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ABSTRACT

This study examines the nonlinearity and chaotic behavior of the time series 
of returns of two exchange-traded funds (ETFs) listed in Hong Kong stock 
exchanges, namely Hong Kong Tracker Fund (HKTF) and iShares FTSE 
A50 (ISFT), and the adequacy of autoregressive-generalized autoregressive 
conditional heteroskedasticity (AR-GARCH) models to capture nonlinearity. 
A set of nonlinearity tests consistently indicate the presence of nonlinearity 
in both return time series and the Brock–Dechert–Scheinkman (BDS) test 
of nonlinearity on AR-GARCH residuals, and the inability of AR-GARCH 
models to capture the nonlinearity in the return series at different stages of 
the model-building process. Testing for chaos is a rather delicate part in this 
study and is done by estimating the correlation dimension for both ETFs’ 
return series. The correlation dimension saturates at a finite value, and the 
saturation indicates the presence of chaos in two ETFs considered for 
this study.

Keywords: exchange-traded fund, AR-GARCH, Hong Kong Stock Exchange, 
nonlinearity, chaotic behavior, time series

INTRODUCTION AND PREVIOUS STUDIES

The first exchange-traded fund (ETF) in the United States was Standard & 
Poor’s 500 Depository Receipts (SPDRs), which was designed to passively 
mimic the S&P 500 index. Hong Kong Tracker Fund, which is Hong Kong’s 
first ETF, was launched on November 12, 1999. ETFs are passively managed 
funds intended to closely track the performance of market indices. ETFs 
combine the benefits of investment diversification through index investing 
and the flexibility of trading at any time during a market’s trading hours. 
ETFs have become increasingly popular because they represent portfolios 
of securities designed to track the performance of indices, thereby offering 
an efficient way for investors to obtain cost-effective exposure. They 
currently play an increasingly important role in Hong Kong. The number of 
ETFs has increased to 185 as of December 2017. However, compared to 
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other developed financial markets, the Hong Kong ETF segment is still in a 
nascent stage.

The aim of this study is to investigate the presence of nonlinear dependence 
and deterministic chaos in daily returns on two ETFs, namely, Tracker Fund 
(HKEX stock code: 2800) and X iShares FTSE A50 (HKEX stock code: 2823), 
by contrasting the random walk hypothesis with chaotic dynamics. The overall 
monthly turnover of these two ETFs is always more than half of the total monthly 
turnover of all 185 ETFs. They were listed on November 12, 1999 and November 
8, 2004, respectively. Because of the difference in their listing dates, we have to 
unify the study period from January 1, 2005 to December 31, 2017. If there is 
presence of nonlinear dependence and deterministic chaos, the predictive ability 
of the system is strongly limited, especially for long-run predictions. Furthermore, 
we focus on examining whether chaos theory can explain the complex and 
random behaviors that may not be explained by stochastic approach or the 
traditional random walk model. In particular, this study attempts to answer two 
questions: (1) Does the autoregressive conditional heteroskedastic (ARCH) 
model capture the presence of nonlinear dependence? (2) Are returns in the 
sampled Hong Kong ETFs generated by a nonlinear dynamic system?

Whether the financial time series exhibit the evidence of dependence is 
discussed extensively since Hsieh (1991) cast doubt on the behavior of returns 
on the S&P 500 Index follow a random walk. Peters (1992, 1994) and Hampton 
(1996) find the US stock market series are not random; instead, they have long-
term dependence. Similar evidence of dependence is also found in other stock 
markets (Greene and Fieltz, 1977; Papaioannou and Karytinos, 1995; Opong 
et al., 1999).

Movements in market indices and stock prices have fascinated not only 
traders, but also academicians and policymakers. Studies on the examination 
of autocorrelations have found little evidence of linear dependence but latter 
researches use models developed based on that assumption. Some studies 
have pointed out that linear models may not be appropriate to capture the 
complexities of economic and financial time series. In fact, several recent 
studies have found strong evidence of nonlinearity in the short-term 
movements of asset returns (Hsieh, 1991, 1993; Lin, 1997; Papaioannou and 
Karytinos, 1995; Hamill and Opong, 1997; Das and Das, 2006). Identifying 
nonlinearity will open the possibility of generating nonlinear forecasting 
models that can better explain certain aspects of stock price returns than do 
linear forecasting models. Finance and economics are areas that strongly need 
the application of such an approach because empirical researches show that 
the linear models are not adequate to explain the underlying dynamics of 
recent economic data. Some researchers have pointed out that nonlinear 
dynamics are appropriate to explain the complexity in many stock returns 
series (Hsieh, 1991, 1993; Brock et al., 1991). Fama (1965) admits that linear 
modeling techniques are limited in capturing the complicated patterns that 
chartists claim to see in stock prices.
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Chaos has been identified in hydrodynamic turbulence, lasers, electrical 
circuits, chemical reactions, disease epidemics, biological reactions, and 
climatic change. The existence of chaotic behaviors can be detected by the 
following indications: (1) there is an existence of strange attractors characterized 
by fractal shape; (2) chaotic process is neither random, nor independent and 
identically distributed (IID); (3) chaotic process is a nonlinear process; (4) 
chaotic process is a deterministic process, which will retain its dimensionality 
when it is placed in a higher embedding dimension; and (5) chaotic process is 
sensitive to initial conditions. Chaotic system is based on the assumptions that 
the underlying system is a nonlinear deterministic process. Stochastic process 
models the financial and economic time series as random shocks. Unlike 
stochastic process, deterministic process models the time series by assuming 
that there is a long-term memory.

Chaos in financial markets also attracts many researchers, especially when 
stochastic systems sometimes fail to provide reliable forecasts. Stock price 
variations generated by a random process with no long-term memory has been 
prominent in finance research. The random process assumes that stock returns 
are IID random variables. While the traditional beliefs of random walk and 
efficient market hypothesis seemed indisputable, Mandelbrot (1964) challenged 
this traditional assumption by showing that stock price returns did possess a 
long-term memory. Chaotic behavior can potentially explain fluctuations in 
economic and financial time series, which appear to be a random process. 
Other findings suggest that stock returns may be predictable, rather than being 
a random process (Scheinkman and LeBaron, 1989; Frank and Stengos, 1989; 
Peters, 1994; Atchison and White, 1996).

As efficient market hypothesis (EMH) and the random walk model seem 
to fail to capture the behaviors in many stock markets, studies on chaotic 
behavior and nonlinear dynamics of stock price behavior have been conducted 
extensively. The published evidence of deterministic chaotic dynamics is 
controversial. Hsieh (1991) shows that the S&P 500 index returns are governed 
by low-complexity chaotic dynamics. Scheinkman and LeBaron (1989) report 
the evidence of deterministic behavior in weekly stock returns. Frank and 
Stengos (1989) find low-dimensional chaos in gold and silver rates of return. 
Blank (1991) confirms the evidence of chaos by estimating the correlation 
dimension and the Lyapunov exponent. Willey (1992) finds that the 
deterministic characteristic appears in both daily S&P 100 index returns and 
NASDAQ index returns. Bask (1996, 2002) finds an indication of deterministic 
chaotic behavior by using the largest Lyapunov exponent in exchange rate 
series, including Swedish kroner versus Deutche mark, ECU, US dollar, and 
Japanese yen. Serletis et al. (1997) find evidence of chaotic nonlinearity in 
east European black-market exchange rate series. Scarlat et al. (2007) find 
consistent evidence of chaotic dynamics in Romanian financial markets. Das 
and Das (2007) find that nonlinear structure found in foreign exchange series 
of 12 countries in their previous studies are deterministic chaos. Iseri et al. 
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(2008) find evidence of high chaotic phenomena in Istanbul stock exchange. 
However, Howe et al. (1997) find no evidence of deterministic patterns in 
Australia and Hong Kong equity returns. Brooks (1998) reports strong 
evidence of nonlinearity but no evidence of deterministic chaos in the foreign 
exchange market data. McKenzie (2001) also finds that daily financial markets 
data for 10 developed markets are not chaotic by using close returns test, 
although considerable nonlinearities are indicated by the BDS test. Gilmore 
(2001) finds similar results that daily exchange rate series of British pound, 
Deutche mark, and Japanese yen are nonlinear dependence and do not support 
the findings of possible chaos. Serletis and Shintani (2003) find evidence 
against low-dimensional chaos in Dow Jones Industrial Average and suggest 
using stochastic models and statistical inference in the modeling of asset 
markets. De Grauwe and Vansteenkiste (2007) mostly find no indication of 
chaotic dynamics in the foreign exchange markets. Mishra et al. (2011) find 
little evidence to support six Indian stock market index series that are 
generated by a chaotic system, although the presence of serial correlation, 
marginal persistence, and nonlinear dependence are indicated. Madhavan 
(2013a) reveals the prevalence of nonchaotic nonlinearity in two chosen US 
and European credit default swap (CDS) indices, namely CDX.NA.IG and 
iTraxx.Europe. Madhavan (2013b) also finds the absence of chaotic behaviors 
in any of the Indian-listed ETFs considered in the study and shows that all the 
nonlinearities could not be captured by appropriate GARCH models, except 
one sampled ETF. BenSaida and Litimi (2013) conclude that previous studies 
are inconclusive about the presence of chaotic behavior in a financial series 
because of test misspecification, as the chaos test were designed for clean 
data. It is generally difficult to have a conclusive evidence of chaotic dynamics 
in financial and economic time series because chaos analysis techniques 
cannot separate exogenous noise from chaos. Owing to such controversial 
results, there is a need for providing more evidence of chaotic behavior in 
financial time series.

The remainder of this paper is organized as follows: Section 2 describes 
the data used in this study. Section 3 illustrates the methods employed in this 
study, while Section 4 presents the empirical results. Section 5 provides the 
general conclusions and implications for the financial analysts.

DATA

Our sample contains the daily closing prices of Hong Kong Tracker Fund 
(HKTF) and iShares FTSE A50 (ISFT), the two major ETFs listed on the Hong 
Kong Exchanges, during the period 2005–2017. The daily prices of the sampled 
ETFs were obtained from Datastream (Thomson Financial Limited) and were 
checked against the prices supplied directly by investment managers. HKTF 
and ISFT were issued on November 12, 1999 and November 15, 2004, 
respectively. Therefore, our sample period starts on January 1, 2005. Another 
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reason for this choice of sample period is the dramatic increase in the volatility 
of stock markets during 2007–2008. Because of the synchronization, the 
analyzed periods are shorter than the actual periods since the introduction of 
these two ETFs.

The logarithmic returns of the sampled ETFs may be computed as follows:

Rt = ln
Xt

Xt−1

⎛

⎝⎜
⎞

⎠⎟
, 	 (1)

where Xt is the closing ETF price on date t, and Rt is the daily logarithmic 
rate of return. Taking first logarithmic difference not only may ensure that 
our time series are stationary and “whitened” but also is an effective way to 
compute the continuously compounded rates of returns, although Chen 
(1988) argues that taking first difference may destroy any delicate nonlinear 
structure. Peters (1989, 1992) points out that taking first logarithmic 
difference may filter out the economic growth effect inherent in the stock 
market series.

The time series of closing prices and logarithmic returns of the sampled 
ETFs are then subjected to the Augmented Dickey–Fuller (ADF) test to 
evaluate their order of integration. The ADF statistics of the unit root test 
indicate that the time series of daily closing prices of HKTF and ISFT are 
I(1) in levels and those of logarithmic returns are I(0). Table 1 presents the 
descriptive statistics of the closing price series and logarithmic return 
series.

Table 1. Summary Statistics

Tracker 
Funds
(TFHK)

iShares FTSE 
A50
(ISFT)

Log. Returns of 
Tracker Funds 

Log. Returns 
of iShares 
FTSE A50

Mean 21.43 11.26 0.00009 0.00016

Median 22.00 11.04 0.00000 0.00000

Maximum 32.15 27.70 0.04680 0.07782

Minimum 11.60 3.53 –0.04948 –0.07152

Standard Deviation 3.84 4.15 0.00626 0.00883

Skewness –0.3021 0.9517 –0.1647 0.07075

Kurtosis 2.8291 5.3200 10.2724 11.8693

Jarque-Bera (JB) 
Statistics

55.6866* 1272.0580* 7485.8270* 11114.4212*

ADF Statistics [I(0)] –2.0768 –1.9593 –60.5478* –44.0400*

ADF Statistics [I(1)] –60.6276* –46.0123*

Note: *Significance at 1 percent level.
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RESEARCH METHODS

A brief description of a set of methods to detect the nonlinearity and chaotic 
behavior in the time series are introduced in this section. Not all nonlinearity 
tests may detect all types of nonlinearity, as their process may have different 
underlying data-generating mechanism. Currently, there is no single reliable 
statistical test for the presence of chaotic behavior in time series. A feasible 
way to detect nonlinear and chaotic structure in time series is to adopt all 
available tests, in order to avoid misleading results and conclusions 
(Papaioannou and Karytinos, 1995; Gilmore, 1996).

TESTING FOR NONLINEARITY: McLEOD-LI TEST

The McLeod-Li test was originally proposed to test for ARCH effect based on 
the Ljung–Box test (McLeod and Li, 1983). It tests whether the first L 
autocorrelations for the squared residuals of the prewhitened data are 
collectively small in magnitude. The lag k squared sample autocorrelation of 
squared residuals(εt

2)  is estimated as follows:

r̂k
2 =

εt
2εt−k

2

t=k+1

n

∑

εt
2

t=1

n

∑
. 	 (2)

The Ljung–Box Q-statistic of McLeod-Li test for the first L autocorrelations is 
given by

QSTAT =n(n+2)
r̂k
2(εt

2)
n−kk=1

L

∑ . 	 (3)

Under the null hypothesis that the error term derived from an autoregressive 
integrated moving average (ARIMA) model is being generated by an IID 
process, the test statistic has a χ 2-distribution with a degree of freedom of L. 
Not rejecting the null hypothesis implies that the data is generated by a linear 
mechanism.

TEST FOR NONLINEARITY: ENGLE LM TEST

Engle’s ARCH test is a Lagrange multiplier (LM) test to assess the significance 
of ARCH effects and may be used to test nonlinearity in second moments 
(Engle, 1982). The null hypothesis of the Engle LM test is H0 : α0 = α1 = et

2 =α0 +α1et−1
2 +!+αmet−m

2 +ut . = 
αm = 0 in the following auxiliary regression:

et
2 =α0 +α1et−1

2 +!+αmet−m
2 +ut . 	 (4)
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The alternative hypothesis is then the existence of autocorrelation in the 
squared residuals. The test statistic for the Engle LM test is the conventional 
F statistic of the auxiliary regression presented in equation (4). Under the null 
hypothesis of linear data mechanism, the F statistics follows a χ 2 distribution 
with m degree of freedom. The value of m may be determined by comparing 
the log-likelihood values for different m.

TEST FOR NONLINEARITY: HINICH BISPECTRUM TEST

The basis of the Hinich bispectrum test is that linear data-generating processes 
have no nonzero bicorrelations (Hinich, 1982). Assuming that time series {Xt} 
is a third-order stationary stochastic process and has zero mean for all t, the 
bispectrum is a double Fourier transformation of its third-order bicovariance 
function at the frequency pair (f1, f2) and given by

BX (f1 ,f2)= E[Xt ,Xt−m ,Xt−n ]e
−2πi (f1m+f2n)

n=−∞

+∞

∑
m=−∞

+∞

∑ . 	 (5)

The bispectrum implies that there exists a triangular principal domain

Dom = {0 < f1 < 0.5, f2 < f1, 2f1 + f2 < 1}.

The consistent estimator of the bispectrum is obtained by smoothing the third-
order periodogram FX (j, k) over adjacent frequency pairs as

B̂X (fm ,fn )=
1
M2 FX (j ,k

k=(n−1)M

nM−1

∑ ),
j=(m−1)M

mM−1

∑ 	 (6)

where FX(j, k) = X(fj) X (fk) X* (fj+k) and X(f j )= Xte
−i 2πf jt

t=0

N−1

∑ are the Fourier 
transformation of the sample time series.

The null hypothesis of Gaussianity and linearity can be tested using the 
estimated standardized bispectrum, which is asymptotically a chi-square 
distribution with two degrees of freedom as

X̂ (fm ,fn )=
B̂X (fm ,fn )

NQm,n

M 4 ŜX (fm )ŜX (fn )ŜX (fm+n )⎡⎣ ⎤⎦

.
	 (7)

If the standardized bispectrum in the frequency domain is not flat as a function 
of frequency pairs, a nonlinear data generating process is implied.
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�TEST FOR NONLINEARITY: HINICH BICORRELATION TEST

The Hinich bicorrelation test requires that the serial linear dependence 
should be removed from the time series before performing the test. The 
removal may be achieved by fitting an autoregressive model, and it will 
ensure that the remaining serial dependence is attributed to nonlinear 
generating process. The null hypothesis is that time series {Xt} is a stationary 
white noise process that has a zero bicorrelation. The alternative hypothesis is 
that the data-generating process has a nonzero bicorrelation. The Hinich 
bicorrelation test statistic has a chi-square distribution with L(L−1)

2
 degrees 

of freedom as

H = G2(r ,s )
r=1

s−1

∑
s=2

L

∑ , 	 (8)

where G2(r ,s )= (n − s )
1
2C3(r ,s )  and C3(r ,s )=

1
n − s

etet+ret+r+s
t=1

n−s

∑  for  
0 ≤ r ≤ s.

TEST FOR CHAOS: BDS TEST

Brock et al. (1987) suggested the BDS test, which is a powerful tool for 
detecting serial dependence in time series based on the concept of correlation 
integrals. The BDS test tests the null hypothesis of IID against an unspecified 
alternative using a nonparametric approach. If the linear dependence has been 
removed in the time series, rejecting the null hypothesis indicates that the 
serial dependence is nonlinear.

However, the BDS test cannot distinguish between nonlinear deterministic 
chaos and nonlinear stochastic systems. While it cannot test chaos directly, it 
can test only nonlinearity, provided that any linear dependence has been 
removed from the data (e.g., by using traditional GARCH-type filters or taking 
a first difference of natural logarithms). Nevertheless, as nonlinear dependence 
is one of the indications of chaos, we may use the BDS test to detect such an 
indication. The BDS test statistic is given by

BDS
ε ,m =

n[C
ε ,m −(Cε ,1)

m ]

V
ε ,m

, 	 (9)

where Cε ,m = 1
nm(nm −1)

Ii ,j ;ε
i≠ j
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 is the correlation integral that measures the 

spatial correlation among the points and can be computed by adding the 
number of pairs of points (i, j), which are within a radius or tolerance ε of each 
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other; Ii,j;ε is the indicator function given by I i ,j ;ε =
1 if x i

m −x j
m ≤ε

0 otherwise

⎧

⎨
⎪

⎩
⎪

.

Vε ,m  is an estimate of the asymptotic standard deviation of Cε,m – (Cε,1)
m. 

Brock et al. (1987) show that if time series {Xt} is IID, then the correlation 
integral at embedding dimension (m) and given a certain value of ε, can be 
approximated by the mth power of Cε,1, in which the correlation integral under 
the embedding dimension equals 1. In other words, a significant positive BDS 
statistics indicates that certain patterns are too frequent rather than a true 
random process. The test is generally conducted on the residuals of a linear or 
GARCH-type filter. This test will be repeated at different values of e and m. 
Lin (1997) suggests that the appropriate value of ε σ  ranges from 0.5 to 2 and 
Brock et al. (1987) propose that the appropriate value of m should be between 2 
and 5. A standardized BDS test statistic value that is greater than +1.96 would 
imply a rejection of null hypothesis.

TEST FOR CHAOS: CORRELATION DIMENSION

The correlation dimension estimation may be used to differentiate deterministic 
chaos from stochastic systems. Peters (1991a) states that a fractal shape retains 
its dimensionality when it is placed in a greater embedding dimension. The 
increase in fractal dimension of a chaotic process will not synchronize the 
increase in embedding dimension. Liu, Granger, and Heller (1993) prove that 
for a true chaotic system, the correlation dimension has a stabilized value when 
the embedding dimension increases.

Peters (1991b) indicates that the fractal dimension may be calculated by 
using correlation dimension that measures how an attractor fills its space. 
Given an embedded time series {X i

m }= [x1
m ,x2

m ,x3
m ,……xN−m

m ],  correlation 
integrals Cε ,m  may be calculated according to the algorithm illustrated in 
equation (9) for different values of ε.

There are several ways of estimating correlation dimension nm. The most 
common practice in estimating nm is by the OLS regression model where the 
dependent variable is the natural logarithm of correlation integral [ln(Ce,m)] and 
the independent variable is the natural logarithm of tolerance [ln(e)] (Denker 
and Keller, 1986; Scheinkman and LeBaron, 1989). The regression coefficient 
will then be the estimated correlation dimension. This regression equation is as 
follows:

ln(Cε,m) = nm ln(ε) + c. 	 (10)

We repeat the estimations of nm with different values of m. A plot of 
embedding dimension (m) along the x-axis against their corresponding 
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estimated correlation dimension (nm) along the y-axis is then constructed. If 
chaotic behavior is present in the time series, the estimated correlation 
dimension (nm) will stabilize at a certain value when embedding dimension (m) 
continues to increase. If this stabilization does not occur, it implies that nm 
increases without bound as m increases, then the system is stochastic rather 
than chaotic.

RESULTS

NONLINEARITY TEST

The time series of logarithmic returns of sampled ETFs, HKTF, and ISFT are 
first subjected to autoregressive (AR) models. This may remove the linear 
dependence from the time series. Any dependence left in the AR-filtered 
residuals diagnosed by any test may be regarded as nonlinear dependence. The 
optimum lags for such AR filters may be determined by the Akaike information 
criterion (AIC). The optimum lags are found to be 2 and 7 for HKTF and ISFT, 
respectively.

After the logarithmic return time series have been filtered by the AR 
filters, the AR residuals of each time series will then be subjected to different 
tests of nonlinearity. The set of nonlinearity tests employed in this study are 
McLeod-Li test, Engle LM test, Hinich bispectrum test, and Bicorrelation (H) 
test. The details of these tests are introduced in the previous section. The test 
statistics, summarized in Table 2, are all significant at the 1% level and indicate 
the presence of nonlinear dependence in the time series.

TESTING THE ADEQUACY OF AR-GARCH MODELS

The multiple nonlinearity tests show that the time series are nonlinearly 
dependent. The time series of the sampled ETFs will then be subjected to 
GARCH model to investigate whether such nonlinear dependence may be 
captured by it. As the optimum lag of AR model is found to be 2 and 7 for 
HKTF and ISFT, respectively, AR(2)-GARCH(p, q) and AR(7)-GARCH(p, q) 

Table 2. Nonlinearity Test Results

Tracker Funds
(TFHK)

iShares FTSE A50
(ISFT)

McLeod-Li Test Statistics 30694.237* 32082.301*

Engle LM Test Statistics 47319.894* 73855.659*

Hinich Bispectrum Test Statistics 322.089* 284.026*

Bicoreelation H-Statistics 529544.695* 828952.121*

Note: *Significance at 1 percent level.
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will then be employed to capture the dependence in the respective time series. 
The appropriateness of the selected AR-GARCH will be examined by LM test 
to the AR-GARCH residuals.

In the case of HKTF, the residuals are diagnosed as having the ARCH 
effect if AR(2)-GARCH(1,1) is used. The residuals are found as not having the 
ARCH effect until AR(2)-GARCH(5,1) model is fitted. Similarly, in the case of 
ISFT, no residual ARCH effects are found until AR(7)-GARCH(3,1) model. 
Table 3 presents the variance equation estimates and the test results of residual 
diagnosis of the AR-GARCH models fitted to the residuals.

The BDS test is then employed to test the adequacy of the fitted AR and 
AR-GARCH models to capture the nonlinear structure in the time series. The 
BDS test statistics are calculated for different values of embedding dimension 
ranging from 2 to 5, and for different threshold values, which are the ratios of 
tolerance to standard deviation ε

σ  ranging from 0.5 to 2.0. Although the test 
results are impacted by the author’s choice of embedding dimension and 
threshold value, the selected ranges of values are commonly used figures. 
Table 4 presents the BDS test results.

The results indicate that all the BDS test statistics are significant at the 1% 
level under different combinations of embedding dimension and threshold 
value ε

σ . Thus, we should reject the null hypothesis of IID for the residual 
series obtained from fitting AR and AR-GARCH models on both return series 
of HKTF and ISFT. Regarding the case of fitting AR models, the BDS test 
statistics indicate the existence of nonlinear dependence in the time series and 
the results are consistent with the set of nonlinearity test results. The BDS test 
is then used to test the existence of nonlinear dependence in the AR-GARCH 
residual series. Rejecting the null hypothesis of IID for the residual series 

Table 3. Variance Equation Estimates of AR-GARCH Models

Tracker Funds
(TFHK)

iShares FTSE A50
(ISFT)

Variance Equation Estimates

a 0.0002** 0.0001**

b1 0.3288* 0.8167*

b2 –0.2912* –0.8031*

b3 –0.0061 0.0405 

b4 0.0379

b5 –0.0260

w1 0.9544* 0.9478*

Residual Diagnosis 

F-statistic 1.7363 2.4503

nR2 8.6747 7.3437

Note: **Significance at 5 percent level; *Significance at 1 percent level.
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obtained from AR-GARCH models indicates that the selected AR-GARCH 
models may not capture the nonlinear dependence in the series.

TESTING FOR CHAOS

To test the presence of chaos, we estimated the correlation dimensions of both 
return series under different embedding dimensions (m) = 1, 2, …., 20, with the 
delay time (t) = 1. Table 5 presents the estimated correlation dimensions (nm) of 
both return series under different embedding dimension (m). Figure 1 presents 
the plots of the estimated correlation dimensions (nm) against their respective 
underlying embedding dimension (m) of both return series and a series of 
random data for comparison.

Three distinct regimes may be observed in Figures 1(a) and 1(b). When the 
embedding dimension is less than 5, the value of correlation dimension 
increases rapidly as the value of embedding dimension increases. However, 
when the value of embedding dimension is still low, it is very hard to distinguish 

Table 4. BDS Test Results

Tracker Funds
(TFHK)

iShares A50
(ISFT)

ε
σ

Embedding 
Dimension 
(m)

AR(2) 
Residuals

AR(2) –  
GARCH(5,1) 
Residuals

AR(7) 
Residuals

AR(7) –  
GARCH(3,1) 
Residuals

2 2  137.92* 58.30*  107.93* 56.46*

2 3  136.69* 52.19*  104.50* 54.88*

2 4  135.95* 46.81*  101.39* 52.86*

2 5  137.64* 42.67*  100.04* 51.23*

1.5 2  139.71* 55.73*  116.41* 61.63*

1.5 3  148.89* 49.88*  120.14* 61.45*

1.5 4  160.16* 44.75*  124.78* 61.05*

1.5 5  176.43* 40.79*  132.35* 61.21*

1 2  150.39* 28.56*  128.90* 61.63*

1 3  182.80* 26.12*  152.48* 61.45*

1 4  227.62* 23.69*  184.15* 61.05*

1 5  294.35* 22.14*  230.26* 61.21*

0.5 2  212.29* 27.58*  219.50* 90.49*

0.5 3  359.59* 30.84*  360.97* 113.83*

0.5 4  656.51* 31.45*  637.17* 150.25*

0.5 5  1293.26* 31.45*  1209.87* 210.16*

Note: The test statistics shown in the table are standardized Z-statistics.

*Significance at 1 percent level.
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that the underlying system is a chaotic or a stochastic system. The indication of 
chaos is masked by the noise. When the embedding dimension increases (5 < m 
< 10), there is a weak tendency to saturate at a constant value. This behavior 
indicates that our system may be deterministic. When the embedding dimension 
is relatively large (10 < m < 20), the value of correlation dimension does not 
follow the increases in embedding dimension. The slope of the straight line 
becomes very small and saturates. This saturation of the estimated correlation 
dimensions indicates the underlying system of both ETFs as a chaotic process 
rather than a random process. The saturated correlation dimensions presented 
in Table 5 are all nonintegers; the strange attractor emerges in our series and 
we may conclude that our series are not only deterministic but also chaotic due 
to the existence of chaotic attractor.

Figure 1 shows a graph of estimated correlation dimension against 
embedding dimension for the simulated random data; the correlation dimension 
follows the increase in embedding dimension. It is found that the correlation 
dimension is infinite for a random series because it is disordered and fills the 
whole phase space.

Table 5. Estimated Correlation Dimension

Embedding 
Dimension (m)

AR(2) – GARCH(5,1) 
Residuals of Tracker 
Fund (TFHK)

AR(7) – GARCH(3,1) 
Residuals of 
iShares A50 (ISFT)

Random

1 1.68 2.16 0.94

2 2.03 2.38 1.86

3 2.14 2.46 2.80

4 2.19 2.50 3.91

5 2.22 2.53 4.95

6 2.24 2.55 5.83

7 2.24 2.56 6.92

8 2.26 2.58 7.91

9 2.27 2.59 8.90

10 2.28 2.59 9.92

11 2.28 2.60 10.90

12 2.28 2.61 11.88

13 2.28 2.61 12.91

14 2.28 2.62 13.90

15 2.28 2.62 14.92

16 2.28 2.63 15.86

17 2.29 2.63 16.88

18 2.28 2.63 17.90

19 2.28 2.63 18.89

20 2.28 2.64 19.91
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CONCLUSION

In this study, we have examined the nonlinearity and chaotic behavior of the 
time series of returns of two exchange-traded funds (ETFs) listed in Hong 
Kong stock exchanges (HKEX): Hong Kong Tracker Fund (HKTF) and iShares 
FTSE A50 (ISFT). Their trading volumes are more than half of the total trading 
volumes of all ETFs listed in HKEX. The adequacy of AR-GARCH models to 
capture nonlinearity is also examined in this study.

As no single nonlinearity test is superior to another, a set of nonlinearity 
tests including McLeod-Li test, Engle LM test, Hinich bispectrum test, and 
Bicorrelation (H) test are employed and all of them indicated the presence of 
nonlinearity in both return time series.

Both return time series are then modeled by appropriate AR-GARCH 
models. The BDS test of nonlinearity on AR-GARCH residuals indicates that 
the nonlinearity in return series cannot be captured by AR-GARCH models at 
different stages of the model-building process. The results are consistent under 
different choices of embedding dimension and different threshold values. 
Nonlinearity is one of the indications of chaotic behavior.

Testing for chaos is a rather delicate part is this study. Correlation dimension 
is estimated for both ETFs’ return series at different embedding dimensions. The 
plots of the values of correlation dimension against the respective values of 
embedding dimension show that the correlation dimension saturates at a finite 
value after the embedding dimension is greater than six. The saturation indicates 
the presence of chaos in both ETFs considered for this study.

To conclude, the findings of nonlinear process and chaotic behavior in the 
return time series of the two major ETFs in HKEX provide some insights to 
financial analysts and economists. First, we may not be able to apply traditional 
econometric tools when modeling the Hong Kong-listed ETF returns because 
most of them try to whiten the originally nonlinear data to suit the linear-based 
tools. Second, the underlying nonlinear process makes the back testing of 
models, and performances have little meaning for the future. Third, the chaotic 
behavior found indicates that the price movements of Hong Kong-listed ETF 
may not be easily modeled by the traditional econometric tools, especially in 
the long term due to the sensitivity to initial condition, which is one of the 
characteristics of chaos. However, prediction is possible in the short term, as the 
chaotic process is a deterministic system. Fourth, the findings of nonlinearity in 
AR-GARCH filtered residuals show the possibility of the prevalence of additive 
nonlinearity in conjunction with multiplicative nonlinearity.
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