that the model cannot learn the joint representation well because
there are too many absent samples.

4.7 Multi-classes on IEMOCAP

Table 6: Detailed distributions on IEMOCAP.

Category Hap. Ang. Sad. Neu. Fru. Exc. Sur

4-calsses Train 477 879 868 1385 - - -
Test 118 224 216 323 - - -

7-calsses Train 476 891 873 1348 1458 848 87
Test 119 212 211 360 391 193 20

Table 7: Results of multi-classes on IEMOCAP.

Ratio 2-classes 4-classes 7-classes
M-F1 ACC M-F1 ACC M-F1 ACC

0 81.15 85.39 48.29 59.04 36.83 47.41
0.1 79.99 85.09 46.56 57.70 36.01 45.73
0.2 79.10 84.07 46.07 56.93 35.48 44.17
0.3 78.45 83.25 45.69 56.27 35.21 43.02
0.4 76.74 82.75 45.02 55.31 33.79 42.31
0.5 74.43 82.43 44.15 54.85 33.28 42.08

We also explore the performance of multiple classes on the IEMO-
CAP dataset. Apart from the two-classes results, we also choose
happy, angry, sad and neutral emotions as the 4-classes experiment,
and then choose the extra frustration, excited, and surprise emo-
tions as the 7-classes experiment. The detailed distributions and

results are presented in Table 6 and Table 7 respectively. It can be
seen that both M-F1 value and ACC decrease with the increment
of class numbers. By comparing the results with different rates of
missing modalities, the gaps among 7-classes are smaller than that
among 2-classes and 4-classes. Besides, closer inspection of Table 7
shows that the overall performance drops sharply when the class
number is 7, which is caused by the confusion of multiple classes,
resulting in the difficulties in convergence of the model.

4.8 Effects of different losses

Table 8: Results of different losses.

Datasets Loss 0 0.2 0.4
M-F1 ACC M-F1 ACC M-F1 ACC

CMU-MOSI

Cosine 55.87 81.21 52.28 76.95 50.23 74.18
MAE 56.21 82.05 52.37 77.16 51.15 74.76
JS 57.89 84.15 53.42 79.05 52.17 75.22
ours 58.32 84.90 55.46 81.25 54.11 80.21

IEMOCAP

Cosine 79.86 84.07 77.21 81.69 75.48 80.06
MAE 80.12 84.21 77.67 82.53 75.89 80.21
JS 80.73 85.03 78.56 83.21 76.34 81.07
ours 81.15 85.39 79.10 84.07 76.74 82.75

To investigate the effects of different losses, we replace different
loss function to see the performance. In detail, the cosine similar-
ity loss, the MAE loss, and the JS divergence loss are chosen for
comparison. We evaluate our model with 4 settings: 1) using the
cosine similarity loss for L𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 , L𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 and L𝑡𝑎𝑔 ; 2) using
the MAE loss for L𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 , L𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 and L𝑡𝑎𝑔 ; 3) using the JS
divergence loss forL𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 , L𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 and L𝑡𝑎𝑔 ; and 4) using
the JS divergence loss for L𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 and L𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 , and using the
MAE loss for L𝑡𝑎𝑔 (ours).

As can be seen in the Table 8, our method achieves the best
performance compared to other three loss settings on two datasets,
showing the superiority of our model. Relatively, the results of ap-
plying JS divergence achieve secondary performance. Since the tag
is composed of 4 digits (“0” or “1”), the MAE loss is more straightfor-
ward than JS divergence loss. Further analysis of the table suggests
that the combination of the JS divergence loss and the MAE loss is
beneficial in improving the overall performance.

4.9 Visualization
To better understand the learning ability of our model, we adopt
the T-SNE toolkit [20] to visualize the joint representations under
different rates of missing modalities. Specifically, we visualize about
1500 vectors learned by the Transformer encoder on the CMU-MOSI
dataset, where the red, the blue, and the green color denote negative,
neutral and positive respectively.

As shown in Figs. 6(a)-(e), the overall joint representations obtain
the similar distribution as the full modality condition. The majority
of vectors are generally divided into three categories, where neutral
samples is harder to classify because of their uncertain semantic.
Besides, with the increment of missing ratio, the distributions be-
comemore discrete, especially when the missing ratio is bigger than
0.3. Apart from that, as can be seen in the top right-hand corner
of Figs. 6(b)-(e), the larger ratio of missing modalities, the wider
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Figure 6: Virtualization of joint representations with different rates of missing modalities (red: negative, blue: neutral, green:
positive). (a) Full modalities, (b) missing rate 0.1, (c) missing rate 0.2, (d) missing rate 0.3, (e) missing rate 0.4, and (f) missing
rate 0.5.

outliers. The reason is that the model cannot converge with too
many absent samples. While in Fig. 6(f), the decision boundary is
closer to the outliers when there are nearly half of missing samples.
We suspect that absent samples dominate when training the model,
resulting in a quite distinct distribution.

5 CONCLUSION
In this paper, we propose a Tag-Assisted Transformer Encoder
(TATE) network to handle the problem of missing partial modalities.
Owing to the tag encoding technique, the proposed model can cover
all uncertainmissing cases, and the designed tag recovery loss can in
turn supervise joint representation learning. Besides, more general
aligned vectors are obtained by the common space module, and
then are fed into the Transformer encoder for further process. At
last, the final objective loss further directs the learning of missing
modalities. All experimental results are conducted on CMU-MOSI
and IEMOCAP datasets, showing the effectiveness of the proposed
method.

In the future, this study may be further improved in the fol-
lowing ways: 1) for the common space projection module, we will
try more fusion methods (e.g. add weights) to concatenate com-
mon feature vectors; and 2) for the Transformer encoder-decoder
module, we employ the original sub-layer in Transformer as the
basic semantic encoder. We attempt to adopt different structures
of Transformer (e.g. Transformer-XL [8], Reformer [19], etc.) to
observe the performance.
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